
DEFINITION OF STACKS

1. Introduction

The origin of “stacks” lies in work of Grothendieck, Giraud, et al., on non-Abelian
cohomology [REFERENCE, Giraud]. The use of stacks as a generalization of
schemes (and algebraic spaces), with extensions to stacks of the main theorems
about schemes (e.g., theorems about cohomology of sheaves on schemes) dates to
the article of Deligne and Mumford, [REFERENCE, Deligne – Mumford], who used
stacks to prove irreducibility of the moduli space of genus-g curves in arbitrary char-
acteristic (following the proof in characteristic zero by Hurwitz [REFERENCE] and
partial results in positive characteristic by Fulton [REFERENCE]). Their original
notion is what is now called a Deligne-Mumford stack. Soon after, Michael Artin
[REFERENCE, Versal deformations] introduced the generalized notion of what is
now called an algebraic stack (or Artin stack). The notion of algebraic stacks unifies
and generalizes earlier concepts such as V -manifolds and orbifolds.

2. Classes

The language for describing stacks is category theory. Although it is possible to
develop category theory directly as a formalism for the foundation of mathemat-
ics without first developing set theory, here category theory is formalized within
Zermelo-Frankel set theory. The signature of Zermelo-Frankel set theory includes
the signature of first-order predicate logic, e.g., symbols for countably many vari-
ables (e.g., by repetition of a single variable symbol “x”, i.e., “x”, “xx”, “xxx”,
etc., when preceded / succeeded by non-variable symbols are interpreted as vari-
ables “x1”, “x2”, “x3”, etc.), for parentheses, for logical connectives such as “¬”
and “⇒” (from which we can derive the other common logical connectives “∧”,
“∨”, “⇐”, and “⇔”), for equality,“=”, and for the quantifier “∀” (from which we
can derive the quantifier “∃”). The signature of Zermelo-Fraenkel set theory also
includes “∈”, the set membership symbol. There are many other standard symbols
of logic and set theory that are abbreviations for predicates in Zermelo-Fraenkel set
theory with the signature above. We use these freely. Altogether, the collection of
all symbols in the most common signature of Zermelo-Fraenkel set theory is finite,
and the collection of all strings of symbols in this signature is countably infinite.
The axioms of Zermelo-Fraenkel set theory are recorded in many places; they in-
clude two axiom schemata of countably many axioms (in the first-order theory, or
just two axioms in a second-order theory), and axioms that allow for an “arity
collapse” via predicates that encode a finite ordered tuple of sets as a single set –
the Kuratowski ordered tuple set – and that decode the individual coordinates of
a Kuratowski ordered tuple. It is for this reason that the meta-definitions below
usually have just one “parameter” set (since any finite ordered tuple of parameter
sets can be encoded as a single set using the Kuratowski ordered tuple set).
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To formulate category theory, we could start over and list a first-order theory
that begins with categories (and produces set theory as a special case). Alterna-
tively, we could use a first-order theory of sets and classes, such as von Neumann
– Bernays – Gödel theory. However, most mathematicians stick with Zermelo-
Fraenkel set theory as their first-order theory, and they work with category theory
as a second-order theory. Statements about classes and categories are formulated in
a meta-metalanguage, since these are theory are really statements about both sets
(formulated using the first-order language of sets) and predicates for sets (stated in
the metalanguage).

Definition 2.1. A string is an ordered pair (s, n) of a nonnegative integer n and
of an ordered n-tuple s. A predicate is an ordered pair (s, n) of a nonnegative
integer n and an ordered n-tuple s of symbols from the signature of Zermelo-Frankel
set theory satisfying the production rules / formal grammar of Zermelo-Frankel
set theory, i.e., a string such that, for every model of Zermelo-Frankel set theory
with assignments of sets to all free variables, Tarski’s inductive procedure for truth
values gives a well-defined truth value to the string. For every nonnegative integer
n, for every ordered pair (P (x1, . . . , xn), Q(y1, . . . , yn)) of predicates together with
an ordered n-tuple of variables that contain all free variables of the predicate (and
none of the bound variables), the pair is Lindenbaum-Tarski equivalent if (and
only if), for every ordered n-tuple (z1, . . . , zn) of sets, the predicate P (z1, . . . , zn)
holds if and only if Q(z1, . . . , zn) holds, i.e.,

∀ (z1, . . . , zn) (P (z1, . . . , zn)⇔ Q(z1, . . . , zn)).

Similarly, for every positive integer n, for every ordered pair

(((a1, . . . , an−1), P (x1, . . . , xn)), ((b1, . . . , bn−1), Q(y1, . . . , yn)))

each of whose two entries is itself an ordered pair of an ordered (n − 1)-tuple of
sets and a predicate as above, the pair is Lindenbaum-Tarski equivalent if (and
only if), for every set z, the predicate P (a1, . . . , an−1, z) holds if and only if the
predicate Q(b1, . . . , bn−1, z) holds.

Definition 2.2. A (Zermelo-Fraenkel) class C is a Lindenbaum-Tarski equivalence
class [(a, P (x, t))] of a set a and of a predicate P with an ordered pair (x, t) of
variables that contain all free variables of P (and no bound variables). For every
class C = [(a, P (x, t))], for every set s, the set s is a member of the class C if (and
only if) the predicate P (a, s) holds. In particular, two classes are equal if and only
if they have the same members (extensionality). For every class C = [(a, P (x, t))],
for every class D = [(b,Q(y, u))], the class C is a subclass of D if (and only if), for
every set s, if P (a, s) holds then Q(b, s) holds. In particular, when P (x, t) is in the
tautological Lindenbaum-Tarski equivalence class of predicates, e.g., (x = x)∧ (t =
t), then the corresponding class is the class of all sets, denoted Set; this is the
unique class such that every class is a subclass of Set. For the predicate P (x, t)
of t ∈ x, for every set a, the class [(a, P (x, t))] is the class of the set a, denoted
Set∈a.

