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Goldman form, flat connections and stable vector bundles

Leon A. Takhtajan

Abstract. We consider the moduli space N of stable vector bundles of degree 0 over a compact
Riemann surface and the affine bundle A! N of flat connections. Following the similarity
between the Teichmüller spaces and the moduli of bundles, we introduce the analogue of the
quasi-Fuchsian projective connections – local holomorphic sections of A – that allow to pull
back the Liouville symplectic form on T �N to A. We prove that the pullback of the Goldman
form to A by the Riemann–Hilbert correspondence coincides with the pullback of the Liouville
form. We also include a simple proof, in the spirit of Riemann bilinear relations, of the classic
result – the pullback of Goldman symplectic form to N by the Narasimhan–Seshadri connection
is the natural symplectic form on N, introduced by Narasimhan and Atiyah & Bott.
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1. Introduction

There is a close similarity between the theory of projective connections on Riemann
surfaces, and the theory of flat connections in vector bundles over a Riemann surface
(more generally, connections with central curvature), and it is worthwhile to describe
it in some detail.

Namely, the main object in the first theory is a holomorphic affine bundle Pg!Tg

of projective connections over the Teichmüller space Tg of compact Riemann surfaces
of genus g > 1. Bers simultaneous uniformization determines a family of global holo-
morphic sections Tg ! Pg , allowing to identify Pg with the holomorphic cotangent
bundle T �Tg of Tg . These sections correspond to quasi-Fuchsian projective connec-
tions and are parametrized by the points in Tg . Remarkably, the pullback to Pg of the
canonical symplectic form on T �Tg – the Liouville form – does not depend on the
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choice of a quasi-Fuchsian section [13], as it follows from an important property, called
the quasi-Fuchsian reciprocity in [14, 21]. The monodromy of a projective connection
determines a natural map of Pg to the PSL.2;C/-character variety, allowing to pull
back the Goldman symplectic form to Pg . As stated in [11], these two pullbacks give
the same (up to a constant) symplectic form on Pg (see [20] for a direct proof).

The Teichmüller space Tg is also a symplectic manifold with symplectic form
given by the Kähler form of the Weil–Petersson metric. It is naturally isomorphic to
the component of the PSL.2;R/-character variety with the maximal Euler class [7],
and the pullback of the Goldman form to Tg is (up to a constant) the Weil–Petersson
symplectic form [6].

The celebrated Narasimhan–Seshadri theorem is an analogue of the Fuchsian
uniformization of Riemann surfaces for the stable vector bundles over a compact
Riemann surface, and the moduli space N of stable bundles of rank n and degree 0
naturally has a structure of the U.n/-character variety. The analog of Goldman theorem
in [6] is Theorem 3.3 – a simple statement that the pullback of the Goldman form on
the U.n/-character variety is the Narasimhan–Atiyah–Bott symplectic form on the
module space N. It is attributed to Goldman and is well known to the experts. For
convenience of the reader, we present a simple proof in the spirit of Riemann bilinear
relations, which goes back to the classic work of Eichler and Shimura.

Similarly to the Teichmüller theory, there is a holomorphic affine bundle A! N of
zero curvature connections in the stable vector bundles, compatible with the complex
structure. The Riemann–Hilbert correspondence – the monodromy map – maps A

to the GL.n;C/-character variety and allows to pull back the Goldman form to A.
It is worth mentioning, though we will not use it in the paper, that according to
the non-abelian Hodge correspondence (Hitchin–Simpson–Donaldson–Corlette), the
GL.n;C/-character variety is isomorphic to the moduli space of stable Higgs bundles
of rank n and degree 0 on a compact Riemann surfaces of genus g > 1, and the image
of A under the Riemann–Hilbert correspondence is dense.

The Narasimhan–Seshadri theorem provides a canonical section of the bundle
A! N, that establishes the real-analytic isomorphism1 A ' T �N. However, as
opposed to the Teichmüller theory, the bundle A! N has no global holomorphic
sections to establish a complex-analytic isomorphism. Nevertheless, one can define a
family of local holomorphic sections, which we call ‘quasi-unitary’, and consider the
family of local pullbacks of the holomorphic Liouville form on T �N. In Proposition 2
we prove an analogue of the quasi-Fuchsian reciprocity, the ‘quasi-unitary reciprocity’,

1The non-abelian Hodge correspondence establishes a more general isomorphism between the moduli
spaces of stable connections and of stable Higgs bundles.
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which leads to Proposition 3 that local pullbacks determine a global holomorphic sym-
plectic form on A. One can compare this symplectic form on A with the pullback of the
Goldman form by the Riemann–Hilbert correspondence, and according to Theorem 6.1
they are the same (up to a constant).

It should be noted that implicitly the Goldman form was already present in the
formulation of Theorem 21 in Gunning’s 1967 lectures on vector bundles [8], which
was an analogue of the Riemann bilinear relations for the bundle-valued 1-forms.
Goldman form also appears in the theory of integrable systems. Namely, Krichever
in [12] introduced a natural symplectic form on the space of Lax operators on a
genus g algebraic curve – the space of meromorphic connections on stable vector
bundles of rank n and degree ng over the curve. He showed that on the open subset
of the moduli space, consisting of bundles characterized by their respective Tyurin
parameters (see [12] for the details and references), the symplectic form on the space
of Lax operators is the Liouville form on the cotangent bundle of the moduli space. Its
explicit description in terms of the monodromy data is given in Sections 5-6 in [12],
and it is not difficult to show that formula (6.9) in [12] coincides with the Goldman
symplectic form2. In a recent paper [4], Krichever’s theorem (see [12, Theorem 6.1])
was reformulated as Theorem 7.4, and rather complicated analytic tools were used for
its derivation.

The purpose of the present paper is to describe the similarity between the moduli
of curves and the moduli of bundles in a clear and simple way using basic analytic and
algebraic geometry methods. In this sense, it complements the foundational papers [3,
5, 18] as well as [23].

Here is a more detailed content of the paper. In Section 2 we remind necessary basic
facts about the moduli space N of stable vectors bundles. Specifically, in Section 2.1
we recall the Narasimhan–Seshadri theorem, and in Section 2.2 describe the complex
structure and the Narasimhan–Atiyah–Bott Kähler metric on N. In Section 2.3 we
review introduced in [23] local complex coordinates on N. Their description uses
differential equation (2.3) – a vector bundle analogue of the Beltrami equation in
the Teichmüller theory, and these complex coordinates are analogous to the Bers
coordinates on the Teichmüller space. For convenience of the reader we include the
proof of Proposition 1. In Section 2.4 we review Eichler integrals for harmonic .0; 1/-
forms, used in Lemma 2 in Section 2.5 for the explicit solution of the infinitesimal
form of the equation (2.3). In Section 3.1 we briefly discuss the Goldman symplectic
form on the character variety, referring to [6, 20] for the details. For convenience of
the reader, in Section 3.2 we prove Theorem 3.1, the Riemann bilinear relations for

2Actually, Krichever’s construction [12] is more general and includes the case of irregular singular points
and corresponding Stokes’ data, which is beyond the realm of algebraic geometry.
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the matrix-valued 1-forms expressed in terms of the Eichler–Shimura periods, and as
a corollary obtain Theorem 3.3, that the pullback to N of the Goldman form on the
U.n/-character variety is the Narasimhan–Atiyah–Bott symplectic form.

