MAT 312: HOMEWORK 11

Throughout this problem set, \mathbb{F} is an arbitrary field.

1. Textbook, p. 278, problem 3
2. Textbook, p. 278, problem 4
3. We say that number $a \in \mathbb{R}$ is a root of multiplicity $m \geq 1$ for a polynomial $p(x)$ if m is the highest power of $(x-a)$ which is a divisor of $p: p(x)=(x-a)^{m} q(x)$, and $q(x)$ is not divisible by $(x-a)$.

Show that if the polynomial $p(x)$ has roots a_{1}, \ldots, a_{k}, with multiplicities m_{1}, \ldots, m_{k} respectively, then

$$
\sum m_{i} \leq \operatorname{deg} p
$$

In other words, total number of roots (counted with multiplicities) can not be more than degree of p.
4. Define the operator $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by

$$
\begin{aligned}
D(c) & =0, c \in \mathbb{F}(\text { considered as polynomial of degree } 0) \\
D\left(x^{n}\right) & =n x^{n-1}, n \geq 1 \\
D(f+g) & =D(f)+D(g) \\
D(c f) & =c D(f)
\end{aligned}
$$

(as you can see, it is the usual operator of differentiation, only defined purely algebraically, wihtout any reference to limits).
(a) Show (without using results from calculus) that $D(f g)=(D f) g+f(D g)$.
(b) Show that for $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, if $\operatorname{deg} f=n$, then $\operatorname{deg} D f=n-1$.
(c) Show that for $\mathbb{F}=\mathbb{Z}_{p}$, it is not necessarily so. (Hint: consider $f(x)=x^{p}-1$.)
(d) Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} and let $a \in \mathbb{F}$ be a root of $p(x)$ of multiplicity $m>1$. Show that then, a is a root of $D f$ of multiplicity $m-1$. In particular, f and $D f$ have a common divisor $(x-a)^{m-1}$.
(e) Derive from the previous part that if $\operatorname{gcd}(f, D f)=1$, then f has no roots of multiplicity greater than 1. In particular, any irreducible polynomial has no multiple roots.

