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1 Introduction

Economists have proposed numerous theories to characterize the relationships between

economic variables; whether these theories are supported by real world data is an empirical

issue. By econometrics we mean the application of statistical and mathematical methods

to the analysis of economic data, with a purpose of verifying or refuting economic theories.

One of the most commonly used econometric techniques is regression analysis.

In the nineteenth century, Sir Francis Galton (1822–1911) studied the relationship

between the heights of children and their parents. He observed that although tall parents

tended to have tall children and short parents tended to have short children, there was

a tendency for children’s heights to converge toward the average. He termed this as

a “regression toward mediocrity”. Contemporary regression analysis is concerned with

describing and evaluating the relationship between a dependent variable and one or more

explanatory variables. This involves formulating an econometric model, estimating its

unknown parameters, and drawing statistical inference about the estimated results.

2 Reviews of Statistics

2.1 Random Variables

A random variable is a variable whose values are determined by an experiment of chance

(i.e., governed by a probability distribution). We use capital letter to denote a random

variable and lower case to denote its value.

1. Discrete random variable X.

• Probability: P{X = x}.

• Probability distribution: P{X ≤ a} =
∑

{i: xi≤a} P{X = xi}.

2. Continuous random variable X.

• Probability density function (p.d.f.): f(x).

• Cumulative distribution function (c.d.f.) F (a) = P{X ≤ a} =
∫ a
−∞ f(x) dx.
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The behavior of a random variable is completely determined by its probability density

function. Moments are numerical measures summarizing certain behavior of a random

variable, e.g., expected value and variance.

1. Expected value: E(X) = µ.

• If X is discrete, E(X) =
∑

i xiP{X = xi}.

• If X is continuous, E(X) =
∫∞
−∞ xf(x) dx.

• If c is nonstochastic, E(c) = c, and E(cX) = cE(X).

2. Variance: var(X) = E(X − µ)2 = E(X2)− µ2 = σ2.

• If X is discrete, var(X) =
∑

i(xi − µ)2 P{X = xi}.

• If X is continuous, var(X) =
∫∞
−∞(x− µ)2f(x) dx.

• If c is nonstochastic, var(c) = 0, and var(cX) = c2 var(X).

The behavior of two (or more) random variables is determined by their joint probability

density function.

1. Joint p.d.f. fXY (x, y) = P{X = x, Y = y}.

2. Joint c.d.f. FXY (a, b) = P{X ≤ a, Y ≤ b} =
∫ b
−∞

∫ a
−∞ fXY (x, y) dx dy.

3. Marginal p.d.f. fX(x) =
∫∞
−∞ fXY (x, y) dy; fY (y) =

∫∞
−∞ fXY (x, y) dx.

4. Conditional p.d.f. f(x|y) = fXY (x, y)/fY (y); f(y|x) = fXY (x, y)/fX(x).

5. If fXY (x, y) = fX(x)fY (y), then X and Y are said to be independent.

The linear association between two random variables are characterized by their covariance

(or correlation).

1. cov(X,Y ) = E((X − µX)(Y − µY )) = E(XY )− µXµY = σXY .

2. corr(X,Y ) = σXY /(σXσY ) = ρXY and −1 ≤ ρXY ≤ 1. Note that corr(X,Y ) is

nothing but the covariance between ZX and ZY , where ZX = [X −E(X)]/
√

var(X)

and ZY = [Y − E(Y )]/
√

var(Y ) are Z-scores of X and Y .
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3. If X and Y are independent, then cov(X,Y ) = 0; the converse is not true.

4. E(X + Y ) = E(X) + E(Y ); var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

Some frequently used random variables are:

• Normal random variable X ∼ N(µ, σ2). (X − µ)/σ ∼ N(0, 1).

• If X1, . . .Xm are independent N(0, 1), then Z =
∑m

i=1X
2
i ∼ χ2

m.

• If X ∼ N(0, 1) and Y ∼ χ2
m are independent, then W = X/

√
Y/m ∼ tm.

• If X ∼ χ2
n and Y ∼ χ2

m are independent, then U = (X/n)/(Y/m) ∼ Fn,m.

2.2 Estimation

Typically, we do not know the population characteristics θ (e.g., mean and variance)

because we not know the probabilistic structure governing the random variable. Hence,

we collect data to estimate these unknown parameters.

1. Point estimation: An estimator is a function (a rule) of sample data; an estimate is

its particular value. Given a sample x1, . . . , xn, an estimator of θ can be represented

as θ̂ = g(x1, . . . , xn).

Examples: Given a sample (x1, y1), . . . , (xn, yn):

• An estimator of mean: the sample average x̄ =
∑n

i=1 xi/n.

• An estimator of variance: the sample variance
∑n

i=1(xi − x̄)2/(n− 1).

• An estimator of covariance: the sample covariance
∑n

i=1(xi− x̄)(yi− ȳ)/(n−1).

• An estimator of correlation: the sample correlation∑n
i=1(xi − x̄)(yi − ȳ)

[
∑n

i=1(xi − x̄)2]1/2[
∑n

i=1(yi − ȳ)2]1/2
.

2. Criteria to evaluate an estimator:

• Unbiasedness: E(θ̂) = θ.

• Efficiency: If θ̂1 and θ̂2 are both unbiased estimators, then θ̂1 is said to be more

efficient than θ̂2 if var(θ̂1) < var(θ̂2).
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• Mean Square Error: E(θ̂ − θ)2. This criterion allows us to compare biased

estimators.

3. Interval estimation: Instead of providing a particular estimate of an unknown pa-

rameter, it may be desirable to provide a range of values which may contain the

true parameter. To do this, we first specify a confidence coefficient γ, which is a

probability, say, 0.95. Then construct two functions g1(x1, . . . , xn) and g2(x1, . . . xn)

such that

P{g1(x1, · · · , xn) ≤ θ ≤ g2(x1, · · · , xn)} = γ.

The interval (g1, g2) is called the confidence interval . In words, we are 95% sure

that this interval would contain the parameter θ.

Example: xi are drawn from independent N(µ, 1). Let γ = 0.95. Consider an

estimator x̄ =
∑n

i=1 xi/n for µ. It can be verified that x̄ ∼ N(µ, 1/n) so that
√
n(x̄− µ) ∼ N(0, 1). From the table of the standard normal random variable,

P{−1.96 <
√
n(x̄− µ) < 1.96} = 0.95.

Hence, the 95% confidence interval of µ is (x̄− 1.96/
√
n < µ < x̄+ 1.96/

√
n).

2.3 Hypothesis Testing

Theory (or prior belief) may suggest that the true parameter θ equals a particular value

a. Hence, we may be interested in testing the null hypothesis H0 : θ = a against the

alternative hypothesis Ha : θ 6= a (or θ > a).

1. Test statistic T : it typically involves the difference between the estimate and the

hypothesized value, e.g., T =
√
n(x̄−a) is used to test H0 : µ = a. A test statistic is

a random variable, hence has a distribution from which we can check its probability,

e.g., T ∼ N(0, 1) under the null hypothesis. A large value of T is considered to be

improbable, hence suggests rejection of the null hypothesis.

2. Significance level α: a probability that we would tolerate when we incorrectly reject

the null hypothesis. (This probability is also known as the type I error.) Given α,
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a critical value cα is such that P{|T | > cα} = α. We reject H0 if the observed value

T = t is such that |t| > cα, and we say that T = t is significant at the level α.

3. Power: the probability of rejecting the null hypothesis when it is indeed false. The

type II error is the probability of incorrectly accepting the null hypothesis. Hence,

the power of a test is (1 − type II error).

4. p-value: given an observed test statistic T = t, the probability of observing more

extreme T (i.e., T ≥ t and T ≤ −t). That is, the p-value is the “α” at which T = t

is just significant.
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3 Random Sampling Model, Projection, and Regression

3.1 Random Sampling

Suppose an eonometrician has the observational data

{wi, i = 1, . . . , n} = {w1,w2, . . . ,wn},

where each wi is a vector of numerical values which represent the characteristics of indi-

viduals. Typically, the data can be written as
w1

w2
...

wn

 =


(y1,x1)

(y2,x2)
...

(yn,xn)

 yi ∈ R,xi ∈ Rk

=


y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k
...

...
... . . . . . .

yn xn1 xn2 . . . xnk


= (y, x1, x2, . . . ,xk).

If this data is cross-sectional (data wi, i = 1, . . . , n were observed at a certain time

and i represents “individual”), it is reasonable to assume they are mutually independent

(“spatial” data are an exception). Furthermore, if the data are symmetrically gathered

(e.g., randomly), it is also reasonable to model each observation as a “random draw” from

the same probability distribution. Thus, the data are independent and identical distributed,

or i.i.d. We call this a random sample.

3.2 Regression

In regression, we want to find the central tendency of the conditional distribution of y given

x = xi. A standard measure of central tendency is the mean. The conditional analog is

the conditional mean. Let f(y, x) denote the joint density of (y, x), then the conditional

density

f(y|x = xi) =
f(y, x = xi)
fx(x = xi)
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exists, where fx(x = xi) =
∫∞
−∞ f(y, x = xi)dy is the marginal density of x at xi. The

conditional mean is defined as the function

m(xi) = E(y|x = xi) =
∫ ∞

−∞
yf(y|x = xi)dy.

Note that this definition requires the existence of densities. The conditional mean m(xi) =

E(y|x = xi) is a function, meaning that when x equals xi, then the expected value of y is

m(xi). Clearly, it is a random variable since it is a function of random variable xi.

The regression error ei is defined to be the difference between yi given at x = xi and

its conditional mean:

e = (y|x = xi)−m(xi).

By construction, this yields the formula

(y|x = xi) = m(xi) + e. (1)

For the joint observed data (xi, yi), i = 1, . . . , n, the considered regression can be expressed

as

yi = m(xi) + ei, i = 1, . . . , n.

It is worth emphasizing that no assumptions have been imposed to develop (1), other than

that (y, x) have a joint distribution and E|y| <∞.

Proposition 3.1 Properties of the regression errors ei

1. E(ei|xi) = 0.

2. E(ei) = 0.

3. E[h(xi)ei] = 0 for all function h(·).

4. E(xiei) = 0.

Proof:
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1. By the definition of ei and the linearity of conditional expectation,

E(ei|xi) = E[(yi −m(xi))|xi]

= E(yi|xi)− E[m(xi)|xi]

= m(xi)−m(xi), asE[m(xi)|xi] = m(xi)

= 0. 2

2. By the law of iterated expectations and the first result

E(ei) = E[E(ei|xi)]

= E[0] = 0. 2

3. By essentially the same argument,

E[h(xi)ei] = E{E[h(xi)ei|xi]}

= E{h(xi)E[ei|xi]}

= E{h(xi)× 0} = 0. 2

4. Follows from the third result setting h(xi) = xi. 2

The final result implies that ei and xi are uncorrelated. It is important to understand

that despite being uncorrelated, in general ei need not be independent of xi.

Generally, the following equations

yi = m(xi) + ei

E(ei|xi) = 0,∀i,

are often stated jointly as the regression framework. It is important to understand that

this is a framework, not a model, because no restrictions have been placed on the joint

distribution of the data. These equations hold true by definition. A regression model

imposes further restrictions on the joint distribution; most typically, restrictions on the

permissible class of regression function m(x).
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3.3 Linear Models

While m(x) in general can take any shape, a parametric family {m(x,β) : β ∈ Rk} is

typically picked to simplify estimation and interpretation. Sometimes, the form of m(x,β)

is given by an economic theory or model. Most often, however, we consider a linear form

for convenience and data coherence.

A linear model for m(x) is written as

m(xi) = β1 + β2xi2 + · · ·+ βkxik,

where β = (β1, . . . , βk)′ is the parameter vector. In matrix notation,

m(xi) = x′iβ,

where xi = (1, x2i, . . . , xki)′. Then the linear regression model becomes

yi = x′iβ + ei (2)

E(ei|xi) = 0

This is a model because m(·) has been restricted to the linear form.

While linearity is substantively restricted, it has still a great deal of flexibility. For

example, if xi is real-valued and

m(xi) = β1 + xiβ2 + x2
iβ3 + · · ·+ xk−1

i βk

is a polynomial, then a linear regression model still holds, by the redefinition of xi as

(1, xi, x
2
i , . . . , x

k−1
i )′. The linear conditional mean model is illustrated in the following

figure.

3.4 Linear Projection

The linear regression model (2) implies E(xiei) = 0 as

E(xiei) = E[xi(yi − x′iβ)]

= E{E[xi(yi − x′iβ)|xi]}

= E{xi[E(yi|xi)− x′iβ]}

= E(xi × 0) = 0.
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Figure 1: An illustration of the Linear Conditional Mean.

This condition is sufficient for many asymptotic results. It is interesting to observe that

in linear models, there is always a vector β such that this equation holds. This vector β

may be called the linear projection coefficient or linear predictor.

Proposition 3.2 For any random variables (yi,xi), let

β = [E(xix
′
i)]
−1E(xiyi) (3)

and

ei = yi − x′iβ.

Then

E(xiei) = 0.

Proof:

E(xiei) = E[xi(yi − x′iβ)]

= E{xi[yi − x′iE(xix
′
i)
−1E(xiyi)]}
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= E{E{xi[yi − x′iE(xix
′
i)
−1E(xiyi)]|xi}}

= E{xiE(yi|xi)− xix
′
i(xix

′
i)
−1xiE(yi|xi)}

= 0. 2

If β is defined as in (3), then E(xiei) = 0 holds by construction. It does not necessarily

follow that E(ei|xi) = 0. This only holds if the true conditional mean of yi is x′iβ, i.e.,

m(xi) = x′iβ, which is substantive restriction. Thus the linear regression assumption that

E(ei|xi) = 0 is more restrictive than the linear projection construction. It turns out that

for most issues in statistical inferences, the projection assumption is sufficient. Therefore,

the more general assumption E(xiei) = 0 is adopted.

For econometric practice, however, it is typical desirable for x′iβ to represent the

conditional mean of yi, rather than a simple linear projection. So while it is not necessary

for inference on β, it may be necessary for inference on an economic relationship of interest.

3.5 Assumptions on the Regression Errors

While the regression motivation leads naturally to the model (2), at times it is more

convenient to adopt assumptions which are either more restrictive or less restrictive. The

standard types of models considered by econometricians and their strength and weakness

are discussed as the follows. All the models are based on the decomposition

yi = x′iβ + ei. (4)

In addition, all models normalized the error so that E(ei) = 0 and presume a finite variance

E(e2i ) = σ2 <∞.

Definition 3.1 The Linear Projection Model is (4) plus

E(xiei) = 0.

The advantage of he linear projection model is that it is true by construction, and many

inferential results hold under this broad condition. The disadvantage is that the coefficient

vector β may not have useful economic interpretations without additional structure.

Definition 3.2 The Linear Regression Model is (4) plus

E(ei|xi) = 0.
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This model leads naturally from the derivation of the conditional mean function. The

primary advantage is that the parameter β is easily interpretable.

Definition 3.3 The Homoskedastic Regression Model is the Linear Regression Model plus

E(e2i |xi) = σ2. (5)

This model adds the auxiliary assumption (5) that the regression is conditionally ho-

moskedastic. This assumption greatly simplifies many theoretical arguments and calcu-

lations, and it therefore very useful in illustrative arguments. Many formulae simplify

under this assumption, and as a result, alternative estimators and techniques are utilized.

The danger in this assumption is that these simplifications result in incorrect answers and

inferences if indeed the homoskedasticity assumption is false.

Another meaningful justification for assumption (5) is that while it may not be precisely

true in the data, it may be approximately true, and in some applications the cost of

imposing homoskedasticity on the estimates may be less than the cost of using the more

general techniques appropriate for the linear regression model.

Definition 3.4 The Classical Regression Model is (4) plus that ei is independent of xi.

Usually, xi is assumed to be nonstochastic.

This model is more restrictive than the homoskedastic regression model, and is a

common starting point in classical econometrics textbooks.

Definition 3.5 The Normal Regression Model is (4) plus that ei is independent of xi and

distributed as N(0, σ2).

The above five models are strictly nested, with the first (the linear projection model)

the less restrictive, and the last (the normal regression model) the most restrictive.

The conditional variance function is

var(yi|x = xi) = E(e2i |x = xi) = σ2(xi)

which is (potentially) a function of xi. Just as the conditional mean function may take

any form, so may the conditional variance function (other than the restriction that it is

non-negative). Given the random variable xi, the conditional variance is σ2
i = σ2(xi).

12



In the general case where σ2(xi) is not a constant function, so σ2
i is different across i,

we say that the error ei is heteroskedastic. On the other hand, when the function σ2(xi)

is a constant so that the conditional variance σ2
i all equal the same constant value σ2, we

say that the error ei is homoskedastic.

13



4 Classical Linear Regression Models

In classical analysis, the tools of regression has been applied to study how response variable

y is affected by the independent variables x of an experiment in the Lab. Usually, the

values of x are designed by scientists so that they are controllable. Therefore, x are also

called the controlled variables or designed variables. Thus, the explanatory variables are

assumed to be “nonstochastic” in the classical regression analysis.

4.1 Simple Linear Regression

It is typical and convenient to describe an economic relationship using a linear model.

Hence, given a set of economic data, one would like to find a linear equation (straight line)

that best fits the data.

We know that a good estimator is the one has smallest mean squared errors. In

regression analysis, we are trying to estimate the dependent variable y with a set of

explanatory variables x. That is, we want to find an estimator ŷ = f(x) to estimate y.

Then the mean squared errors of ŷ is mse(ŷ) = E[(ŷ−y)2]. As we know that the arithmetic

average of sample observations is nothing but the expectation value evaluated with the

sample relative frequencies as its probabilities. Therefore, the sample counter part of the

mse(ŷ) is the arithmetic average,
∑n

i=1(yi − f(xi))2/n. In linear regression content, the

estimator f(x) is restricted to a linear function form, i.e., f(x) = β1x1 +β2x2 + · · ·+βkxk.

The discussion of simple linear regression focuses on k = 2. Thus, we want to find an

estimator which makes
∑n

i=1(yi − α − βxi)2/n as small as possible. This is the ordinary

least square estimator we are going to discuss.

Given the linear conditional mean E(y|x) = α0+β0x is assumed (usually it is unknown)

from an economic or financial theory, a linear regression model is specified as y = α+βx+u.

Under the “believe” of the “representativity” on obtained sample observations {xi, yi}n
i=1,

the relations yi = α0 + β0xi + ei, i = 1, . . . , n are believed and the regression model is

appropriate for sample observations, i.e., yi = α + βxi + ui, i = 1, . . . , n. The relations

yi = α0 +β0xi +ei, i = 1, . . . , n is sometimes called the “identification” of relation between

y and x, denoted as ID1 hereafter. That is

ID 1: yi = α0 + β0xi + ei, i = 1, . . . , n.

The OLS estimators of α and β are obtained by minimizing the average of squared

14



errors:

f(α, β) =
1
n

n∑
i=1

(yi − α− βxi)
2.

The first order conditions are

∂

∂α
f(α, β) = −2

1
n

n∑
i=1

(yi − α̂n − β̂nxi) = 0, (6)

∂

∂α
f(α, β) = −2

1
n

n∑
i=1

(yi − α̂n − β̂nxi)xi = 0, (7)

which are also called “normal equations”. From (6) we obtain

α̂n =
1
n

n∑
i=1

yi − β̂n

1
n

n∑
i=1

xi = ȳn − β̂nx̄n, (8)

and by plugging this α̂n into (7) we get

1
n

n∑
i=1

yixi = (ȳn − β̂nx̄n)
1
n

n∑
i=1

xi + β̂n

1
n

n∑
i=1

x2
i

so that

β̂n

(
1
n

n∑
i=1

xi(xi − x̄n)

)
=

1
n

n∑
i=1

xi(yi − ȳn). (9)

It follows from (8) and (9) that the OLS estimators of α and β are

β̂n =
∑n

i=1(yi − ȳn)(xi − x̄n)∑n
i=1(xi − x̄n)2

, (10)

α̂n = ȳn − β̂nx̄n. (11)

Note that β̂n exists uniquely if
∑n

i=1(xi − x̄n)2 is not equal to zero “deterministically”.

It is obvious
∑n

i=1(xi − x̄n)2 = 0 if all xis are constant and also could be zero when xi

is stochastic. Therefore, we have to impose the following assumption to have β̂n uniquely

and deteriministically,

A1: xi, i = 1, . . . , n are not all constant and nonstochastic.

The equation ŷ = α̂n + β̂nx is the regression line. The values ŷi are called fitted values,

and ei = yi − ŷi are called residuals. Note that by normal equations (6),
∑n

i=1 ei = 0

so that
∑n

i=1 yi =
∑n

i=1 ŷi and ȳn = ¯̂y. Also, note that by (7),
∑n

i=1 xiei = 0 so that∑n
i=1 ŷiei = 0.

The OLS estimators have the following properties under some appropriate assumptions.
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1. Given A1 OLS estimators are linear estimators in yi, i.e., β̂n =
∑n

i=1 kiyi and

α̂n =
∑n

i=1 hiyi.

β̂n =
∑n

i=1(xi − x̄n)yi∑n
i=1(xi − x̄n)2

=
n∑

i=1

xi − x̄n∑n
i=1(xi − x̄n)2

yi

=
n∑

i=1

kiyi.

and

α̂n = ȳn − β̂nx̄n

=
n∑

i=1

yi/n−
n∑

i=1

kiyix̄n

=
n∑

i=1

(
1
n
− kix̄n

)
yi

=
n∑

i=1

hiyi.

Note that
∑n

i=1 ki = 0 and
∑n

i=1 k
2
i = 1/

∑n
i=1(xi − x̄n)2.

