MAT 314: HOMEWORK 1

DUE TH, FEB 2, 2023

Throughout this assignment, R is an arbitrary associative ring with unit (not necessarily commutative). All modules are modules over R. Letter \mathbb{F} always stands for a field. As usual, we call an ideal $I \subset R$ proper if $I \neq R$, and similarly for submodules of a module. PID stands for Principal Ideals Domain.

- **1.** In this problem, R is a commutative ring, and for an element $a \in R$, we denote $(a) = Ra \subset R$ the ideal generated by a.
 - (a) Show that $a \in R$ is invertible iff (a) = R.
 - (b) Show that R is a field iff it has no nonzero proper ideals.
 - (c) Show that $(a) \subset (b)$ iff b is a divisor of a, i.e. a = bc for some c.
 - (d) Let R be a PID. Show that the ideal (a) is a maximal proper ideal if and only if a is not invertible and irreducible: in any factorization a = xy either x or y is invertible.
- **2.** Let R be a commutative ring, let $I \subset R$ be a proper ideal. Denote by R' = R/I the quotient ring and let $f: R \to R'$ be the obvious map.
 - (a) Show that for any ideal $K' \subset R/I$, the preimage $f^{-1}(K') \subset R$ is an ideal in R. Show that it gives a bijection:

(Ideals
$$K' \subset R/I$$
) \leftrightarrow (Ideals $K \subset R$ which contain I)

- (b) Deduce from this that R/I is a field iff I is a maximal proper ideal.
- (c) Show that if R is a PID, R/(a) is a field iff a is not invertible and irreducible.
- **3.** As discussed in class, a module over the ring $\mathbb{F}[x]$ can be described as a pair (V, A), where V is a vector space over \mathbb{F} and $A \colon V \to V$ is a linear operator.
 - (a) Give such a description for the module $M = \mathbb{F}[x]/(x^2 + 2x + 2)$, by constructing an explicit basis in the corresponding vector space V and writing the operator A as a matrix in this basis.
 - (b) Show that for $\mathbb{F} = \mathbb{C}$, the module M constructed in the previous part is isomorphic to a direct sum $M_1 \oplus M_2$, where M_1, M_2 are $\mathbb{C}[x]$ modules which are one-dimensional vector spaces over \mathbb{C} . [Hint: is A diagonalizable?]. Is the same true when $\mathbb{F} = \mathbb{R}$?
- **4.** Let M be a an R-module and $N \subset M$, an R-submodule. Let M' = M/N and denote by $f: M \to M'$ the obvious homomorphism of modules.
 - (a) Show that if $K' \subset M'$ is a submodule, then $K = f^{-1}(K') \subset M$ is also a submodule, and M/K is isomorphic to M'/K'.
 - (b) Show that the construction of the previous part gives a bijection (Submodules $K' \subset M/N$) \leftrightarrow (Submodules $K \subset M$ which contain N)
- **5.** Let M be an R-module and $M_1, M_2 \subset M$ be submodules such that $M = M_1 + M_2$, i.e. every element in M can be written as a sum $m = m_1 + m_2$, $m_1 \in M_1$, $m_2 \in M_2$ (possibly not uniquely). Prove that then one has an isomorphism $M \simeq (M_1 \oplus M_2)/(M_1 \cap M_2)$.