For every class C, for every class D, the Cartesian product class is the class
C × D whose members are those Kuratowski ordered pairs (x, t) such that x is
member of C and such that t is a member of D. For every class C, the diagonal
class of C is the subclass of C × C whose members are Kuratowski ordered pairs
(s, s) such that s is a member of C; this class is denote ∆C . For every class C,
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the class C is a class of ordered pairs if (and only if) the class C is a subclass
of the Cartesian product class Set × Set. For every class of ordered pairs D, the
transpose class D† is the class of ordered pairs whose members are all ordered
pairs (t, x) such that (x, t) is a member of D.

For every class C, for every class D, the class D is a C-class if (and only if), D is
a class of Cartesian products such that for every set x such that there exists a set
t with (x, t) a member of D, the set x is a member of C, i.e., every member of D
is of the form (x, t) for some member x of C and for some set t. In this case, for
every member x of C, the fiber class of D over x is the class whose members are
all sets t such that (x, t) is a member of D; this is denoted Dx,•.

For every class C, for every C-class F , the class F is a C-function if (and only if),
for every member x of C there exists a unique set t such that (x, t) is a member of
F . For every class C, for every C-class F , for every member x of C, for every set
t, the set t is the F -value of x if (and only if) the ordered pair (x, t) is a member
of F . In this case, we denote t by F (x). For every class C, for every C-class F , the
image class of F is the class whose members are all sets t such that there exists a
member x of C with t equal to F (x). More generally, for every class C, for every
class D, for every C-function F , this is a C-function to the class D if (and only
if) the image of F is a subclass of D.

For every class C, for every class D, for every C-morphism F to D, for every object
t of D, the t-fiber of F is the subclass of C whose members are all members x of C
such that F (x) equals t. For every class C, for every class D, for every class E, for
every C-morphism F to D, for every E-morphism G to D, the fiber product of G
and F is the subclass of the product class C × E whose members are all members
(s, t) of C × E such that F (s) equals G(t); this is denoted C ×F,D,G E, or just
C ×D E when F and G are understood.

For every class C, for every class D, for every class E, for every C-function F to
D, for every D-function G to E, the composite C-function to E of G and F is
the unique C-function G ◦F to E such that for every member s of C and for every
member u of E, the ordered pair (s, u) is a member of G ◦ F if and only if there
exists a member t of D such that t equals F (s) and u equals G(t).

Exercise 2.3. Formulate and prove the statement that for every class C there is a
unique left-right identity C-function to C. Also formulate and prove associativity
for composition of class functions. Prove that for every ordered pair (a, b) of sets,
for every function f from a to b considered as a subset of the Cartesian product
a × b, the class Set∈f is the unique Set∈a-function to Set∈b whose members are
those ordered pairs (x, y) with x an element of a, with y an element of b, and with
y equals f(x). Prove that every Set∈a-functo to Set∈b equals Set∈f for a unique
function f from a to b.

3. Categories

Using the second-order notion of class, we can formulate the second-order notion
of category.

Definition 3.1. For every ordered triple C = (ObjC ,HomC , compC) of a class ObjC ,
of a ObjC × ObjC-function HomC that associates to every ordered pair (a, b) of
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members of ObjC a set denoted HomC(a, b) = Cab , and of a ObjC × ObjC × ObjC-
function compC that associates to every ordered triple (a, b, c) of members of Obj(C)
a set function,

compa,b,cC : Cbc × Cab → Cac ,
equivalently, that associates to (a, b, c) a subset of the Cartesian product set

(
Cbc × Cab

)
×

Cac whose projection to the first factor is a bijection, the ordered triple C = (ObjC ,HomC , compC)
is a category if (and only if) both, for every member a of ObjC there exists an

element IdCa of HomC(a, a) such that both f ◦ IdCa equals f for every member b of

ObjC and for every element f of HomC(a, b) and such that IdCa ◦g equals g for every
member b of ObjC and for every element g of HomC(b, a), and for every ordered
quadruple (a, b, c, d) of members of ObjC , the following compositions of set function
are both equal,

HomC(c, d)×HomC(b, c)×HomC(a, b)
Id×◦a,b,c−−−−−−→ HomC(c, d)×HomC(a, c)

◦a,c,d−−−→ HomC(a, d),

HomC(c, d)×HomC(b, c)×HomC(a, b)
◦b,c,d×Id−−−−−−→ HomC(b, d)×HomC(a, b)

◦a,b,d−−−→ HomC(a, d).

In this case, the members of ObjC are objects of C, each set HomC(a, b) is a Hom

set of C whose elements are morphisms of C, and each set function compa,b,cC is
composition of morphisms of C. A morphism f is invertible or an isomorphism
if (and only if) there exists a morphism g such that both g ◦ f and f ◦ g are defined
and equal identity morphisms, i.e., g is both a left inverse and a right inverse for f .

For every category C, the source class function is the HomC-function to ObjC
associating the object a to every ordered triple ((a, b), f) of an ordered pair (a, b)
of objects of C and a C-morphism f from a to b; this is denoted by sourceC or just
sC . For every category C, the target class function is the HomC-function to ObjC
associating the object b to every ordered triple ((a, b), f) of an ordered pair (a, b)
of objects of C and a C-morphism f from a to b; this is denoted by targetC or just
tC . In other words, the product class function (sC , tC) from HomC to ObjC ×ObjC
is the usual domain class function of the ObjC ×ObjC-class function HomC .

For every category C = (ObjC ,HomC , compC), the opposite category is the cate-
gory Copp whose objects are the objects of C, such that for every ordered pair (a, b)
of objects of C the Hom set HomCopp(b, a) equals the Hom set HomC(a, b), and such

that the composition in Copp of f with g equals the composition compa,b,cC (g, f).

A category C is strictly small if (and only if) the class of objects equals Set∈O
for some set O.

Definition 3.2. For every category C = (ObjC ,HomC , compC) and for every cat-
egory D = (ObjD,HomD, compD), an ordered pair F = (FObj, FHom) of a ObjC-
function FObj to ObjD and of a ObjC×ObjC-function FHom that associates to every
ordered pair (a, b) of members of ObjC a set function,

F ab : Cab → D
F (a)
F (b) ,

is a covariant functor if (and only if) both, for every object a of C, the value

under F aa of IdCa equals IdDF (a), and, for every ordered triple (a, b, c) of objects of

C and for every element (g, f) of Cbc × Cab , the D-morphism F ac (g ◦ f) equals the
D-composition of F bc (g) with F ab (f).
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In particular, for every category C, the identity functor from C to C is the functor
such that, for every object a of C, the value under the functor equals a, and such
that, for every ordered pair (a, b) of objects of C, the set function from Cab to Cab
under the functor is the identity set function.

