MAT 314: HOMEWORK 6

DUE TH, MARCH 23, 2023

Problems marked by asterisk (*) are optional for MAT 314 students but required for MAT535 students.

Throughout this problem set, \mathbb{F} is a field.

- 1. In this problem, you can use without proof the fact that for a positive integer k which is not a square of another integer, \sqrt{k} is irrational e.g. $\sqrt{2}$, $\sqrt{5}$ are irrational.
 - (a) Show that equation $x^2 5 = 0$ has no roots in $\mathbb{Q}(\sqrt{2})$. Deduce from this that in the chain of extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{5})$, each extension has degree 2.
 - (b) Let $\alpha = \sqrt{2} + \sqrt{5}$. Find the minimal polynomial of α over \mathbb{Q} and show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$.
 - (c) Repeat the previous part for $\alpha' = \sqrt{2} \sqrt{5}$.
 - (d) Show there exists a field isomorphism $\mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha')$ which sends α to α' .
- **2.** Let $F \subset L$ be an extension and K_1, K_2 two intermediate field extensions: $F \subset K_1 \subset L$, $F \subset K_2 \subset L$. A composite K_1K_2 is defined to be the smallest subfield in L containing K_1 and K_2 .

Prove that if K_1, K_2 are finite extensions of F, then so is K_1K_2 , and $[K_1K_2:F] \leq [K_1:F][K_2:F]$

- **3.** Let us call a number $\alpha \in \mathbb{C}$ constructible if it can be obtained from rational numbers by repeatedly using arithmetic operations and operation of taking a square root of a number. E.g. $\alpha = \sqrt{3 + \sqrt{-1}} \sqrt{5 7\sqrt{3}}$.
 - (a) Prove that α is constructible if and only if one can find a chain of field extensions $\mathbb{Q} = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n$, where $[K_{i+1} : K_i] = 2$ and $\alpha \in K_n$.
 - (b) Prove that if α is constructible, then $[\mathbb{Q}(\alpha):\mathbb{Q}]=2^k$ for some k. [In fact, it is "if and only if" we will prove it later.]
 - (c) Prove that $\sqrt[3]{2}$ is not constructible.
- **4.** Let \mathbb{F} be a field of characteristic zero.

For a polynomial $f = \sum a_k x^k \in \mathbb{F}[x]$, define its derivative by

$$Df = \sum_{k \ge 1} k a_k x^{k-1} \in \mathbb{F}[x].$$

- (a) Show that the derivative satisfies familiar rules: D(f+g) = Df + Dg, D(fg) = (Df)g + f(Dg).
- (b) Show that if $\mathbb{E} \supset \mathbb{F}$ is an extension of \mathbb{F} , and $a \in \mathbb{E}$ is a root of f of order $m \geq 1$ (i.e., $f(x) = (x a)^m g(x)$, and $g(a) \neq 0$), then a is a root of Df of order m 1. Is this true if \mathbb{F} has positive characteristic?
- (c) Show that f has no multiple roots (in any extensions of \mathbb{F}) iff $\gcd(f, Df) = 1$. In particular, it holds if f is irreducible, so if an irreducible polynomial $f \in \mathbb{F}[x]$ of degree d factors in a some extension \mathbb{E} , then it has has exactly d distinct roots in \mathbb{E} .

Continued on next page

- *5. Let \mathbb{F} be a field of characteristic p > 0.
 - (a) Show that the map $Fr: \mathbb{F} \to \mathbb{F}$ given by $Fr(x) = x^p$ is a homomorphism of fields. Deduce from this that if \mathbb{F} is finite, then Fr is a bijection. [It is called the *Frobenius automorphism*].
 - (b) Show that the set $\{x \in \mathbb{F} \mid x^p = x\}$ is a subfield in \mathbb{F} , which is isomorphic to \mathbb{Z}_p . [Hint: how many different roots does the polynomial $x^p x$ have?]