MAT 314: HOMEWORK 3

DUE TH, FEB 16, 2023

Throughout the assignment, R is a principal ideal domain. All modules are assumed to be finitely generated and with finite set of relations.

Most questions will be about the structure theorem: every such module is isomorphic to a module of the form

(1)
$$M \simeq R^r \oplus \left(\bigoplus_i R/(p_i^{k_i})\right)$$

where p_i are irreducible (not necessarily distinct).

1. In this problem, we consider \mathbb{Z}_n as a ring, not just as a group. Let $\mathbb{Z}_n^{\times} = \{a \in \mathbb{Z}_n \mid a \text{ is invertible mod } n\}$; this is a group with respect to multiplication (but not with respect to addition).

Use Chinese Remainder Theorem to show that if m, n are relatively prime, then $\mathbb{Z}_{mn}^{\times} \simeq \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$ (isomorphism of groups).

- **2.** Let $R = \mathbb{R}[x]$, $M = R/(x^3 + x 10)$. Write M in the form (1).
- **3.** Let $R = \mathbb{C}[x]$, $M = R/(x^3 + x 10)$. Write M in the form (1).
- **4.** For an R-module M and an element $a \in R$, denote

$$M_{(a)} = \{ m \in M \mid am = 0 \} \subset M$$

(this notation is not standard). Prove that if a, b are relatively prime, then $M_{(ab)} = M_{(a)} \oplus M_{(b)}$

- **5.** Let M be a module over R and let $a \in R$, $a \neq 0$ be such that am = 0 for any element $m \in M$.
 - (a) Show that all irreducibles p_i appearing in the canonical form (1) of M must be divisors of a. [Hint: if a is relatively prime with p, then a is invertible mod p^k]
 - (b) Show that if $a = q_1 \dots q_m$, where q_i are distinct irreducibles, then all powers k_i appearing in the canonical form (1) of M must be 1.
- **6.** Use the previous problem to show that if $A: V \to V$ is a linear operator in a finite-dimensional vector space over \mathbb{C} , and $A^k = I$ for some k, then A is diagonalizable. Is the same true over \mathbb{R} ?