For every category C, for every category D, for every category E , for every covariant
functor F from C to D, for every covariant functor G from D to E , the composite
covariant functor from C to E of G and F is the covariant functor G◦F such that
both, for every object a of C, the value under G ◦F equals G(F (a)), and, for every

ordered pair (a, b) of objects of C, the set function (G ◦ F )ab from Cab to EG(F (a))
G(F (b))

equals the D-composition of G
F (a)
F (b) with F ab .

Definition 3.3. For every category C, for every category D, a contravariant
functor from C to D is a covariant functor from Copp to D.

Definition 3.4. For every category C, for every category D, for every covariant
functor F from C to D, for every covariant functor G from C to D, a natural
transformation from F to G is a ObjC-function θ associating to every object a of

C an element θa of DF (a)
G(a) such that, for every ordered pair (a, b) of objects of C, for

every element u of Cab , the D-composite θb◦F ab (u) equals the D-composite Gab (u)◦θa.
A natural transformation is a natural equivalence (or natural isomorphism)
if (and only if) the morphism associated to each object is an isomorphism. In
particular, for every category C, for every category D, and for every covariant
functor F from C to D, the identity natural transformation from F to itself
is the natural transformation that associates to every object a of C the identity

morphism IdDF (a); this is denoted by IdC,DF .

For every category C, for every category D, for every ordered triple (F,G,H) of
covariant functors from C to D, for every natural transformation θ from F to G, for
every natural transformation η from G to H, the (vertical) composite natural
transformation η ◦ θ from F to H is the natural transformation such that for
every object a of C, the associated D-morphism from F (a) to H(a) equals the
D-composition of ηa with θa.

For every category C, for every category D, for every category E , for every ordered
pair (F,G) of covariant functors from C to D, for every ordered pair (H, I) of
covariant functors from D to E , for every natural transformation θ from F to G, for
every natural transformation η from H to I, the horizontal composition natural
transformation of η and θ, or Godement product, is the natural transformation
η ∗ θ : H ◦ F → I ◦G associating to every object a of C the E-morphism,

ηG(a) ◦C HF (a),G(a)(θa) = (η ∗ θ)a = IF (a),G(a)(θa) ◦ ηF (a).

This is associative in both θ and η separately.

For every category C, for every category D, for every category E , for every ordered
pair (F,G) of covariant functors from C to D, for every covariant functor H from
D to E , for every natural transformation θ from F to G, the H-pushforward

natural transformation is H∗θ = IdD,EH ∗ θ, associating to every object a of A
the E-morphism HF (a),G(a)(θa). Similarly, for every category B, for every category
C, for every category D, for every covariant functor E from B to C, for every ordered
pair (F,G) of covariant functors from C to D, for every natural transformation θ

5



from F to G, the E-pullback natural transformation, E∗θ = θ∗IdB,EE associates
to everyupd object b of B the D-morphism θE(b). Of course the Godement product
can be expanded in terms of pushforward, pullback and vertical composition,

G∗η ◦H∗θ = η ∗ θ = I∗θ ◦ F ∗η.

Definition 3.5. For every category C, for every category D, an adjoint pair of
covariant functors between C and D is an ordered pair ((L,R), (θ, η)) of an ordered
pair pair of covariant functors,

L : C → D,
R : D → C,

and a pair of natural transformations of covariant functors,

θ : IdC ⇒ R ◦ L, θ(a) : a→ R(L(a)),

η : L ◦R⇒ IdD, η(b) : L(R(b))→ b,

such that the following composition of natural transformations equals IdR, respec-
tively equals IdL,

(∗R) : R
θ◦R⇒ R ◦ L ◦R R◦η⇒ R,

(∗L) : L
L◦θ⇒ L ◦R ◦ L η◦L⇒ R.

For every object a of C and for every object b of D, define set maps,

HL
R(a, b) : HomD(L(a), b)→ HomC(a,R(b)),

(L(a)
φ−→ b) 7→

(
a
θ(a)−−→ R(L(a))

R(φ)−−−→ R(b)

)
,

and

HR
L (a, b) : HomC(a,R(b))→ HomD(L(a), b),

(a
ψ−→ R(b)) 7→

(
L(a)

L(ψ)−−−→ L(R(b))
η(b)−−→ b

)
.

Exercise 3.6. For L, R, θ and η as above, prove that the conditions (∗R) and (∗L)
hold if and only if, for every object a of C and for every object b of D, HL

R(a, b) and
HR
L (a, b) are inverse bijections.

Exercise 3.7. Prove that both HL
R(a, b) and HR

L (a, b) are binatural in a and b.

Exercise 3.8. For functors L and R, and for binatural inverse bijections HL
R(a, b)

and HR
L (a, b) between the bifunctors

HomD(L(a), b),HomC(a,R(b)) : C × D → Sets,

prove that there exist unique θ and η extending L and R to an adjoint pair such
that HL

R and HR
L agree with the binatural inverse bijections defined above.

Exercise 3.9. Let (L,R, θ, η) be an adjoint pair as above. Let a covariant functor

R̃ : D → C,

and natural transformations,

θ̃ : IdC ⇒ R̃ ◦ L, η̃ : L ◦ R̃⇒ IdD,
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be natural transformations such that (L, R̃, θ̃, η̃) is also an adjoint pair. For every

object b of D, define I(b) in HomD(R(b), R̃(b)) to be the image of Idb under the
composition,

HomD(b, b)
HomD(θ(b),b)−−−−−−−−−→ HomD(L(R(b)), b)

HR̃L (R(b),b)−−−−−−−→ HomD(R(b), R̃(b)).

Similarly, define J(b) in HomD(R̃(b), R(b)), to be the image of Idb under the com-
position,

HomD(b, b)
HomD(θ̃(b),b)−−−−−−−−−→ HomD(L(R̃(b)), b)

HRL (R̃(b),b)−−−−−−−→ HomD(R̃(b), R(b)).