Next, in Section 4 we introduce the affine bundle A! N of zero curvature connec-
tions. In Section 4.1 we discuss the Riemann–Hilbert correspondence that maps fibers
of A to the set of equivalence classes of constant transition functions of a stable vector
bundle, and in Section 4.2 define the local families of bundles with constant transition
functions that depend holomorphically on the complex coordinates. This construction
is used in Section 4.3 to define, over each coordinate chart, local holomorphic sections
of A, which we call quasi-unitary connections �� , and in Lemma 3 we express the
difference between the Narasimhan–Seshadri section �NS and �� as a .1; 0/-form
on U . In Section 4.4 prove the Proposition 2, the quasi-unitary reciprocity, that this
difference �NS � �� is @-closed on U . This result is crucial for defining the pullback
to A of the Liouville symplectic form on T �N by using local quasi-unitary sections.
Namely, in Sections 5.1–5.2, following [13], we prove Lemma 5 – a criterion when
pullbacks of !L to A by two local sections give the same result, and Proposition 3 –
local pullbacks of !L determine a global symplectic form on A that does not depend on
a choice of quasi-unitary sections. In Section 6 we prove our main result. Specifically,
in Section 6.1 we explicitly compute the differential of the Riemann–Hilbert corre-
spondence, and in Section 6.2 we prove Theorem 6.1 that pullbacks to A of Liouville
and Goldman symplectic forms are equal (up to a constant). Finally, in Section 6.3
we discuss obvious generalizations to the case of stable bundles of arbitrary rank and
degree, and to the case of parabolic vector bundles3.

This paper could be written using the modern language of modular stacks, etc.
However, since the material is rather basic and the proofs are simple, we choose a
‘neoclassical’ style to make the paper accessible to a wider audience.

2. Moduli space of flat vector bundles

2.1. Narasimhan–Seshadri theorem. Let X be a compact Riemann surface of genus
g > 1, and letE! X be a holomorphic vector bundle of rank n and degree d . Denote
by �.E/ D d=n the slope of E. The bundle E is said to be stable, if for every proper
holomorphic subbundle F of E we have

�.F / < �.E/:

3One can also extend these results to the moduli spaces of stable Higgs bundles, which is beyond the
scope of this paper.
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In what follows we will consider stable bundles of degree 0 – flat bundles. The theorem
of Narasimhan–Seshadri – an analogue of the Fuchsian uniformization for vector
bundles – states that every stable flat bundle over a Riemann surface X of genus g > 1
arises from an irreducible unitary representation of the fundamental group �1 of X .

Namely, let X ' �nH, where

H D ¹z D x C
p
�1y 2 C W y > 0º

is the Lobachevsky (hyperbolic) plane, and � is a co-compact Fuchsian group uni-
formizing the Riemann surface X , so that � ' �1. Let �W� ! U.n/ be an irreducible
unitary representation of � , and let H �Cn ! H be the trivial bundle with the fol-
lowing �-action:

.z; v/ 7! .z; �./v/; where z 2 H, v 2 Cn and  2 �:

Denote by E� the corresponding quotient bundle �n.H � Cn/ ! �nH ' X – a
holomorphic flat bundle over X . We have the following key result.

Theorem (Narasimhan–Seshadri). A holomorphic vector bundle E over X of rank n
and degree 0 is stable if and only if it is isomorphic to a bundle E�, where � is
an irreducible unitary representation of the group � . The bundles E�1 and E�2 are
isomorphic if and only if the representations �1 and �2 are equivalent.

The standard Hermitian metric in Cn defines a metric in the trivial bundle H �

Cn ! H. This metric is �-invariant and determines the Hermitian metric hE in the
quotient bundleE, and the Hermitian metric hEndE in the endomorphism bundle EndE.
Corresponding canonical connection rE D d C AE in the Hermitian bundle .E; hE /
– a unique connection, compatible with the metric hE and with the holomorphic
structure in E – is called the Narasimhan–Seshadri connection. It is associated with
the trivial connection r D d C 0 in the trivial bundle H � Cn ! H, and has zero
curvature. Conversely, it was proved by Donaldson [5], that an indecomposable degree 0
holomorphic vector bundle E over X is stable, if there exists a Hermitian metric in E
such that the corresponding canonical connection has zero curvature.

The metric hEndE determines a Hodge�-operator in the vector space�0;1.X;EndE/
of smooth .0; 1/-forms on X with values in EndE. The Hilbert space H0;1.X;EndE/
is the completion of �0;1.X;EndE/ with respect to the Hodge inner product

(2.1) h�; �i D

Z
X

� ^ ��;

where ^ is a composition of the exterior product of differential forms on X and the
fiber-wise trace map tr in EndE. Denote by H0;1.X;EndE/ the zero eigenspace of
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the corresponding x@-Laplace operator in H0;1.X;EndE/, the subspace of harmonic
EndE-valued .0; 1/-forms on X , and by

P WH0;1.X;EndE/! H0;1.X;EndE/;

the corresponding orthogonal projection operator.
In case E D E�, the vector space �0;1.X;EndE/ is naturally identified with the

space of smooth End Cn-valued functions on H satisfying

(2.2) �.z/ 0.z/ D Ad �./�.z/ for all  2 �;

where Ad � is the adjoint representation of the group � in the vector space End Cn.
Correspondingly, H0;1.X; EndE/ is the space of antiholomorphic functions �.z/
satisfying (2.2). The Hodge �-operator is �� D �

p
�1��, where �� D x�t is the

Hermitian conjugation of an n� nmatrix�, and the Hodge inner product (2.1) becomes

h�; �i D
p
�1

“
F

tr.�.z/�.z/�/ dz ^ dxz;

where F is a fundamental domain for � in H.

2.2. The moduli space. The moduli space of stable vector bundles of rank n and
degree 0 over a compact Riemann surfaceX of genus g > 1 is the setN of isomorphism
classes ¹Eº of stables bundles E over X . By the Narasimhan–Seshadri theorem, N
coincides with the U.n/-character variety

K D Hom0.�1;U.n//=U.n/;

where it is understood that �1 ' � , and the subscript 0 stands for the irreducible
representations. The moduli space is a complex manifold of dimension

d D n2.g � 1/C 1

(see [17, 18]).
Specifically, according to the Kodaira–Spencer theory of deformation of complex

structures4, the holomorphic tangent space TEN to the manifold N at the point ¹Eº
corresponding to a stable bundle E is identified with the complex vector space
H0;1.X;EndE/ of harmonic .0; 1/-forms. The holomorphic cotangent space T �EN

4See [17, 18] for the details in connection with vector bundles.
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is then identified with the complex vector space H1;0.X;EndE/ of harmonic .1; 0/-
forms, the space of Higgs fields. The natural pairing between these vector spaces is
given by the integration

H1;0.X;EndE/˝H0;1.X;EndE/ 3 � ˝ � 7!
Z
X

� ^ � 2 C:

The Hermitian inner product (2.1) in the vector spaces H0;1.X;EndE/ determines
a natural Hermitian metric ds2 in N, introduced by Narasimhan [16] in 1969, and later
by Atiyah and Bott [3]. This metric is an analogue of the Weil–Petersson metric in
Teichmüller spaces, and also is Kähler [3, 16]. We call it the Narasimhan–Atiyah–Bott
metric, and denote by !NAB its symplectic form, the associated .1; 1/-form on N,

!NAB D �
1

2
Im ds2:

2.3. Complex coordinates. It was shown in [23], that is possible to describe the
complex structure of the moduli space N by introducing complex coordinates in a
neighborhood of each point. These coordinates are analogous of the Bers coordinates
in Teichmüller spaces, and are convenient for performing local computations.

Namely, realize a stable bundle E as the quotient bundle E� corresponding to the
irreducible unitary representation � of the group � , and � 2 �0;1.X; EndE/ – as
End Cn-function on H, satisfying (2.2). The analog of the Beltrami equation in the
Teichmüller theory is the following x@-problem:

(2.3)
@

@xz
f .z/ D f .z/�.z/; z 2 H:

The next result was proved in [23]. For convenience of the reader, we present here its
simple proof.

Proposition 1. If � 2H0;1.X;EndE/ is sufficiently close to zero, then equation (2.3)
has is a unique solution f �WH! GL.n;C/ with the following properties:
(i) For each  2 � , we have

f �.z/ D ��./f �.z/�./�1;

where �� is an irreducible representation of the group � in U.n/.
(ii) For a fixed z0 2 H (say, z0 D

p
�1) the matrix f �.z0/ is positive definite and

det f �.z0/ D 1.

