MAT 314: HOMEWORK 4

DUE TH, MARCH 2, 2022

Throughout this problem set, all representations are complex and finite-dimensional. Unless specified otherwise, G is a finite group. Given two representations V, W, we denote by $\operatorname{Hom}_G(V, W)$ the space of homomorphisms from V to W, i.e. the space of linear operators $V \to W$ which commute with action of G.

1. For a representation V of G, denote

$$V^G = \{ v \in V \mid g.v = v \text{ for all } g \in G \}.$$

Show that if V is irreducible, then $V^G = V$ if $V = \mathbb{C}$ is the trivial representation, and $V^G = 0$ for all other irreducible representations. (Hint: V^G is a subrepresentation.)

- **2.** Let V, W be representations of G. Denote by L(V, W) the space of all linear operators $V \to W$.
 - (a) Show that this space is naturally a representation of G, with the action given by

$$(g.f)(v) = g(f(g^{-1}v))$$

(b) Show that

$$L(V, W)^G = \operatorname{Hom}_G(V, W).$$

3. Let V be a representation of G. Define the operator Sym: $V \to V$ by

$$\operatorname{Sym} = \frac{1}{|G|} \sum_{g \in G} \rho(g)$$

(a) Show that for any $v \in V$, the vector $w = \operatorname{Sym}(v)$ is invariant under action of G:

$$\rho_h(w) = w \quad \forall g \in G.$$

- (b) Show that Sym is a projector: $(Sym)^2 = Sym$. What is the subspace it is projecting onto?
- **4.** (a) Let $U \subset \mathbb{C}^3$ be the subspace defined by

$$U = \{ x \in \mathbb{C}^3 \mid x_1 + x_2 + x_3 = 0 \}.$$

Prove that U is an irreducible representation of the symmetric group S_3 (where S_3 acts on \mathbb{C}^3 by permuting the coordinates, as described in class).

- *(b) Can you prove the similar result for a subspace $U \subset \mathbb{C}^n$ and the group S_n ?
- **5.** Consider $V = \mathbb{C}^n$ with the natural action of $\mathbb{Z}_n = \langle a, a^n = 1 \rangle$ by cyclic permutation of coordinates:

$$a \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_n \\ x_1 \\ \vdots \\ x_{n-1} \end{bmatrix}$$

Write \mathbb{C}^n as a direct sum of irreducible representations of \mathbb{Z}_n . [Hint: what are eigenvalues of a in \mathbb{C}^n ?]

6. This problem is the baby model of how group symmetry can be used to help solve various mathematical problems.

Let $A \colon \mathbb{C}^n \to \mathbb{C}^n$ be the linear operator given by

$$(Ax)_i = \frac{1}{2}(x_{i-1} + x_{i+1}),$$

where i-1, i+1 are taken modulo n. The goal is to diagonalize A. Straightforward approach, by writing characteristic polynomial and finding its roots, is difficult. A better way is using \mathbb{Z}_n symmetry.

- (a) Show that A commutes with the natural action of \mathbb{Z}_n on \mathbb{C}^n (see problem 5).
- (b) Let

$$\mathbb{C}^n = \bigoplus V_i$$

be the decomposition of \mathbb{C}^n into a direct sum of irreducible representations of \mathbb{Z}_n which you found in problem 5. Use Shur's lemma to show that A preserves each of V_i 's and $A|_{V_i}$ is a scalar.

- (c) Find all eigenvalues and eigenvectors of A .
- (d) Is it true that for any vector $x \in \mathbb{C}^n$ we have

$$\lim_{N \to \infty} A^N x = c \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} ?$$