Prove that I and J are the unique natural transformations of functors,

I : R⇒ R̃, J : R̃⇒ R,

such that θ̃ equals (I ◦L) ◦ θ, θ equals (J ◦L) ◦ θ̃, η̃ equals η ◦ (L ◦ I), and η equals
η̃ ◦ (L ◦ J). Moreover, prove that I and J are inverse natural equivalences. In this
sense, every extension of a functor L to an adjoint pair (L,R, θ, η) is unique up to
unique natural isomorphisms (I, J). Formulate and prove the symmetric statement
for all extensions of a functor R to an adjoint pair (L,R, θ, η).

Exercise 3.10. For every adjoint pair (L,R, θ, η), prove that also (Ropp, Lopp, ηopp, θopp)
is an adjoint pair.

Exercise 3.11. Formulate the corresponding notions of adjoint pairs when L and
R are contravariant functors (just replace one of the categories by its opposite
category).

Exercise 3.12. For every ordered triple of categories, (C,D, E) for all covariant
functors,

L′ : C → D
R′ : D → C,

for all natural transformations that form an adjoint pair,

θ′ : IdC ⇒ R′L′,

η′ : L′R′ ⇒ IdD,

for all covariant functors,

L′′ : D → E ,
R′′ : E → D,

and for all natural transformations that form an adjoint pair,

θ′′ : IdD ⇒ R′′L′′,

η′′ : L′′R′′ ⇒ IdE ,

define covariant functors

L : C → E , R : E → C
by L = L′′ ◦ L′, R = R′ ◦R′′, define the natural transformation,

θ : IdC ⇒ R ◦ L,
to be the composition of natural transformations,

IdC
θ′⇒ R′ ◦ L′ R

′◦θ′′◦L′⇒ R′ ◦R′′ ◦ L′′ ◦ L′,
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and define the natural transformation,

η : L ◦R⇒ IdE ,

to be the composition of natural transformations,

L′′ ◦ L′ ◦R′ ◦R′′ L
′′◦η′◦R′′⇒ L′′ ◦R′′ η

′′

⇒ IdE .

Prove that L, R, θ and η form an adjoint pair of functors. This is the composition
of (L′, R′, θ′, η′) and (L′′, R′′, θ′′, η′′).

Exercise 3.13. If C equals D, if L′ and R′ are the identity functors, and if
θ′ and η′ are the identity natural transformations, prove that (L,R, θ, η) equals
(L′′, R′′, θ′′, η′′). Similarly, if D equals E , if L′′ and R′′ are the identity functors,
and if θ′′ and η′′ are the identity natural transformations, prove that (L,R, θ, η)
equals (L′, R′, θ′, η′). Finally, prove that composition of three adjoint pairs is asso-
ciative.

Definition 3.14. For every category C, for every category D, for every adjoint pair
(L : C → D, R : D → C, θ : IdC ⇒ R ◦ L, η : L ◦ R ⇒ IdD), the adjoint pair is a
strict equivalence from C to D if (and only if) both θ is a natural equivalence
and η is a natural equivalence.

Exercise 3.15. Prove that identity adjoint pairs are strict equivalences. Prove
that the composition adjoint pair of strict equivalences is a strict equivalence. For
every strict equivalence from C to D as above, prove that also (R,L, η−1, θ−1) is
a strict equivalence from D to C that is a left-right inverse of the original strict
equivalence.

Definition 3.16. For every category C, for every category D, for every covariant
functor F from C to D, the covariant functor F is full, respectively faithful, fully
faithful, if (and only if), for every ordered pair (a, b) of objects of C, the set map

F ab : Cab → D
F (a)
F (b) is surjective, respectively injective, bijective. The covariant func-

tor F is essentially surjective if (and only if), every object of D is D-isomorphic
to the F -value of an object of C. A covariant functor is a weak equivalence if
(and only if) it is both fully faithful and essentially surjective.

Exercise 3.17. Prove that each of the functors in a strict equivalence is a weak
equivalence. Prove that every composition of weak equivalences is a weak equiva-
lence.

Exercise 3.18. Let C and D be strictly small categories. Prove that for every weak
equivalence L from C to D there exists a strict equivalence (L,R, θ, η) from C to D,
and this strict equivalence is unique up to isomorphism (which is not necessarily
unique). Thus, using Hilbert’s formulation of the Axiom of Choice, using the Axiom
of Choice in von Neumann – Bernays – Gödel theory, or using large cardinal axioms
/ Grothendieck universes, every weak equivalence should arise (non-uniquely) from
a strict equivalence.

4. Categories Fibered in Groupoids

A groupoid is a category such that every morphism in the category is invertible.
Loosely speaking, the groupoids are themselves “objects” of a 2-”category” whose
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1-morphisms are covariant functors and whose 2-morphisms are natural equiva-
lences. A lax functor to the 2-category of groupoids from a category with a specified
Grothendieck topology is a stack if it satisfies the sheaf axioms for morphisms and
for objects with respect to a specified Grothendieck topology.

Definition 4.1. For every category C that has all finite fiber products, a C-
category is a functor of categories, p : X → C. A 1-morphism from a C-category
p : X → C to a C-category q : Y → C is a functor ζ : X → Y such that the composite
functor q ◦ ζ equals p.

For a pair of 1-morphisms of C-categories, ζ : X → Y and η : X → Y, a 2-
morphism from ζ to η is a natural transformation α : ζ ⇒ η such that the
pushforward natural transformation, q∗α : q ◦ ζ ⇒ q ◦ η, equals the identity natural
transformation Idp : p⇒ p, i.e., for every object x of X , the morphism q(αx) from
q(ζ(x)) = p(x) to q(η(x)) = p(x) equals Idp(x). For a 1-morphism θ : X → Y
and a 2-morphism β : η ⇒ θ, the vertical composition of α and β is the usual
composite natural transformation β ◦ α : ζ ⇒ θ, i.e., for every object x of X , the
morphism (β ◦ α)x : ζ(x)→ θ(x) in Y equals the composition βx ◦ αx.