Proof. Since � 2 H0;1.X; End E/ is an anti-holomorphic matrix-valued function
on H, the ordinary differential equation

(2.4)
df

dxz
D f .z/�.z/
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has a unique anti-holomorphic solution – the n � n matrix-valued function f�.z/
normalized by f�.z0/ D I , where I is the identity matrix. It follows from (2.2) that

f�.z/ D ��./f�.z/�./
�1 for all  2 �;

where ��W� ! GL.n;C/ is a representation of the group � . For sufficiently small �,
the quotient bundleE�� D �n.H�Cn/ associated with the representation �� is stable,
so representation �� is irreducible. According to the Narasimhan–Seshadri theorem,
there is an irreducible representation ��W� ! U.n/ such that E�� ' E�� . In other
words, there is holomorphic mapping g�WH! GL.n;C/, such that

g�.z/ D ��./g�.z/��./
�1 for all  2 �;

and we put f �.z/ D g�.z/f�.z/.
The proof of uniqueness is also easy. Suppose f1.z/ and f2.z/ are two solu-

tions of (2.3) satisfying property (i) with unitary representations �1 and �2. Then
h.z/D f1.z/f2.z/

�1 is a holomorphic function satisfying h.z/D �1./h.z/�2./�1.
It determines an isomorphism E�1 ' E�2 , and by the Narasimhan–Seshadri theo-
rem, h.z/ is a scalar multiple of a unitary matrix; it follows form the property (ii)
that h.z/ D I .

Now for each stable bundle E D E� choose a basis �1; : : : ; �d in the vector space
H0;1.X;EndE/, and put � D "1�1 C � � � C "d�d . According to Proposition 1, this
introduces complex coordinates ."1; : : : ; "d / in the coordinate chart at the point ¹Eº 2N
– a neighborhood U of ¹Eº – determined by the condition that � is sufficiently close to
zero. Indeed, for different� representations �� are not equivalent, as it follows from the
general Kodaira–Spencer theory. It can be also verified directly using Corollary 1, as
in [2, Ch. VI D] for the Teichmüller space. These coordinates transform holomorphically
and endow N with the structure of a complex manifold.

Specifically, the differential of such coordinate transformation in the intersection
of the coordinate charts at ¹E�º and ¹E��º is a linear mapping of vector spaces
H0;1.X;EndE�/ and H0;1.X;EndE��/, explicitly given by the formula

H0;1.X;EndE�/ 3 � 7! P�.Ad f �.�// 2 H0;1.X;EndE��/:

Here P� is the orthogonal projection operator onto H0;1.X;EndE��/, and Ad f � is
a fiberwise linear mapping EndE� ! EndE�� , where Ad f �.�/ D f � � � � .f �/�1.
Corresponding vector fields @=@"i on U at each point ¹E��º 2 U are given by

@

@"i

ˇ̌̌
�
D P�.Ad f �.�i // 2 H0;1.X;EndE��/; i D 1; : : : ; d:
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In complex coordinates we have the following expression for the Narasimhan–
Atiyah–Bott symplectic form:

(2.5) !NAB

� @

@"�
;
@

@x"�

�
D

p
�1

2
h�; �i;

where @
@"�

and @
@x"�

are the holomorphic and antiholomorphic tangent vectors at ¹Eº 2N
corresponding to �; � 2 H0;1.X;EndE/ respectively.

Remark 2.1. Note that unitary representations �� do not depend holomorphically on
� D "1�1 C � � � C "d�d . However, representations ��, constructed in the proof of
Proposition 1, depend holomorphically on complex coordinates ."1; : : : ; "d / in U .

2.4. Eichler integrals. Here we briefly review Eichler integrals of weight 0, refer-
ring to [15] for the general theory and further references. Namely, for harmonic
� 2H0;1.X;EndE/ let E be the corresponding Eichler integral – the anti-holomorphic
matrix-valued function on H, defined by

E.z/ D

Z z

z0

�.�/ dx�:

It follows from (2.2) that it satisfies

E.z/ D Ad �./E.z/C './;

where n � n complex matrices './ are the Eichler–Shimura periods of �,

'./ D

Z z0

z0

�.z/ dxz;  2 �:

The Eichler–Shimura periods satisfy

(2.6) '.12/ D '.1/C Ad �.1/'.2/ for all 1; 2 2 �;

so ' 2 Z1.�; gAd �/, the space of 1-cocycles for the group � with values in the Lie
algebra g D gl.n;C/ – a left �-module with respect to the adjoint action Ad � (see
Section 3). We have the period map

H0;1.X;EndE/ 3 � 7! P.�/ D Œ'� 2 H 1.�;gAd �/;

where Œ'� is the cohomology class of a cocycle '.
Similarly, for harmonic � 2 H1;0.X;EndE/ the Eichler integral ‚ and Eichler–

Shimura periods  ./ are defined as

‚.z/ D

Z z

z0

�.�/d� and ‚.z/ D Ad �./‚.z/C  ./:

If � D ��, then  ./ D './�.
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The following result is well known (see [8,17] and especially [15]). For convenience
of the reader, we present a simple proof.

Lemma 1. The period map P for a stable bundle E establishes the isomorphism

H1;0.X;EndE/˚H0;1.X;EndE/ ' H 1.�;gAd �/:

Moreover, if for all  2 � the Eichler–Shimura periods './ 2 u.n/, the Lie algebra
of U.n/, then E D 0.

Proof. If './ D Ad �./v � v for some v 2 g, then E.z/C v is Ad �-invariant Eich-
ler integral. Since the representation � is unitary, E.z/ C v is constant and � D 0.
If P.�/ D P.�/, then E � ‚ is harmonic Ad �-invariant matrix-valued function
on H. Since the representation � is unitary, E � ‚ is constant (see [17, Prop. 4.2])
and � D � D 0. The complex vector spaces H1;0.X;EndE/˚H0;1.X;EndE/ and
H 1.�;gAd �/ for a stable bundle E have the same dimension, so P is an isomorphism.

If './ 2 u.n/, then EC E� is harmonic Ad �-invariant matrix-valued function
on H, and as above � D 0.

2.5. Infinitesimal deformations. For � 2 H0;1.X; End E/ and for small enough
t 2 R and z 2 H, put

Pf �.z/ D
d

dt

ˇ̌̌
tD0
f t�.z/; Pf�.z/ D

d

dt

ˇ̌̌
tD0
ft�.z/; Pg�.z/ D

d

dt

ˇ̌̌
tD0
gt�.z/:

The following simple result is a vector bundle analog of the classical Ahlfors’
result [1, formula (1.21)] for the variation of a family of quasi-conformal mappings
with harmonic Beltrami differential.

Lemma 2. For � 2 H0;1.X;EndE/, we have

Pf �.z/ D E.z/ � E.z/� and Pg�.z/ D �E.z/�;

where E is the Eichler integral of �.

Proof. In equation (2.3), replace � by t� and differentiate the result with respect to t
at t D 0. Using that f t�.z/jtD0 D ft�.z/jtD0 D I , we obtain

@

@xz
Pf �.z/ D

d

dxz
Pf�.z/ D �.z/;

and since Pf�.z0/ D 0, we have Pf� D E and

Pf � D EC F;
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where the functionF.z/ is holomorphic. Since �t�./2U.n/, we have P��./��1./2
u.n/, where

P��./ D
d

dt

ˇ̌̌
tD0
�t�./:

It follows from the transformation law in part (i) of Proposition 1 that

(2.7) Pf �.z/ D Ad �./ Pf �.z/C P��./��1./;

so as in the proof of Lemma 1, an harmonic Ad�-invariant function .ECF /C.ECF /�

is cI . Since detf t�.z0/D 1, we have tr Pf �.z0/D 0, so c D 0 and F C E� D 0, which
proves the first formula. Since Pg� D Pf � � Pf�, we get the second formula.

Corollary 1. If P����12 B1.�; gAd �/, i.e., P��./��1./ D Ad �./v � v for some
v 2 g and all  2 � , then � D 0.

Proof. It follows from (2.7) that in this case Pf � C v is an Ad �-invariant harmonic
matrix-valued function on H, and since the representation � is unitary, it is a constant
function.

Introducing, for small " 2 C, the notation

Pf
�
C D

@

@"

ˇ̌̌
"D0

f "� and Pf �� D
@

@x"

ˇ̌̌
"D0

f "�;

we get
Pf
�
C D

1

2
. Pf � � i Pf i�/ and Pf �� D

1

2
. Pf � C i Pf i�/;

where i D
p
�1, and from Lemma 2, we obtain the following corollary.

