MAT 127, MIDTERM 2
 PRACTICE PROBLEMS

The midterm covers chapters 7.1-7.3 and 8.8 in the textbook. The actual exam will contain 5 problems (some multipart), so it will be shorter than this practice exam.

1. Calculate the second degree Taylor polynomial $T_{2}(x)$ about a for the following functions.
(a) $\sin \left(x^{2}\right)$ where $a=\sqrt{\pi}$.

Answer: We have: $\frac{d}{d x} \sin \left(x^{2}\right)=2 x \cos \left(x^{2}\right)$ and $\frac{d^{2}}{d x^{2}} \sin \left(x^{2}\right)=2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)$. So:

$$
\begin{gathered}
T_{2}(x)=0+2 \sqrt{\pi} \cdot(-1)\left(x-\sqrt{\pi}+\frac{1}{2!}\left(2 \cdot(-1)-2 \sqrt{\pi}^{2} \cdot 0\right)(x-\sqrt{\pi})^{2} .\right. \\
T_{2}(x)=-2 \sqrt{\pi}(x-\sqrt{\pi})-(x-\sqrt{\pi})^{2} .
\end{gathered}
$$

(b) $\arccos (x)$ where $a=1 / 2$.

Answer:
We have: $\frac{d}{d x} \arccos (x)=-\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d^{2}}{d x^{2}} \arccos (x)=-\frac{x}{\left(1-x^{2}\right)^{\frac{3}{2}}}$.
So:

$$
\begin{aligned}
T_{2}(x)= & \frac{\pi}{3}-\frac{1}{\sqrt{1-\left(\frac{1}{2}\right)^{2}}}\left(x-\frac{1}{2}\right)-\frac{1}{2!} \frac{\frac{1}{2}}{\left(1-\left(\frac{1}{2}\right)^{2}\right)^{\frac{3}{2}}}\left(x-\frac{1}{2}\right)^{2} . \\
& T_{2}(x)=\frac{\pi}{3}-\frac{2}{\sqrt{3}}\left(x-\frac{1}{2}\right)-\frac{2}{3 \sqrt{3}}\left(x-\frac{1}{2}\right)^{2} .
\end{aligned}
$$

(c) x^{x} around $x=1$.

Answer:

We have that $x^{x}=e^{x \ln (x)}$. So $\frac{d}{d x}\left(x^{x}\right)=(\ln (x)+1) e^{x \ln (x)}=(\ln (x)+1) x^{x}$ and $\frac{d^{2}}{d x^{2}}\left(x^{x}\right)=\left(\frac{1}{x}+(\ln (x)+1)^{2}\right) x^{x}$.
Hence

$$
\begin{gathered}
T_{2}(x)=1^{1}+(\ln (1)+1) 1^{1}(x-1)+\frac{1}{2!}\left(\frac{1}{1}+(\ln (1)+1)^{2}\right) 1^{1}(x-1)^{2} \\
T_{2}(x)=1+(x-1)+(x-1)^{2} .
\end{gathered}
$$

2. Using Taylors inequality, how well does $T_{2}(x)$ (calculated above) approximate $\sin \left(x^{2}\right)$ in the interval $[0,2 \sqrt{\pi}]$?

Answer: Taylors inequality is $\left|T_{2}(x)-\sin \left(x^{2}\right)\right| \leq \frac{M}{3!}|x-\sqrt{\pi}|^{3}$ where M is greater than or equal to the maximum of $\left|\frac{d^{3}}{d x^{3}}\left(\sin \left(x^{2}\right)\right)\right|=\left|-12 x \sin \left(x^{2}\right)-8 x^{3} \cos \left(x^{2}\right)\right|$ on the interval $[0,2 \sqrt{\pi}]$. Because $\left|\sin \left(x^{2}\right)\right| \leq 1$ and $\left|\cos \left(x^{2}\right)\right| \leq 1$, and $|x-\sqrt{\pi}| \leq \sqrt{\pi}<2$, we have $M \leq 12 \cdot 2+8 \cdot 8=88$. So $\left|T_{2}(x)-\sin \left(x^{2}\right)\right| \leq \frac{44}{3}|x-\sqrt{\pi}|^{3}$.
3. Estimate $\cos (0.1)$ to within 2 decimal places. (You may assume that the Maclaurin series for $\sin (x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$.)

Answer:

First of all we need to find out how many terms we need to calculate using Taylors inequality. We have that: $\left.\left|T_{n}(x)-\cos (x)\right| \leq \frac{M}{(n+1)!}|x|^{n+1} \right\rvert\,$ in the interval $-0.1 \leq x \leq$ 0.1. Here M is the maximum of $\left|\frac{d^{n+1}}{d x^{n+1}} \cos (x)\right|$ on the interval $-0.1 \leq x \leq 0.1$. Since $\frac{d^{n+1}}{d x^{n+1}} \cos (x)$ is equal to one of $\sin (x), \cos (x),-\sin (x),-\cos (x)$, we can assume that $M=1$. So $\left|T_{n}(x)-\cos (x)\right| \leq \frac{1}{(n+1)!}|x|^{n+1}$. So $\left|T_{n}(0.1)-\cos (0.1)\right| \leq \frac{1}{(n+1)!} 0.1^{n+1}$. We want to find n large enough so that $\left|T_{n}(0.1)-\cos (0.1)\right| \leq 0.01$. So it is sufficient find n so that: $\frac{1}{(n+1)!} 0.1^{n+1} \leq 0.01$. We have: $\frac{1}{1!} 0.1=0.1>0.01, \frac{1}{2!} 0.1^{2}=\frac{1}{2} 0.01<0.01$. So $n=2$ will do. So $T_{2}(0.1)=1-0.1^{2}=0.99$.
4. For which constants b, c is $\sin (b x) e^{c x}$ a solution of
(a)

$$
\begin{gathered}
y^{\prime \prime}+4 y=0 \\
y^{\prime}=b \cos (b x) e^{c x}+c \sin (b x) e^{c x} \cdot y^{\prime \prime}=-b^{2} \sin (b x) e^{c x}+b c \cos (b x) e^{c x}+c^{2} \sin (b x) e^{c x} .
\end{gathered}
$$