If there exists an inverse natural transformation, then the natural transformation
is a natural isomorphism. A 2-morphism that is a natural isomorphism is a 2-
isomorphism, and the inverse natural isomorphism is automatically a 2-morphism.

For a C-category r : Z → C, for 1-morphisms ζ ′ : Y → Z and η′ : Y → Z, and for
a 2-morphism α′ : ζ ′ ⇒ η′, the horizontal composition or Godement product
is the natural transformation α′ ∗ α : ζ ′ ◦ ζ ⇒ η′ ◦ η that associates to every object
x of X the morphism in Z,

α′η(x) ◦ ζ
′
ζ(x),η(x)(αx) = (α′ ∗ α)x = η′ζ(x),η(x)(αx) ◦ α′ζ(x).

In particular, the pullback ζ∗α′ of a natural transformation α′ : ζ ′ ⇒ η′ with
respect to a covariant functor ζ is defined to be α′∗Idζ . Similarly, the pushforward
ζ ′∗α of a natural transformation α : ζ ⇒ η with respect to a covariant functor ζ ′

is defined to be Idζ′ ∗ α. Conversely, the general form of the Godement product
equals the vertical composition of pushforwards and pullbacks,

α′ ∗ α = η∗α′ ◦ ζ ′∗α = η′∗α ◦ ζ∗α′.

Exercise 4.2. Check that the identity functor IdC : C → C is a C-category that is
final among all C-categories.

Definition 4.3. A contravariant lax functor from C to the 2-category of cate-
gories is an ordered triple (FObj, FHom, Fcomp) whose first entry is an ObjC-class
ObjX together with both an ObjX ×ObjC ObjX -function assigning to every object
T of C and to every ordered pair (a, b) of members of the T -fiber ObjXT of a set
HomXT (a, b) and a ObjX ×ObjC ObjX ×ObjC ObjX -function associating to every ob-
ject T of C and to every ordered triple (a, b, c) of members of the T -fiber ObjXT of
a set function

HomXT (b, c)×HomXT (a, b)→ HomXT (a, c),

that form a category XT for every object T of C, whose second entry is a HomC-class

whose fiber over every C-morphism, S
f−→ T , is a class that is a covariant functor

Xf : XT → XS (required to be the identity functor for each identity morphism), and
whose third entry is a HomC ×sC,ObjC,tC HomC-class whose fiber over every pair of
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composable C-morphisms, (R
g−→ S, S

f−→ T ), is a natural equivalent θf,g : g∗ ◦ f∗ ⇒
(f ◦ g)∗ (required to be the identity natural equivalence when at least one of f or
g is an identity morphism) such that for every triple of composable C-morphisms,

(Q
h−→ R,R

g−→ S, S
f−→ T ), the following compositions of natural equivalences from

h∗ ◦ g∗ ◦ f∗ to (f ◦ g ◦ h)∗ are equal,

θf,g◦h ◦ f∗θg,h = θh,f◦g ◦ h∗θf,g.

A 1-morphism from a lax functor T 7→ XT to a lax functor T 7→ YT is an ordered
pair whose first entry is a ObjC-class whose fiber over every object T of C is a
covariant functor, φT : XT → YT and whose second entry is a HomC-class whose

fiber over every C-morphism, S
f−→ T , is a natural equivalence αf : φS◦f∗X ⇒ f∗Y◦φT ,

such that for every pair of composable C-morphisms, (R
g−→ S, S

f−→ T ), the following
compositions of natural isomorphism from φR ◦ g∗X ◦ f∗X to (f ◦ g)∗Y ◦ φT are equal,

θYf,g ◦ (Idg∗Y ∗ αf ) ◦ (αg ∗ Idf∗X ) = αf◦g ◦ (IdφR ∗ θXf,g).

Definition 4.4. For every lax functor T 7→ XT , the associated C-category X has
objects that are pairs (T, x) of a C-object T and an XT -object x, it has morphisms

from an object (S, y) to an object (T, x) that are pairs (f, ι) of a C-morphism S
f−→ T

and an XS-morphism y
ι−→ f∗x, and the functor p : X → C sends each object (T, x)

to T and each morphism (f, φ) to f . Composition in the category uses the natural
isomorphisms θ.

For every 1-morphism of lax functors as above, define φ : X → Y to be the 1-
morphism of C-categories sending each X -object (T, x) to the Y-object (T, φT (x))
and sending each X -morphism (f, ι) to the Y-morphism (f, φS(ι)).

Exercise 4.5. Check that these definitions are well-defined. Formulate the notion
of 2-morphisms for lax functors, and define the 2-morphisms between the associated
C-categories. Check that the final C-category, IdC : C → C, is equivalent to the
C-category associated to the lax functor sending every object T of C to a final
category, i.e., a category with a unique object where the only morphism is the
identity morphism.

Definition 4.6. For a pair of 1-morphisms of C-categories, ζ : X → Z and η :
Y → Z, a 2-commutative diagram from ζ to η is a C-category, m : W → C,
a pair of 1-morphisms of C-categories, π : W → X and ρ : W → Y, and a 2-
isomorphism of C-categories, α : ζ ◦ π ⇒ η ◦ ρ. A 2-commutative diagram as
above is a 2-fibered product if for every 2-commutative diagram from ζ to η,
(π′ : W ′ → X , ρ′ : W ′ → Y, α′ : ζ ◦ π′ ⇒ η ◦ ρ′), there exists a triple, (ξ : W ′ →
W, β : π◦ξ ⇒ π′, γ : ρ′ ⇒ ρ◦ξ), unique up to unique isomorphisms, of a 1-morphism
ξ of C-categories, a 2-isomorphism β, and a 2-isomorphism γ such that the vertical
composition η ∗ γ ◦ α′ ◦ ζ∗β equals the pullback ξ∗α.