Corollary 2. We have that

Pf
�
C D E; Pf �� D �E

�:

3. Goldman symplectic form

3.1. Character variety. Let G be a complex (or real) Lie group that preserves a
non-degenerate symmetric bilinear form B on its Lie algebra g, and let KG be the
corresponding G-character variety, a complex (or real) manifold of complex (or real)
dimension .2g � 2/ dim gC 2. Here we only consider the group G D GL.n;C/ and
its compact real form GR D U.n/, so

KG D Hom0.�1; G/=G;
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where the subscript 0 stands for irreducible representations, and we useB.u; v/D truv
on g ' End Cn. The character variety K D KGR was defined in Section 2.2.

It is well known (see [6]) that the holomorphic tangent space TŒ��KG at Œ�� is
naturally identified with the cohomology group

H 1.�;gAd � / D Z
1.�;gAd � /=B

1.�;gAd � /;

where we use �1 ' � . Here g is understood as a left �-module with respect to the
action Ad � , and a 1-cocycle � 2 Z1.�;gAd � / is a map �W� ! g satisfying

(3.1) �.12/ D �.1/C �.1/ � �.2/; 1; 2 2 �:

Here and in what follows, we denote by the dot the adjoint action of G on g.
Denote by Œ�� the cohomology class of a 1-cocycle �. The Goldman symplectic

form !G is a holomorphic .2; 0/-form (or real .1; 1/-form) on the character variety KG ,
defined by

(3.2) !G
�
Œ�1�; Œ�2�

�
D hŒ�1� [ Œ�2�i

�
ŒX�

�
; where Œ�1�; Œ�2� 2 TŒ��KG :

Here ŒX� is the fundamental class ofX under the isomorphismH2.X;Z/'H2.�;Z/,
and hŒ�1� [ Œ�2�i 2 H 2.�;R/ is a composition of the cup product in the cohomology
and of the invariant bilinear form. At the cocycle level it is given explicitly by

h�1 [ �2i.1; 2/ D B
�
�1.1/; �.1/ � �.2/

�
D �B

�
�1.

�1
1 /; �.2/

�
; 1; 2 2 �:

The right-hand side in (3.2) does not depend on a choice of representatives �1; �2 2
Z1.�; gAd � / of the cohomology classes Œ�1�; Œ�2� 2 H 1.�; gAd � /, and we will use
the notation !G.�1; �2/.

Let ak; bk , k D 1; : : : ; g, be standard generators of the group � , satisfying the
single relation

Rg D

gY
kD1

Œak; bk� D 1; where Œa; b� D aba�1b�1:

The fundamental class ŒX� can be realized as the following 2-cycle in the group
homology (see [6, 20] and references therein)

(3.3) c D

gX
kD1

²�
@R

@ak
; ak

�
C

�
@R

@bk
; bk

�³
2 H2.�;Z/;
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where R D Rg and

Rk D

kY
iD1

Œai ; bi �; k D 1; : : : ; g:

Here
@R

@ak
D Rk�1 �Rkbk and

@R

@bk
D Rk�1ak �Rk;

where derivatives are understood in the sense of Fox free differential calculus and
the relation R D 1 is set after the differentiation. In these notations, (3.2) takes the
following form

!G.�1; �2/ D �

gX
kD1

B

�
�1

�
#
@R

@ak

�
; �2.ak/

�
C B

�
�1

�
#
@R

@bk

�
; �2.bk/

�
:

Here � is extended to a linear map defined on the integral group ring ZŒ��, and #
denotes the natural anti-involution on ZŒ��,

#
�X

nj j

�
D

X
nj 
�1
j :

It is convenient to use the dual generators of �:

(3.4) ˛k D Rk�1b
�1
k R�1k ; ˇk D Rka

�1
k R�1k�1; k D 1; : : : ; g:

They satisfy
Œ˛k; ˇk� D Rk�1R

�1
k ;

so that

(3.5) Rk D

kY
iD1

Œ˛i ; ˇi � D R
�1
k ; Rg D 1

and

(3.6) a�1k D RkˇkR�1k�1; b�1k D Rk�1˛kR�1k :

We have5

#
@R

@ak
D R�1k�1 �R

�1
k�1˛k and #

@R

@bk
D R�1k ˇk �R

�1
k ;

so the Goldman form can be conveniently written as

!G.�1; �2/(3.7)

D

gX
kD1

B
�
�1.˛k/; �.Rk�1/ � �2.ak/

�
� B

�
�1.ˇk/; �.Rk/ � �2.bk/

�
:

5Correcting two obvious typos, missing negative signs, in formulas in [20, Remark 3].
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3.2. Goldman theorem. Fuchsian uniformization of genus g > 1 Riemann surfaces
determines a real-analytic map of the Teichmüller space Tg to the PSL.2;R/-character
variety. Proposition 2.5 in [6] asserts that the pullback of Goldman symplectic form by
this map is the Weil–Petersson symplectic form on Tg . As Goldman notes in [6], it is a
reformulation, in a more invariant form using modern notation, of classic results of
Eichler and Shimura on the periods of automorphic forms (see [19, Section 8.2] and
references therein).

Likewise, the Narasimhan–Seshadri theorem determines a real-analytic map { of
the moduli space N to the U.n/-character variety K by assigning to each stable bundle
corresponding unitary representation

N 3 ¹Eº 7! {.E/ D Œ�� 2 K:

Using the R-linear isomorphism between real and holomorphic tangent spaces, one
can think of the differential of { as the map

TEN 3 � 7! {�.�/ D � 2 T�K;

and according to Lemma 2, we have

�./ D './ � './� 2 u.n/;

where './ are the Eichler–Shimura periods of a harmonic .0; 1/-form � (see Sec-
tion 2.4).

Theorem 3.3 below is a vector bundle analogue of Proposition 2.5 in [6] and is
attributed to Goldman. Likewise, it is basically a reformulation, using a more invariant
form and modern notation, of the Riemann bilinear relations for the bundle-valued
holomorphic differentials on a Riemann surface, as in Theorem 21 of Gunning’s lec-
tures [8].

We summarize these relations in Theorem 3.1 below. Its proof is based on a simple
computation, which we present here for convenience of the reader. It uses a detailed
structure of a fundamental domain F associated with the standard generators ak; bk
of � (see [10] and references therein). Succinctly, the fundamental domain F we use
is an oriented topological 4g-gon with the base point z0 2 H, whose ordered vertices
are consecutive quadruples

.Rkz0; RkakC1z0; RkakC1bkC1z0; RkakC1bkC1a
�1
kC1z0/; k D 0; : : : ; g � 1:

Corresponding A and B edges of F are analytic arcs

Ak D .Rk�1z0; Rk�1akz0/ and Bk D .Rkz0; Rkbkz0/;
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z0

B2

a1z0

A1F

a1b1z0

B 0
1

a1b1a
�1
1
z0

A0
1

R1z0
B1

R1a2z0

A2

R1a2b2z0

B 0
2

A0
2

R1a2b2a
�1
2
z0

Figure 1
Fundamental domain for the case g D 2.

and corresponding dual edges are

A0k D .Rkbkz0; Rkbkakz0/ and B 0k D .Rk�1akz0; Rkbkakz0/;

k D 1; : : : ; g; see Figure 1 for a typical fundamental domain for a group � with g D 2.
We have

(3.8) @F D

2gX
iD1

.Si � �i .Si //;

where

(3.9) Sk D Ak; SkCg D �Bk and �k D ˛
�1
k ; �kCg D ˇ

�1
k ;

k D 1; : : : ; g.

