MAT 312: HOMEWORK 8

1. Consider the set $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ of all functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which have the form

$$
\mathbf{x} \mapsto A \mathbf{x}+\mathbf{b}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

where A is an invertible $n \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{n}$. Thus, every such function is described by a pair (A, \mathbf{b})

Such functions are called affine transformations.
(a) Show that $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ is a group. Write explicitly the group law: $\left(A_{1}, \mathbf{b}_{1}\right) \circ\left(A_{2}, \mathbf{b}_{2}\right)=$?.
(b) Let $H_{1}=\left\{(A, \mathbf{b}) \mid A=I_{n}\right\} \subset \operatorname{Aff}\left(\mathbb{R}^{n}\right)$, where I_{n} is the $n \times n$ identity matrix; thus, H_{1} consists of transformations $\mathbf{x} \mapsto \mathbf{x}+\mathbf{b}$. Show that H_{1} is a subgroup of $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$.
(c) Let $H_{2}=\{(A, \mathbf{b}) \mid \mathbf{b}=0\} \subset \operatorname{Aff}\left(\mathbb{R}^{n}\right)$; thus, H_{2} consists of transformations $\mathbf{x} \mapsto A \mathbf{x}$. Show that H_{2} is also a subgroup of $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$.
(d) Which of the subgroups H_{1}, H_{2} is normal? can you describe the quotient group $\operatorname{Aff}\left(\mathbb{R}^{n}\right) / H$ for that subgroup?
2. Let $A_{4} \subset S_{4}$ be the group of even permutations, and let $H \subset A_{4}$ be the subgroup generated by elements $x=(12)(34), y=(13)(24)$, i.e. the subgroup consisting of all permutations you can get from x, y by taking products and inverses.
(a) Show that $x^{2}=e, y^{2}=e, x y=y x$.
(b) Show that H has 4 elements, but is not isomorphic to \mathbb{Z}_{4}.
(c) Prove that H is normal in A_{4}. Can you describe the quotient?
3. Let $H \subset G$ be a subgroup such that $|G / H|=2$. Prove that H is normal.
4. Describe all subgroups of symmetric group S_{3}. For each of them, say whether it is normal; if it is, describe the quotient S_{3} / H.
5. An element z in a group G is called central if $z x=x z$ for any $x \in G$. Denote by $Z(G)$ the set of all central elements in G. (this is called the center of G).
(a) Show that $Z(G)$ is a normal subgroup of G.
(b) Compute the center of the group D_{n} of all symmetries of regular n-gon. [Hint: you can use the fact mentioned in class: if R_{α} is rotation by angle α around the origin, and s is reflection across a line going through the origin, then $\left.s R_{\alpha} s^{-1}=R_{-\alpha}\right]$.