Exercise 4.7. For every 2-fibered product as in the definition, show that the pair
of 1-morphisms, (ζ ◦ pr1, η ◦ pr2) : X ×C Y → Z ×C Z and ∆Z : Z → Z ×C Z,
extends to a 2-fibered product (π, ρ) : W → X ×C Y and ζ ◦ π : W → Z and an
appropriate choice of 2-morphism defined using α. Thus, every 2-fibered product is
equivalent to a 2-fibered product where part of the pair 1-morphisms is a diagonal
1-morphism ∆Z .
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Notation 4.8. For every pair of 1-morphisms of C-categories, ζ : X → Z and
η : Y → Z, denote by X ×ζ,Z,η Y the category whose objects are triples (x, y, φ)
of an X -object x, a Y-object y such that p(x) equals q(y), and a Z-isomorphism

φ : ζ(x)
∼=−→ η(y) whose image in C is the identity morphism from p(x) to q(y). A

morphism in X×ζ,Z,ηY from (x, y, φ) to (x′, y′, φ′) is a pair (χ, υ) of an X -morphism
χ : x→ x′ and a Y-morphism υ : y → y′ whose images in C are equal and such that
the composite Z-morphism φ′ ◦ ζx,x′(χ) equals ηy,y′(υ) ◦ φ. The first projection,

pr1 : X ×ζ,Z,η Y → X ,
sends each object (x, y, φ) to x and sends each morphism (χ, υ) to χ. The second
projection,

pr2 : X ×ζ,Z,η Y → Y,
sends each object (x, y, φ) to y and sends each morphism (χ, υ) to υ. The natural
transformation from ζ ◦ pr1 to η ◦ pr2 associates to each object (x, y, φ) the Z-
isomorphism φ : ζ(x)→ η(y).

Exercise 4.9. Check that the diagram defined above is a 2-commutative diagram,
and even a 2-fiber product. Thus the 2-category of C-categories has 2-fiber products.

Exercise 4.10. Check that for 1-morphisms of lax functors from C to the 2-category
of categories, the 2-fiber product of the corresponding 1-morphisms of C-categories
equals the C-category associated to the lax functor sending every object T of C to
the 2-fiber product category XT ×Zt YT .

Definition 4.11. A C-category, p : X → C, is fibered in groupoids or a C-
groupoid if it satisfies the following two axioms. First, for every triple of X -
objects, (x, y, z), for every pair of X -morphisms, (α : x → z, β : y → z), and for
every C-morphism g : p(x) → p(y) such that p(α) equals p(β) ◦ g, there exists a
unique X -morphism γ : x→ y such that p(γ) equals g and such that α equals β ◦γ.
The morphism γ is the lift of g relative to (α, β). Second, for every pair (y, f) of an
X -object y and a C-morphism f : T → p(y), there exists a X -morphism φ : x → y
such that the C-object p(x) equals T , and such that the C-morphism p(φ) equals f .
The pair (x, φ) is an f -pullback of y.

A clivage normalisé is an assignment to every pair (y, f) of an f -pullback, de-
noted f∗y = (φ, i), such that for every pair (y, Idp(y)) the assignment is Id∗p(y)y =

(Idy, Idp(y)).

A 1-morphism between C-groupoids is a 1-morphisms between C-categories, and
a 2-morphism between 1-morphisms of C-groupoids is a 2-morphism between the
1-morphisms of C-categories, i.e., the 2-category of C-groupoids is full inside the
2-category of C-categories.

Definition 4.12. For every C-category p : X → C and for every C-object T , the
fiber XT of p over T is the subcategory of X of those objects x such that the C-
object p(x) equals T , and whose morphisms from each XT -object x to a XT -object
y are those X -morphisms from x to y whose image under p equals IdT .

Exercise 4.13. For every C-groupoid p : X → C and for every C-object T of C,
prove that the fiber over T is a groupoid, i.e., every morphism is an isomorphism.

For every clivage normalisé of p, for every C-morphism S
f−→ T , prove that the clivage

extends to a pullback functor from the fiber over T to the fiber over S. This
11



need not be strictly contravariant, i.e., for a morphism g : R→ S in C, the pullback
functor along f ◦ g need not equal the composition of the pullback functors along
f and along g. However, prove that there is a unique natural equivalence between
these functors, and prove that the natural equivalences are strictly compatible with
composition of three morphisms of C.

Exercise 4.14. Check that for 1-morphisms of C-groupoids, ζ : X → Z and
η : Y → Z, the 2-fiber product X ×ζ,Z,η Y is also a C-groupoid.

Exercise 4.15. For a lax functor from C to the 2-category of categories, prove
that the associated C-category is a C-groupoid if and only if, the category XT of
each C-object T is a groupoid. In this case, prove that the functors f∗ also define
a clivage normalisé. Prove that for every 1-morphism between lax functors from C
to the 2-category of groupoids, the associated 1-morphism C-groupoids respects the
specified clivages. Using the fibers defined above, this gives an equivalence between
lax functors from C to the 2-category of groupoids and C-categories with specified
clivages normalisé.

Exercise 4.16. As a special case of the above, for every contravariant functor

F : C → Sets, for every object T of C, define F̃T to be the groupoid whose objects
are elements of the set F (T ) and where the only morphisms are identity morphisms
(a groupoid where every Hom set is either empty or a singleton is called a setoid).

For every morphism of C, S f−→ T , define f∗
F̃

: F̃T → F̃S to be the unique functor

that equals F (f) on objects. Check that this extends uniquely to a lax functor
from C to the 2-category of groupoids, and hence there is an associated category

F̃ fibered in groupoids over C with a specified clivage normalisé. Check that this
defines an equivalence between contravariant set-valued functors on C, with natural
transformations as morphisms, and C-setoids with specified clivage normalisé. In
particular, for every object X of C, associated to the contravariant Yoneda functor

hX : Copp → Sets, there is a C-setoid h̃X . Show that this gives a faithful rule

associating h̃X to each object of C and associating to every C-morphism Y
q−→ X

the morphism of C-setoids associated to the natural transformation hq : hY ⇒ hX .

Show that this rule is also essentially full, i.e., every 1-morphism from h̃Y to h̃X
is 2-equivalent to the 1-morphism coming from a unique morphism of C, Y q−→ X.
This is one incarnation of Yoneda’s lemma. Also check that this rule sends fiber
products of morphisms in C to 2-fiber products of the associated 1-morphisms of
C-setoids.

