MAT 314: HOMEWORK 2

DUE TH, FEB 9, 2023

Problems 3-6 in this assignment are about modules over \mathbb{Z} , also known as abelian groups. Unless stated otherwise, all modules will be assumed to have finite set of generators and finite set of relations.

For an $m \times n$ matrix A with integer entries, we denote by M_A the \mathbb{Z} -module

$$(1) M_A = \mathbb{Z}^n/N$$

wher $N \subset \mathbb{Z}^n$ is the submodule generated by rows of the matrix A (we consider every row as an element of \mathbb{Z}^n).

Problems marked by asterisk (*) are optional.

- 1. A module M over a (not necessarily commutative) ring R is called simple if it has no nonzero proper submodules.
 - (a) Prove that every simple module is generated by a single element.
 - (b) Prove that every simple module is isomorphic to a module of the form R/I, where $I \subset R$ is a maximal left ideal.
 - (c) Desribe all simple modules over \mathbb{Z} (i.e., abelian groups).
 - *(d) Describe all simple modules over $\mathbb{C}[x]$.
- **2.** Let $R = Mat_n(\mathbb{F})$ be the ring of $n \times n$ matrices with entries in a field \mathbb{F} . Then \mathbb{F}^n is naturally a module over R. Show that it is simple.

Hint: show that for any nonzero vector $v \in \mathbb{F}^n$, the subspace Rv contains the basis vector

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Similarly, show that Rv contains each of the basis vectors e_i .

3. Consider the abelian group with generators e_1, e_2, e_3 and relations

$$-2e_1 + e_2 = 0$$

$$e_1 - 2e_2 + e_3 = 0$$

$$e_2 - 2e_3 = 0$$

Write the corresponding matrix A and use it to describe this group as direct sum of cyclic groups. What is the order of this group?

4. Let M be a \mathbb{Z} -module (abelian group). Let $T \subset M$ be the subset of elements of finite order (also called torsion elements):

$$T = \{ m \in M \mid nm = 0 \text{ for some } n \in \mathbb{Z}, n \neq 0 \}$$

- (a) Prove that T is a subgroup.
- (b) Prove that M/T is a free abelian group, i.e. it is isomorphic to \mathbb{Z}^r for some r.
- **5.** Let A be an $n \times n$ integer matrix, and let M_A be defined by (1). Prove that M_A is finite iff det $A \neq 0$; if it is finite, then $|M_A| = |\det A|$.

[Hint: any invertible integer matrix has determinant ± 1 , so left multiplication by an invertible matrix doesn't change $|\det(A)|$.]

6. Let $P, Q \subset \mathbb{R}^n$ be subgroups defined as follows:

Q is the subgroup generated by elements of the form $e_i - e_j$, $i \neq j$. (Here e_i are the standard generators of \mathbb{Z}^n : $e_i = (0, \dots, 1, \dots 0)$, with 1 in the i^{th} place).

$$P = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum x_i = 0, \quad x_i - x_j \in \mathbb{Z} \quad \forall i, j\}$$

- (a) Show that P,Q are free abelian groups of rank n-1, by producing a basis (set of free generators) of each of them. [Hint: start with small values of n, e.g. n=2, n=3.
- *(b) (Optional.) Show that $Q \subset P$ and describe the quotient P/Q.