2. Given ID 1: yi = α0 + β0xi + ei, i = 1, . . . , n and A1, the OLS estimators are

conditional unbiased.

First observe that, denote X = (x1, x2, . . . , xn)′,

β̂n =
∑n

i=1(xi − x̄n)yi∑n
i=1(xi − x̄n)2

=
∑n

i=1(xi − x̄n)(α0 + β0xi + ei)∑n
i=1(xi − x̄n)2

under ID1

= α0

∑n
i=1(xi − x̄n)∑n
i=1(xi − x̄n)2

+ β0

∑n
i=1(xi − x̄n)xi∑n
i=1(xi − x̄n)2

+
∑n

i=1(xi − x̄n)ei∑n
i=1(xi − x̄n)2

= β0 +
∑n

i=1(xi − x̄n)ei∑n
i=1(xi − x̄n)2

= β0 +
n∑

i=1

ki ei.
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To prove the unbiasedness, take expectation to both sides in above equation,

E(β̂n|X) = E

(
β0 +

∑n
i=1(xi − x̄n)ei∑n
i=1(xi − x̄n)2

|X
)

= β0 + E

(∑n
i=1(xi − x̄n)ei∑n
i=1(xi − x̄n)2

|X
)

= β0 +
∑n

i=1(xi − x̄n)E(ei|X)∑n
i=1(xi − x̄n)2

= β0.

As, by iterated expectation,

E(β̂n) = E{E[β̂n|X]} = E{β0} = β0.

That is, β̂n is also unconditional unbiased.

Besides, it can be seen that

E(α̂n|X) = E(ȳn − β̂nx̄n|X)

= E(
n∑

i=1

yi/n− β̂nx̄n|X)

= E(
n∑

i=1

(α0 + β0xi + εi)/n− β̂nx̄n|X)

= E(α0 + (β0 − β̂n)x̄n +
n∑

i=1

ei/n|X)

= α0 + E(β0 − β̂n)x̄n +
n∑

i=1

E(ei|X)/n

= α0,

since β̂n is conditionally unbiased for β0 so that E(β0 − β̂n|X) = 0. Alternatively,

as E(ȳn|X) = α0 + β0x̄n, it follows that

E(α̂n|X) = E(ȳn − β̂nx̄n|X) = α0.

Note that

α̂n = α0 + (β0 − β̂n)x̄n +
n∑

i=1

ei/n
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= α0 −
n∑

i=1

ki x̄nei +
n∑

i=1

ei/n

= α0 +
n∑

i=1

[1/n− kix̄n]ei

= α0 +
n∑

i=1

hiei.

3. Under the homoskedastic liner model, i.e., ID 1 plus E(ei) = 0 and var(ei) = σ2
0 It

can be shown that

σ2
α̂n

:= var(α̂n) = σ2
0

(
1
n

+
x̄2

n∑n
i=1(xi − x̄n)2

)
,

σ2
β̂n

:= var(β̂n) =
σ2

0∑n
i=1(xi − x̄n)2

,

σα̂nβ̂n
:= cov(α̂n, β̂n) = σ2

0

−x̄n∑n
i=1(xi − x̄n)2

.

First, we observe that

E(yi) = E(α0 + β0xi + εi) = α0 + β0xi,

var(yi) = E[(yi − E(yi))
2]

= E(α0 + β0xi + εi − α0 − β0xi)
2]

= E(ε2i ) = σ2
0

cov(yi, yj) = E[(yi − E(yi))(yj − E(yj))]

= E(εiεj) = 0. by [A.3]

Then, we prove above results as follows:

σ2
β̂n

= var(
n∑

i=1

kiyi)

=
n∑

i=1

k2
i var(yi) + 2

n∑
i=1

n∑
j=i+1

kikjcov(yi, yj)

= σ2
0

n∑
i=1

k2
i =

σ2
0∑n

i=1(xi − x̄n)2
.
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Besides,

σ2
α̂n

= var(
n∑

i=1

hiyi)

=
n∑

i=1

h2
i var(yi) + 2

n∑
i=1

n∑
j=i+1

hihjcov(yi, yj)

= σ2
0

n∑
i=1

h2
i

= σ2
0

n∑
i=1

(1/n− kix̄n)2

= σ2
0

n∑
i=1

(1/n2 − 2kix̄n/n+ k2
i x̄

2
n)

= σ2
0[1/n− 2x̄n

n∑
i=1

ki + x̄2
n

n∑
i=1

k2
i ]

= σ2
0

(
1
n

+
x̄2

n∑n
i=1(xi − x̄n)2

)
.

Finally,

σα̂nβ̂n
= cov(

n∑
i=1

kiyi,

n∑
i=1

hiyi)

= E{[
n∑

i=1

kiyi − E(
n∑

i=1

kiyi)][
n∑

i=1

hiyi − E(
n∑

i=1

hiyi)]}

= E{[
n∑

i=1

ki(yi − E(yi))][
n∑

i=1

hi(yi − E(yi))]}

=
n∑

i=1

hikivar(yi) + 2
n∑

i=1

n∑
j=i+1

hikjcov(yi, yj)

= σ2
0

n∑
i=1

hiki

= σ2
0

n∑
i=1

(1/n− kix̄n)ki

= σ2
0/n

n∑
i=1

ki − σ2
0x̄n

n∑
i=1

k2
i
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=
−x̄nσ

2
0∑n

i=1(xi − x̄n)2
.

4. (Gauss-Markov Theorem) result says that, given ID 1, A2 α̂n and β̂n have the

smallest variance (the most efficient) among all linear and unbiased estimators of α0

and β0, i.e., they are the Best Linear Unbiased Estimators (BLUE).

proof: Let β̃n be any other linear estimator in yi than β̂n so that it can be written

as

β̃n =
n∑

i=1

(ki + ci) yi

=
n∑

i=1

(ki + ci)(α0 + β0xi + εi)

= α0

n∑
i=1

(ki + ci) + β0

n∑
i=1

(ki + ci)xi +
n∑

i=1

(ki + ci) εi,

given ci 6= 0, i = 1, . . . , n. By unbiasedness of β̃n,
∑n

i=1(ki + ci) = 0 and
∑n

i=1(ki +

ci)xi = 1. Thus, given
∑n

i=1 ki = 0 and
∑n

i=1 ki xi = 1,

n∑
i=1

ci = 0

n∑
i=1

xi ci = 0.

As

var(β̃n) = var

(
n∑

i=1

(ki + ci) yi

)

=
n∑

i=1

(ki + ci)
2var(yi) + 2

n∑
i=1

n∑
j=i+1

kikjcov(yi, yj)

=
n∑

i=1

(ki + ci)
2var(yi)

=
n∑

i=1

k2
i σ

2
0 +

n∑
i=1

c2iσ
2
0 + 2

n∑
i=1

ki ciσ
2
0.
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and

n∑
i=1

ki ci =
∑

(xi − x̄n)ci∑
(xi − x̄n)2

=
∑
xici − x̄n

∑
ci∑

(xi − x̄n)2
= 0,

we have

var(β̃n) =
σ2

0∑
(xi − x̄n)2

+ σ2
0

n∑
i=1

c2i ≥ var(β̂n).

Therefore, β̂n has the smallest variance among linear and unbiased estimators.

5. σ̂2
n =

∑n
i=1 e

2
i /(n− 2) is unbiased for σ2

0. As

ei = yi − ŷi = yi − α̂n − β̂nxi

= (α0 − β0xi + εi)− (ȳn − β̂nx̄n)− β̂nxi

= (α0 − β0xi + εi)− (
∑
i=1

(α0 + β0 + εi)/n− β̂nx̄n)− β̂nxi

= β0xi + εi − β0x̄n − ε̄n − β̂nx̄n − β̂nxi

= −(β̂n − β0)(xi − x̄n) + (εi − ε̄n),

n∑
i=1

e2i =
n∑

i=1

(εi − ε̄n) + (β̂n − β0)
2

n∑
i=1

(xi − x̄n)2

−2(β̂n − β0)
n∑

i=1

(εi − ε̄n)(xi − x̄n).

Observe that

E[
n∑

i=1

(εi − ε̄n)2] = E(
n∑

i=1

ε2i − nε̄2n)

=
n∑

i=1

var(εi)− nvar(ε̄n)

= nσ2
0 − n(σ2

0/n) = (n− 1)σ2
0.
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And,

E[(β̂n − β0)
2

n∑
i=1

(xi − x̄n)2] =
n∑

i=1

(xi − x̄n)2E(β̂n − β0)
2

=
n∑

i=1

(xi − x̄n)2[σ2
0/

n∑
i=1

(xi − x̄n)2]

= σ2
0.

Finally, as β̂n = β0 +
∑n

i=1 kiεi,

E[(β̂n − β0)εi] = E[(
n∑

i=1

kiεi)εi]

= kiE(ε2i ) = kiσ
2
0,

and

E[(β̂n − β0)ε̄n] = E[(
n∑

i=1

kiεi)(
n∑

i=1

εi/n)]

=
1
n

n∑
i=1

kiσ
2
0 = 0.

This implies

E[−2(β̂n − β0)
n∑

i=1

(εi − ε̄n)(xi − x̄n)]

= −2[
n∑

i=1

(xi − x̄n)E[(β̂n − β0)εi]] + 2
n∑

i=1

(xi − x̄n)E[(β̂n − β0)ε̄n]

= −2
n∑

i=1

(xi − x̄n)kiσ
2
0

= −2σ2
0.

Thus,

E(
n∑

i=1

e2i ) = (n− 1)σ2
0 + σ2

0 − 2σ2
0 = (n− 2)σ2

0.

We have proved that E(σ̂2
n) = σ2

0.

22



6. As σ2
0 is unknown, var(α̂n) and var(β̂n) can be estimated by

s2α̂n
:= ̂var(α̂n) = σ̂2

n

(
1
n

+
x̄2

n∑n
i=1(xi − x̄n)2

)
,

s2
β̂n

:= v̂ar(β̂n) =
σ̂2

n∑n
i=1(xi − x̄n)2

,

sα̂nβ̂n
:= ̂cov(α̂n, β̂n) = σ2

0

−x̄n∑n
i=1(xi − x̄n)2

.

Since σ̂2
n is unbiased for σ2

0, s
2
α̂n

, s2
β̂n

and sα̂nβ̂n
are all unbiased for σ2

α̂n
, σ2

β̂n
, and

σα̂nβ̂n
, respectively.

Note that, the identification plus the assumptions mentioned previously are usually

called the classical assumptions:

A1 yi = α0 + β0xi + εi, i = 1, . . . , n.

A2 xi are nonstochastic and nonconstant.

A3 E(εi) = 0.

A4 E(ε2i ) = σ2
0, and E(εiεj) = 0 for all i 6= j.

A5 εi are i.i.d. N(0, σ2
0).

4.1.1 Hypothesis Testing

To perform hypothesis testing, we now assume assumption 5 (εi are i.i.d. N(0, σ2
0)) holds.

As assumption 5 implies assumptions 3 and 4, previous results remain valid. From as-

sumption 5 we have

1. yi are independent N(α0 + β0xi, σ
2
0).

2. α̂n ∼ N(α0, σ
2
α̂n

) and β̂n ∼ N(β0, σ
2
β̂n

).

3.
α̂n − α0

σα̂n

∼ N(0, 1) and
β̂n − β0

σβ̂n

∼ N(0, 1).
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4.
∑n

i=1 e
2
t /σ

2
0 = (n− 2)σ̂2

n/σ
2
0 ∼ χ2

n−2. Also, α̂n and β̂n are independent of σ̂2
n.

proof: As

ei = −(β̂n − β0)(xi − x̄n) + (εi − ε̄n),

we have

n∑
i=1

e2i =
n∑

i=1

(εi − ε̄n)2 + (β̂n − β0)
2

n∑
i=1

(xi − x̄n)2

−2(β̂n − β0)
n∑

i=1

(xi − x̄n)(εi − ε̄n). (12)

For the first term in (12), we know

n∑
i=1

(εi − ε̄n)2

=
n∑

i=1

[(εi − E(εi))− (ε̄n − E(εi))]
2

=
n∑

i=1

[εi − E(εi)]
2 +

n∑
i=1

[ε̄n − E(εi)]
2

−2
n∑

i=1

[(εi − E(εi))(ε̄n − E(εi))]

=
n∑

i=1

[εi − E(εi)]
2 +

n∑
i=1

[ε̄n − E(εi)]
2

−2(ε̄n − E(εi)

(
n∑

i=1

εi − nE(εi)

)

=
n∑

i=1

[εi − E(εi)]
2 +

n∑
i=1

[ε̄n − E(εi)]
2

−2(ε̄n − E(εi) (nε̄n − nE(εi))

=
n∑

i=1

[εi − E(εi)]
2 +

n∑
i=1

[ε̄n − E(εi)]
2

−2n(ε̄n − E(εi)
2,
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Thus,

n∑
i=1

(εi − ε̄n)2/σ2
0

=
n∑

i=1

[
εi − E(εi)

σ

]2

+
n∑

i=1

[
ε̄n − E(εi)

σ0

]2

−2
[
(ε̄n − E(εi)
σ0/

√
n

]2

∼ χ2(n) + χ2(1)− 2χ2(2) = χ2(n− 1).

Next, for the second term in (12),

(β̂n − β0)
2

n∑
i=1

(xi − x̄n)2/σ2
0

=

 β̂n − β0√
σ2

0/
∑n

i=1(xi − x̄n)2


∼ χ2(1).

Finally, for the last term in (12), as β̂n − β0 =
∑n

i=1 kiεi

2(β̂n − β0)
n∑

i=1

(xi − x̄n)(εi − ε̄n)/σ2
0

= 2(β̂n − β0)
n∑

i=1

(xi − x̄n)εi/σ
2
0

= 2(β̂n − β0)/σ
2
0

n∑
i=1

(xi − x̄n)2
n∑

i=1

xi − x̄n∑n
i=1(xi − x̄n)2

εi

= 2(β̂n − β0)/σ
2
0

n∑
i=1

(xi − x̄n)2(β̂n − β0)

= 2
(β̂n − β0)2

σ2
0∑n

i=1(xi−x̄n)2

= 2

 β̂n − β0√
σ2
0∑n

i=1(xi−x̄n)2


2

∼ 2N(0, 1)22χ2(1).
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Therefore,

(n− 2)σ̂2
n

σ2
0

=
n∑

i=1

e2i /σ
2
0

∼ χ2(n− 1) + χ2(1)− 2χ2(1) = χ2(n− 2).

5.
α̂n − α0

sα̂n

∼ tn−2 and
β̂n − β0

sβ̂n

∼ tn−2.

proof:

α̂n − α0

sα̂n

=
α̂n − α0√

σ̂2
n[1/n+ x̄2

n/
∑n

i=1(xi − x̄n)2]

=

α̂n−α0√
σ2
0 [1/n+x̄2

n/
∑n

i=1(xi−x̄n)2]

[(n− 2)σ̂2
n/σ

2
0]/(n− 2)

∼ N(0, 1)√
χ2(n−2)

n−2

= t(n− 2).

Similarly,

β̂n − β0

sβ̂n

=
β̂n − β0√

σ̂2
n/
∑n

i=1(xi − x̄n)2

=

β̂n−β0√
σ2
0/

∑n
i=1(xi−x̄n)2

(n− 2)σ̂2
n/σ

2
0]/(n− 2)

∼ N(0, 1)√
χ2(n−2)

n−2

= t(n− 2).

To test the null hypothesis H0 : α0 = a or H0 : β0 = b we can use t-tests.

1. One-sided test:

• Ha : β0 > b. Under the null hypothesis,

τβ̂n
= (β̂n − b)/sβ̂n

∼ tn−2.

Given the significance level γ and degrees of freedom n − 2, the critical value

cγ,n−2 can be found in the t-table, and we rejectH0 if τβ̂n
> cγ,n−2. Similarly, we

can test against Ha : α0 > a by checking whether τα̂n
= (α̂n− a)/sα̂n

> cγ,n−2.

26



• Ha : β0 < b. Reject H0 if τβ̂n
< −cγ,n−2.

2. Two-sided test: For Ha : β0 6= b, reject H0 if τβ̂n
> cγ/2,n−2 or τβ̂n

< −cγ/2,n−2. For

Ha : α0 6= a, reject H0 if τα̂n
> cγ/2,n−2 or τα̂n

< −cγ/2,n−2.

3. The (1− γ) confidence intervals for β0 and α0 are

(β̂n − sβ̂n
cγ/2,n−2, β̂n + sβ̂n

cγ/2,n−2),

(α̂n − sα̂n
cγ/2,n−2, α̂n + sα̂n

cγ/2,n−2).

4.1.2 Prediction

Based on the regression line estimated with n observations, we can predict ŷn+1 = α̂ +

β̂xn+1, provided that the new information xn+1 is available. Observe that the prediction

error has mean zero

E(ŷn+1 − yn+1) = E[(α̂n + β̂nxn+1)− (α0 + β0xn+1 + εn+1)] = 0

and variance

E(ŷn+1 − yn+1)
2 = E[(α̂n − α0) + (β̂n − β0)xn+1 − εn+1]

2

= var(α̂n) + var(β̂n)x2
n+1 + σ2

0 + 2xn+1cov(α̂n, β̂n)

= σ2
0

(
1 +

1
n

+
(xn+1 − x̄)2∑n
i=1(xi − x̄)2

)
.

Hence, we have better prediction if xn+1 is close to x̄.

4.2 Multiple Linear Regression

More generally, we may postulate a linear model with k explanatory variables to represent

the identification equation: of y:

y = β10x1 + β20x2 + · · ·+ βk0xk + e.

Given a sample of T observations, this specification can also be expressed as the identifi-

cation condition:

y = Xβ0 + e, (13)
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where β0 = (β10 β20 · · · βk0)′ is the vector of unknown parameters, and y and X contain

all the observations of the dependent and explanatory variables, i.e.,

y =


y1

y2
...

yT

 , X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xT1 xT2 · · · xTk

 ,

where each column vector of X contains T observations for an explanatory variable. The

basic “identifiability” requirement of this specification is that the number of regressors,

k, is strictly less than the number of observations, T , such that the matrix X is of full

column rank k. That is, the model does not contain any “redundant” regressor. It is also

typical to set the first explanatory variable as the constant one so that the first column

vector of X is a T × 1 vector of ones, `. To summary, the identification condition is ID 1:

yt = β10 + β20xt2 + β30xt3 + · · ·+ βk0xtk + et, t = 1, . . . , T .

Our objective now is to find a k-dimensional regression hyperplane that “best” fits

the data (y,X). In the light of Section 4.1, we must minimize the average of the sum of

squared errors:

Q(β) :=
1
T

(y −Xβ)′(y −Xβ). (14)

The first order conditions for the OLS minimization problem, also known as the normal

equations, are:

∇β Q(β) = ∇β (y′y − 2y′Xβ + β′X ′Xβ)/T

= −2X ′(y −Xβ)/T
set= 0,

the last equality can also be written as

X ′XβT
set= X ′y

which is known as the normal equation. To have a unique solution for the system equation

for β, (X ′X)−1 has to exist. This is first assumption has to be satisfied to have solution

for β uniquely.

[A2] The T × k data matrix X is full column rank.
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Given that X is of full column rank, X ′X is p.d. and hence invertible. The solution

to the normal equations can then be expressed as

β̂T = (X′X)−1X′y. (15)

It is easy to see that the second order condition is also satisfied because

∇2
β Q(β) = 2(X′X)/T

is p.d. Hence, β̂T is the minimizer of the OLS criterion function and known as the OLS

estimator for β. As the matrix inverse is unique, the OLS estimator is also unique.

The vector of OLS fitted values is

ŷ = Xβ̂T ,

and the vector of OLS residuals is

ê = y − ŷ.

By the normal equations, X′ê = 0 so that ŷ′ê = 0. When the first regressor is the constant

one, X′ê = 0 implies that `′ê =
∑T

t=1 êt = 0. It follows that
∑T

t=1 yt =
∑T

t=1 ŷt, and the

sample average of the data yt is the same as the sample average of the fitted values ŷt.

If X is not of full column rank and then its column vectors satisfies an exact linear

relationship, this is also known as the problem of exact multicollinearity . In this case,

without loss of generality we can write

x1 = γ2x2 + · · ·+ γkxk,

where xi is the ith column of X and γ2, . . . , γk are not all zero. Then, for any number

a 6= 0,

β1x1 = (1− a)β1x1 + aβ1(γ2x2 + . . .+ γkxk).

The linear specification (13) is thus observationally equivalent to

Xβ∗ := (1− a)β1x1 + (β2 + aβ1γ2)x2 + · · ·+ (βk + aβ1γk)xk,

where the elements of β∗ vary with a and therefore could be anything. That is, the

parameter vector β is not identified when exact multicollinearity is present. Practically,
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when X is not of full column rank, X′X is not invertible, and there are infinitely many

solutions to the normal equations X′Xβ set= X′y. Consequently, the OLS estimator β̂T

cannot be computed as (15). Exact multicollinearity usually arises from inappropriate

model specifications. For example, including both total income, total wage income, and

total non-wage income as regressors results in exact multicollinearity because total income

is, by definition, the sum of wage and non-wage income. .

It is also easy to verify that the magnitude of the coefficient estimates β̂iT are affected

by the measurement units of variables. Thus, a larger coefficient estimate does not neces-

sarily imply that the associated explanatory variable is more important in explaining the

behavior of y. In fact, the coefficient estimates are not comparable in general.

Remark: The OLS estimators are derived without resorting to the knowledge of the “true”

relationship between y and X. That is, whether y is indeed generated according to our

linear specification is irrelevant to the computation of the OLS estimator; it does affect

the properties of the OLS estimator, however.