Theorem 3.1. Let �1; �2 2H0;1.X;EndE�/, where �W� ! U.n/, and let '1 and '2
be their corresponding Eichler–Shimura periods. We have the following analog of
Riemann bilinear relations:

!G.'1; '
�
2 / D

p
�1 h�1; �2i and !G.'1; '2/ D 0:

Proof. By Stokes’ theorem, we have

h�1; �2i D
p
�1

“
F

tr
�
�1.z/�2.z/

�
�
dz ^ dxz

D �
p
�1

“
F

d
®
tr
�
E1.z/�2.z/

�
�
dz
¯

D �
p
�1

Z
@F

tr
�
E1.z/�2.z/

�
�
dz:
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Using (3.8), we getZ
@F

tr
�
E1.z/�2.z/

�
�
dz

D

2gX
iD1

²Z
Si

tr
�
E1.z/�2.z/

�
�
dz �

Z
�i .Si /

tr
�
E1.z/�2.z/

�
�
dz

³
D �

2gX
iD1

Z
Si

tr
�
'1.�i /�.�i / � �2.z/

�
�
dz D

2gX
iD1

tr
�
'1.�

�1
i /

Z
Si

�2.z/
� dz

�
:

Using (3.9), we obtainZ
Sk

�2.z/
� dz D

Z
Ak

�2.z/
� dz D

Z Rk�1akz0

Rk�1z0

�2.z/
� dz D �.Rk�1/ � '2.ak/

�

andZ
SkCg

�2.z/
� dz D�

Z
Bk

�2.z/
� dz D�

Z Rkbkz0

Rkz0

�2.z/
� dz D��.Rk/ � '2.bk/

�:

Therefore,

h�1; �2i D �
p
�1

gX
kD1

®
tr
�
'1.˛k/�.Rk�1/ � '2.ak/

�
�
�tr

�
'1.ˇk/�.Rk/ � '2.bk/

�
�¯

D �
p
�1!G.'1; '

�
2 /:

This proves the first bilinear relation. The second one follows immediately, sinceZ
X

�1 ^ �2 D 0:

Remark 3.2. Equivalently, Theorem 3.1 can be stated in terms of the harmonic .1; 0/-
forms. Namely, let �1; �2 2 H1;0.X;EndE�/, where �W� ! U.n/, and let  1 and  2
be their corresponding Eichler–Shimura periods. Then

!G. 1;  
�
2 / D

Z
X

�1 ^ �
�
2 and !G. 1;  2/ D 0:

According to Lemma 1, H1;0.X;EndE�/ and H0;1.X;EndE�/ are complementary
Lagrangian subspaces in the complex symplectic vector space H 1.�;gAd �/.

As immediate corollary of Theorem 3.1, we have the following vector bundle
analog of the Eichler–Shimura–Goldman result [6, Proposition 2.5].
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Theorem 3.3. Under the map {WN! K of the moduli space N to the U.n/-character
variety K, we have

{�!G D �4!NAB :

Proof. Since {�.�/ D ' � '�, using Theorem 3.1, we obtain

!G
�
{�.�1/; {�.�2/

�
D !G.'1 � '

�
1 ; '2 � '

�
2 /

D �
p
�1
�
h�1; �2i � h�2; �1i

�
D �4!NAB.v1; v2/;

where v1 and v2 are real tangent vectors corresponding to the holomorphic tangent
vectors �1 and �2.

Remark 3.4. Here we are using tr as the invariant bilinear form B on Lie algebras
gl.n;C/ and u.n/. The formB is negative-definite on u.n/, which explains the negative
sign in Theorem 3.3.

4. Zero curvature connections

Denote by A.E/ the zero curvature connections in E, compatible with the holo-
morphic structure in E. It is an affine space over the vector space H1;0.X;EndE/,
and the spaces A.E/ for ¹Eº 2 N combine into a holomorphic affine bundle A! N

over the holomorphic cotangent bundle T �N! N.

4.1. The Riemann–Hilbert correspondence. Let KC be the GL.n;C/-character
variety. The Riemann–Hilbert correspondence is the monodromy map

QWA! KC;

and is described as follows. Let r D d C A 2 A.E/ be a zero curvature connection.
Its holonomy is a representation � of �1 ' � in GL.n;C/. Since E is stable, � is
irreducible, and we put Q.r/ D � 2 K.

Concretely, using the Narasimhan–Seshadri theorem, we realize the bundle E as a
quotient bundleE�, so that a zero curvature connection is r D d CA, whereA.z/ is a
holomorphic matrix-valued �-automorphic form A.z/ of weight 2 with representation
Ad � on H,

A.z/ 0.z/ D Ad �./A.z/ for all  2 �:

The parallel transport equation

dg

dz
C Ag D 0
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has a unique holomorphic solution: a non-degenerate matrix-valued function g.z/
on H, satisfying g.z0/ D I and

(4.1) g.z/ D �./g.z/�./�1 for all  2 �;

thus specifying a representation � W � ! GL.n;C/. The map g is an isomorphism
E� ' E� of the quotient bundles, so the representation � is irreducible and determines
constant transition functions for the bundle E.

Conversely, a choice of constant transitions functions for the bundle E determines
a representation �, and the image of the fiber A.E/ under the Riemann–Hilbert cor-
respondence is the set of equivalence classes of constant transition functions of the
stable vector bundle E.

4.2. Holomorphic representations. Generalizing Remark 2.1 in Section 2.3, here we
define, for each coordinate chart, a holomorphic family of irreducible representations.
Namely, choose ¹Eº 2 N and r D d CA 2 A.E/ and, using the map g above, realize
the bundle E D E� as E� . The quotient bundle E� is a local system with de Rham
differential, so Dolbeault cohomology group H 0;1.X; End E� / can be realized as
H
0;1
dR .X;EndE� /, the space of antiholomorphic matrix-valued functions �.z/ on H,

satisfying
�.z/ 0.z/ D Ad �./�.z/ for all  2 �:

The solution f .z/ of the ordinary differential equation

(4.2)
df

dxz
.z/ D f .z/�.z/

normalized by f .z0/ D I satisfies

(4.3) f .z/ D ��./f .z/�./
�1;

and for small enough � determines a family �� of irreducible representations. Choose
a basis �i in H 0;1

dR .X; EndE� / and define complex coordinates in a neighborhood
of E� by �D "1�1 C � � � C "d�d . These coordinates are the same as in Proposition 1,
and we obtain a holomorphic family of representations parametrized by � ; construction
in Remark 2.1 corresponds to the case A D 0.

Indeed, it is sufficient to verify that the map

H
0;1
dR .X;EndE� / 3 �! z� D P.y�/ 2 H0;1.X;EndE�/; y� D Ad g.�/;

is injective, and hence is an isomorphism. Namely, if z� D 0, then

0 D

Z
X

z� ^ � D

Z
X

y� ^ � D

Z
X

� ^ Ad g�1.�/
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for all � 2 H1;0.X;EndE�/. However, since gWE� ! E� is an isomorphism of holo-
morphic vector bundles, the map

Ad g�1WH1;0.X;EndE�/! H
1;0
dR .X;EndE� /

is an isomorphism, so � D 0.
The inner product in H 0;1

dR .X;EndE� / is determined by requiring that the isomor-
phism H

0;1
dR .X;EndE� / ' H0;1.X;EndE�/ is an isometry.

This discussion can be summarized by the following commutative diagram:

(4.4)

E� E�y�

E� E�� :

f y�

g

f�

g�

Here, f� satisfies ordinary differential equation (4.2) with � 2 H 0;1
dR .X; End E� /

and the property (4.3), while the map f y� satisfies differential equation (2.3) with
y� 2 �0;1.X;EndE�/ and the property

f y�.z/ D �y�./f y�.z/�./�1;

where �y� is an irreducible unitary representation such that E�� ' E�y� . If

� D "�1 C � � � C "d�d ;

where �i is a basis in H 0;1
dR .X;EndE� /, then corresponding vector fields @

@"i
at E��

are given by
Ad f�.�i / 2 H 0;1

dR .X;EndE��/;

while at E�y� they are given by

P
�
Ad f y�.y�i /

�
2 H0;1.X;EndE�y�/:

4.3. Holomorphic sections. The Narasimhan–Seshadri connections rE D d C AE
(see Section 2.1) define a section �NS WN! A of the affine bundle A, that determines
an isomorphism {NS WA ' T

�N by

A.E/ 3 d C A 7! A � AE 2 T
�
EN:

On the space �.N;A/ of smooth sections of the bundle A there is a naturally
defined operator x@W�.N;A/! �1;1.N/. Namely, over a coordinate chart U define x@�

as x@.� � �0/ 2 �
1;1.U /, where �0 is a holomorphic section of A over U . Clearly, this

definition does not depend on the choice of section �0. According to Theorem 1 of [23],
we have

(4.5) x@�NS D �2
p
�1!NAB ;

which shows that {NS is not a complex-analytic isomorphism.
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Remark 4.1. Here the pairing between H1;0.X; EndE�/ and H0;1.X; EndE�/ is
given by

p
�1

Z
X

� ^ �; � 2 H1;0.X;EndE�/; � 2 H0;1.X;EndE�/;

and differs by
p
�1 from the pairing in [23].