Definition 4.17. For a C-groupoid Y, a C-object over Y is a pair (Y, ζ) of a

C-object Y and a 1-morphism of C-groupoids, η : h̃Y → Y. A 1-morphism between
C-groupoids, ζ : X → Y, is representable if for every C-object over Y, (Y, η), there

exists a C-morphism, f : X → Y , a 1-morphism of C-groupoids, θ : h̃X → X , and a

2-morphism of C-groupoids, α : ζ ◦ θ ⇒ η ◦ h̃f , forming a 2-fibered product. For a
property P of C-morphisms that is preserved by base change, property P holds
for a representable 1-morphism of C-groupoids, ζ : X → Y, if for every C-object
over Y, (Y, η), the morphism f : X → Y has property P .

If the diagonal 1-morphism ∆X : X → X ×CX is representable, then X is diagonal
representable.

12



Exercise 4.18. Use Exercise 4.7 to prove that X is diagonal representable if and

only if every 1-morphism θ : h̃X → X is representable. In particular, conclude that

for every C-object Y , the Yoneda C-groupoid h̃Y is diagonal representable.

The remaining axioms for a stack are sheaf axioms with respect to a Grothendieck
pretopology.

Definition 4.19. For a category C with finite fiber products, a Grothendieck
pretopology on C is a specification for every object T of C of which sets of mor-
phisms in C to T , U = (fλ : Uλ → T )λ∈Λ, are covering families satisfying the
following axioms.

(i) Every family consisting of a single isomorphism is a covering family.
(ii) For every covering family U of an object T and for every morphism h : S →

T , every pullback family h∗U = (S ×T Uλ
pr1−−→ S)λ∈Λ is a covering family

of S.
(iii) For every covering family (fλ : Uλ → T )λ∈Λ of an object T , for every

covering family (fλ,µ : Uλ,µ → Uλ)µ∈Mλ
of the object Uλ for each λ ∈ Λ,

the family (fλ ◦ fλ,µ : Uλ,µ → T )λ∈Λ,µ∈Mλ
is a covering family of T .

For covering families U = (fλ : Uλ → T )λ∈Λ and V = (gµ : Vµ → T )µ∈M of T , a
refinement from V to U is a pair e• := (r, (eµ)µ∈M ) of a set function r : M → Λ
and a collection (eµ : Vµ → Ur(µ))µ∈M of morphisms of C such that fr(µ) ◦eµ equals
gµ for every µ ∈M . Composition of covering families are defined in the usual way.

Exercise 4.20. Check that the covering family (IdT : T → T )∗∈{∗} of T is a final
object in the category of covering families of T with refinements as morphisms.
More precisely, for every covering U = (fλ : Uλ → T )λ∈Λ, check that that is a
unique refinement from U to the final object,

f• := (const : Λ→ {∗}, (fλ : Uλ → T )λ∈Λ).

Also, for every pair of covering families of T , U = (fλ : Uλ → T )λ∈Λ and V = (gµ :
Vµ → T )µ∈M , check that family of fiber products Uλ ×T Vµ with morphisms

eλ,µ = fλ ◦ pr1 = gµ ◦ pr2

gives a covering family of T , (eλ,µ : Uλ ×T Vµ → T )(λ,µ)∈Λ×M , together with
refinements,

pr1 : U×T V→ U, (pr1 : Λ×M → Λ, (pr1 : Uλ ×T Vµ → Uλ)(λ,µ)∈Λ×M ),

pr2 : U×T V→ V, (pr2 : Λ×M →M, (pr2 : Uλ ×T Vµ → Vµ)(λ,µ)∈Λ×M ),

that altogether give a product of the coverings of U and V in the category of cover-
ings of T . So the category of covering families of T with refinements as morphisms
has finite products.

Since the category of covering families of T has finite products, there are coskele-
ton functors. In particular, associated to every covering family U of T there is a
simplicial object U• in the category of covering families of T . With the standard
conventions, U• has U0 := U, has U1 = U×U = U2, and has Un := U×Un−1 = Un+1

for every integer n ≥ 1. Each face map dn,i : Un → Un−1 for 0 ≤ i ≤ n is the
corresponding projection,

pr1,...,i,i+2,...,n+1 = (pr1, . . . ,pri,pri+2, . . . ,prn+1) : Un+1 → Un.
13



Each degeneracy map sn,i : Un → Un+1 for 0 ≤ i ≤ n is the corresponding diagonal
morphism,

∆1,...,i+1,i+1,...,n+1 = (pr1, . . . ,pri+1,pri+1, . . . ,prn+1) : Un+1 → Un+2.

Definition 4.21. For every C-groupoid p : X → C, for every C-object T , for every
covering family U = (fλ : Uλ → T )λ∈Λ of T , a U-object of X is a collection xU =
(xλ)λ∈Λ of an object xλ of the fiber of p over Uλ for every λ, with morphisms defined
in the obvious way, i.e., the category of U-objects is the product over all λ ∈ Λ of the
fiber of p over Uλ. For every covering V = (gµ : Uµ → T )µ∈M of T , and for every
refinement from V to U, e• = (r, (eµ)µ∈M ), an e•-morphism to the U-object xU
from a V-object yV = (yµ)µ∈M is a family of morphisms δ• = (δµ : yµ → xr(µ))µ∈M
in X that are eµ-pullbacks of xr(µ). In particular, for the identity refinement of U,
this defines the notion of a morphism of U-objects. Notice, for every U-object xU,
for every refinement e•, existence of pullbacks for objects in a category fibered in
groupoids guarantees the existence of a V-object yV and an e•-morphism from yV
to xU; this is called a e•-pullback of xU.