4.3 Geometric Interpretations

We know that the OLS estimation result has nice geometric interpretations. The vector

of OLS fitted values can be written as

ŷ = X(X′X)−1X′y = PXy,

here, and in what follows, PX = X(X′X)−1X′ is an orthogonal projection matrix. Hence,

ŷ is the orthogonal projection of y onto span(X). The OLS residual vector is thus

ê = y − ŷ = (IT −PX)y,

which is the orthogonal projection of y onto span(X)⊥ and orthogonal to ŷ and X. Conse-

quently, ŷ is the “best approximation” of y, given the information contained in X. Figure 2

illustrates a simple case where the model contains only two explanatory variables.

Let X = [X1 X2], where X1 is T ×k1 and X2 is T ×k2, and k1 +k2 = k. We can write

y = X1β1 + X2β2 + random error,

and β̂T = (β̂′1T β̂′2T )′. Let PX1
= X1(X′

1X1)−1X′
1 and PX2

= X2(X′
2X2)−1X′

2 denote

the orthogonal projection matrices on span(X1) and span(X2), respectively. We have the

following result.
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Figure 2: The orthogonal projection of y onto span(x1,x2).

Theorem 4.1 (Frisch-Waugh-Lovell) Given a vector y, (I − PX2
)y and (I − PX1

)y

can be uniquely decomposed into two orthogonal components:

(I−PX2
)y = (I−PX2

)X1β̂1T + (I−PX)y,

(I−PX1
)y = (I−PX1

)XX2
β̂2T + (I−PX)y.

Proof: As I − PX2
is in span(X2)⊥ and I − PX is in span(X)⊥ ⊆ span(X2)⊥, we have

(I−PX2
)(I−PX) = I−PX . Hence,

(I−PX2
)y = (I−PX2

)PXy + (I−PX2
)(I−PX)y

= (I−PX2
)X1β̂1T + (I−PX2

)X2β̂2T + (I−PX)y

= (I−PX2
)X1β̂1T + (I−PX)y,

and these two components are orthogonal because

y′PX(I−PX2
)(I−PX)y = y′PX(I−PX)y = 0.

The second assertion follows similarly. 2
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An implication of Theorem 4.1 is that (I−PX2
)X1β̂1T = (I−PX2

)PXy is the orthog-

onal projection of (I−PX2
)y onto span((I−PX2

)X1). Thus, we can write

β̂1T = [X′
1(I−PX2

)X1]
−1X′

1(I−PX2
)y,

as can be directly verified from (15) using the matrix inversion formula. That is, β̂1T

can also be obtained by regressing (I − PX2
)y on (I − PX2

)X1, where (I − PX2
)y and

(I−PX2
)X1 are, respectively, the residual vectors from two “purging” regressions: y on X2

and X1 on X2. Moreover, the residual vector from regressing (I−PX2
)y on (I−PX2

)X1

is the same as the residual vector from regressing y on X. Similarly,

β̂2T = [X′
2(I−PX1

)X2]
−1X′

2(I−PX1
)y

can be obtained by regressing (I−PX1
)y on (I−PX1

)X2. Note that β̂1T is not the same

as the OLS estimator from regressing y on X1, and that β̂2T is not the same as the OLS

estimator from regressing y on X2, except when X1 is orthogonal to X2.

From Theorem 4.1 we can re-write (I−PX2
)y = (I−PX2

)PXy + (I−PX)y as

PX2
y = PX2

PXy.

Thus, a second implication of Theorem 4.1 is that projecting y directly on span(X2) is

equivalent to performing iterated projections of y on span(X) then on span(X2). Similarly,

we have PX1
y = PX1

PXy. For an illustration of Theorem 4.1 see Figure 3; see also

Davidson & MacKinnon (1993) for more details.

As an application, consider the model with X = [X1 X2], where X1 contains the

constant term and a time trend variable t, and X2 includes k − 2 other explanatory

variables. Then, the OLS estimates of the coefficients of X2 are the same as those obtained

by regressing (detrended) y on detrended X2, where detrended y and X2 are obtained by

regressing y and X2 on X1, respectively.

4.4 Measures of Goodness of Fit

We have learned that for a given linear specification, the OLS method yields the best fit

of data. In practice, one may postulate different linear models with different regressors

and try to choose a particular one among them. It is therefore of interest to compare the
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Figure 3: An illustration of the Frisch-Waugh-Lovell Theorem.

performance across models. In this section we discuss how to measure the goodness of fit

of models.

A natural goodness-of-fit measure is the regression variance σ̂2
T = ê′ê/(T − k). This

measure, however, is not invariant with respect to measurement units of the dependent

variable. Instead, the following “relative” measures of goodness of fit are adopted in the

linear regression analysis. Recall that
T∑

t=1

y2
t︸ ︷︷ ︸

TSS

=
T∑

t=1

ŷ2
t︸ ︷︷ ︸

RSS

+
T∑

t=1

ê2t︸ ︷︷ ︸
ESS

.

where TSS, RSS, and ESS denote total, regression, and error sum of squares, respectively.

The non-centered coefficient of determination (or non-centered R2) is defined to be the

proportion of TSS that can be explained by the regression hyperplane:

R2 =
RSS
TSS

= 1− ESS
TSS

. (16)

Clearly, 0 ≤ R2 ≤ 1, and the larger the R2, the better the model fits the data. In

particular, a model has a perfect fit if R2 = 1, and it does not account for any variation
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of y if R2 = 0. Note that R2 is non-decreasing in the number of variables in the model.

That is, adding more variables to a model will not reduce its R2. As ŷ′ŷ = ŷ′y, we can

also write

R2 =
ŷ′ŷ

y′y
=

(ŷ′y)2

(y′y)(ŷ′ŷ)
= cos2 θ,

where θ is the angle between y and ŷ. That is, R2 is a measure of the linear association

between these two vectors.

It is also easily verified that, when the model contains a constant term,

T∑
t=1

(yt − ȳ)2︸ ︷︷ ︸
Centered TSS

=
T∑

t=1

(ŷt − ¯̂y)2︸ ︷︷ ︸
Centered RSS

+
T∑

t=1

ê2t︸ ︷︷ ︸
ESS

,

where ¯̂y = ȳ =
∑T

t=1 yt/T . Analogous to (16), the centered coefficient of determination

(or centered R2) is defined as

Centered R2 =
Centered RSS
Centered TSS

= 1− ESS
Centered TSS

. (17)

This measure also takes on values between 0 and 1 and is non-decreasing in the number of

variables in the model. In contrast with the non-centered R2, this measure excludes the

effect of the constant term in the model, and is hence invariant with respect to constant

addition. If the model does not contain a constant term, the centered R2 may be negative.

As
T∑

t=1

(yt − ȳ)(ŷt − ȳ) =
T∑

t=1

(ŷt − ȳ)2,

we immediately get∑T
t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

=
[
∑T

t=1(yt − ȳ)(ŷt − ȳ)]2

[
∑T

t=1(yt − ȳ)2][
∑T

t=1(ŷt − ȳ)2]
.

That is, the centered R2 is also the squared sample correlation coefficient of y and ŷ.

If R2 is the only criterion to determine model adequacy, one would tend to select a

model with more explanatory variables. The adjusted R2, R̄2, is the centered R2 adjusted

for the degrees of freedom:

R̄2 = 1− ê′ê/(T − k)
(y′y − T ȳ2)/(T − 1)

.
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It can also be shown that

R̄2 = 1− T − 1
T − k

(1−R2) = R2 − k − 1
T − k

(1−R2).

That is, R̄2 is the centered R2 with a penalty term depending on model complexity and

explanatory ability. Clearly, R̄2 < R2 except for k = 1 or R2 = 1. Note also that R̄2

need not be increasing with the number of explanatory variables; in fact, R̄2 < 0 when

R2 < (k − 1)/(T − 1).

Remark: Models for different dependent variables are not comparable in terms of their R2

because their total variations (i.e., TSS) are different. For example, R2 of models for y

and log y are not comparable.

5 Properties of the OLS Estimators

5.1 Bias

Proposition 5.1 If y = Xβ0 + e, then β̂T − β0 = (X ′X)−1X ′e.

Proof: Since y = Xβ0 + e,

β̂T = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ0 + e)

= (X ′X)−1X ′Xβ0 + (X ′X)−1X ′e

= β0 + (X ′X)−1X ′e.

To have β̂T to be unbiased for β0, the following assumption has to be imposed:

A3: E(e|X) = 0.

Proposition 5.2 Given ID1, A2 and A3, E(β̂T − β0|X) = 0 and E(β̂T ) = β0.

Proof: By the previous result,

E[(β̂T − β0)|X] = E[(X ′X)−1X ′e|X]

= (X ′X)−1X ′E(e|X) = 0,

and E(β̂T |X) = β0. And then applying the law of iterated expectations,

E(β̂T ) = E[E(β̂T |X)] = E(β0) = β0.2
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Thus β̂T is unbiased for β0. Indeed, it is conditionally unbiased, conditional upon X,

which is a stronger result.

5.2 Variance-Covariance Matrix of Regression Error

The conditional variance-covariance matrix of the regression error vector e is

D = var(e|X) = E(ee′|X)

=



E(e21|x1) E(e1e2|x1) E(e1e3|x1) · · · E(e1eT |x1)

E(e2e1|x2) E(e22|x2) E(e2e3|x2) · · · E(e2eT |x2)

E(e3e1|x3) E(e3e2|x3) E(e23|x3) · · · E(e3eT |x3)
...

...
...

...
...

E(eT e1|xT ) E(eT e2|xT ) E(eT e3|xT ) · · · E(e2T |xT )


when the data are random sample then (xt, et) is independent of (xs, es) for t 6= s, thus

E(e2t |X) = E(e2t |xt) = σ2
t

E(etes|X) = E(etes|xt) = E(et|xt)E(es|xt) = 0.

Thus in general

D = var(e|X) =



σ2
1 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ2
3 · · · 0

...
...

...
...

...

0 0 0 · · · σ2
T


(18)

when the data are random. Under the homoskedasticity restriction (5), E(e2t |xt) = σ2
0 for

all t, then

D =



σ2
0 0 0 · · · 0

0 σ2
0 0 · · · 0

0 0 σ2
0 · · · 0

...
...

...
...

...

0 0 0 · · · σ2
0


= σ2

0IT , (19)

which is the classical assumption for the linear regression models. That is

A4: var(e|X) = σ2
0IT .
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5.3 Variance-Covariance Matrix of OLS Estimator

The conditional variance-covariance matrix for β̂T is

VT = E
[
(β̂T − β0)(β̂T − β0)

′ |X
]

Since β̂T − β0 = (X ′X)−1X ′e,

VT = E
[
(X ′X)−1X ′ee′X(X ′X)−1|X

]
= (X ′X)−1X ′E[ee′|X]X(X ′X)−1

= (X ′X)−1X ′DX(X ′X)−1,

where D is defined in (18). It may be helpful to observe that

X ′DX =
T∑

t=1

xtx
′
tσ

2
t .

In the special case of (5), then σ2
t = σ2

0, D = σ2
0IT and X ′DX = X ′Xσ2

0. Thus, VT

simplifies to

VT = (X ′X)−1X ′Xσ2
0(X

′X)−1

= σ2
0(X

′X)−1.

Theorem 5.1 In the linear regression model,

VT = (X ′X)−1X ′DX(X ′X)−1. (20)

If (5), E(e2t |xt) = σ2
0, holds,

VT = σ2
0(X

′X)−1. (21)

The expression VT = (X ′X)−1X ′DX(X ′X)−1 is often called a “sandwich formula”,

because the central variance matrix X ′DX is “sandwiched” between the moment matrices

(X ′X)−1.

5.4 Gauss-Markov Theorem

Theorem 5.2 (Gauss-Markov) In the linear regression model, β̂T is the best linear unbi-

ased estimator for β0.
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Proof: Consider an arbitrary linear estimator β̌T = Ay = [(X ′X)−1X ′ + C]y, where C

is an arbitrary non-zero matrix. β̌T is unbiased if and only if CX = 0 since

β̌T = [(X ′X)−1X ′ + C]y

= [(X ′X)−1X ′ + C](Xβ0 + e)

= β0 + (X ′X)−1X ′e + CXβ0 + Ce.

and

E[β̌T |X] = β0 + E[(X ′X)−1X ′e|X] + E[CXβ0|X] + E[Ce|X]

= β0 + CXβ0.

It follows that when β̌T is unbiased

var(β̌T |X) = E[(β̌T − β0)(β̌T − β0)
′|X]

= E{[(X ′X)−1X ′e + Ce][(X ′X)−1X ′e + Ce]′|X}

= (X ′X)−1X ′σ2
0IT X(X ′X)−1 + (X ′X)−1X ′C ′

+CX(X ′X)−1 + Cσ2
0IT C ′

= σ2
0(X

′X)−1 + σ2
0CC ′,

where the first term on the right-hand side is var(β̂T ) and the second term is clearly p.s.d.

Thus, for any linear unbiased estimator β̌T , var(β̌T )− var(β̂T ) is a p.s.d. matrix. 2

5.5 OLS Estimation of Error Variance

Under the restriction of (5), E(e2t |xt) = σ2
0 is another parameter under estimation. The

OLS estimator for σ2
0 is

σ̂2
T =

ê′ê

T − k
=

1
T − k

T∑
t=1

ê2t ,

where k is the number of regressors. It is clear that σ̂2
T is not linear in y.

Theorem 5.3 In the homoskedastic regression model, σ̂2
T is an unbiased estimator for σ2

0.

Proof: Recall that I − P X is orthogonal to span(X). Then,

ê = (IT − P X)y = (IT − P X)(Xβ0 + e) = (IT − P X)e,
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and

E(ê′ê|X) = E[e′(IT − P X)e|X] = E[trace(ee′(IT − P X))|X].

As the trace and expectation operators can be interchanged, we have that

E(ê′ê|X) = trace(E[ee′(IT − P X)|X]) = trace[D(IT − P X)].

By the fact that, trace(IT − P X) = rank(IT − P X) = T − k and D = σ2IT , it follows

that E(ê′ê) = (T − k)σ2
0 and that

E(σ̂2
T ) = E(ê′ê)/(T − k) = σ2

0,

proving the unbiasedness of σ̂2
T . 2

The OLS estimation for variance-covariance matrix of β̂T in the homoskedastic regres-

sion model becomes

v̂ar(β̂T ) = σ̂2
T (X ′X)−1

which is unbiased for var(β̂T ) = σ2
0(X

′X)−1 provided σ̂2
T is unbiased for σ2

0.

5.6 Gaussian Quasi-MLE and MVUE

In normal regression, et|xt ∼ N(0, σ2) and then the likelihood for a single observation is

Lt(β, σ
2) =

1
(2πσ2)1/2

exp
(
− 1

2σ2
(yt − x′tβ)2

)
.

Then the log-likelihood function for the full sample yT = (y1, . . . , yT ) is

LT (yT ;β, σ2) =
T∑

t=1

logLt(yt;β, σ
2)

= −T
2

log(2π)− T

2
log(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ).

The MLE (β̃T , σ̃
2
T ) maximize LT . The FOCs of the maximization problem are

∇LT

∇β
= X ′(y −Xβ)/σ2 set= 0,

∂LT

∂(σ2)
= − T

2σ2
+

(y −Xβ)′(y −Xβ)
2σ4

set= 0,
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which yield the MLEs of β0 and σ2:

β̃T = (X ′X)−1X ′y,

σ̃2
T = (y −Xβ̃T )′(y −Xβ̃T )/T = ê′ê/T.

Clearly, the MLE β̃T is the same as the OLS estimator β̂T , but the MLE β̃
2
T is different

from σ̂2
T . In fact, σ̃2

T is biased estimator because E(σ̃2
T ) = σ2

0(T − k)/T 6= σ2
0.

Theorem 5.4 (Minimum Variance Unbiased Estimator, MVUE) In normal regression

models, the OLS estimators β̂T and σ̂2
T are the minimum variance unbiased estimator

(MVUE).

Consider a collection of independent random variables zT = (z1, . . . , zT ), where zt has

the density function ft(zt, θ) with θ a r×1 vector of parameters. Let the joint log-likelihood

function of zT be LT (zT ; θ) = log fT (zT ; θ). Then the score function

sT (zT ; θ) := ∇ log fT (zT ; θ) =
1

fT (zT ; θ)
∇fT (zT ; θ)

is the r×1 vector of the first order derivatives of log fT with respect to θ. Under regularity

conditions, differentiation and integration can be interchanged. When the postulated

density function fT is the true density function of zT , we have

E[sT (zT ; θ)] =
∫

1
fT (zT ; θ)

∇fT (zT ; θ) fT (zT ; θ) dzT

= ∇
(∫

fT (zT ; θ) dzT

)
= 0.

That is, sT (zT ; θ) has mean zero. The variance of sT is the Fisher’s information matrix:

BT (θ) := var[sT (zT ; θ)] = E[sT (zT ; θ) sT (zT ; θ)′].

Consider the r × r Hessian matrix of the second order derivatives of log fT :

HT (zT ; θ)

:= ∇2 log fT (zT ; θ)

= ∇
(

1
fT (zT ; θ)

[∇fT (zT ; θ)]′
)

=
1

fT (zT ; θ)
∇2fT (zT ; θ)− 1

fT (zT ; θ)2
[∇fT (zT ; θ)][∇fT (zT ; θ)]′,
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where ∇2f = ∇(∇f)′. As∫
1

fT (zT ; θ)
∇2fT (zT ; θ) fT (zT ; θ)dzT = ∇2

(∫
fT (zT ; θ)dzT

)
= 0,

the expected value of the Hessian matrix becomes

E[HT (zT ; θ)]

= −
∫ (

1
fT (zT ; θ)2

[∇fT (zT ; θ)][∇fT (zT ; θ)]′
)
fT (zT ; θ) dzT

= −E[sT (zT ; θ) sT (zT ; θ)]

= −Bt(θ).

This established the information matrix equality: BT (θ) + E[HT (zT ; θ)] = 0. Suppose

now r = 1 for simplicity so that both sT and BT are scalar. Let θ̂T denote an unbiased

estimator. Then

cov[sT (zT ; θ), θ̂] =
∂

∂θ

∫
θ̂T fT (zT ; θ) dzT =

∂

∂θ
E(θ̂T ) = 1,

by unbiasedness. By the celebrated Cauchy-Schwartz inequality:

cov[sT (zT ; θ), θ̂T ]

var[sT (zT ; θ)]var(θ̂T )
=

1

var[sT (zT ; θ)]var(θ̂T )
≤ 1.

It follows that var(θ̂T ) ≥ 1/BT (θ). The RHS, 1/BT (θ), is also know as the Cramér-Rao

lower bound. Thus, all unbiased estimators must have variance greater than or equal to

the inverse of information. When θ is multi-dimensional, we have that var(θ̂T )−BT (θ)−1

is a positive semi-definite matrix.

In our application, the inverse of the information matrix evaluated at the true param-

eters β0 and σ2
0 can be easily calculated as[

σ2
0(X

′X)−1 0

0 2σ4
0/T

]
.

As β̂T achieves the Cramér-Rao lower bound, it is efficient within the class of all unbiased

estimators for β0, i.e., it is the MVUE. It can be shown that any other unbiased estimator

of σ2
0 has variance greater than or equal to that of σ̂2

T ; hence σ̂2
T is also the MVUE.

Consider the log-likelihood function of y = (y1, . . . , yT )′ to be

LT (y;β, σ2) = −T
2

log(2π)− T

2
log(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ).
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The corresponding Hessian matrix is

HT (β, σ2) =

[
− 1

σ2 (X ′X) −1
σ4 (X ′y −X ′Xβ)

−1
σ4 (X ′y −X ′Xβ) T

2σ4 − 1
σ6 (y −Xβ)′(y −Xβ)

]
.

The information matrix is defined as BT (β, σ2) = −E[HT (β, σ2)]. The (1, 2)-th element

of information matrix evaluated at true values β0 and σ0 becomes

−E[
1
σ4

0

(X ′y −X ′Xβ0)] =
1
σ4

E(X ′y −X ′Xβ) =
1
σ4

(X ′X)E(e) = 0.

And, the (2, 2)-th element of BT (β, σ2) evaluated at β0 and σ2
0 is

−E
(
T

2σ4
0

− 1
σ6

0

(y −Xβ0)
′(y −Xβ0)

)
= − T

2σ4
0

+
1
σ6

0

E(e′e)

= − T

2σ4
0

+
Tσ2

0

σ6
0

=
−T + 2T

2σ4
0

=
T

2σ4
0

.

5.7 Distribution of β̂T in Normal Regression Models

In normal regression models,

yt = x′tβ0 + et

et | xt ∼ N(0, σ2
0).

Theorem 5.5 In normal regression models,

(a) β̂T ∼ N(β0, σ
2
0(X

′X)−1).

(b) (T − k)σ̂2
T /σ

2
0 ∼ χ2(T − k).

(c) σ̂2
T has mean σ2

0 and variance 2σ4
0/(T − k).

Proof: As e|X ∼ N(0, σ2
0IT ), y|X ∼ N(Xβ0, σ

2
0IT ) and

β̂T |X ∼ N(β0, σ
2
0(X

′X)−1).
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This establishes (a). To prove (b), we write ê = (IT − P X)(y −Xβ0) and deduce

(T − k)σ̂2
T /σ

2
0 = ê′ê/σ2

0 = y∗′(IT − P X)y∗,

where y∗ = (y−Xβ0)/σ0. As IT −P X is a symmetric and idempotent matrix with rank

T − k, it is diagonalizable. Let C be the orthogonal matrix that diagonalizes IT − P X .

