MAT 312: HOMEWORK 9

1. Textbook, p. 252, problem 1
2. Textbook, p. 252, problem 2
3. A Universal Product Code (UPC) is a numeric code assigned to virtually all products sold in stores; you usually see it as a bar code, which you scan at the cash register. The UPC is a 12 -digit numeric code $a_{1} \ldots a_{12}$; the 12 digits have to satisfy the condition below:

$$
3 a_{1}+a_{2}+3 a_{3}+a_{4}+\cdots+a_{12} \equiv 0 \quad \bmod 10
$$

The sum $3 a_{1}+a_{2}+3 a_{3}+a_{4}+\cdots+a_{12} \bmod 10$ is called the checksum.
If the digits do not satisfy this condition, it can not be a valid UPC code - so probably there was an error when scanning the barcode and it needs to be re-scanned. For example, 380177-051136 is a valid UPC code (check!); however, if the first 3 was replaced by 8 , this would change the checksum by $3 \times 5=15 \equiv 5 \bmod 10$, so the new checksum woudln't be zero.

Show that this scheme detects all single-digit errors. Does it detect all transpositions (i.e. interchange of two adjacent digits)?
4. (Optional problem) Construct a coding function $f: B^{4} \rightarrow B^{8}$ that allows for detection of up to 3 bit errors and correction of a single bit error. [Hint: start with the Hamming $(7,4)$ code discussed in class, and add another column to the generating matrix.]