Answer:

So $y^{\prime \prime}+4 y=\left(-b^{2}+c^{2}-4\right) \sin (b x) e^{c x}+(b c) \cos (b x) e^{c x}=0$. So $-b^{2}+c^{2}+4=0$ and $b c=0$. If $b=0$ then $c^{2}+4=0$ which has no solution. Hence $c=0$ and $-b^{2}+4=0$. Hence $b= \pm 2$.
Therefore $b= \pm 2$ and $c=0$. Hence $y=\sin (\pm 2 x) e^{0 x}$. Hence $y=\sin (2 x)$ and $y=\sin (-2 x)$ are the only solutions of the form $\sin (b x) e^{c x}$.
(b)

$$
y^{\prime \prime}+2 y^{\prime}+4 y=0
$$

Answer:

Then $y^{\prime \prime}+2 y^{\prime}+4=\left(c^{2}-b^{2}+2 c+4\right) \sin (b x) e^{c x}+(b c+b) \cos (b x) e^{c x}=0$. Hence $b(c+1)=0$ and so $b=0$ or $c=-1$. If $b=0$ then $c^{2}+2 c+4=0$ which is impossible as this quadratic equation in c has no roots. Hence $c=-1$ and so $1-b^{2}-2+4=0$ and so $b^{2}=3$ and so $b= \pm \sqrt{3}$. Hence $c=-1$ and $b= \pm \sqrt{3}$. I.e. $\sin (\pm \sqrt{3} x) e^{-x}$ is a solution.
5. Draw direction fields for the following differential equations.
(a) $y^{\prime}=1$

Answer:

Answer:

6. Use Eulers Method with step size 0.01 to estimate $y(0.02)$ where y satisfies:
(a) $y^{\prime}=y, \quad y(0)=1$.

Answer:

$x_{0}=0, x_{1}=0.01, x_{2}=0.02$. So $y_{0}=1, y_{1}=1+1 \times 0.01=1.01, y_{2}=$ $1.01+1.01 \times 0.01=1.01+0.0101=1.0201$.
(b) $y^{\prime}=x y, \quad y(0)=3$.

Answer:

$x_{0}=0, x_{1}=0.01, x_{2}=0.02$. So $y_{0}=3, y_{1}=3+0 \times 3 \times 0.01=3, y_{2}=$ $3+0.01 \times 3 \times 0.01=3.0003$.
7. Solve the following differential equations:
(a) $y^{\prime}=y^{2}, \quad y(0)=1$.

Answer:

Solve using separation of variables. So $\frac{1}{y^{2}} y^{\prime}=1$ and hence $\int \frac{1}{y^{2}} d y=\int 1 d x$. Hence $-\frac{1}{y}=x+C$. Therefore $y=\frac{1}{C-x}$.
We also have $y(0)=1$. Hence $\frac{1}{C-0}=1$ which implies that $C=1$. Hence $y=\frac{1}{1-x}$.
(b) $y^{\prime}=1+y^{2}, y(0)=0$.

Answer: Solve using separation of variables. $\int \frac{1}{1+y^{2}} d y=\int 1 d x=x+C$.
We have that $\int \frac{1}{1+y^{2}} d y=\arctan (y)$. Hence $\arctan (y)=x+C$. Hence $y=$ $\tan (x+C)$.
We have $y(0)=\tan (0+C)=0$ and so $C=0$. Hence $y=\tan (x)$.
(c) $y^{\prime}=x-y, \quad y(0)=1$ (by substituting $u=x-y$).

Answer:
We have $y^{\prime}=u$. Hence $y^{\prime}=\frac{d y}{d u} \frac{d u}{d x}=\frac{d y}{d u}\left(1-y^{\prime}\right)=\frac{d y}{d u}(1-u)=u$. Therefore $\frac{d y}{d u}=\frac{u}{1-u}$.
Hence $y=\int \frac{u}{1-u} d u$. Substitute $v=1-u$ then $d v=-d u$.
Hence $y=-\int \frac{1-v}{v} d v=-\int \frac{1}{v}+1 d v=-\ln |v|+v+C=-\ln |1-u|+1-u+C=$ $-\ln |1-x+y|+1-x+y+C$.
Hence $y=-\ln |1-x+y|+1-x+y+C$. Therefore $0=-\ln |1-x+y|+1-x+C$. Hence $\ln |1-x+y|=1-x+C$. Hence $|1-x+y|=e^{1-x+C}$. Hence $1-x+y=A e^{1-x}$ for some constant A. Therefore $y=A e^{1-x}+x-1$.
Now $y(0)=1$ and hence $1=A e+0-1$. Hence $A e=2$, so $A=2 e^{-1}$. Hence $y=2 e^{-1} e^{1-x}+x-1=2 e^{-1} e^{1} e^{-x}+x-1=2 e^{-x}+x-1$.
Therefore $y=2 e^{-x}+x-1$ is our solution.