Then, C ′(IT −P X)C = Λ. Then, Λ has T −k eigenvalues equal to one and k eigenvalues

equal to zero. Without loss of generality we can write

y∗′(IT − P X)y∗ = y∗′C[C ′(IT − P X)C]C ′y∗ = z′

[
IT−k 0

0 0

]
z,

where z = C ′y∗. As y∗ ∼ N(0, IT ), z is also distributed as N(0, IT ), so that its elements

zi are independent, standard normal random variables. Consequently,

y∗′(IT − P X)y∗ =
T−k∑
i=1

z2
i ∼ χ2(T − k).

This proves (b). Noting that the mean of χ2(T − k) is T − k and variance 2(T − k), the

assertion (c) is just a direct consequence of (b). 2
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6 Method of Moments Estimation

As mentioned previously, E(xtet) = 0 is hold by construction. Let β0 denote the true

value of β, then

E[xt(yt − x′tβ0)] = 0.

Another way to write this is to define the “moment function”

gt(β) = xt(yt − x′tβ)

and observe that

E[gt(β0)] = E[xt(yt − x′tβ0)] = 0.

Note that E[gt(β)] 6= 0 when β 6= β0.

The empirical, or sample analog of a moment E(X) is the sample moment
∑
xt/T .

Similarly, the empirical analog of E[gt(β)] is

ḡT (β) =
1
T

T∑
t=1

gt(β)

=
1
T

T∑
t=1

xt(yt − x′tβ)

=
1
T

(X′y −X′Xβ),

where X is the T × k matrix with the t-th row vector x′t.

The method of moment estimator (MME) of β is the vector β̂T such that ḡT (β̂T ) = 0.

Thus β̂T is defined to mimic, as closely as possible, the orthogonality property E(xtet) = 0.

Thus

0 =
1
T

(X′y −X′Xβ̂T )

which implies

X′y = X′Xβ̂T .

This equation is called the “normal equation”. The solution is the MME of β.
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Proposition 6.1 The MME solution to ḡT (β̂T ) = 0 is

β̂T = (X ′X)−1X ′y,

given (X ′X)−1 exists.

Define the predicted (fitted) value ŷt = x′tβ̂T and the residual

êt = yt − ŷt

= yt − x′tβ̂T .

In vector notation, ŷ = Xβ̂T , ê = y −Xβ̂T , and y = ŷ + ê.

Note that by definition,

0 = ḡT (β̂T ) =
1
T

(X ′y −X ′Xβ̂T ) =
1
T

X ′ê.

Thus

X ′ê = 0

and the residual vector is orthogonal to the columns of X. Since the first column of X is

a vector of ones, X ′ê = 0 implies that
∑

t=1 êt = `′ê = 0.

As

ŷ = Xβ̂T = X(X ′X)−1X ′y = P Xy

and

ê = y − ŷ = y − P Xy = (I − P X)y.

That is, ŷ is an orthogonal projection of y onto the space spanned by matrix X when

X has full column rank and ê is also an orthogonal projection of y onto the orthogonal

complement of the space spanned by X. The orthogonal projection of y onto the space

spanned by X is equivalent to the OLS (ordinary least squares) estimator of y regressing

on X.
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7 Asymptotic Distribution Theory

In this section, properties of the OLS estimator are explored using “large sample” ap-

proximation. For these results, the condition E(et/xt) = is not necessary. Rather, the

orthogonal condition E(xtet) = 0 is sufficient.

7.1 Some Basic Mathematical Concepts

7.1.1 Some Inequalities

Recall that Lq-norms are defined as

‖X‖q = (E|X|q)1/q , X ∈ Lq.

We have the following inequalities.

(1) Hölder’s Inequality.

Let 1 < p, q <∞ satisfy 1/p+ 1/q = 1 and suppose that X ∈ Lp and Y ∈ Lq. Then

E|XY | ≤ ‖X‖p‖Y ‖q.

In particular, if p = q = 2, E|XY | ≤ ‖X‖2‖Y ‖2. This is the Cauchy-Schwartz

inequality.

(2) Minkowski’s Inequality.

Let p ≥ 1 and Xi ∈ Lp, 1 ≤ i ≤ n. Then

‖X1 + · · ·+Xn‖p ≤ ‖X1‖p + · · ·+ ‖Xn‖p.

The triangle inequality is a special case.

(3) Chebyshev’s Inequality.

For ε > 0 and p > 0,

P{|X| ≥ ε} ≤ ε−pE|X|p.

Taking X = Y − E(Y ), p = 2, the Chebyshev’s inequality becomes

P{|Y − E(Y )| ≥ ε} ≤ ε−2E|Y − E(Y )|2.
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Furthermore, taking ε = kσY , we have

P{|Y − E(Y )| ≥ kσY } ≤
σ2

Y

k2σ2
Y

=
1
k2
.

(4) Jensen’s Inequality.

g(EX) ≤ Eg(X) if g is convex,

g(EX) ≥ Eg(X) if g is concave.

Using (1), we find that Lq ⊆ Lr if q ≤ r; by (2), the Lq are linear spaces.

If X ∈ Lk, EXk is the k-th moment and E(X − EX)k is the k-th central moment of

X. If X ∈ L2, the variance of X is the second central moment of X,

var(X) = E(X − EX)2.

The number

cov(X,Y ) = E(X − EX)(Y − EY )

is the covariance of X and Y . If X and Y are vector-valued, square integrable random

variables, we write cov(X,Y ) = E(X−EX)(Y −EY )′ = [cov(Xi, Yj)]i,j for the covariance

between X and Y and cov(X) = cov(X,X).

7.1.2 Modes of Convergence

Let {Xn}n=1,2,... and X be IRd-valued random variables defined on a probability space

(Ω,F ,P).

1. Almost Sure Convergence (Convergence with Probability One)

We say that Xn converges to X almost surely if

P({ω : Xn(ω) → X(ω)}) = 1

and write Xn → X a.s.(P) or Xn → X w.p.1. Sometimes, Xn(ω) is said to converge

almost everywhere (a.e.) in that space or that Xn(ω) is strongly consistent for b.

This is a convergence concept analogous to nonstochastic convergence in the sense

that Xn(ω) → X(ω) for all ω outside a P-null set.
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Theorem 7.1 (Komolgorov strong law of large number, SLLN): Let Z̄n ≡ n−1
∑n

t=1 Zt,

where {Zt} is a sequence of i. i. d. random variables with E(Zt) = µ < ∞. Then

Z̄n
a.s.→ µ.

Proposition 7.1 Given f : Rk → Rl(k, l < ∞) and any sequence {bn} such that

bn
a.s.→ b, where bn and b are k×1 vectors, if f is continuous at b, then f(bn) a.s.→ f(b).

2. Convergence in Probability

We say that Xn converges to X in probability if for every ε > 0,

P({ω : |Xn(ω)−X(ω)| > ε}) → 0 as n→∞

and write Xn
p→ X or plimXn = X. Note that almost sure convergence implies

convergence in probability. The converse is not true in general. Convergence in

probability is also referred to as weak consistency.

Theorem 7.2 (Chebshev weak law of large numbers, WLLN): Let Z̄n ≡ n−1
∑n

t=1 Zt,

where {Zt} is a sequence of random variables such that E(Zt) = µ, varZt = σ2 <∞
for all tand cov(Zt, Zτ ) = 0 for t 6= τ . Then Z̄n

a.s.→ µ.

Proposition 7.2 Let f : Rk → Rl and any sequence {bn} such that bn
p→ b, where

bn and b are k × 1 vectors, if f is continuous at b, then f(bn)
p→ f(b).

3. Convergence in the q-th Mean (Lq-convergence)

If all Xn and X are in Lq, Xn is said to converge to X in the q-th mean if

E|Xn −X|q → 0 as n→∞,

denoted as Xn →Lq X. When q = 2, we have convergence in the quadratic mean, de-

noted as l.i.q.m. Xn = X. Note that if q > r, Lq-convergence implies Lr-convergence

and that Lq-convergence implies convergence in probability. The converse is not true

in general.
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4. Convergence in Distribution (Convergence in Law)

Let Fn and F be the distribution functions of Xn and X, respectively. Xn is said to

converge to X in distribution if∫
IRd

g(x) dFn(x) →
∫

IRd

g(x) dF (x) as n→∞

for every bounded continuous function g. This is the case iff limn Fn(x) = F (x)

for every continuity point x of F , or equivalently iff limϕn(λ) = ϕ(λ), where the ϕ

are the corresponding characteristic functions. We write Xn →d X or Xn →d F .

We also say that F is the limiting distribution of Xn or that Xn is asymptotically

distributed as F and write Xn ∼A F . Note that convergence in probability implies

convergence in distribution. The converse is not true in general.

7.1.3 Order Notations

Let {at}, {bt}, {ct} be deterministic sequences.

1. If there is some ∆ <∞ such that |bt/ct| ≤ ∆ for all sufficiently large t, we say that

{bt} is (at most) of order {ct}, symbolically {bt} is O(ct).

2. If limt |bt/ct| = 0, we say that {bt} is of smaller order than {ct}, symbolically {bt} =

o(ct).

Then, if {at} is O(tr) and {bt} is O(ts), {atbt} is O(tr+s) and {at + bt} is O(tmax(r,s)). The

same is true if O is replaced by o. In more details,

• {bn} is O(na) if ∃N s.t. ∀n ≥ N, |bn/na| ≤ 4 for some 4 < ∞, i . e . bn is is of

order na.

• {bn} is o(na) if for every ε > 0, ∃N s.t. ∀n ≥ N, |bn/na| ≤ ε, i . e . bn is is of order

smaller than na.

• If {an} is O(nr) and {bn} is O(ns), then {anbn} is O(nr+s), {an + bn} is O(nq),

where q = max{r, s}.

• If {an} is o(nr) and {bn} is o(ns), then {anbn} is o(nr+s), {an + bn} is o(nq), where

q = max{r, s}.
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• If {an} is O(nr) and {bn} is o(ns), then {anbn} is o(nr+s), {an + bn} is O(nq), where

q = max{r, s}.

For a sequence of random variables{Xt}, we use stochastic order notations.

1. {Xt} is Oa.s.(ct) if {Xt(ω)/ct} is O(1) a.s.; {Xt} is oa.s.(ct) if {Xt(ω)/ct} is o(1) a.s.

(i.e., Xt/ct → 0 a.s.).

2. {Xt} is OP(ct) if for every ε > 0 there is some finite ∆ such that P(|Xt/ct| ≥ ∆) ≤ ε

for all t. {Xt} is oP(ct) if Xt/ct →P 0.

If {Xt} is OP(1) (oP(1)), we say that {Xt} is bounded (vanishing) in probability.

7.2 Consistency and Asymptotic Normality of OLS Estimators

Under the linear projection model:

yt = xtβ0 + et

E(xtet) = 0,

that is, xβ0 is the projection of y on the linear space of x. Given E(xtet) = 0, xt may be

stochastic, but it must be uncorrelated with et and et is not required being heteroskedastic.

When xt does not include a lagged dependent variable, E(xtet) = 0 also permits serially

correlated disturbances. Thus, the linear projection model is general enough to include

many econometric models as special cases; e.g., the classical linear model, the general

linear model, and models with lagged dependent variables as regressors.

Example 7.3 Consider an AR(p) model for yt:

yt = c+ ψ1yt−1 + · · ·+ ψpyt−p + et. (22)

It can be seen that by recursive substitution, yt is a linear function of the current and past

et. If {et} is a white noise, then for xt = (1 yt−1 . . . yt−p)′, we have

E(xtet) = 0,

by the white noise property of {et}. Thus, an AR(p) model with {et} being a white noise

satisfies E(xtet) = 0. On the other hand, suppose that {et} is an MA(q) process:

et = ut − φ1ut−1 − · · · − φqut−q,
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where {ut} is a white noise with mean zero and variance σ2
u. In this case, yt is known as

an ARMA(p,q) process. Note that

E(etet−i) = −(φi − φi+1φi−1 − · · · − φqφq−i)σ
2
u, i = 1, . . . , q,

with φ0 = 1 and φj = 0 if j < 0. That is, et and et−i are correlated for i = 1, . . . , q. It

follows that

E(xtet) 6= 0.

This is because (22) does not model the MA disturbances explicitly and is in fact an AR

model with serially correlated disturbances.

As to the linear regression model:

yt = xtβ0 + et

E(et|xt) = 0, (23)

we have, by the law of iterated expectations

E(xtet) = E(E(xtet|xt)) = E(xtE(et|xt)) = 0.

That is the linear projection models are implied by linear regression models, i.e., the linear

regression models are more restrictive than the linear projection models. Besides, under

E(et|xt),

E(et) = E[E(et|xt)] = 0,

that is, the unconditional mean is implied by the conditional mean. Furthermore,

E(et|xt) = E(yt − x′tβ0|xt) = E(yt|xt)− x′tβ0 = 0,

that is, E(yt|xt) = x′tβ0 under linear regression models.

Although E(et|xt) = 0 is stronger than E(xtet) = 0, it still allows for the classical

linear model, the general linear model, and models with stochastic regressors. Models

with lagged dependent variables as regressors need not satisfy E(et|xt) = 0, however.
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7.3 Consistency

Under the linear projection model, finding the best linear L2 predictor of y amounts to

finding the unknown parameter vector β0. We say that β̂T is strongly (weakly) consistent

for β0 if β̂T → β0 a.s. (in probability) as sample size T becomes infinitely large. Con-

sistency is clearly a desirable property because it asserts that β̂T will become arbitrarily

close to the true parameter vector β0 in some probabilistic sense, provided that “enough”

information (a sufficiently large sample) is available. Note that consistency is in sharp

contrast with the unbiasedness property. While an unbiased estimator is “correct” on the

average, its value is not necessarily close to the true parameter, no matter how large the

sample is.

The OLS estimator of β0 can be expressed as

β̂T =

(
T∑

t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
= β0 +

(
T∑

t=1

xtx
′
t

)−1( T∑
t=1

xtet

)
, (24)

which is consistent for β∗ provided that the second term on the right-hand side of (24)

converges to zero almost surely (in probability).

A convenient approach to establish consistency is to write

β̂T = β0 +

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

xtet

)
, (25)

so that each term in the parenthesis is eventually governed by a suitable law of large

numbers.

A sequence of integrable random variables {zt} is said to obey a strong law of large

numbers (SLLN) if E(zt) = µt = O(1) such that

1
T

T∑
t=1

(zt − µt)
a.s.−→ 0; (26)

{zt} is said to obey a weak law of large numbers (WLLN) if almost sure convergence in (26)

is replaced by convergence in probability. For a sequence of random vectors (matrices), a

SLLN (WLLN) is defined elementwise. A SLLN (WLLN) asserts that the sample average of

random variables essentially follows its mean behavior; random irregularities are eventually

“wiped out” by averaging. Below are two well known strong laws.
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Theorem 7.4 (Kolmogorov’s SLLN) Let {Zi} be a sequence of i.i.d. random variables

with mean µ. Then n−1
∑n

i=1 Zi
a.s.−→ µ.

Theorem 7.5 (Chebyshev weak law of large number, WLLN) Let Z̄n ≡= n−1
∑n

i=1 Zi,

where {Zi} is a sequence of random variables such that E(Zi) = µ, var(Zi) = σ2 <∞ for

all i and cov(Zi, Zj) = 0 for i 6= j. Then Z̄n →p µ.

Theorem 7.6 (Markov’s SLLN) Let {Zt} be a sequence of independent random vari-

ables with means E(Zt) = µt. If for some δ > 0, E|Zt|1+δ are bounded for all t, then

T−1
∑T

t=1 Zt
a.s.−→ µ =: T−1

∑T
t=1 µt.

As a non-stochastic sequence can be viewed as a sequence of independent random variables,

it obeys Markov’s SLLN if it is O(1).

Definition 7.1 (Definition 3.25, White (1984)) A one-to-one transformation T from Ω

to Ω defined on (Ω,F , P ) is measurable provided that T−1(F) ⊂ F .

Definition 7.2 (Definition 3.27, White (1984)) A transformation T from Ω to Ω is mea-

sure preserving if it is measurable and if P [T−1(F )] = P (F ) for all F in F .

Definition 7.3 (Definition 3.28, White (1984)) Let G1 be the joint distribution function

of the sequence {Z1, Z2, . . .}, where Zt is a q × 1 vector, and let Gτ+1 be the joint distri-

bution of the sequence {Zτ+1, Zτ+2, . . .}. The sequence {Zt} is stationary if and only if

G1 = Gτ+1 for each τ ≥ 1.

Proposition 7.3 (Proposition 3.29, White (1984)) Let Z be a random variable (i.e.,

Z(ω) is a measurable function) and T be a measurable-preserving transformation. Let

Z1(ω) = Z(ω), Z2(ω) = Z(Tω), . . . , Zn(ω) = Z(Tn−1ω), for each ω ∈ Ω. Then {Zt} is a

stationary sequence.

Proposition 7.4 (Proposition 3.30, White (1984)) Let {Zt} be a stationary sequence.

Then there exists a measure-preserving transformation T defined on (Ω,F , P ) such that

Z1(ω) = Z1(ω), Z2(ω) = Z1(Tω), Z3(ω) = Z1(T 2ω), . . . , Zn(ω) = Z1(Tn−1ω) for all

ω ∈ Ω.
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Definition 7.4 (Definition 3.33, White (1984)) Let {Zt} be a stationary sequence and let

T be a measure-preserving transformation of Proposition 7.4 defined on (Ω,F , P ). Then

{Zt} is ergodic if and only if any two events F and G ∈ F , limT→∞ T−1
∑T

t=1 P (F∩T tG) =

P (F )P (G).

Note that we can think of T tG as being the event G shifted t periods into the future, and

since P (T tG) = P (G) when T is measure preserving, Proposition 7.4 says that an ergodic

process (sequence) is one such that for any events F and G, F and T tG are independent on

average in the limit. Thus, ergodicity can be thought of as a form of “average asymptotic

independence”.

Theorem 7.7 (Ergodic Theorem) Let {Zt} be a sequence of stationary ergodic scalar

sequence with E|Zt| < ∞ and with means E(Zt) = µt. Then T−1
∑T

t=1 Zt
a.s.−→ µ =

T−1
∑T

t=1 µt.

Note from Theorem 7.6 that E(Zt) need not be a constant and that the average of

E(Zt) need not converge. It is important to note from these examples that a SLLN

(WLLN) holds under suitable regularity conditions. Typically, a sequence of random vari-

ables {zt} obeys a SLLN if these variables have certain bounded moments and, for each

t, corr(zt+j , zt) converges to zero sufficiently fast when j → ∞. For examples, weakly

stationary AR(p) processes whose autocorrelations corr(zt+j , zt) → 0 exponentially fast

when j →∞, MA(q) processes whose autocorrelations corr(zt+j , zt) = 0 for all j > q, and

weakly stationary ARMA(p, q) processes all obey a SLLN. Under suitable conditions (first

established by McLeish (1975)), more general sequences of weakly dependent and hetero-

geneously distributed random variables, such as mixing sequences and mixingales, also

obey a SLLN. In what follows, we shall not specify the regularity conditions under which

a SLLN (WLLN) holds, see e.g., White (1984) and Davidson (1994) for more detailed,

primitive conditions.

As T−1
∑T

t=1 µt is O(1), our definition implies that the the simple average T−1
∑T

t=1 zt

must be Oa.s.(1). The examples below show that simple averages need not be bounded.

Example 7.8 Consider the sequences {t} and {t2}, t = 1, 2, . . .. As

T∑
t=1

t = T (T + 1)/2,
T∑

t=1

t2 = T (T + 1)(2T + 1)/6,
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the simple averages T−1
∑T

t=1 t and T−1
∑T

t=1 t
2 both diverge.

Example 7.9 Suppose that {εt} is a sequence of i.i.d. random variables with mean µ

and variance σ2
ε . The sequence {tεt} is a sequence of independent (but not identically

distributed) random variables with mean zero and unbounded (1 + δ)th moment and

therefore does not obey Markov’s SLLN. In fact,

var(
T∑

t=1

tεt) =
T∑

t=1

t2var(εt) = σ2
εT (T + 1)(2T + 1)/6,

which is O(T 3). It follows that
∑T

t=1 tεt is OP(T 3/2). That is, T−1
∑T

t=1 tεt also diverges.

Example 7.10 Suppose that yt is a random walk : yt = yt−1+εt, t = 1, 2, . . ., where εt are

i.i.d. with mean zero and variance σ2
ε . Here, yt =

∑t
i=1 εi has mean zero and unbounded

variance tσ2
ε . It can be shown that var(

∑T
t=1 yt) = O(T 3), and hence

∑T
t=1 yt = OP(T 3/2).

That is, {yt} does not obey a WLLN.

In what follows we write

MT =
1
T

T∑
t=1

E(xtx
′
t).

The result below shows that β̂T is strongly (weakly) consistent for β0.

Theorem 7.11 Suppose that the following conditions hold:

[B1] yt = x′tβ0 + et such that E(xtet) = 0 for t = 1, . . . , T ,

[B2] {xtx
′
t} obeys a SLLN (WLLN) such that MT are p.d. and for some δ > 0, det(MT ) >

δ for all T sufficiently large,

[B3] {xtet} obeys a SLLN (WLLN).

Then β̂T exists a.s. (in probability) for all T sufficiently large and β̂T → β0 a.s. (in

probability).
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Proof: Given [B2], we have

1
T

T∑
t=1

xtx
′
t −MT

a.s.−→ 0.

Note that MT is O(1). As MT is bounded away from singularity for all T sufficiently

large, M−1
T is also O(1). Proposition 7.2 ensures that

det

(
1
T

T∑
t=1

xtx
′
t

)
− det(MT ) a.s.−→ 0.

