MAT 314: HOMEWORK 10

DUE TH, APRIL 20, 2023

Throughout this problem set, F is a field of characteristic zero.

- 1. Consider the cyclotomic field $\mathbb{Q}(\zeta)$ where ζ is the primitive root of 1 of order 15.
 - (a) Describe explicitly the Galois group $G = \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$. Is it cyclic?
 - (b) Construct a sequence of subgroups

$$G\supset G_1\supset G_2\ldots$$

such that $|G_i/G_{i+1}|=2$.

(c) Construct a tower of subfields

$$K_0 = \mathbb{Q} \subset K_1 \subset \cdots \subset K_n = \mathbb{Q}(\zeta)$$

so that $[K_{i+1}:K_i]=2$. Try to describe these subfields explicitly, by writing the generators for each of K_{i+1} over K_i .

- **2.** Let L be the splitting field of a polynomial f(x) over a field K of characteristic zero, and let $x_1, \ldots, x_n \in L$ be all roots of f, so that $f(x) = c(x x_1) \ldots (x x_n)$. Let $G = \operatorname{Gal}(L/K)$.
 - (a) Let $D = \prod_{i < j} (x_i x_j)^2$. Prove that $D \in L^G = K$.
 - (b) Prove that $K \subset K(\sqrt{D}) \subset L$ and $\operatorname{Gal}(L/K(\sqrt{D})) \subset A_n$ (the alternating group).
 - (c) Prove that if f is an irreducible cubic polynomial, then:
 - if D is a square in K, then [L:K]=3, $G=\mathbb{Z}_3$.
 - if D is not a square in K, then [L:K]=6, $G=S_3$. In this case, $L^{\mathbb{Z}_3}=K(\sqrt{D})$, where $\mathbb{Z}_3=A_3$ is the subgroup in S_3 generated by a 3-cycle.

(It can be shown that up to a constant, D coincides with $R(f) = \gcd(f, f')$.)

- 3. Let $f(x) = x^3 + px + q$. Let x_1, x_2, x_3 be the roots of f(x) (in the splitting field) and let D be as in the previous problem.
 - (a) Show that $f'(x_1) = (x_1 x_2)(x_1 x_3)$. Deduce from this that $D = -f'(x_1)f'(x_2)f'(x_3)$.
 - (b) Prove that $D = -4p^3 27q^2$.
- 4. Use the previous two problems to compute the following Galois groups:
 - (a) of the polynomial $x^3 3x + 1$ over \mathbb{Q} .
 - (b) of the polynomial $x^3 3x + 3$ over \mathbb{Q} .
 - (c) Of the polynomial $x^3 10$ over $\mathbb{Q}(\sqrt{-3})$.