The bundle A! N is an analogue of the affine bundle Pg ! Tg of projective con-
nections over the Teichmüller space Tg of compact Riemann surfaces of genus g > 1.
Bers simultaneous uniformization theorem naturally introduces quasi-Fuchsian pro-
jective connections and determines a family of global holomorphic sections Tg!Pg ,
parametrized by the points in Tg (see [14, 21] and references therein).

However, the bundle A! N has no global holomorphic sections, a very natural
statement, that we were unable to find in the existing literature. In case N D N.n; d/,
the moduli spaces of stable bundles of coprime rank n and degree d , analogous
statement (where A is a bundle of constant central curvature connections) easily
follows from (4.5). Indeed, if � is a holomorphic section of A! N, then !NAB D x@� ,
where � D

p
�1
2
.�NS � �/ is a .1; 0/-form on N. Since in this case N is compact and

Kähler, !NAB is a zero class in H 2.N;R/, which is obviously a contradiction6. When
.n; d/ ¤ 1 the moduli space N.n; d/ needs to be compactified and the geometry is
more complicated, so we will not discuss this case.

Instead, we show how to use the construction in Section 4.2 to define holomorphic
sections over each coordinate chart in N.

Namely, for a coordinate chart U centered at ¹Eº use the representation E ' E� ,
where � is a holonomy of some d C A 2 A.E/ (see Section 4.1), and realize each
bundle in U as a quotient bundle E�� , where � 2 H 0;1

dR .X;EndE� /. Let d C A��
be a connection in E�� , associated with the connection d C 0 in the trivial bundle
H � Cn ! H. The family ¹d C A��º determines a holomorphic section �� of the
affine bundle A! N over U .

In analogy with the Teichmüller theory, when corresponding projective connections
come from the quasi-Fuchsian uniformization of Riemann surfaces, we call connections
¹d C A��º quasi-unitary.

For a smooth map f WH! GL.n;C/ introduce a notation

A.f / D f �1.z/
@f

@z
.z/ dz:

6According to Atiyah and Bott [3], !NAB is a generator ofH2.N;R/ in case .n; d/ D 1.
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The operator A is analogous to the Schwarzian derivative for the case of vector bundles.
It satisfies a vector bundle analog of the Cayley identity,

(4.6) A.gh/ D Ad h�1 �A.g/CA.h/:

The following simple result describes the difference between Narasimhan–Seshadri
and quasi-unitary connections as an explicit .1; 0/-form on U .

Lemma 3. The .1; 0/-form �NS � �� on U is given by

.�NS � �� /jE�� D A.g�/ 2 H1;0.X;EndE��/; ¹E��º 2 U:

Proof. The Narasimhan–Seshadri connection in E�� is a pullback of the connection
d C 0 in the trivial bundle H�Cn!Cn by the map g�, and is d CA.g�/. The quasi-
unitary connection in E�� is induced by the connection d C 0 in the trivial bundle
H �Cn ! Cn, so the difference �NS � �� over E�� is A.g�/ 2 T �

¹E�� º
N.

4.4. Quasi-unitary reciprocity. Our next result is a vector bundle analogue of the
quasi-Fuchsian reciprocity: the difference between Fuchsian and quasi-Fuchsian pro-
jective structures is a @-closed .1; 0/-form on the Teichmüller space [14, 21]. Namely,
we have the following statement.

Proposition 2 (Quasi-unitary reciprocity). Let �� be a quasi-unitary holomorphic
section of the bundle A! N over a coordinate chart U . Then

@.�NS � �� / D 0 and x@.�NS � �� / D �2
p
�1!NAB :

Proof. Let # D �NS � �� 2 �
1;0.U /, where U is a coordinate chart centered at

E� ' E� . Since each ¹Eº 2 U has a coordinate chart centered at E, it follows from
the discussion in Section 2.3 and Section 4.2, that it is sufficient to prove that

@#.�; �/ D 0

for all �; � 2 H 0;1
dR .X;EndE� /. Denote by

L� D
@

@"�
and L� D

@

@"�

corresponding vector fields on U . Since ŒL�; L� � D 0, we have by Cartan formula

@#.L�; L�/ D L�#.L�/ � L�#.L�/:

Now consider commutative diagram (4.4) with "� instead of �. Using Lemma 3,
at ¹E�"�º 2 U we have

#.L�/ D
p
�1

Z
X

A.g"�/ ^ Ad f"�.�/ D
p
�1

Z
X

Ad f �1"� �A.g
"�/ ^ �:
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It follows from (4.4) and (4.6) that

(4.7) Ad f �1"� �A.g
"�/ D Ad g�1 �A.f "y�/CA.g/ �A.f"�/:

Differentiate, in a complex-analytic sense, equation (4.7) with respect to " and set
" D 0. Since f"�.z/ is holomorphic in " and antiholomorphic in z, we get

@

@z

�
@

@"

ˇ̌̌
"D0

f"�.z/

�
D 0;

so
@

@"

ˇ̌̌
"D0

�
Ad f �1"� �A.g

"�/
�
D Ad g�1

�
@ Pf
y�
C

@z

�
:

Thus, we obtain

L�#.L�/ D
p
�1

Z
X

Ad g�1
�
@ Pf
y�
C

@z

�
dz ^ � D

p
�1

Z
X

@ Pf
y�
C

@z
dz ^ y�

D
p
�1

“
F

tr
²
@ Pf
y�
C

@z
.z/y�.z/

³
dz ^ dxz:

Using Hodge decomposition

y� D P.y�/C x@F; y� D P.y�/C x@G;

where P.y�/; P.y�/ 2 H0;1.X;EndE�/ and F;G 2 �0.X;EndE�/, and taking into
account Corollary 2, we obtain

Pf
y�
C D EC F;

where E is the Eichler integral for P.y�/. Since E is antiholomorphic and F and G are
�-automorphic functions with representation Ad �, by Stokes’ theorem, we have

L�#.L�/ D
p
�1

“
F

tr
²
@F

@z
.z/

�
P.y�/C

@G

@xz
.z/

�³
dz ^ dxz

D
p
�1

“
F

tr
²
@F

@z
.z/
@G

@xz
.z/

³
dz ^ dxz

D
p
�1

“
F

tr
²
@G

@z
.z/
@F

@xz
.z/

³
dz ^ dxz D L�#.L�/:

For convenience of the reader here is the proof of the second statement, which is
Theorem 1 in [23]. Since # is a .1; 0/-form and ŒL� ;Lx��D 0, Cartan formula simplifies

x@#.L� ; Lx�/ D �Lx�#.L�/:
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Differentiating, in a complex-analytic sense, equation (4.7) with respect to x" and setting
" D 0, we obtain

@

@x"

ˇ̌̌
"D0

�
Ad f �1"� �A.g

"�/
�
D Ad g�1

�
@ Pf y��
@z

�
:

It follows from the Hodge decomposition and Corollary 2 that Pf y�� D �E�, so

x@#.L� ; Lx�/ D
p
�1

Z
X

Ad g�1 � P.y�/� ^ � D
p
�1

Z
X

P.y�/� ^ y�

D hP.y�/; P.y�/i;

and it follows from (2.5) that x@# D �2
p
�1!NAB .