Hence for all T sufficiently large,
∑T

t=1 xtx
′
t/T is almost surely invertible, so that β̂T exists

almost surely. As the inverse function is continuous for all matrices that are nonsingular,(
1
T

T∑
t=1

xtx
′
t

)−1

−M−1
T

a.s.−→ 0,

by Proposition 7.2. Given [B1] and [B3], we have

1
T

T∑
t=1

xtεt
a.s.−→ E(xtet) = 0.

It follows from (25) that

β̂T − β0 =

( 1
T

T∑
t=1

xtx
′
t

)−1

−M−1
T

( 1
T

T∑
t=1

xtet

)
+ M−1

T

(
1
T

T∑
t=1

xtet

)
= oa.s.(1) + oa.s.(1),

i.e., β̂T → β0 a.s. The conclusion for convergence in probability holds similarly. 2

Remarks:

1. The conditions [B1]–[B3] are sufficient but not necessary. The OLS estimator may

still be consistent even without the LLN effect; see Example 7.12 below.

2. Once the LLN effect sets in, all that matter for OLS consistency is E(xtet) = 0. It

is evident from the preceding proof that when E(xtet) 6= 0 (so that [B1] is violated),

β̂T asymptotically behaves like β0 + M−1
T c and is therefore inconsistent for β0. In

view of Example 7.3, it is readily seen that the OLS estimator is inconsistent when

models contain lagged dependent variables as regressors and serially correlated et.

More examples of inconsistent OLS estimators can be found in Section.
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Example 7.12 Consider the simple time trend model

yt = α0 + β0t+ et.

It is straightforward to show that the OLS estimators are

α̂T − α0 =
∑T

t=1 t
2
∑T

t=1 et −
∑T

t=1 t
∑T

t=1 tet

T
∑T

t=1 t
2 − (

∑T
t=1 t)2

,

β̂T − β0 =
T
∑T

t=1 tet −
∑T

t=1 t
∑T

t=1 et

T
∑T

t=1 t
2 − (

∑T
t=1 t)2

.

In view of Examples 7.8 and 7.9, we have

α̂T − α0 =
O(T 3)oP(T )−O(T 2)oP(T 2)

O(T 4)−O(T 4)
= oP(1).

Similarly, β̂T
P−→ β0.

Suppose that there is conditional homoskedasticity E(e2t |xt) = σ2
0. Then, et are also

unconditional homoskedastic, i.e., E(e2t ) = σ2
0. It is then easy to verify that under suitable

conditions,

σ̂2
T =

1
T − k

T∑
t=1

(yt − x′tβ̂T )2

converges σ2
0 a.s. (in probability).

7.4 Asymptotic Normality

We say that β̂T is asymptotically normally distributed if the sequence of properly normal-

ized β̂T converges in distribution to a multivariate normal random vector, i.e.,

Σ−1/2
T

√
T (β̂T − β0)

D−→ N(0, Ik),

for some nonstochastic O(1) sequence {ΣT } with ΣT a symmetric, p.d. matrix. In this

definition, {ΣT } is not necessarily a convergent sequence, but if it is (say, ΣT → Σ), we

also write
√
T (β̂T − β0)

D−→ N(0,Σ).

Here, Σ is the covariance matrix of the limiting normal distribution and will be referred

to as the asymptotic covariance matrix of
√
T (β̂T − β0). It must be emphasized that if
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β̂T is consistent for β0, it is degenerate at β0 in the limit and does not have a limiting

normal distribution.

From (25), we have

√
T (β̂T − β0) =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)
. (27)

When Assumption [B2] in Theorem 7.11 holds, the first term on the right-hand side of (27)

is essentially M−1
T for large T . If we can show that

Ξ−1/2
T

1√
T

T∑
t=1

xtεt
D−→ N(0, Ik), (28)

for some nonstochastic O(1) sequence {ΞT } with ΞT a symmetric, p.d. matrix, then (27)

would eventually behave like a linear transformation of N(0, Ik).

A sequence of square-integrable random variables {zt} in IRd is said to obey a central

limit theorem (CLT) if

Σ−1/2
T

1√
T

T∑
t=1

(zt − µt) = Σ−1/2
T

√
T (z̄T − µ̄T ) D−→ N(0, Id), (29)

where µt = E(zt), z̄T = T−1
∑T

t=1 zt, µ̄T = T−1
∑T

t=1 µt, and ΣT = var(T−1/2
∑T

t=1 zt)

is O(1) and p.d. It is easy to verify that α′z ∼ N(0, 1) for any α such that α′α = 1 if

and only if z ∼ N(0, I). Thus, (29) is equivalent to

α′

(
Σ−1/2

T

1√
T

T∑
t=1

(zt − µt)

)
D−→ N(0, 1), (30)

for any α ∈ IRd such that α′α = 1, by the Cramér-Wold device.

Proposition 7.5 (Central Limit Theorem): Given restriction on the dependence, het-

erogeneity, and moments of a scalar sequence {Zt}, (Z̄T − µ̄T )/(σ̄T /
√
T ) =

√
T (Z̄T −

µ̄T )/(σ̄T
A∼ N(0, 1), where µ̄T ≡ E(Z̄T ) and σ̄T

2/T ≡ varZT .

Proposition 7.6 (Cram’er-Wold device): Let {bn} be a sequence of random k×1 vectors

and suppose that for any real k × 1 vector λ such that λ′λ = 1, λ′bn
A∼ λ′Z, where Z is a

k× 1 vector with joint distribution function F (z). Then the limiting distribution function

of bn exists and equals F (z).
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Theorem 7.13 (Lindeberg-Levy Central Limit Theorem): Let {Zt} be a sequence of i.

i. d. random scalars. If varZt ≡ σ2 <∞, σ2 6= 0, then

√
T (Z̄T − µ̄T )/σ̄T =

√
T (Z̄T − µ)/σ =

√
T

T∑
t=1

(ZT − µ)/σ A∼ N(0, 1).

Theorem 7.14 (Lindeberg-Feller): Let {Zt} be a sequence of independent random scalars

with E(Zt) ≡ µt, varZt ≡ σ2
t <∞, σ2

t 6= 0, and distribution function Ft(z). Then

√
T (Z̄T − µ̄T )/σ̄T

A∼ N(0, 1)

and

lim
n→∞

σ̄−2
T T−1

T∑
t=1

∫
(z−µt)2>εT σ̄2

T

(z − µT )2dFt(z) = 0.

The last condition of this result is called Lindeberg condition. It essentially requires the

average contribution of the extreme tails to the variance of Zt to be zero in the limit. This

implies that Zt has to have “finite” variance. Since in general, the Lindeberg condition

can be somewhat difficult to verify, so it is convenient to have a simpler condition that

implies the Lindeberg condition.

Theorem 7.15 (Liapounov) Let {Zt} be a sequence of independent random scalars with

E(Zt) = µt, varZt = σ2
t , σ2

t 6= 0, and E|Zt − µt|2+δ < ∆ <∞ for some δ > 0 and all t. If

σ̄2
T > δ′ > 0 for all T sufficiently large, then

√
T (Z̄T − µ̄T )/σ̄T

A∼ N(0, 1).

For obtaining an asymptotic normality result analogous to Theorem 5.3 for inde-

pendent heterogeneous random variables, we have to apply the Cramér-Wold device to

T−1/2
∑T

t=1 λ
′V

−1/2
T X ′

tεt.

Theorem 7.16 Let {Zt} be a sequence of independent random scalars with E(ZTt) =

µTt, varZTt = σ2
Tt, σ

2
Tt 6= 0, and E|ZTt|2+δ < ∆ < ∞ for some δ > 0 and all t. Define

Z̄T ≡ T−1
∑T

t=1 ZTt, µ̄T ≡ T−1
∑T

t=1 µTt and σ̄2
T ≡ var

√
T Z̄T = T−1

∑T
t=1 σ

2
Tt. If σ̄2

T >

δ′ > 0 for all T sufficiently large, then
√
T (Z̄T − µ̄T )/σ̄T

A∼ N(0, 1).

A CLT ensures that the distribution of a suitably normalized average will be essen-

tially close to that of the standard normal random variable, regardless of the distributions
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of the original random variables (apart from some regularity conditions). We shall not

specify the regularity conditions under which a CLT holds, but we again note that a se-

quence of correlated and heterogeneously distributed random variables, such as stationary

ARMA(p,q) processes, certain mixing sequences and mixingales, may obey a CLT.

The result below, shows that a linear transformation of an asymptotically normally

distributed random vector is still asymptotically normally distributed; for a proof see

White (1984, p. 67).

Lemma 7.17 Let {zT } be a sequence of random vectors in IRd with mean zero and vari-

ance V T such that both V T and V −1
T are O(1) and V

−1/2
T zT

D−→ N(0, Id). Let {AT } be

a non-stochastic O(1) sequence of m× d matrices with full row rank for all T sufficiently

large. Then,

Γ−1/2
T AT zT

D−→ N(0, Im),

where ΓT = AT ΞT A′
T , and ΓT and Γ−1

T are O(1).

In what follows we shall write

ΞT = var

(
1√
T

T∑
t=1

xtet

)
.

We now state the asymptotic normality result for the OLS estimator.

Theorem 7.18 Given Assumptions [B1], suppose that the following conditions hold:

[B2′] {xtx
′
t} obeys a WLLN such that MT are p.d. and for some δ > 0, det(MT ) > δ for

all T sufficiently large, and

[B3′] {xtet} obeys a CLT such that ΞT = O(1) is p.d. and for some δ > 0, det(ΞT ) > δ

for all T sufficiently large.

Then, Σ−1/2
T

√
T (β̂T − β0)

D−→ N(0, Ik), where ΣT = M−1
T ΞT M−1

T . If, in addition, there

exists a Ξ̂T p.s.d. and symmetric such that Ξ̂T − ΞT
P−→ 0, then Σ̂T − ΣT

P−→ 0, and

Σ̂−1/2
T

√
T (β̂T − β0)

D−→ N(0, Ik),

where Σ̂T = (
∑T

t=1 xtx
′
t/T )−1Ξ̂T (

∑T
t=1 xtx

′
t/T )−1.
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Proof: We first note that
∑T

t=1 xtet/
√
T is OP(1). Hence,

1
T

T∑
t=1

xtet
P−→ 0.

In the light of Theorem 7.11, β̂T exists and converges to β0 in probability. Observe that

ΣT and Σ−1
T are O(1) by [B2′] and [B3′]. From (27),

Σ−1/2
T

√
T (β̂T − β0)

= Σ−1/2
T M−1

T

(
1√
T

T∑
t=1

xtet

)
+

Σ−1/2
T

( 1
T

T∑
t=1

xtx
′
t

)−1

−M−1
T

( 1√
T

T∑
t=1

xtet

)
.

Clearly, the second term is oP(1). Then it suffices to find the limiting distribution of the

first term. Assumption [B3′] and Lemma 7.17 now ensure that

Σ−1/2
T M−1

T

(
1√
T

T∑
t=1

xtet

)
D−→ N(0, Ik).

This proves the first assertion. Given Ξ̂T − ΞT
P−→ 0, we have Σ̂T −ΣT

P−→ 0, and hence

(Σ̂−1/2
T − Σ−1/2

T )
√
T (β̂T − β0)

P−→ 0,

It follows that these two expressions have the same limiting distribution. 2

Remarks:

1. As β̂T converges to β0 at the rate T−1/2, it is also said to be a root-T consistent

estimator.

2. The second assertion of Theorem 7.18 shows that asymptotic normality is not af-

fected when ΣT is replaced by a consistent estimator Σ̂T . Hence, consistent esti-

mation of ΣT is crucial in ensuring asymptotic normality in practice. For instance,

if Σ̂T in Theorem 7.19 is used when heteroskedasticity is present, normalized OLS

estimates will not converge in distribution to N(0, Ik).

The examples below illustrate two leading cases of consistent estimates of ΣT .
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Example 7.19 Conditional homoskedasticity. Suppose that {(x′t et)′} is an i.i.d. se-

quence and E(e2t |xt) = σ2
0. For any continuous function g, {g(xt, et)} is also an i.i.d.

sequence; in particular, {xtx
′
t} is an i.i.d. sequence. In this case,

ΞT =
1
T

T∑
t=1

E(e2t xtx
′
t) = E(e2t xtx

′
t) = σ2

0E(xtx
′
t) =: σ2

0M ,

which does not depend on T , and we can write ΞT as Ξ. The consistent estimation of

Ξ and Σ now reduces to the consistent estimation of σ2
0 and M . The standard OLS

estimator σ̂2
T =

∑T
t=1 ê

2
t /(T − k) is consistent for σ2

0, and T−1
∑T

t=1 xtx
′
t is consistent for

M by [B2′]. It follows that

Ξ̂T = σ̂2
T

(
1
T

T∑
t=1

xtx
′
t

)
, Σ̂T = σ̂2

T

(
1
T

T∑
t=1

xtx
′
t

)−1

.

Apart from the factor T , Σ̂T is precisely the covariance matrix we obtained for the classical

linear model.

Example 7.20 Conditional heteroskedasticity. Suppose that {(x′t et)′} is an independent

sequence and E(e2t |xt) = σ2
t . As in the previous example, for any continuous function g,

{g(xt, et)} is also an independent sequence. Then,

ΞT =
1
T

T∑
t=1

E(e2t xtx
′
t) =

1
T

T∑
t=1

E(σ2
t xtx

′
t).

Under this framework, it can be shown that with some additional conditions, a consistent

estimator for ΞT is

Ξ̂T =
1
T

T∑
t=1

ê2t xtx
′
t. (31)

A consistent estimator for ΣT is thus

Σ̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

ê2t xtx
′
t

)(
1
T

T∑
t=1

xtx
′
t

)−1

.

This is the heteroskedasticity-consistent covariance matrix estimator of White (1980), also

known as White’s covariance matrix estimator. A novel feature of this estimator is that

it is consistent even when there is conditional heteroskedasticity of unknown form.
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8 Linear Hypothesis Testing: Finite Sample and Large Sam-

ple Tests

After a model is estimated, it is important to conduct statistical tests to evaluate various

economic or econometric hypotheses in terms of the model parameters. In this section we

maintain the discussion in normal regression models and consider the linear hypothesis:

Rβ0 = r, where R is a q × k non-stochastic matrix with rank q < k, and r is a vector of

pre-specified, hypothetical values.

If the null hypothesis is correct, it is reasonable to expect that Rβ̂T is “close” to

the hypothetical value r; otherwise, they should be quite different. Here, the closeness

between Rβ̂T and r must be justified probabilistically and is determined by the underlying

distribution of the test statistics.

8.1 Finite Sample Tests

As shown in section 5.7, under the linear normal regression models, the sampling distri-

bution of β̂T is

β̂T ∼ N(β0,V T ),

where V T = (X ′X)−1X ′DX(X ′X)−1 and D = var(e|X) for cases with heteroskedastic

errors; and

β̂T ∼ N(β0, σ
2
0(X

′X)−1)

for cases with homoskedastic errors in which V T = σ2
0(X

′X)−1.

8.1.1 t- and F -Tests

If there is only a single hypothesis, the null hypothesis Rβ0 = r is such that R is a row

vector (q = 1) and r is a scalar. Note that a single hypothesis may involve two or more

parameters. Under the null hypothesis and models with homoskedastic errors,

Rβ̂T − r

σ0[R(X ′X)−1R′]1/2
=

R(β̂T − β0)
σ0[R(X ′X)−1R′]1/2

∼ N(0, 1).

Although the left-hand side has a known distribution, it cannot be used as a test statistic

because σ0 is unknown. Replacing σ2
0 by its OLS estimator σ̂2

T yields an operational
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statistic:

τ =
Rβ̂T − r

σ̂T [R(X ′X)−1R′]1/2
, (32)

Theorem 8.1 In the normal regression models with homoskedastic errors and under the

null hypothesis that Rβ0 = r with R a 1× k vector,

τ ∼ t(T − k),

where τ is given by (32).

Proof: Writing

τ =
Rβ̂T − r

σ0[R(X ′X)−1R′]1/2

/√
σ̂2

T (T − k)/σ2
0

T − k
,

we can see that the numerator is distributed as N(0, 1), and that the square of the de-

nominator is a central χ2 random variable divided by its degrees of freedom T − k. The

assertion follows if the numerator and denominator are independent. Note that the ran-

dom components of the numerator and denominator are, respectively, β̂T and ê′ê, where

β̂T and ê are two normal random vectors with covariance matrix

cov(ê, β̂T ) = E((IT − P )ee′X(X ′X)−1) = σ2
0(IT − P )X(X ′X)−1 = 0.

Consequently, β̂T and ê, and hence β̂T and ê′ê, are also independent. 2

Thus, τ is also known as the t statistic. When the alternative hypothesis is Rβ0 6= r,

this is a two-sided test; when the alternative hypothesis is Rβ0 > r (or Rβ0 < r), this is

a one-sided test. For each test, it is typical to choose a small significance level α, say, 5%.

Given α, the critical values tα/2(T − k) and t1−α/2(T − k) for the two-sided t test are such

that

1− P{tα/2(T − k) ≤ τ ≤ t1−α/2(T − k)}

= P{τ < tα/2(T − k) or τ > t1−α/2(T − k)}

= α.

Hence, the event that τ > t1−α/2(T − k) or τ < tα/2(T − k) is unlikely under the null

hypothesis (its probability α is small), and the null hypothesis is rejected at the significance
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level α when τ is either too large or too small relative to t1−α/2(T − k) and tα/2(T − k),

respectively. The rejection/”acceptance” dichotomy is associate with the Neyman-Pearson

approach to the hypothesis testing. The alternative approach, associated with Fisher, is

to report the p-value which is defined as

p = P (t(T − k) ≥ t|H0 is true).

The null hypothesis is rejected when p-value is less than α/2 or greater than 1− α/2.

The decision of rejection could be wrong, but the probability of committing such an

error (type I error) will not exceed α. That is, the type I error is defined as

P(RejectH0|H0 is true) = P (τ ≥ t1−α/2(T − k) or τ ≤ tα/2(T − k)|H0 is true).

Similarly, for the hypothesis Rβ0 > r (Rβ0 < r), the null hypothesis is rejected at

the significance level α when τ is larger (smaller) than t1−α(T − k) (tα(T − k)).

Example 8.2 Test a single coefficient equal to zero: βi = 0. Here, R is the transpose of

the ith Cartesian unit vector:

R = [ 0 · · · 0 1 0 · · · 0 ],

so that R(X ′X)−1R′ = Sii is the ith diagonal element of (X ′X)−1. The t statistic for

this hypothesis, also known as the t ratio, is

τ =
β̂iT

σ̂T

√
Sii

∼ t(T − k).

When a t ratio rejects, it is said that the corresponding estimated coefficient is significantly

different from zero; econometric packages usually report t ratios with the coefficient esti-

mates.

Example 8.3 A single hypothesis involves two parameters: βi + βj = 0. Here, R is of

the form

R = [ 0 · · · 0 1 0 · · · 0 1 0 · · · 0 ].

Hence, R(X ′X)−1R′ = Sii + 2Sij + Sjj , where Sij is the (i, j)th element of (X ′X)−1,

and

τ =
β̂iT + β̂jT

σ̂T (Sii + 2Sij + Sjj)1/2
∼ t(T − k).
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Several hypotheses can also be tested jointly. In this case, the null hypothesis Rβ0 = r

is such that R is a matrix (q ≥ 2) and r is a vector. As

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σ0 ∼ N(0, Iq),

so that

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
0 ∼ χ2(q).

Again, we can replace σ2
0 by its OLS estimator σ̂2

T to obtain an operational statistic:

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)

σ̂2
T q

. (33)

Theorem 8.4 Suppose the linear normal regression model with homoskedastic errors is

considered. Then under the null hypothesis that Rβ0 = r with R a q×k matrix with rank

q < k,

ϕ ∼ F (q, T − k),

where ϕ is given by (33).

Proof: Note that

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/(σ2

0q)
σ̂2

T /σ
2
0

,

which is a ratio of two independent central χ2 random variables, each divided by its degrees

of freedom. 2

The statistic ϕ is therefore known as the F statistic. We reject the null hypothesis at

the significance level α when ϕ is too large relative to the critical value Fα(q, T −k) of the

F table. Note that if there is only a single hypothesis, the F statistic is just the square

of the corresponding t statistic. When ϕ rejects a joint null hypothesis, it suggests that

there is evidence against at least one of its single hypothesis. Doing a joint test of several

hypotheses is, however, different from testing these hypotheses separately.

Example 8.5 Joint null hypothesis: Ho : β1 = b1 and β2 = b2. The F statistic is

ϕ =
1

2σ̂2
T

(
β̂1T − b1

β̂2T − b2

)′ [
S11 S12

S21 S22

]−1(
β̂1T − b1

β̂2T − b2

)
∼ F (2, T − k).
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Remark: Consider the null hypothesis that s coefficients being zero. It can be shown that

when the corresponding F statistic ϕ > 1 (ϕ < 1), dropping these s regressors will reduce

(increase) R̄2.

8.1.2 An Alternative Approach

Given the constraint Rβ0 = r, the constrained OLS estimator can be obtained by finding

the saddle point of the Lagrangian:

min
β

(y −Xβ)′(y −Xβ)/T + (Rβ − r)′λ,

where λ is the q × 1 vector of Lagrangian multipliers. By the first-order condition of

minimizing Lagrangian:

∇βL =
−2
T

X ′(y −Xβ)−R′λ
set= 0

∇λL = Rβ − r
set= 0

or [
X′X

T R′

R 0

][
β

λ

]
=

[
X′y
T

r

]
,

the solutions are

λ̈T = 2[R(X ′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2.