A U-descent datum of objects of C is a pair (xU, φ•) of a U-object xU, and for one
(hence every) pair of pullbacks of xU,

(ε1,• : pr∗1xU → xU, ε2,• : pr∗2xU → xU),

relative to the projections, pri : U × U → U, i = 1, 2, a specified isomorphism of
U× U-objects,

φ• : pr∗1xU
∼=−→ pr∗2xU,

that satisfies the following cocycle condition. For one (hence every) choice of pull-
backs to U× U× U-objects,

(εi,j;k,• : pr∗i,jpr∗kxU → pr∗kxU)1≤i<j≤3,1≤k≤2,

with the unique lifts of the identity map of U×U×U to isomorphisms of U×U×U-
objects guaranteed by the axioms of a category fibered in groupoids,

nat1,2;1,• : pr∗1,2pr∗1xU
∼=−→ pr∗1,3pr∗1xU,

nat1,2;2,• : pr∗1,2pr∗2xU
∼=−→ pr∗2,3pr∗1xU,

nat1,3;2,• : pr∗1,3pr∗2xU
∼=−→ pr∗2,3pr∗2xU,

the following two composite isomorphisms of U× U× U-objects are required to be
equal,

nat1,3;2,• ◦ pr∗1,3φ• ◦ nat1,2;1,• = pr∗2,3φ• ◦ nat1,2;2,• ◦ pr∗1,2φ•.

For every refinement of covers of T , e• : V→ U with the corresponding refinement
e•×e• : V×V→ U×U, for every U-descent datum (xU, φ

x) and for every V-descent
datum (yV, φ

y), an e•-morphism of descent data from (yV, φ
y) to (xU, φ

x) is an
e•-morphism δ• : yV → xU such that for one (hence every) choice of pullbacks,

(εX1,• : pr∗1xU → xU, ε
x
2,• : pr∗2xU → xU),

(εy1,• : pr∗1yV → yV, ε
y
2,• : pr∗2yV → yV),

the following e• × e•-morphisms from pr∗1yV to pr∗2xU are equal,

φ• ◦ pr∗1δ• = pr∗sδ• ◦ φ.
14



By the axioms of a category fibered in groupoids, for every U-descent datum
(xU, φ

x
•), for every refinement of covers of T , e• : V → U, there exists a V-descent

datum (yV, φ
y
•) and a e•-morphism of descent datum from (yV, φ

y
•) to (xU, φ

x
•); this

is called a e•-pullback of (xU, φ•).

For a cover of T , U = (fλ : Uλ → T )λ∈Λ, with its unique refinement f• to the

final cover of T , (T
IdT−−→ T ), an effectivization of a U-descent datum is a descent

datum for the final cover of T and a f•-morphism between the descent data. Since
the descent datum over the final object is equivalent to an object of the fiber of
p over T , such an object is often called an effectivization. If there exists an
effectivization, then the descent datum is effective.

Exercise 4.22. Up to working with normalized objects instead of unnormalized
objects (and invoking the Axiom of Choice), check that the category of descent
data relative to a covering family U of T is weakly equivalent to the “fiber” of p
over the simplicial object U• of the category of covers of T . The formulation above
requires less notation.

Definition 4.23. For a category C with finite fiber products and a specified
Grothendieck pretopology, a C-category fibered in groupoids is a stack if every
descent datum of objects in C for every cover is effective and every morphism of de-
scent data relative to a fixed cover is induced by a morphism of the effectivizations.
More succinctly, the fiber of p over each object T of C is (weakly) equivalent to the
fiber of p over the simplicial object U• for every covering family U of each object
T of C. A 1-morphism of stacks is a 1-morphism of C-categories. A 2-morphism
between 1-morphisms of stacks is a 2-morphism between the 1-morphisms of C-
categories, i.e., the 2-category of stacks is a full subcategory of the 2-category of
C-categories.

Exercise 4.24. Check that for 1-morphisms of C-stacks, ζ : X → Z and η : Y → Z,
the 2-fiber product X ×ζ,Z,η Y is also a C-stack.

Exercise 4.25. Check that for a set-valued, contravariant functor F : C → Sets,

the category fibered in groupoids F̃ is a stack if and only if F is a sheaf for the
Grothendieck topology in the usual sense. Again, one incarnation of the Yoneda
embedding is an equivalence of sheaves with stacks that are fibered in setoids.

Definition 4.26. A category C that has finite fiber products together with a
Grothendieck pretopology satisfies the Yoneda sheaf condition if the Yoneda
contravariant functor of each object X of C is a sheaf for the Grothendieck topol-

ogy, i.e., if the category h̃X fibered in groupoids over C is a stack over C with its
specified Grothendieck pretopology.

Exercise 4.27. For every scheme S, check the Yoneda sheaf condition for the
category (Sch/S)fppf of S-schemes with the fppf Grothendieck pretopology (or even
the fpqc Grothendieck topology).

Definition 4.28. Let S be a scheme. Let (Sch/S)fppf denote the category of S-
schemes with the fppf Grothendieck pretopology. A stack X over (Sch/S)fppf is an
S-algebraic space if every fiber groupoid is a setoid, if the diagonal 1-morphism

is representable and if there exists an S-scheme X and a 1-morphism η : h̃X → X
(necessarily representable since the diagonal is representable) that is faithfully flat,
and étale.
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Remark 4.29. Please note that the diagonal morphism is not assumed to be a
closed immersion, nor a locally closed immersion, nor even quasi-compact. So alge-
braic spaces as above need not be separated, locally separated, or quasi-separated.
The original references by Mike Artin and Donald Knutson did assume separated-
ness hypotheses.

Definition 4.30. A 1-morphism between categories fibered in groupoids over
(Sch/S)fppf, ζ : X → Y, is representable by algebraic spaces if for every
S-scheme Y and for every 1-morphism between categories fibered in groupoids over

(Sch/S)fppf, ηY : h̃Y → Y, there exists an S-algebraic space X, a 1-morphism

f : X → h̃Y , a 1-morphism ηX : X → X , and a 2-morphism α : ζ ◦ ηX ⇒ ηY ◦ f ,
forming a 2-fibered product diagram. For a property P of morphisms of S-algebraic
spaces that is preserved by base change, property P holds for a representable
1-morphism ζ : X → Y between categories fibered in groupoids if for every 1-

morphism ηY : h̃Y → Y as above, the morphism f : X → Y has property P .

Definition 4.31. A stack X over (Sch/S)fppf is an algebraic S-stack, respectively
a Deligne-Mumford S-stack, if the diagonal 1-morphism is representable by

algebraic spaces and if there exists an S-scheme X and a 1-morphism η : h̃X → X
(necessarily representable by algebraic spaces) that is faithfully flat and smooth,
resp. that is faithfully flat and étale.
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