Remark 4.2. Formula L�#.L�/ D L�#.L�/ is a precise analogue of the quasi-
Fuchsian reciprocity (see [14, Theorem 6.1] and [21, Proposition 4.1]). Our commuta-
tive diagram (4.4) is analogous to the commutative diagram (3.2) in [21]. However,
for weight 2 automorphic forms we no longer can use series over the group � , as
in [14, 21] for the forms of weight 4, so we replace this argument by using the Hodge
decomposition.

5. Liouville form on A

5.1. Holomorphic symplectic form. The total space of the holomorphic cotangent
bundle T �M of a complex manifoldM carries a natural holomorphic symplectic .2;0/-
form !L, the Liouville symplectic form. Namely, !L D d�L, where the holomorphic
.1; 0/-form �L – the Liouville 1-form – is defined by

�L.u/ D p.��u/; where u 2 T.p;q/T �M , p 2 T �qM;

and � WT �M !M is the canonical projection. It is convenient to use on T �U local
coordinates

.p;q/ D .p1; : : : ; pn; q1; : : : ; qn/;

where qD .q1; : : : ; qn/ are complex coordinates on U �M , and complex coordinates
p D .p1; : : : ; pn/ correspond to the basis dq1; : : : ; dqn in T �qM for q 2 U . In this
notation, commonly used by physicists, we have

�L D pdq D
nX
kD1

pkdq
k and !L D dp ^ dq D

nX
kD1

dpk ^ dq
k :
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The following statement is trivial, but rather useful (see, e.g., [13]).

Lemma 4. Let ˛ be a .1; 0/-form on M , considered as a section of � WT �M !M .
Then

˛�.�L/ D ˛ and ˛�.!L/ D d˛:

Proof. In physics notation, this is a tautology. Namely, in local coordinates

˛ D a.q/dq D
nX
kD1

ai .q
1; : : : ; qn/ dqi ;

so M 3 q 7! ˛q D a.q/ 2 T �qM and ˛�.�L/ D ˛. A formal argument is also trivial:
since � ı ˛ D idM , then for v 2 TqM we have ˛�.v/ 2 T.˛q ;q/T �M and

˛�.�/.v/ D �.˛�.v// D ˛q.��.˛�v// D ˛.v/:

5.2. Pullback of Liouville form. Here we apply results in Section 5.1 to the case
M D N. The Liouville form !L at a point .�;E/ 2 T �N, where � 2H1;0.X;EndE/,
evaluated at the tangent vectors .�1; �1/; .�2; �2/ 2 T.�;E/T �N, can be written as

(5.1) !L
�
.�1; �1/; .�2; �2/

�
D

p
�1

2

Z
X

.�1 ^ �2 � �2 ^ �1/;

where �1; �2 2 H0;1.X;EndE/ and �1; �2 2 H1;0.X;EndE/.
As discussed in Section 4.3, every smooth section �WN! A determines an iso-

morphism {� WA
�
�! T �N by

A.E/ 3 A 7! {�.A/ D A � �.E/ 2 T �EN

and turnsA into a symplectic manifold with the symplectic form {�
�
.!L/. If the section �

was holomorphic, {�
�
.!L/would be a holomorphic symplectic form onA, but the bundle

A! N has no global holomorphic sections.
Nevertheless, one can use local holomorphic sections to pull back the Liouville

symplectic form !L to A. The following simple statement (cf. [13]) guarantees when
such local symplectic forms on A agree.

Lemma 5. Let �1 and �2 be holomorphic sections of A! N over an open U � N.
The equality {�

�1
.!L/ D {

�
�2
.!L/ on AU – a restriction of A over U – is equivalent to

the condition ��.@.�1 � �2// D 0, where � WT �N! N is the canonical projection.

Proof. For A 2 A.E/, ¹Eº 2 U , we have

.{�1 � {�2/.A/ D A � �1.E/ � .A � �2.E//

D �2.E/ � �1.E/;
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so {�1 � {�2 D .�2 � �1/ ı � . It follows from Lemma 4 that

{�
�1
.�L/ � {

�
�2
.�L/ D �

�..�2 � �1/
��L/ D �

�.�2 � �1/:

and
{�

�1
.!L/ � {

�
�2
.!L/ D �

�.d.�2 � �1// D �
�.@.�2 � �1//:

Now over each coordinate chart U use a quasi-unitary section �� of the bundle
A! N to define a holomorphic .2; 0/ symplectic form

!U;� D {
�
��
.!L/ over AU :

We have the following result.

Proposition 3. Holomorphic .2; 0/-forms !U;� determine a holomorphic symplectic
form! on A. The form! does not depend on the choices of local quasi-unitary sections.

Proof. We need to show that !U1;�1 D !U2;�2 on U1 \ U2 ¤ ;. By Proposition 2, we
have

@.�NS � ��1/ D 0 and @.�NS � ��2/ D 0

in coordinate charts U1 and U2, so that @.��1 � ��2/ D 0 on U1 \ U2. Now the result
follows form Lemma 5.

Remark 5.1. Narasimhan–Seshadri and quasi-unitary connections determine local
non-holomorphic sections |� D �NS � �� WU ! T �U of the bundle T �N!N. Explic-
itly,

|� .E��/ D A.g�/ D A.f y�gf �1� /

(cf. with the global section of the bundle T �Tg ! Tg in [20, Remark 4]). It follows
from Proposition 2 and Lemma 4 that

|�� .!L/ D �2
p
�1!NAB :

6. Goldman form on A

Let r.t/ be a smooth curve in the complex manifold A of zero curvature connec-
tions,r.0/Dr 2A.E/ for some ¹Eº 2N, and let vD Pr be its tangent vector at t D 0,
considered as a vector in the holomorphic tangent space to A at r. Let � D Q.r/ be
the holonomy of the connection r in E. Under the Riemann–Hilbert correspondence,
we have a curve Q.r.t// in the character variety KC with the holomorphic tangent
vector Q�.v/ 2 T�KC at t D 0.
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On the other hand, over a neighborhood U we have an isomorphism

{ D {�� WAU
�
�! T �U

(see Sections 4.2–4.3 and Section 5.2) and we can consider, for small t , the image
of the curve r.t/ in T �U with the holomorphic tangent vector {�.v/. According to
Proposition 3, the pullback of the Liouville form !L to AU does not depend on a
choice of the isomorphism {.

6.1. Differential of the Riemann–Hilbert correspondence. Here we explicitly des-
cribe the differential of the map holD Q ı {�1WT �U !KC for { D {�� corresponding
to the isomorphism E ' E� , as in Sections 4.2–4.3.

Namely, letE.t/ be the projection of the curver.t/ in A to U . Each bundle in U is
realized asE�� , and the curveE.t/ at t D 0 has a tangent vector� 2H 0;1

DR .X;EndE� /.
Under the isomorphism {WAU

�
�! T �U , we have

r.t/ D d C At ; where At 2 H 1;0
dR .X;EndE�t�/, A0 D 0;

and without changing the tangent vector v D Pr we can assume that E.t/ D E�t� . Put

Bt D Ad f �1t� � At 2 �
1;0.X;EndE� /:

Then
TrA 3 v 7! {�.v/ D .P. PB/; �/ 2 T.0;E� /.T

�N/;

where
PB D

d

dt

ˇ̌̌
tD0
Bt 2 �

1;0.X;EndE� /;

and P is the projection operator onto H 1;0
dR .X;EndE� /.

The image of the curveAt under the map holDQ ı {�1 is a curve �t in the character
variety KC , a family of irreducible representations �t W� ! GL.n;C/, defined by

gt .z/ D �t�./gt .z/�t ./
�1;

where the functions gt satisfy the parallel transport equation

(6.1)
dgt

dz
.z/C At .z/gt .z/ D 0;

andAt DAt .z/dz. The holomorphic tangent vector to �t at t D 0 is � 2H 1.�;gAd � /,
where

(6.2) �./ D
d

dt

ˇ̌̌
tD0
�t ./�./

�1;
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so
hol�.P. PB/; �/ D �:

Cocycle � admits the following expression in terms of PB and �. Put ht .z/ D
f �1t� .z/gt .z/. It follows from (2.4) and (6.1) that the functions ht .z/ satisfy a system
of partial differential equations

@ht

@z
.z/ D �Bt .z/ht .z/;

@ht

@xz
.z/ D �t�.z/ht .z/;

where Bt D Bt .z/dz, and have the property

(6.3) ht .z/ D �./ht .z/�t ./
�1:

Differentiating this system with respect to t at t D 0 and putting

Ph.z/ D
d

dt

ˇ̌̌
tD0
ht .z/;

we get the system

@ Ph

@z
.z/ D � PB.z/;(6.4)

@ Ph

@xz
.z/ D ��.z/;(6.5)

and it follows from (6.3) that

(6.6) �./ D �./ Ph.z/�./�1 � Ph.z/:

Thus, we expressed �D hol�.P. PB/;�/ in terms of the solution of the system (6.4)–
(6.5).