Note that the vector of constrained OLS residuals is

ε̈ = y −Xβ̈T = y −Xβ̂T + X(β̂T − β̈T ) = e + X(β̂T − β̈T ).

It follows that

ε̈′ε̈ = e′e + (β̂T − β̈T )′X ′X(β̂T − β̈T )

= e′e + (Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r),

where the second term on the right-hand side is nothing but the numerator of the F

statistic (33). Let ESSc = ε̈′ε̈ denote the ESS of the constrained model and ESSu denote

the ESS of the unconstrained model. We have from (33) that

ϕ =
ESSc − ESSu

qσ̂2
T

=
(ESSc − ESSu)/q

ESSu/(T − k)
=

(R2
u −R2

c)/q
(1−R2

u)/(T − k)
; (34)
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note that (33) and (34) are algebraically equivalent. In other words, the F test can

be interpreted as the test of “loss of fit” because it compares the performance of the

constrained and unconstrained models.

Example 8.6 Consider the unconstrained model: yt = β1 + β2xt2 + β3xt3 + εt with the

hypothesis (constraint) β2 = β3. Then, the constrained model is

yt = β1 + β2(xt2 + xt3) + εt.

By estimating these two models separately, we obtain ESSu and ESSc, from which the F

statistic can be easily computed.

Example 8.7 Test the null hypothesis that all the coefficients (except the constant term)

equal zero. The resulting constrained model is yt = β1 + εt, so that R2
c = 0. Hence,

ϕ =
R2

u/(k − 1)
(1−R2

u)/(T − k)
∼ F (k − 1, T − k).

This test statistic is also routinely reported by most of econometric packages.

8.2 Large Sample Tests

For practical purposes, it is important to find suitable testing procedures and their distri-

butions under the current framework. This is the topic to which we now turn. Specifically,

we will be studying two large-sample tests for the linear hypothesis Rβ0 = r, where R is

a q × k (q < k) nonstochastic matrix with rank q, and r is a pre-specified real vector.

8.3 t- and F -tests

As mentioned in the previous section, the t- and F -test statistics follow Student-t and

F distributions, respectively, in the linear normal regression models with homoskedastic

errors. However, parameter σ2
0 does not exist in the linear regression model with het-

eroskedastic errors even normality being assumed for errors. That is var(e|X) = D but

not σ2
0IT so that the result (T − k)σ̂2

T /σ
2
0 ∼ χ2(T − k) is invalid.

Given the linear normal regression models, we know that

β̂T − β0 ∼ N(0, VT ),
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where VT = (X ′X)−1X ′DX(X ′X)−1. And then,

R(β̂T − β0) ∼ N(0,RVT R′),

furthermore, for the null H0 : Rβ0 = r where R is a q × k matrix,

Rβ̂T − r)[RVT R′]−1/2 H0∼ N(0, Iq).

For q = 1, the τ -test statistic is

τ =
Rβ̂T − r

[RV̂T R′]1/2
,

where V̂T is an estimator for VT . As the sampling distribution of V̂T is difficult to analyzed,

so is the τ statistic.

For the linear projection model, the asymptotic distribution for β̂T is

Σ−1/2
T

√
T (β̂T − β0)

D−→ N(0, Ik).

Then

[RΣT R]−1/2
√
TR(β̂T − β0)

D−→ N(0, Iq)

and for the null H0 : Rβ0 = r,

[RΣT R]−1/2
√
T (Rβ̂T − r) D−→ N(0, Iq).

Define the τ -statistic for q = 1 as

τ = [RΣ̂T R]−1/2
√
T (Rβ̂T − r) D−→ N(0, Iq),

where Σ̂T is a consistent estimator for ΣT . Then the null is rejected if t is greater than

Z1−α/2or less than Zα/2.

8.3.1 Wald Test

The consistency property of β̂T suggests that, under the null hypothesis, R(β̂T − β0) =

Rβ̂T − r should be close to zero when T becomes large. Thus, whether this difference

is close to zero constitutes an evidence for or against the null hypothesis. This is the

underlying idea of the Wald test.
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Given the conditions of Theorem 7.18,

Γ−1/2
T

√
TR(β̂T − β0)

D−→ N(0, Iq), (35)

where

ΓT = RΣT R′ = RM−1
T ΞT M−1

T R′. (36)

Clearly, (35) remains valid when ΓT is replaced by its consistent estimator

Γ̂T = RΣ̂T R′ = R(X ′X/T )−1Ξ̂T (X ′X/T )−1R′, (37)

with Ξ̂T a consistent estimator of ΞT =, where

ΞT = var

(
1√
T

T∑
t=1

xtet

)
.

The Wald statistic is

WT = T (Rβ̂T − r)′Γ̂
−1
T (Rβ̂T − r), (38)

which is the inner product of (35) with ΓT replaced by Γ̂T of (37).

Theorem 8.8 Suppose that the conditions of Theorem 7.18 hold. Then under the null

hypothesis,

WT
D−→ χ2(q).

where WT is given by (38).

Proof: As Γ̂
−1/2
T

√
TR(β̂T −β0)

D−→ N(0, Iq), it is immediate to have the result. 2

Example 8.9 Consider testing s coefficients being zero: Rβ0 = 0 with R = [0 Is]. The

Wald test statistic is

WT = T β̂
′
T R′[R(X ′X/T )−1Ξ̂T (X ′X/T )−1R′]−1Rβ̂T

D−→ χ2(s).

When Ξ̂T = σ̂2
T (X ′X/T ) is consistent for ΞT , the Wald statistic becomes

WT = T β̂
′
T R′[R(X ′X/T )−1R′]−1Rβ̂T /σ̂

2
T ,

which is just s times the standard F -statistic.
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Remarks:

1. Provided that a consistent estimator for ΞT can be found, the Wald test is valid for a

wide variety of models in which (x′t et)′ may be non-Gaussian, heteroskedastic, and

serially correlated. It is often said that the Wald test can be made robust against

heteroskedasticity and serial correlation by estimating ΞT properly.

2. If an inconsistent estimator Ξ̂T is used, then Σ̂T and Γ̂T are also inconsistent, and

consequently, WT will not have χ2 distribution in the limit. In this case, the Wald

test would reject too often when the null hypothesis is correct.

8.3.2 Lagrange Multiplier Test

We have learned from Section 8.1.2 that, given the constraint Rβ = r, the constrained

OLS estimator can be obtained by finding the saddle point of the Lagrangian:

(y −Xβ)′(y −Xβ)/T + (Rβ − r)′λ,

where λ is the q × 1 vector of Lagrange multipliers. The underlying idea of the Lagrange

Multiplier (LM) test is to test whether λ is sufficiently close to zero. Intuitively, λ can be

interpreted as the “shadow price” of this constraint, and hence should be small when the

constraint is valid (i.e., the null hypothesis is true).

It is easy to find the solutions to the Lagrangian as

λ̈T = 2[R(X ′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2.

Here, β̈T is the constrained OLS estimator, and λ̈T is the basic ingredient of the LM test.

It follows that under the null hypothesis,

Λ−1/2
T

√
T λ̈T

D−→ N(0, Iq), (39)

where

ΛT = 4(RM−1
T R′)−1ΓT (RM−1

T R′)−1, (40)

with ΓT given by (36). Similar as before, this result remain valid if ΛT is replaced by its

consistent estimator:

Λ̂T = 4[R(X ′X/T )−1R′]−1Γ̈T [R(X ′X/T )−1R′]−1, (41)
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with

Γ̈T = RD̈T R′ = R(X ′X/T )−1Ξ̈T (X ′X/T )−1R′,

where Ξ̈T a consistent estimator of ΞT computed from the constrained regression model.

Let ε̈ = y −Xβ̈T denote the vector of constrained OLS residuals. It is easy to see

that

Rβ̂T − r = R(X ′X/T )−1X ′(y −Xβ̈T )/T = R(X ′X/T )−1X ′ε̈/T,

and hence that

λ̈T = 2[R(X ′X/T )−1R′]−1R(X ′X/T )−1X ′ε̈/T.

The LM test statistic is thus

LMT = T λ̈
′
T Λ̂

−1
T λ̈T

= T ε̈X(X ′X)−1R′Γ̈
−1
T R(X ′X)−1X ′ε̈, (42)

where the second equality follows from (41). In view of (42), we can see that only con-

strained estimation is needed to compute the LM statistic.

Theorem 8.10 Suppose that the conditions of Theorem 7.18 hold. Then under the null

hypothesis,

LMT
D−→ χ2(q),

where LMT is given by (42).

Proof: As Λ̂
−1/2
T

√
T λ̈T

D−→ N(0, Iq), the result is followed. 2

Example 8.11 Consider again testing s coefficients being zero: Rβ0 = 0 with R = [0Is].

Accordingly, the original model can be written as

y = X1b1 + X2b2 + ε,

where X1 and X2 are T × (k − s) and T × s matrices, respectively, and the constrained

model is y = X1b1 + ε, so that the constrained OLS estimator is β̈T = (b̈
′
1T 0)′, where

b̈1T = (X ′
1X1)

−1X ′
1y,
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and the constrained OLS residual is ε̈ = y − X1b̈1T . The LM statistic can then be

computed as (42). When Ξ̈T = σ̈2
T (X ′X/T ) is consistent for ΞT , where σ̈2

T =
∑T

t=1 ë
2
t /(T−

k + s), we have

Γ̈
−1
T = (RΣ̈T R′)−1 = (σ̈2

T R(X ′X/T )−1R′)−1.

It can be verified that by the Frisch-Waugh-Lovell Theorem,

R(X ′X)−1R′ = [X ′
2(I − P 1)X2]

−1,

R(X ′X)−1X ′ = [X ′
2(I − P 1)X2]

−1X ′
2(I − P 1),

where P 1 = X1(X
′
1X1)−1X ′

1. The LM statistic now can be simplified as

LMT = ε̈(I − P 1)X2[X
′
2(I − P 1)X2]

−1X ′
2(I − P 1)ε̈/σ̈

2
T

= ε̈X2[X
′
2(I − P 1)X2]

−1X ′
2ε̈/σ̈

2
T ,

because X ′
1ε̈ = 0 so that P 1ε̈ = 0. It is then straightforward to see that

LMT =
ε̈′X(X ′X)−1X ′ε̈

ε̈′ε̈/(T − k + s)
= (T − k + s)R2,

where R2 is the (non-centered) coefficient of determination of regressing ε̈ on the complete

data matrix X. If an ML estimator σ̈2
T =

∑T
t=1 ε̈

2
t /T is used, we simply have TR2 as the

test statistic.

Remarks:

1. The LM test is also applicable to models with (x′t et)′ being non-Gaussian, het-

eroskedastic, and serially correlated, as long as a consistent estimator for ΞT under

the null hypothesis can be found. If Ξ̈T is inconsistent, then so are Σ̈T , Γ̈T , and Λ̂T .

Consequently, the LM test will not have a χ2 distribution in the limit.

2. While the Wald test requires estimating the unconstrained model, the LM test relies

on constrained estimation. Thus, the Wald test is convenient when the constrained

model is difficult to compute, such as a model with nonlinear constraints, and the

LM test is easier to implement if the constrained model can be easily computed.

73



3. It can be shown that the Wald and LM statistics not only have the same limiting χ2

distribution but also are asymptotically equivalent under the null hypothesis, i.e.,

WT − LMT
P−→ 0. If ΞT is known, these two statistics turn out to be algebraically

equivalent. Note, however, that these two tests may result in conflicting statistical

inferences. For instance, it can be shown that in the “ideal” case that there is no

heteroskedasticity and serial correlation, WT ≥ LMT ; see e.g., Godfrey (1988) for

more details.

8.4 Confidence Regions

A confidence interval for βi, (g
α
, gα) with the confidence coefficient (1− α) satisfies

P{g
α
≤ βi ≤ gα} = 1− α.

By (32), we have

P

{
−tα/2(T − k) ≤ β̂iT − βi

σ̂T

√
Sii

≤ tα/2(T − k)

}
= 1− α,

so that

g
α

= β̂iT − tα/2(T − k)σ̂T

√
Sii; gα = β̂iT + tα/2(T − k)σ̂T

√
Sii,

where tα/2(T − k) is the critical value of the (two-sided) t test at the significance level α.

Let A1 denote the event that the confidence interval covers β1 and A2 denote the event

that the confidence interval covers β2. The intersection A = A1∩A2 is thus the event that

a confidence “box” covers both coefficients. Suppose that P(A1) = P(A2) = 90%. Then,

P(A) 6= 90% in general. When A1 and A2 are independent, P(A) = 81%, but when these

two events are not independent, it becomes difficult to determine P(A). Hence, it would

be difficult to find a proper confidence “box” based on individual confidence intervals.

Alternatively, we can construct a confidence region using the result of the joint test (33).

Specifically, the confidence region for Rβo with the confidence coefficient (1− α) satisfies

P{(β̂T − βo)
′R′[R(X ′X)−1R′]−1R(β̂T − βo)/(qσ̂

2
T ) ≤ Fα(q, T − k)}

= 1− α,

where Fα(q, T − k) is the critical value of the F test at the level α.
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Example 8.12 The confidence region for (β1 = b1, β2 = b2). Suppose T − k = 30 and

α = 0.05, then F0.05(2, 30) = 3.32. In view Example 8.5,

P

 1
2σ̂2

T

(
β̂1T − b1

β̂2T − b2

)′ [
S11 S12

S21 S22

]−1(
β̂1T − b1

β̂2T − b2

)
≤ 3.32

 = 0.95,

which results in an ellipse with the center (β̂1T , β̂2T ).

Remark: A point (β1, β2) may be outside the joint confidence ellipse but inside the confi-

dence box formed by individual confidence intervals. Hence, each t ratio may show that

the corresponding coefficient is insignificantly different from zero, while the F test indi-

cates that both coefficients are not jointly insignificant. It is also possible that (β1, β2)

is outside the confidence box but inside the joint confidence ellipse. That is, each t ratio

may show that the corresponding coefficient is significantly different from zero, while the

F test indicates that both coefficients are jointly insignificant. See an illustrative example

in Goldberger (1991, Chap. 19).

8.5 Power of the Tests

The power of a test is the probability of rejecting the null hypothesis when the null

hypothesis is false. Let A denote the event that the test statistic is greater or less than

the critical values and Po and Pa denote the probability measure under the null and

alternative hypotheses, respectively. Clearly, Po(A) is the size (significance level) of the

test, and Pa(A) is the power. Recall that a null hypothesis is rejected because the event

A is unlikely under the null. Hence, a sensible test must be such that A is much more

likely under the alternative hypothesis. That is, we would expect that the power of a

sensible test, Pa(A), is greater than its size, Po(A). In this section, we study the power

performance of the tests discussed in the preceding section.

Theorem 8.13 Suppose a normal linear regression model with homoskedastic errors is

considered. Then under the hypothesis that Rβ0− r = δ with R a q× k matrix with rank

q < k,

ϕ ∼ F ∗(q, T − k; δ′D−1δ, 0).

where ϕ is given by (33) and D = σ2
0[R(X ′X)−1R′].
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Proof: When Rβ0 − r = δ,

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σ0

= [R(X ′X)−1R′]−1/2[R(β̂T − β0) + δ]/σ0

∼ N(D−1/2δ, Iq).

Hence,

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
0

∼ χ2∗(q; δ′D−1δ).

As (T − k)σ̂2
T /σ

2
0 is still distributed as χ2(T − k) by Theorem 5.5(b), the assertion follows

because the numerator and denominator of ϕ are independent. 2

Clearly, when the null hypothesis is correct, we have δ = 0 and ϕ ∼ F (q, T − k).

Hence, Theorem 8.13 includes Theorem 8.4 as a special case. In particular, for testing a

single hypothesis, we have

τ ∼ t∗(T − k; D−1/2δ),

which reduces to t(T−k) when δ = 0, as in Theorem 8.1. The implication of Theorem 8.13

is that when Rβo deviates farther from the hypothetical value r, the non-centrality pa-

rameter δ′D−1δ will increase, and so will the power. We illustrate this point using the

following two examples, where the power are computed using the program GAUSS. Sup-

pose first that the null distribution is F (2, 20). Then the critical value at 5% is 3.49, and

for the non-centrality parameter equal to 1, 3, 5, the probabilities that ϕ exceeds 3.49 are

approximately 12.1%, 28.2%, and 44.3%, respectively. Suppose now that the null distribu-

tion is F (5, 60). Then the critical value at 5% is 2.37, and for the non-centrality parameter

equal to 1, 3, 5, the probabilities that ϕ exceeds 2.37 are approximately 9.4%, 20.5%, and

33.2%, respectively. In both cases, the power increases with the non-centrality parameter.
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9 Multicollinearity

In Section 4.2 we have seen that a linear specification suffers exact multicollinearity if the

basic identifiability requirement (i.e., X is of full column rank) is not satisfied. In this

case, the model parameters are not identified and the OLS estimator cannot be computed.

This problem can be avoided if models are specified properly.

9.1 Near Multicollinearity

In practice, it is more common that the explanatory variables are related to some extent

but do not satisfy an exact linear relationship. This is usually referred to as near mul-

ticollinearity . As long as there is no exact multicollinearity, the model parameters can

still be identified, and the OLS estimator can be uniquely solved as (15) and remains

the BLUE. Thus, near multicollinearity should cause no problems, at least theoretically.

Nevertheless, we still see complaints about near multicollinearity in empirical studies.

In applications, one may find that the parameter estimates are very sensitive to small

changes in data and that, while individual t ratios are all insignificant, the F statistic

suggests that the model as a whole is highly significant. These problems are usually

attributed to near multicollinearity. This is not entirely correct, however. Write X =

[xi Xi], where Xi is the submatrix of X excluding the ith column xi. By the result of

Theorem 4.1, the variance of β̂iT is

var(β̂iT ) = var([x′i(I − P i)xi]
−1x′i(I − P i)ε) = σ2

o [x
′
i(I − P i)xi]

−1,

where P i = Xi(X
′
iXi)−1X ′

i. It can be verified that

var(β̂iT ) =
σ2

o∑T
t=1(xti − x̄i)2(1−R2(i))

,

where R2(i) is the centered coefficient of determination from the auxiliary regression of

xi on Xi. When xi is highly related to other explanatory variables so that R2(i) is high,

var(β̂iT ) would be large. Thus, β̂iT are sensitive to data changes, and corresponding t

ratios are likely to be insignificant. Near multicollinearity is not a necessary condition for

these problems, however. Large var(β̂iT ) may be due to small variations of xi and/or large

σ2
o .
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Even when large var(β̂i) is indeed resulted from high R2(i), there is nothing wrong

statistically. It is often claimed that “severe multicollinearity can make an important

variable look insignificant.” As Goldberger (1991) correctly pointed out, this statement

simply confuses statistical significance with economic importance. These large variances

merely reflect the fact that the coefficients cannot be precisely estimated from the given

data set.

Near multicollinearity is in fact a problem related to data and model specification.

If it does cause problems in estimation and hypothesis testing, one may try to break

the approximate linear relationship by, e.g., adding more observations to the data set

(if plausible) or dropping some variables from the current model. Other sophisticated

statistical methods, such as the ridge estimator and principal component regressions, may

also be used; details of these methods can be found in other econometrics textbooks.

9.2 Digress: Dummy Variables

A regression model may include some qualitative variables to indicate the presence or

absence of certain attributes of the dependent variable. These qualitative variables are

typically represented by dummy variables which classify data into different categories.

For example, let yi denote the annual salary of college teacher i and xi denote the

years of teaching experience. Consider the dummy variable: Di = 1 if i is a male and

Di = 0 if i is a female. Then, the model

yi = αo + α1Di + βoxi + εi

yields two regression lines with different intercepts. The “male” regression has the inter-

cept αo+α1, and the “female” regression has the intercept αo. We may test the hypothesis

α1 = 0 to see whether there is a difference between (incoming) salaries of male and female

teachers. This model can be expanded to incorporate the interaction term between D and

x:

yi = α0 + α1Di + β0xi + β1(Dixi) + εi.

This produces two regression lines with different intercepts and slopes. The slope of the

“male” regression now is β0 +β1, and the slope of the “female” regression is β0. By testing
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β1 = 0, we can check whether teaching experience is treated the same in determining

salaries for male and female teachers.

Suppose that we want to know whether the education level of the head of household

affects the consumption pattern. We may classify the data into three groups: below high

school, high school only, college or higher. Let D1i = 1 if i has high school degree only and

D1i = 0 otherwise, and D2i = 1 if i has college or higher degree and D2i = 0 otherwise.

Then, similar to the previous example, the following model,

yi = αo + α1D1i + α2D2i + βoxi + εi,

yields three regression lines. The below-high-school regression has the intercept αo, the

high-school regression has the intercept αo+α1, and the college regression has the intercept

αo + α2. Various interesting hypotheses can be tested based on this specification.

Remark: The preceding examples show that, when a model contains a constant term, the

number of dummy variables is always one less than the number of categories that dummy

variables try to classify. Otherwise, the model will have exact multicollinearity; this is the

so-called “dummy variable trap.”
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10 Generalized Least Squares Theory

10.1 GLS Estimators

Suppose a linear regression model with heteroskedastic error is considered. That is

yt = x′tβ0 + et

E(et|xt) = 0

E(ee′|X) = D.

