MAT 314: HOMEWORK 7

DUE TH, MARCH 30, 2023

Throughout this problem set, \mathbb{F} is a field.

- 1. Find degree and minimal polynomial over \mathbb{Q} of the following complex numbers:
 - (a) $\sqrt{-3} + \sqrt{2}$
 - (b) $\sqrt{1+\sqrt{2}}$
- **2.** For each of the following polynomials, describe its splitting field over \mathbb{Q} .
 - (a) $x^4 + 1$
 - (b) $x^3 5$
 - (c) $x^3 + 3x + 1$ (hint: how many roots does it have in \mathbb{R} ?)
 - (d) $x^4 + x^2 + 1$
- **3.** A number $z \in \mathbb{C}$ is called *primitive* nth root of unity if $z^n = 1$, but for all $1 \le k < n$, we have $z^k \ne 1$.
 - (a) Show that if z is a primitive nth root of unity, then all other primitive nth roots of unity in \mathbb{C} are z^k , where k is relatively prime with n. In particular, the number of such primitive roots of unity is $\varphi(n)$, where $\varphi(n)$ is Euler's function.
 - (b) Define the cyclotomic polynomial

$$\Phi_n(x) = \prod (x - z_i) \in \mathbb{C}[x]$$

where the product is taken over all primitive nth roots of unity in \mathbb{C} . In particular,

$$\deg \Phi_n = \varphi(n).$$

Prove that then

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

where the product is taken over divisors d of n (including 1 and n).

- (c) Prove that $\Phi_n(x)$ has integer coefficients [Hint: $\Phi_n = (x^n 1)/\prod \Phi_d(x)$, where the product is over all divisors of n excluding n itself.]
- (d) Compute the following cyclotomic polynomials:
 - (i) $\Phi_p(x)$, where p is prime
 - (ii) $\Phi_6(x)$
 - (iii) $\Phi_4(x)$
 - (iv) $\Phi_{12}(x)$.

The cyclotomic polynomials play an important role in the study of field extensions. It is known that for any n, $\Phi_n(x)$ is irreducible over \mathbb{Q} .

4. Let now K be an arbitrary field and let $\Phi_n(x)$ be cyclotomic polynomials defined in the previous problem. Since they have integer coefficients, they can also be considered as elements in K[x]; moreover, the formula

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

also holds over any field.

As before, we call a number $z \in K$ primitive nth root of unity if $z^n = 1$, but for all $1 \le k < n$, we have $z^k \ne 1$.

- (a) Prove that if $z \in K$ a primitive nth root of unity in K, then z is a root of $\Phi_n(x)$. Deduce from this that in any field, the number of primitive n-th roots of unity is at most $\varphi(n)$.
- (b) Use the previous part and the formula $\sum_{d|n} \varphi(d) = n$ to prove that if $G \subset K^{\times}$ is a finite subgroup in $K^{\times} = K \{0\}$ (with respect to multiplication), then G contains at least one primitive n-th root of unity. Deduce from this that G is cyclic.
- **5.** Let $z = e^{2\pi i/5} \in \mathbb{C}$, and let $t = (z + z^{-1})/2 = \cos(2\pi/5)$.
 - (a) Show that we have a chain of extensions

$$\mathbb{Q} \subset \mathbb{Q}(t) \subset \mathbb{Q}(z)$$

and
$$[\mathbb{Q}(z):\mathbb{Q}(t)] = [\mathbb{Q}(t):\mathbb{Q}] = 2.$$

- (b) Find the minimal polynomials of t, z.
- (c) Write a formula for z which only uses rational numbers, arithmetic operations, and square roots.