MAT 314: HOMEWORK 8

DUE TH, APRIL 6, 2023

Throughout this problem set, all fields have characteristic zero. Recall that for a normal extension $K \subset L$, we define its Galois group to be

$$Gal(L/K) = Aut(L/K) = \{ \varphi \in Aut(L) \mid \varphi|_K = id \}$$

- 1. Show that any extension of degree 2 is always normal.
- **2.** Let $F \subset E \subset K$ be a chain of extensions such that K is a finite normal extension of F. Show that then K is also a normal extension of E. Is it true that E is always a normal extension of F?
- **3.** Describe the Galois group of the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- **4.** For each of the following polynomials $p(x) \in \mathbb{Q}[x]$, describe its splitting field L, writing it in the form $L = \mathbb{Q}(\alpha_1, \ldots, \alpha_k)$ and the Galois group $G = Gal(L/\mathbb{Q})$. For each generator of the Galois group, describe how it permutes the roots of p:
 - (a) $x^3 2$
 - (b) $x^4 2$
 - (c) $x^4 + 1$
- **5.** Let $F \subset E$ be an algebraic extension. We say that elements $\alpha, \alpha' \in E$ are conjugate (over F) if they are roots of the same irreducible polynomial $f \in F[x]$. We define $\deg_F(\alpha) = \deg f$.
 - (a) Show that an element $\alpha \in E$ can have no more than $n = \deg_F(\alpha)$ conjugates in E (including itself); if E is algebraically closed, then α has exactly n conjugates.
 - (b) Show that if $\alpha, \alpha' \in \bar{F}$ are conjugate, then there exists an automorphism $\varphi \in \operatorname{Aut}(\bar{F}/F)$ such that $\varphi(\alpha) = \alpha'$. Deduce from this that if $\varphi(\alpha) = \alpha$ for each $\varphi \in \operatorname{Aut}(\bar{F}/F)$, then $\alpha \in F$.
 - (c) Assume that α has exactly $n = \deg_F(\alpha)$ conjugates $\alpha_1, \ldots, \alpha_n$ in E. Define the elements

$$N = \prod_{i} \alpha_{i}$$
$$T = \sum_{i} \alpha_{i}$$

Show that then $N, T \in F$.