As E(D−1/2e|X) = 0 and

E[(D−1/2e)(D−1/2e)′] = D−1/2E(ee′)D−1/2

= D−1/2DD−1/2 = IT ,

we can transform the regression model as

D−1/2y = D−1/2Xβ0 + D−1/2e

y∗ = X∗β0 + e∗,

which becomes a regression model with homoskedastic errors. Then the OLS estimator

for β0 is written as

β̃T = (X∗′
X∗)−1X∗′

y∗

= [(D−1/2X)′(D−1/2X)]−1(D−1/2X)′D−1/2y

= (X ′D−1X)−1(X ′D−1y).

The estimator β̃T is called the generalized least squares (GLS) estimator for β0 and is

sometimes called the Aitken estimator.

Since y = Xβ0 + e,

β̃T = (X ′D−1X)−1(X ′D−1y)

= (X ′D−1X)−1[X ′D−1(Xβ0 + e)]

= β0 + (X ′D−1X)−1(X ′D−1e).

Since D is a unction of X, E(β̃T ) = β) and

var(β̃T |X) = E{[(X ′D−1X)−1(X ′D−1e)][(X ′D−1X)−1(X ′D−1e)]′|X}

= (X ′D−1X)−1X ′D−1DD−1X(X ′D−1X)−1

= (X ′D−1X)−1.
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The class of unbiased estimators take the form

β̌T = A(X)′y = A(X)′(Xβ0 + e)

with restriction A(X)′X = Ik, where A(X), T ×k, is a function of X only. It is clear that

OLS is the case A(X) = X(X ′X)−1 and GLS is the one A(X) = D−1X(X ′D−1X)−1.

The variance of β̌T is

var(β̌T |X) = A(X)′DA(X).

Theorem 10.1 (Gauss-Markov Theorem) The best (minimum-variance) liner unbi-

ased estimator (BLUE) is GLS.

Proof:

Let A∗(X) = D−1X(X ′D−1X)−1 and then β̃T = A∗(X)′y is the GLS. Let A(X) be

any other T × k function of X and it can be represented as A(X) = A∗(X) + C. Clearly,

β̌T = A(X)′y is a linear estimator. Since

A(X)′y = A(X)′(Xβ0 + e)

= (A∗(X) + C)′(Xβ0 + e)

= A∗(X)′Xβ0 + C ′Xβ0 +A∗(X)′e + C ′e,

it is clear that the estimator A(X)′y is unbiased for β0 when C ′X = 0. As shown

previously,

var(β̌T |X) = A(X)′DA(X)

= (A∗(X) + C)′D(A∗(X) + C)

= A∗(X)′DA∗(X) +A∗(X)′DC + C ′DA∗(X) + C ′DC

= A∗(X)′DA∗(X) + C ′DC,

since

C ′DA∗(X) = C ′DD−1X(X ′D−1X)−1

= C ′X(X ′D−1X)−1 = 0,

given the estimator A(X)′y is unbiased for β0, C ′X = 0. Therefore,

var(β̌T − var(β̃T = A(X)′DA(X)−A∗(X)′DA∗(X)

= C ′DC
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is positive definite. That is, the GLS is the most efficient estimator among linear unbiased

estimators. 2.

Theoretically speaking, the Gauss-Markov theorem is not a very powerful theorem, be-

cause the restriction to linear estimators is quite unnatural. That is, perhaps a “nonlinear”

estimator can do even better. However, at least the theorem points out the inefficiency

of OLS in regression models with heterokedastic errors. Chamberlain (Journal of Econo-

metrics, 1987) established the general result that there is no regular consistent estimator

can have a lower asymptotic variance than the GLS estimator in the regression model.

10.2 Feasible GLS

In the previous section, we showed that in regression model, OLS is inefficient relative to

GLS, but the latter is infeasible. We discuss feasible approximate GLS estimation.

Suppose that the conditional variance takes the parametric form

var(et|xt) = σ2
t

= α0 + z′t1α1 = α′zt,

where zt1 is some q × 1 function of xt. Typically, zt1 are squares (and perhaps levels) of

some (or all) elements of xt. Let ηt = e2t . Then

E(ηt|xt) = α0 + z′t1α1

and we have the regression equation

ηt = α0 + z′t1α1 + ξt (43)

E(ξt|xt) = 0.

Clearly, the conditional variance of ξt is

var(ξt|xt) = var(e2t |xt)

= E[(e2t − E(e2t |xt))
2]

= E(e4t |xt)− (E(e2t |xt))
2.

When et is independent of xt then

var(ξt|xt) = E(e4t )− σ4
0
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and under normality it simplifies to

var(ξt|xt) = 2σ4
0.

Suppose et (and thus ηt) were observed. Then we could estimate α by OLS:

α̂T = (Z ′Z)−1Z ′η →p α

and

√
T (α̂T −α) D−→ N(0,V α),

where

V α = [E(ztz
′
t)]
−1E(ztz

′
tξ

2
t )[E(ztz

′
t)]
−1. (44)

While et is not observed, we have the OLS residual êt = yt−x′tβ̂T = et−x′t(β̂T −β0).

Thus

η̂t − ηt = ê2t − e2t

= −2etx
′
t(β̂T − β0) + (β̂T − β0)

′xtx
′
t(β̂T − β0)

= φt,

say. Note that

1√
T

T∑
t=1

ztφt

=
−2
T

T∑
t=1

ztetx
′
t

√
T (β̂T − β0) +

1√
T

zt(β̂T − β0)
′xtx

′
t(β̂T − β0)

√
T

→p 0.

Let

α̃T = (Z ′Z)−1Z ′η̂ (45)

be from OLS regression of η̂t on zt. Then

√
T (α̃T −α) =

√
T (α̂T −α) + (T−1Z ′Z)−1T−1/2Z ′φ

D−→ N(0,V α). (46)
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Thus the fact that ηt is replaced with η̂t is asymptotic irrelevant. We may call (45) the

skedastic regression, as it is estimating the conditional variance of the regression of yt on

xt. As shown that α is consistently estimated by a simple procedure, and hence we can

estimate σ2
t = z′tα by σ̃2

t = z′tα̃T .

Suppose that σ̃2
t > 0 for all t. Then set

D̃ = diag(σ̃2
1, . . . , σ̃

2
T )

and

β̃T = (X ′D̃
−1

X)−1X ′D̃
−1

y.

This is the feasible GLS, or FGLS, estimator of β0.

Since there is not a unique specification for the conditional variance the FGLS estimator

is not unique, and will depend on the model (and estimation method) for the skedastic

regression. One typical problem with implementation of FGLS estimation is that in a

linear regression specification, there is no guarantee that σ̃2
t > 0 for all t. If σ̃2

t < 0 for

some t, then the FGLS estimator is not well defined. Furthermore, if σ̃2
t ≈ 0 for some

t, then the FGLS estimator will force the regression equation through the point (yt,xt),

which is typically undesirable.

It is possible to show that if the skedastic regression correctly specified, then FGLS is

asymptotically equivalent to GLS, that is

Theorem 10.2 If the skedastic regression is correctly specified,

√
T
(
β̃GLS − β̃FGLS

)
→p 0,

and thus

√
T
(
β̃FGLS − β0

)
D−→ N(0,V ),

where

V = [E(σ2
t xtx

′
t)]
−1.
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10.3 Testing for Heteroskedasticity

The hypothesis of homoskedasticity is that E(e2t |bxt) = σ2
0, or equivalently that

H0 : α1 = 0

in the regression (43). We may therefore test this hypothesis by the estimation (45) and

constructing a Wald statistic.

This hypothesis does not imply that ξt is independent of xt. Typically, however, we

impose the stronger hypothesis and test the hypothesis that et is independent of xt, in

which case ξt is independent of xt and the asymptotic variance (44) for α̃T simplifies to

V α = [E(ztz
′
t)]
−1E(ξ2t ). (47)

Hence the standard test of H0 is a classic F (or Wald) test for exclusion of all regressors

from the skedastic regression (45). The asymptotic distribution (46) and the asymptotic

variance (47) under independence show that this test has an asymptotic chi-square distri-

bution.

Theorem 10.3 Under H0, and et independent of xt, the Wald test of H0 : α1 = 0 is

asymptotically χ2(q).
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11 Consistent Estimation of Covariance Matrices

We have seen in the preceding sections that the consistent estimation of ΞT is crucial for

the asymptotic normality result and the limiting distribution of the Wald and LM tests.

In the most general form, ΞT can be written as

var

(
1√
T

T∑
t=1

xtet

)

=
1
T

T∑
t=1

var(xtet) +
1
T

T−1∑
τ=1

T∑
t=τ+1

E(xt−τet−τetx
′
t) + E(xtetet−τx

′
t−τ ). (48)

In this section we focus on the consistent estimation of this general covariance matrix.

Suppose that {(x′t, et)′} is an independent sequence so that possible serial correlations

among (x′t et)′ are precluded. Then, ΞT in (48) reduces to

ΞT = var

(
1√
T

T∑
t=1

xtet

)
=

1
T

T∑
t=1

var(xtet). (49)

It has been shown that, given [B1]–[B3] and other suitable conditions, Ξ̂T =
∑T

t=1 ê
2
t xtx

′
t/T

is consistent for ΞT . It should be clear that, as long as xtet and xτeτ are uncorrelated

(but not necessarily independent) for all t 6= τ , (48) again reduces to (49), for which

Ξ̂T =
∑T

t=1 ê
2
t xtx

′
t/T is still consistent under suitable conditions.

When xtet exhibits certain serial correlations, it is still possible to estimate (48) con-

sistently. Let m(T ) denote a function of T which diverges to infinity with T but at a

slower rate. Suppose that the correlations between xtet and xt−τet−τ vanish sufficiently

fast such that

1
T

T−1∑
τ=m(T )+1

T∑
t=τ+1

E(xtetet−τx
′
t−τ ) → 0.

That is, xtet and xt−τet−τ are asymptotically uncorrelated in a proper way. Then for

large T , ΞT can be well approximated by

Ξ∗T =
1
T

T∑
t=1

var(xtet) +
1
T

m(T )∑
τ=1

T∑
t=τ+1

E(xt−τet−τetx
′
t) + E(xtetet−τx

′
t−τ ).

Estimating ΞT then amounts to estimating Ξ∗T .
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White (1984) notes that an estimator based on the sample counterpart of Ξ∗T ,

Ξ̌T =
1
T

T∑
t=1

ê2t xtx
′
t +

1
T

m(T )∑
τ=1

T∑
t=τ+1

(
xt−τ êt−τ êtx

′
t + xtêtêt−τx

′
t−τ

)
,

is consistent for Ξ∗T when heteroskedasticity and serial correlation are both present. A ma-

jor problem with this naive estimator is that Ξ̌T need not be p.s.d. Newey & West (1987)

show that with a suitable weighting function wm(T )(τ),

Ξ̂T =
1
T

T∑
t=1

ê2t xtx
′
t +

1
T

T−1∑
τ=1

wm(T )(τ)
T∑

t=τ+1

(
xt−τ êt−τ êtx

′
t + xtêtêt−τx

′
t−τ

)
(50)

is guaranteed to be p.s.d. and remains consistent for Ξ∗T . The estimator (50) is also

known as the heteroskedasticity and autocorrelation consistent (HAC) covariance matrix

estimator. It can be seen that when serial correlation is not considered, the HAC estimator

reduces to White’s estimator (31).

In particular, Newey & West (1987) adopt the so-called Bartlett kernel:

wm(T )(τ) =

{
1− τ/m(T ), if 0 ≤ τ/m(T ) ≤ 1,

0, otherwise,

and Gallant (1987) chooses the so-called Parzen kernel:

wm(T )(τ) =


1− 6[τ/m(T )]2 + 6[τ/m(T )]3, if 0 ≤ τ/m(T ) ≤ 1/2,

2[1− τ/m(T )]3, if 1/2 ≤ τ/m(T ) ≤ 1,

0, otherwise.

Consider the Bartlett kernel where wm(T )(τ) = 1 − τ/m(T ). For a fixed m(T ), it is de-

creasing in τ ; hence a smaller weight is assigned when two random variables are separated

for a long time period (i.e., τ is large). On the other hand, for a fixed τ , wm(T )(τ) → 1

as m(T ) →∞ and hence entails little loss asymptotically. In practice, a finite number of

m(T ) must be chosen for computing X̂iT . It is worth noting that a small m(T ) may result

in substantial finite-sample bias. For other choices of weighting functions and a method of

determining the approximation lags m(T ), we refer to Andrews (1991). Finally, we note

that White’s estimator (31) and the HAC estimator (50) are non-parametric estimators

because they are constructed without postulating parametric models for heteroskedasticity

and serial correlation.
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12 Generalized Method of Moments

12.1 Endogeneity

We say that there is a problem of endogeneity in the linear model yt = z′tβ0 + et if β0

is the parameter of interest and that E(ztet) 6= 0. This cannot happen if β0 is defined

by linear projection, so requires a structural interpretation. The coefficient β0 must have

meaning separately from the definition of a conditional mean or linear projection.

Example 1: Measurement error in the regressors. Suppose that (yt,x
∗
t ) are joint

random variables, E(yt|x∗t ) = x∗
′

t β0, β0 is the parameter of interest, and x∗t is not ob-

served. Instead, variables xt = x∗t + ut are observed where ut is an k × 1 measurement

error, independent of yt and x∗t . Then

yt = x∗
′

t β0 + et

= (xt − ut)
′β0 + et

= x′tβ0 + et − u′tβ0

= x′tβ0 + vt.

The problem is that

E(xtvt) = E[(x∗t + ut)(et − u′tβ0)] = −E[(utu
′
t)β0] 6= 0.

This is called measurement error bias.

Example 2: Supply and Demand. The variables qi and pi (quantity and price) are

determined jointly by the demand equation

qi = −β1pi + e1i

and the supply equation

qi = β2pi + e2i.

Assume that ei = (e1i e2i)′ is i.i.d. and E(ei) = 0 and E(eie
′
i) = I2. The question is,

if we regress qi on pi, what happens?

It is helpful to solve for qi and pi in terms of the errors. In matrix notation,[
1 β1

1 −β2

][
qi

pi

]
=

[
e1i

e2i

]

88



so [
qi

pi

]
=

[
1 β1

1 −β2

]−1 [
e1i

e2i

]

=
1

β1 + β2

[
β2 β1

1 −1

][
e1i

e2i

]

=

[
β2

β1+β2
e1i + β1

β1+β2
e2i

1
β1+β2

(e1i − e2i)

]
.

The regression of qi on pi yields

β̂ =
∑n

i=1 piqi∑n
i=1 p

2
i

→p E(piqi)
E(p2

i )

=
E
[(

1
β1+β2

(e1i − e2i)
)(

β2

β1+β2
e1i + β1

β1+β2
e2i

)]
E

[(
1

β1+β2
(e1i − e2i)

)2
]

=
β2 − β1

2
,

which does not equal either β1 and β2. This is called simultaneous equation bias.

Example 3. Models with lagged dependent variables and serially correlated

errors. Suppose the model is

yt = w′
tδ0 + α0yt−1 + et, E(wtet) = 0

et = ρ0et−1 + vt, E(et−1vt) = 0.

Let xt = (wt, yt−1)′ and β0 = (δ′, α0)′. Then the model is

yt = x′tβ0 + et,

but with E(xtet) = E[(wt, yt−1)′et] = [0′, E(yt−1et)]′. If we assume E(yt−1vt) = 0,

E(yt−1et−1) = E(ytet), and E(e2t ) = σ2
0, it can be shown that

E(yt−1et) =
σ2

0ρ0

1− α0ρ0

.

Thus E(xtet) 6= 0 so that E(e|X) 6= 0.
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12.2 Instrument Variables

Let the equation of interest be

yt = ztβ0 + et (51)

where zt is k × 1, and assume E(ztet) 6= 0 so that there is a problem of endogeneity. We

call (51) the structural equation. In matrix notation, this can be written as

y = Zβ0 + e. (52)

Any solution to the problem of endogeneity requires additional information which we call

instrument.

Definition 12.1 The l×1 random vector xt is an instrument variable for (51) if E(xtet) =

0.

In a typical set-up, some regressors in zt will be uncorrelated with et (for example, at

least the intercept). Thus we make the partition

zt =

(
zt1

zt2

)
(53)

where zt1 is k1 × 1 with E(zt1et) = 0 and zt2 is k2 × 1 with E(zt2et) 6= 0. We call zt1

exogenous and zt2 endogenous. By the definition (12.1), zt1 is an instrument variable for

(51), so should be included in xt. So we have partition

xt =

(
zt1

xt2

)
(54)

where zt1 = xt1 are the included exogenous variables, and zt2 (l2 × 1) are the excluded

exogenous variables. That is xt2 are variables which could be included in the equation for

yt (in the sense that they are uncorrelated with et) yet can be excluded, as they would have

true zero coefficients in the equation. We say that the model is just-identified if l = k (i.e.,

l2 = k2) and over-identified if l > k (i.e., l2 > k2). If l < k then the model is not identified.

Note that any solution to the problem of endogeneity requires instruments. This does not

mean that valid instruments actually exist.
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12.3 Reduced Form

The reduced form relationship between the variables or “regressors” zt and the instruments

xt is found by linear projection. Let

Γ = E(xtx
′
t)
−1E(xtz

′
t)

be the l × k matrix of coefficients from a projection of zt on xt, and define

ut = zt − x′tΓ

as the projection errors. Then the reduced form linear relationship between zt and xt is

zt = xtΓ + ut. (55)

In matrix notation, (55) can be written as

Z = XΓ + u (56)

where u in T × k.

By construction,

E(xtu
′
t) = 0,

so (55) is a projection and can be estimated by OLS:

Z = XΓ̂ + û

Γ̂ = (X ′X)−1(X ′Z).

Substituting (56) into (52), we have

y = (XΓ + u)β0 + e

= Xλ+ v, (57)

where

λ = Γβ0 (58)

and

v = uβ0 + e.
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Observe that

E(xtvi) = E(xtu
′
i)β0 + E(xtei) = 0.

Thus (57) is a projection equation and may be estimated by OLS. This is

y = Xλ̂+ v̂,

λ̂ = (X ′X)−1X ′y.

The equation (57) is the reduced form for y. (56) and (57) together are the reduced form

equations for the system.

y = Xλ+ v

Z = (XΓ + u.

12.4 Identification

The structural parameter β0 relates to (λ,Γ) through (58). The parameter β0 is identified,

meaning that it can be recovered from the reduced form, if

rank(Γ) = k. (59)

Assume that (59) holds. If l = k, then β0 = Γ−1λ. If l > k, then for any W , β0 =

(Γ′WΓ)−1Γ′Wλ. If (59) is not satisfied, β0 can not be recovered from λ,Γ). Note that a

necessary (although not sufficient) condition for (59) is l ≥ k.

Since X and Z have the common variables X1, i.e., X = [X1,X2] and Z = [X1,Z2],

we can partition Γ as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]

=

[
I Γ12

0
¯

Γ22

]
,

(56) can be rewritten as

Z1 = X1

Z2 = X1Γ12 + X2Γ22 + u2. (60)

β0 is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2. Thus the

key to identification of the model rests on the l2 × k2 matrix Γ22 in (60).
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12.5 Instrument Variables Estimation

Suppose the model is just-identified (k = l). Then β0 = Γ−1λ. This suggests the Indirect

Least Squares (ILS) estimator:

β̂IV = Γ̂−1λ̂

=
[
(X ′X)−1X ′Z

]−1 [(X ′X)−1X ′y
]

= (X ′Z)−1(X ′X)(X ′X)−1(X ′y)

= (X ′Z)−1X ′y.

β̂IV is also called the instrument variables estimator of β0, where X is used as an instru-

ment for Z

Since (λ̂, Γ̂) →p (λ,Γ) and Γ is invertible, β̂IV is consistent by continuous mapping

theory. A more direct way to see consistency is as follows.

β̂IV = (X ′Z)−1X ′y

= (X ′Z)−1X ′(Zβ0 + e)

= β0 + (X ′Z)−1X ′e →p β0

as (X ′Z)/T →p MT a positive definite matrix and X ′e/T →p
∑T

t=1E(xtet)/T = 0 given

E(xtet) = 0.

We can also derive the IV estimator β̂IV as a MME. As E(xtet) = 0 which suggests

the moment equation

gt(β) = xt(yt − z′tβ) (61)

so that at the true value β0 we have the equality

E[gt(β0)] = E[xt(yt − z′tβ0)] = E[xtet] = 0. (62)

The sample analog is

ḡT (β) =
1
T

T∑
t=1

xt(yt − ztβ) =
1
T

(Xy −X ′Zβ). (63)

The MME sets ḡT = 0, i.e.,

ḡT (β) =
1
T

(Xy −X ′Zβ)
=
set 0

which yields β̂IV = (X ′Z)−1X ′y. Note that the consistency and asymptotic normality

of β̂IV are discussed detail in White (1984).
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12.6 GMM Estimator

In the overidentified case (l > k), the simple IV estimator described above does not exist.

Since l > k, ḡT (β) is l × 1 while β0 is k × 1, so there is (in general) no β̂IV such that

ḡT (β̂IV) = 0. Therefore, the MME has to be generalized. The idea of the generalized

method of moments (GMM) is to set this vector “close” to zero.

For some l × l weight matrix W T which is positive definite, let

J(β) = T ḡT (β)′W T ḡT (β).

This is a non-negative measure of the “length” of the weighted vector ḡT (β). The GMM

estimator is minimizes J(β). The first order conditions for the minimization is

∇βJ(β) = ∇βT ḡT (β)′W T ḡT (β)

= ∇βT

[
1
T

(Xy −X ′Zβ)
]′

W T

[
1
T

(Xy −X ′Zβ)
]

=
1
T

Z ′XW T (Xy −X ′Zβ)
=
set 0,

so the GMM estimator is

β̂GMM = (Z ′XW T X ′Z)−1Z ′XW T X ′y.