6.2. Pullback of Goldman form. Here we prove our main result.

Theorem 6.1. The pullback to A of the Goldman symplectic form !G on KC by the
Riemann–Hilbert correspondence is �2

p
�1 times the pullback to A of the Liouville

symplectic form !L on T �N by the quasi-unitary connections.

Proof. Let v1 and v2 be holomorphic tangent vectors to A at a point A 2 A.E/, zero
curvature connection in E with the holonomy � 2 KC , and let {�.v1/ D .P. PB1/; �1/
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and {�.v2/ D .P. PB2/; �2/. We have, using (5.1) and equations (6.4)–(6.5),

!L
�
{�.v1/; {�.v2/

�
D

p
�1

2

Z
X

®
P. PB1/ ^ �2 � P. PB2/ ^ �1

¯
D

p
�1

2

“
F

tr
�
PB1.z/�2.z/ � PB2.z/�1.z/

�
dz ^ dxz

D

p
�1

2

“
F

tr
�
@ Ph1

@z
.z/
@ Ph2

@xz
.z/ �

@ Ph2

@z
.z/
@ Ph1

@xz
.z/

�
dz ^ dxz

D

p
�1

2

“
F

tr.d Ph1 ^ d Ph2/ D
p
�1

2

Z
@F

tr. Ph1d Ph2/:

We continue, as in the proof of Theorem 3.1. Using (3.8) and (6.6), we getZ
@F

tr. Ph1d Ph2/ D
2gX
iD1

²Z
Si

tr. Ph1d Ph2/ �
Z
�i .Si /

tr. Ph1d Ph2/
³

D

2gX
iD1

Z
Si

tr
�
�1.�i / Ad �.�i / � d Ph2

�
D �

2gX
iD1

tr
�
�1.�

�1
i /

Z
Si

d Ph2

�
:

Using again (6.6), we getZ
Sk

d Ph2 D

Z Rk�1akz0

Rk�1z0

d Ph2 D Ad �.Rk�1/ �
Z akz0

z0

d Ph2

D �Ad �.Rk�1/ � �2.ak/C
�
Ad �.Rk�1ak/ � Ad �.Rk�1/

�
� Ph2.z0/

and Z
SkCg

d Ph2 D �

Z Rkbkz0

Rkz0

d Ph2 D �Ad �.Rk/ �
Z bkz0

z0

d Ph2

D Ad �.Rk/ � �2.bk/ �
�
Ad �.Rkbk/ � Ad �.Rk/

�
� Ph2.z0/;

Using (3.9) and (3.1), we obtain

�

gX
kD1

tr
²
�1.�

�1
k /

Z
Sk

d Ph2

³
D

gX
kD1

tr
�
�1.˛k/ Ad �.Rk�1/ � �2.ak/

�
C I1;

where

I1 D �

gX
kD1

tr
®�
�1.a

�1
k R�1k�1˛k/ � �1.a

�1
k R�1k�1/

� �1.R
�1
k�1˛k/C �1.R

�1
k�1/

�
Ph2.z0/

¯
:
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Similarly,

�

gX
kD1

tr
²
�1.�

�1
k /

Z
SkCg

d Ph2

³
D �

gX
kD1

tr
�
�1.ˇk/ Ad �.Rk/ � �2.bk/

�
C I2;

where

I2 D

gX
kD1

tr
®�
�1.b

�1
k R�1k ˇk/ � �1.b

�1
k R�1k / � �1.R

�1
k ˇk/C �1.R

�1
k /

�
Ph2.z0/

¯
:

Finally, using (3.4)–(3.6) and relations Rkbkak D Rk�1akbk , we obtain

I1 C I2 D

gX
kD1

tr
®�
�1.a

�1
k R�1k�1/ � �1.a

�1
k b�1k R�1k /C �1.b

�1
k R�1k / � �1.R

�1
k�1/

C �1.b
�1
k a�1k R�1k�1/ � �1.b

�1
k R�1k / � �1.a

�1
k R�1k�1/C �1.R

�1
k /

�
Ph2.z0/

¯
D 0;

so by (3.7) Z
@F

tr.h1dh2/ D
p
�1

2
!G.�1; �2/:

Remark 6.2. The proof of Theorem 6.1 is a simplified version of the proof of Theo-
rem 1 in [20], adapted for the case of vector bundles.

Remark 6.3. Theorem 6.1 is an analogue of the ‘Kawai theorem’ – a theorem in [11]
that the pullback by the monodromy map of the Goldman symplectic form on the
PSL.2;C/-character variety to the bundle of projective structures on the Riemann
surfaces, identified with the holomorphic cotangent bundle to the Teichmüller space
by the Bers section, coincides with the Liouville symplectic form. However, the proof
of formula (5.4) in [11] is not correct since the functions Pw�.z/ on H (using Ahlfors
notation as in [11, 20]) do not transform like vector fields under the group � . For
harmonic � formula (5.4) immediately follows from Ahlfors formula that Pw�zzz.z/ D 0
and (5.4) trivially holds, while for general � it is precisely the quasi-Fuchsian reciprocity,
proved in [14, 21]. We refer the reader to [20] for the proof of ‘Kawai theorem’ in the
spirit of Riemann bilinear relations.

The main results, Theorems 3.3 and 6.1 and Proposition 3, can be succinctly
combined with Remark 5.1 in the form of the following commutative diagram, where
all maps are symplectomorphisms:

(6.7)
.A;�2

p
�1 {�� .!L// .KC; !G/

.N;�4!NAB/ .KR; !G/:

Q

�NS

{

Here, �NS D {
�1
� ı |� and KR ,! KC is the inclusion map.
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6.3. Generalizations. It is straightforward to generalize the obtained results to the
moduli space N.n; d/ of stable vector bundles of arbitrary rank n and degree d on X
(it is sufficient to consider �n < d � 0). As in [18], we realize X ' �nH as an
orbifold Riemann surface with conical singularity of order n at a given point x0 2 X ,
so the Fuchsian group � contains additional elliptic generator 0 of order n with the
fixed point z0 2 H that projects on x0. The Narasimhan–Seshadri theorem says that a
stable bundle E of rank n and degree d is obtained from an irreducible representation
�W� ! U.n/ such that �.0/ D ��dI , where � is a primitive n-th root of unity.

Correspondingly, a fiber A.E/ of the bundle A is the affine space of connections
inE compatible with the holomorphic structure and having a constant central curvature
as in [5], or equivalently, connections r in E such that their curvature (considered as
a current) satisfies p

�1

2�

Z
X

f ^ r2 D �.E/trf .x0/;

for all f 2 �0.X;EndE/, as in [23]. Concretely, realizing E as a quotient bundle E�,
such connections are d C A, where A is a meromorphic matrix-valued automorphic
form of weight 2 for � with the representation Ad �, having only simple poles at � � z0
with residue ��.E/I , where I is n � n identity matrix. Corresponding GL.n;C/-
character variety consists of equivalence classes of irreducible representations � W� !
GL.n;C/ such that �.0/ D ��dI . All results in the paper and their proofs generalize
verbatim to this case.

Finally, obtained results can be also generalized to the moduli spaces of parabolic
bundles. In this case, one needs to use parabolic cohomology as in [15,20], the matrix-
valued cusp forms of weight 2 as in [15,22], and define a character variety by specifying
conjugacy classes for the parabolic generators of � , as in [9].
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paper.
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