12.7 2SLS Estimator

Suppose W T = (X ′X)−1, then the GMM estimator becomes

β̂GMM = (Z ′X(X ′X)−1X ′Z)−1Z ′X(X ′X)−1X ′y.

Writing

P X = X(X ′X)−1X ′

Ẑ = P XZ = X(X ′X)−1X ′Z,

then

β̂GMM = (Z ′X(X ′X)−1X ′Z)−1Z ′X(X ′X)−1X ′y

= (Z ′P XZ)−1Z ′P Xy

= (Z ′P ′
XP XZ)−1Z ′P Xy

= (Ẑ
′
Ẑ)−1Ẑ

′
y.

The above formula can be considered as
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1. First regress Z on X, i.e., Γ̂T = (X ′X)−1X ′Z and Ẑ = X ′Γ̂T = P XZ.

2. Second, regress y on Ẑ, i.e., β̂GMM = (Ẑ
′
Ẑ)−1Ẑ

′
y.

That is β̂GMM can be obtained by two-stage regressions. Therefore, the 2SLS (2 Stage

Least Squares) estimator is the GMM estimator given W T = (X ′X)−1, i.e,

β̂2SLS = (Z ′X(X ′X)−1X ′Z)−1Z ′X(X ′X)−1X ′y.

Recall Z = [Z1,Z2] and X = [Z1,X2], then

Ẑ = [Ẑ1, Ẑ2]

= [P XZ1,P XZ2]

= [Z1,P XZ2]

= [Z1, Ẑ2],

since Z1 lies in the span of X. Thus in the second stage, we regress y on Z1 and Ẑ2. So

only the endogenous variables Z2 are replaced by their fitted values:

Ẑ2 = X1Γ̂12 + X2Γ̂22.

12.8 Distribution of GMM Estimator

Assume that W T →p W is positive definite. Let

1
T

T∑
t=1

E(xtz
′
t) =

Z ′X

T
= MT

and

ΞT = var

(
1√
T

T∑
t=1

xtet

)
.

Then (
Z ′X

T

)
W T

(
X ′Z

T

)
→p M ′

T WMT

and given suitable conditions

X ′e√
T
→d N(0,ΞT ).
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The asymptotic normality of β̂GMM can be obtained as follows. Since

β̂GMM = (Z ′XW T X ′Z)−1Z ′XW T X ′y

= (Z ′XW T X ′Z)−1Z ′XW T X ′(Zβ0 + e)

= β0 + (Z ′XW T X ′Z)−1Z ′XW T X ′e,

we have

√
T (β̂GMM − β0) =

(
Z ′X

T
W T

X ′Z

T

)−1
Z ′X

T
W T

X ′e√
T

→d (M ′
T WMT )−1M ′

T WN(0,ΞT )

= N(0, (M ′
T WMT )−1M ′

T WΞT WMT (M ′
T WMT )−1).

12.9 Optimal Weight Matrix

The optimal weight matrix W 0 is one which minimizes Σ̂GMM = var(
√
T (β̂GMM−β0)).

This turns out to be W 0 = Ξ−1
T . This yields the efficient GMM estimator:

β̂GMM = (Z ′XΞ−1
T X ′Z)−1Z ′XΞ−1

T X ′y.

Then, the variance-covariance matrix of the efficient GMM estimator becomes

varvar(
√
T (β̂GMM − β0)) = (M ′

T W 0MT )−1M ′
T W 0ΞT W 0MT (M ′

T W 0MT )−1

= (M ′
T Ξ−1

T MT )−1M ′
T Ξ−1

T ΞT Ξ−1
T MT (M ′

T Ξ−1
T MT )−1

= (M ′
T Ξ−1

T MT )−1.

This estimator is efficient only in the sense that it is the best (asymptotically) in

the class of GMM estimators with this set of moment conditions. W 0 = Ξ−1
T is not

known in practice, but it can be estimated consistently. For any Ŵ T →p W 0, we still

call β̂GMM = (Z ′XŴ T X ′Z)−1Z ′XŴ T X ′y the efficient GMM estimator, as it has the

same asymptotic distribution. In the special case that E(e2t |xt) = σ2
0 (homokedasticity),

then

W 0 = Ξ−1
T = σ2

0

(
1
T

T∑
t=1

E(xtx
′
t)

)−1

∝

(
1
T

T∑
t=1

E(xtx
′
t)

)−1

.
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Recall that 2SLS sets W T = (X ′X)−1 which is consistent to
∑T

t=1E(xtx
′
t)/T . Thus, un-

der the homoskedasticity assumption 2SLS is asymptotically efficient. In general, however,

if l > k, then 2SLS is asymptotic inefficient.

12.10 Estimation of the Efficient Weight Matrix

Let êt = yt − z′tβ̂2SLS and then set ĝt = xtêt and ĝ be the associated T × l matrix,

ḡT =
∑T

t=1 ĝt/T . The efficient GMM estimator is either

β̂GMM =
(
Z ′X(ĝ′ĝ)−1X ′Z

)−1
Z ′X(ĝ′ĝ)−1X ′y

or (suggested by Alstair Hall, Econometrica, 2000)

β̂GMM =
(
Z ′X(ĝ′ĝ − T ḡT ḡ

′
T )−1X ′Z

)−1
Z ′X(ĝ′ĝ − T ḡT ḡ

′
T )−1X ′y

and their variance-covariance matrices are (Z ′X(ĝ′ĝ)−1X ′Z)−1 and (Z ′X(ĝ′ĝ−T ḡT ḡ
′
T )−1X ′Z)−1,

respectively. Note that in most cases, when we say “GMM”, we actually mean “efficient

GMM”, as there is little point in using an inefficient GMM estimator, and it is so easy to

compute.

13 Nonlinear Regression Models

We say that the regression function g(x,θ) = E(yt|xt = x) is nonlinear in the parameter

if it cannot be written as g(x,θ) = z(x)′θ for some function z(x). Examples of nonlinear

regression function include

g(x, θ) = θ1 + θ2
x

1 + θ3x

g(x, θ) = θ1 + θ2x
θ3

g(x, θ) = θ1 + θ2 exp(θ3x)

g(x, θ) = θ1 + θ2x+ (θ3 + θ4x)Φ
(
x− θ5
θ6

)
g(x, θ) = θ1 + θ2x+ θ4(x− θ3) 1(x > θ3)

g(x, θ) = (θ1 + θ2x) 1(x < θ3) + (θ4 + θ5x) 1(x < θ3)

g(x, θ) = G(x′θ), G known.
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13.1 NLLS Estimation

The least squares estimator θ̂T minimizes the sum-of-squared-errors

ST (θ) =
T∑

t=1

(yt − g(xt,θ))2.

When the regression function is nonlinear, we call this the nonlinear least squares (NLLS)

estimator. The NLLS residuals are êt = yt − g(xt, θ̂T ). A common method to minimize

the function ST (θ) is the Gauss-Newton method or one of its variants. When g(xt,θ) is

differentiable, then the FOC for minimization are
T∑

t=1

∇θg(xt, θ̂T )êt = 0.

13.2 Concentration

A major simplification can be achieved through “concentration.” This can be done when

we partition θ = (β′, γ′)′ so that

g(xt,θ) = β′xt(γ)

where xt(γ) is a k × 1 function of xt and γ. In all the examples, this can be done with γ

of much smaller dimension than β. In many cases, γ is scalar.

The SSE function is ST (θ) = ST (β, γ) and thus

min
θ
ST (θ) = min

γ
min

β
ST (β, γ). (64)

Since β enters the model linearly, we see that

β̂T (γ) = arg min
β
ST (β, γ)

= [X(γ)′X(γ)]−1X(γ)′y,

where X(γ) is the T × k matrix of the stacked xt(γ)′.

Now set

ST (γ) = ST (β̂T (γ), γ)

which is the “concentrated” sum of squared errors. We have

γ̂T = arg min
γ
ST (γ) = arg min

γ
ST (β̂T , γ)

β̂T = β̂T (γ̂T ).
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The pair (β̂T , γ̂T ) are the joint NLLS estimates of (β, γ).

The main benefit of concentration is that the dimension of the numerical optimization

is typically reduced dramatically. When γ is scalar, the final minimization over γ can be

done by a grid search, for example.

13.3 Computation Using Linearization

A linearization regression can also be used to find the NLLS estimator θ̂T . It is an iterative

technique, meaning that we start with an initial guess θ̂1T , and then define an iteration

rule θ̂jT → θ̂j+1T , stopping when the iteration “converge”, meaning in practice that the

difference ‖θ̂j+1,T − θ̂jT ‖ is smaller than some pre-specified level.

We now define the iteration rule

θ̂j+1,T = θ̂jT + dj . (65)

where the “direction” dj is a function of θ̂jT . Let

gθtT
(j) = gθ(xt, θ̂jT )

êt(j) = yt − g(xt, θ̂jT ),

and

dj =

(
T∑

t=1

gθ(xt, θ̂jT ) gθ(xt, θ̂jT )′
)−1( T∑

t=1

gθ(xt, θ̂jT )êt(j)

)
.

Convergence requires dj = 0, which requires
∑T

t=1 gθ(xt, θ̂jT )êt(j) = 0, which is the same

as the first-order condition for NLLS minimization (64). Thus if (65) converges, it yields

the NLLS estimator.

One problem is that the updating rule (65) may tend to overshoot and thus fail to

converge. This algorithm can be easily modified to correct for this, by substituting for

(65) the rule

θ̂j+1,T = θ̂jT + λdj ,

where λ > 0 is a scalar “step length”. Rules for determining the step length are discussed in

the numerical optimization literature. The goal is to find λ so that S∗T (λ) = ST (θ̂jT +λdj)

is minimized. One simple rule is the “half” rule. Essentially, try the sequence λ =
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1, 1/2, 1/4, . . ., untill a value of λ is found which reduces the criterion S∗T (λ). Specifically,

first compute S∗T (1). If S∗T (1) < S∗T (0) = ST (θ̂jT ), then set θ̂j+1,T = θ̂jT + dj . If not,

compute S∗T (1/2). If S∗T (1/2) < S∗T (0), then set θ̂j+1 = θ̂jT + (1/2)dj . This is continued

until a value of λ yields an “improvement” in the criterion.

13.4 Asymptotic Distribution

Let gθt
= gθ(xt,θ0).

Theorem 13.1 If the model is identified and g(x,θ) is differentiable with respect to θ,
√
T (θ̂T − θ0) →d N(0,V T )

where

V = [E(gθt
g′θt

)]−1[E(gθt
g′θt
e2t )][E(gθt

g′θt
)]−1.

Proof: Let

y0
t = et + g′θt

θ0.

For θ close to the true value θ0, by a first-order Taylor series approximation,

g(xt,θ) ≈ g(xt,θ0) + g′θt
(θ − θ0).

Thus

yt − g(xt,θ0) ≈ (et + g(xt,θ0))− (g(xt,θ0) + g′θt
(θ − θ0))

= et − g′θt
(θ − θ0)

= y0
t − g′θt

θ.

Hence

θ̂T = arg min
θ

T∑
t=1

(yt − g(xt,θ))2

≈ arg min
θ

T∑
t=1

(y0
t − g′θt

θ)2

=

(
T∑

t=1

gθt
g′θt

)−1( T∑
t=1

gθt
y0

t

)

= θ0 +

(
T∑

t=1

gθt
g′θt

)−1( T∑
t=1

gθt
et

)
.
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This is a linear regression formula so the asymptotic distribution follows from the theory

for OLS. An estimate of the variance-covariance matrix for θ̂T is

V̂ =

(
T∑

t=1

ĝθt
ĝ′θt

)−1( T∑
t=1

ĝθt
ĝ′θt
ê2t

)−1( T∑
t=1

ĝθt
ĝ′θt

)−1

where ĝθt
= gθ(xt, θ̂T ) and êt = yt − g(xt, θ̂T ).

14 Regression Models with Limited Dependent Variables

In the previous sections, the dependent variable in regression models is a quantitative ran-

dom variable. What happens if we want to use multiple regression to explain a qualitative

dependent variable.

14.1 A Binary Dependent Variable: the Linear Probability Models

Consider the regression model:

y = Xβ0 + e,

where the components in y is a binary variable, i.e, yt = 1 or 0 only. Given E(e|X) = 0,

then we have the conditional mean of y as

E(y|X) = Xβ0.

When yt is a binary variable taking on values zero and one (i.e., a Bernoulli random

variable with parameter p which is the probability value of occurring “success”), it is

always true that P (yt = 1|xt)) = E(yt|xt). That is,

P (yt = 1|xt)) = E(yt|xt) = β10 + β20xt2 + · · ·+ βk0xtk, (66)

which say that the probability of “success” is a linear function of the xt. Equation (66)

is also called the response probability. Note that P (yt = 0|xt)) = 1 − P (yt = 1|xt)) is

also a linear function of xt. The multiple linear regression model with a binary dependent

variable is called the linear probability model because the response probability is linear

in the parameters βj0 which measures the change in the probability of success when xtj

changes, holding other factors fixed:

4P (yt = 1|xt) = βj04xtj .
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Given the condition of full column rank of X, the parameters β) in a linear probability

model can be estimated by OLS and then the estimated equation is obtained:

ŷt = β̂1T + β̂2Txt2 + · · ·+ β̂kTxtk,

where ŷt is the predicted probability of success. However, some drawbacks of the OLS

estimation for the linear probability model:

1. ŷt could be less than 0 or greater than 1.

2. A probability cannot be linearly related to the independent variables for all their

possible values. For example, β̂jT = 0.262 and 4xtj = 4, then 4P (yt = 1) =

0.262× 4 = 1.048 which is greater than 1.

14.2 Logit and Probit Models for Binary Response

The linear probability model is simple to estimate and use, but it has two most important

disadvantages: the fitted probabilities can be less than zero or greater than one and the

partial effect of any explanatory variable is constant. These limitations can be overcome

by using more sophisticated binary response models.

In a binary response model, interest lies primary in the response probability and it can

be transformed as

P (y = 1|X) = P (y = 1|x2,x3,xk)

= G(β10 + β20x2 + · · ·+ βk0xk) = G(Xβ0), (67)

where 0 < G(z) < 1 for any real numbers z. Various nonlinear functions have been

suggested for the function G to make sure that the probabilities are between zero and one.

The common used functions are logist and Gaussian density functions. In the logit model,

G is the logist function:

G(z) = exp(z)/[1 + exp(z)].

This is the cumulative distribution function for a standard logistic random variable. In

the probit model, G is the standard Gaussian cumulative distribution function:

G(z) = Φ(z) =
∫ z

−∞

1√
2π

exp(−v2/2)dv.
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Logit and probit models can be derived from an latent variable model. Let y∗ be an

unobserved, or latent, variable, defined by

y∗ = Xβ0 + e, y = 1[y∗ > 0], (68)

where 1[·] i an indication function. Therefore, y = 1 if y∗ > 0 and y = 1 if y∗ ≤ 0.

Assume e is independent of X and that e has the standard logistic distribution or the

standard normal distribution. In either case, e is symmetrically distributed about zero,

then 1 − G(−z) = G(z) for all real numbers z. From (68), we can derive the response

probability for y:

P (y = 1|X) = P (y∗ > 0|X) = P (e > −Xβ0|X)

= 1−G(−Xβ0) = G(Xβ0),

which is exactly the same as (67).

The partial effect of roughly continuous variable on the response probability is derived

as

∂P (y = 1|X)
∂xj

=
∂G(Xβ0)

∂xj

=
dG(z)
dz

∂Xβ0

∂xj

= g(Xβ0)βj0.

Because G is the cdf of a continuous random variable, g is the probability density function.

In the logit and probit cases, G(·) is a strictly increasing cdf, and so g(z) > 0 for all z.

Therefore, the partial effect of xj on P (y = 1|X) depends on X through the positive

quantity g(Xβ0), which means that the partial effect always has the same sign as βj0.

Besides, the relative effects of any two continuous explanatory variables do not depend on

X but on βj0/βh0.

As P (yt = 1|xt) = G(x′tβ0) and P (yt = 0|xt) = 1 − G(x′tβ0), the density of yt given

xt can be written as

f(yt|xt;β0) = [G(x′tβ0)]
yt [1−G(x′tβ0)]

1−yt , yt = 0, 1.

The log-likelihood for observation t is

`t(β0) = yt log[G(x′tβ0)] + (1− yt) log[1−G(x′tβ0)].
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Because G(·) is strictly between zero and one for logit and probit, `t(β0) is well-defined

for all values of β0. Then, the log-likelihood for a sample of T observations is L(β0) =∑T
t=1 `t(β0) and the maximum likelihood estimator β̃T for β0 is obtained by maximizing

L(β0). The asymptotic variance-covariance matrix of β̃T is

ˆAvar(β̃T ) =

(
T∑

t=1

[g(x′tβ̃T )]2xtx
′
t

G(x′tβ̃T )[1−G(x′tβ̃T )]

)−1

.

Several measures of goodness-of-fit have been suggested for the logit and probit models.

The percent correctly predicted is computed as follows. For each t, denote ỹt = 1 if

G(x′tβ̃T > 0.5 and ỹt = 0 if G(x′tβ̃T ≤ 0.5. Then the percent correctly predicted is

computed as
∑T

t=1 1(ỹt = yt)/T . That is the percentage of times of predicted yt matches

the actual yt, i.e, ỹt = yt. Pseudo R-squared measure for binary response models has been

suggested by McFadden (1974) as 1− Lu/L0, where

Lu =
T∑

t=1

yt log[G(x′tβ̃T )] + (1− yt) log[1−G(x′tβ̃T )]

L0 =
T∑

t=1

yt log[G(β̃1T )] + (1− yt) log[1−G(β̃1T )],

in which β̃1T is the MLE for β10 under βj0 = 0,∀j ≥ 2. Some other measures for goodness-

of-fit have been suggested by Maddala (1983).
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15 The Bootstrap

15.1 An Example

Consider the DGP of an i.i.d. sample {yi, xi1, xi2, i = 1, . . . , n} by the linear Gaussian

regression

yi = β0 + β10xi1 + β20xi2 + ei(
xi1

xi2

)
∼ N(0, I2)

ei ∼ N(0, σ2
0).

We set σ0 = 3, β0 = 0, β10 = 1, β20 = 0.5, and n = 300.

15.2 Definition of the Bootstrap

Let wi = (yi, x
′
i)
′ and let F (w) = P (wi ≤ w) be the cumulative distribution func-

tion (CDF) of wi. Let β = (Exix
′
i)
−1E(xiyi) be the regression slope and θ = h(β) be

some parameter of interest. Let F 0,β0 and θ0 = h(β0) denote the true values of F ,β and

θ.

It will be helpful to think of β and θ as a function of F as

β = (Exix
′
i)
−1E(xiyi)

=
(∫

xx′dF (w)
)−1(∫

xydF (w)
)

:≡ β(F ).

The true values of β0 and θ0 satisfy β0 = β(F 0) and θ0 = θ(F 0).

Let β̂n be the OLS estimator and θ̂n = h(β̂n). Let Tn = Tn(w1, . . . ,wn,θ) be a

statistic of interest. Let Gn(t,F ) = P (Tn ≤ t|F ) be the exact CDF of Tn when the data

are sampled from the distribution F . The exact distribution Gn is a function only of F ,

because the distribution of Tn depends only on the distribution of wi, which is F , and the

parameter θ, which is also determined by F . The true CDF of Tn is Gn(t,F 0), which is

unknown since F 0 is unknown.

The bootstrap, an idea attributed to Efron (1979), is to use the empirical distribution

of the data {yi, xi1, xi2, i = 1, . . . , n} to estimate F 0 and hence Gn(t,0 ). In many cases,

the bootstrap achieves a much better approximation than asymptotic methods.
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For any estimate F̂ n of F 0, the bootstrap estimator of Gn(t,F 0) is Ĝn(t) = Gn(t, F̂ n).

Bootstrap inference is based on Ĝn(t). The most common choice for F̂ n is the empirical

distribution function (EDF) of the sampled data which will be defined in the next section.

In this case Ĝn(t) is called nonparametric bootstrap. Some other estimates of F̂ n are

possible and will be discussed later.

The bootstrap distribution substitutes F̂ n for F 0 in the formula Gn(t,F ). As such, it

not only pretends that the distribution of wi is F̂ n rather than F 0, but it also pretends

that the true value of the parameter is θ̂n = θ(F̂ n), rather than θ0 = θ(F 0). We call θ̂n

the bootstrap parameter estimate.

Let w∗
i be a random variable with distribution F̂ n and T ∗n = Tn(w∗

1, . . . ,w
∗
n, θ̂n) be a

random variable with distribution Ĝ∗n. That is

P (w∗
i ≤ w) = F̂ n(w)

P (T ∗n ≤ t) = Ĝ∗n(t).

T ∗n is the correct analog of Tn when the true CDF is F̂ n, as the data w∗
i are sampled from

the CDF F̂ n, and the parameter θ̂n is determined by F̂ n.

15.3 The Empirical Distribution Function

Note that F 0(w) = P (wi ≤ w) = E[I(wi ≤ w)], where I(·) is the indicator function,

so F 0(w) can be expressed as a population moment. A natural estimate is therefore the

corresponding sample moment:

F̂ n(w) =
1
n

n∑
i=1

I(wi ≤ w).

F̂ n(w) is called the empirical distribution function (EDF). F̂ n is a nonparametric estimate

of F 0. Note that F 0 may be either discrete or continuous, F̂ n is by construction a

(discontinuous) step function.

For ant w, 1(wi ≤ w) is an i.i.d. random variable with expectation

E[1(wi ≤ w)] =
∫ ∞

−∞
1(wi ≤ w)dF 0 = F 0(w).
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