Lograngian Floer Homology and Fukaya Cotegories Ceyturn Elmacioglu

Let L be a Lograngian submanifold in a symplectic manifold (M, ω) . Suppose that Y_t is a Hamiltonian diffeomorphism generated by some Hamiltonian $H_t M \rightarrow \mathbb{R}$.

<u>Theorem</u>: (Floer) Assume that the symplectic area of any topological disc in M with boundary on L vanishes. Assume moreover that L and $\Psi(L)$ intersect transversely. Then the number of intersection points of L and $\Psi(L)$ satisfies the bound

 $|\Psi(L) h L| \ge \sum_{i} \dim H(L; \mathbb{Z}_2).$

Floer's approach to answering this question was to associate a pair of Log-rangians Lo and L_L a chain complex

$$CF(L_0, L_1) = generated$$
 by intersection points of L_0 and L_1
together with a differential $\partial: CF(L_0, L_1) \rightarrow CF(L_0, L_1)$ with the properties:
(i) $\partial^2 = 0$ so that Floer cohomology $HF(L_0, L_1)$ is well-defined,
(ii) if L_1 and L'_1 are Hamiltonian isotopic, then $HF(L_0, L_1) \cong HF(L_0, L'_1)$, ar

(iii) if L_1 is Hamiltonian isotopic to L_0 , then $HF(L_0, L_1) \cong H^*(L_0)$.

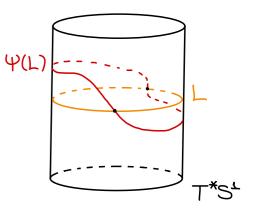
<u>Remark</u>: Assuming Floer cohomology can be defined this way, Floer's theorem is trivial since

 $|\Psi(L) \oplus L| = \dim CF(\Psi(L), L) \ge \dim HF(\Psi(L), L) = \dim H^{*}(L)$

Example: Consider the cylinder $T^*S^1 = \mathbb{R} \times S^1$. The assumption that $\Psi \in \text{Ham}(M)$ implies that if L is the zero section, then $\Psi(L)$ can be of the following form. It is then clear that $|\Psi(L) + L| \ge 2$ which satisfies the above the orem since

$$\dim H^*(L) = \dim H^*(S^L) = \dim \mathbb{Z}^2 = 2$$

Note that Floer's Theorem fails if (i) 4 is a symplectomorphism only, or (ii) we remove the disk assumption.



Lagrangian Floer Cohomology

Let Lo and Li be compact Lagrangians in M such that (i) Lo and Li intersect transversely, and (ii) they are equipped with spin structures.

Definition of Floer Cohomology

 $\frac{\mathsf{Def}^{\underline{n}}}{\Lambda} = \left\{ \sum_{i=0}^{\infty} a_i \mathsf{T}^{\lambda_i} \mid a_i \in \mathsf{IK}, \lambda_i \in \mathsf{R}, \lim_{i \to \infty} \lambda_i = \infty \right\}.$

<u>Def</u>: The energy of a map $u: \mathbb{R} \times [0, 1] \longrightarrow \mathbb{M}$ is defined to be

$$\frac{\mathsf{E}(u)}{\mathsf{R} \times [0, 1]} = \int \left| \frac{\partial u}{\partial s} \right|^2 ds \, dt$$

Equip M with an w-compatible almost complex structure J. We can now define the relevant moduli space of J-holomorphic curves.

$$\frac{\text{Def}^{2}}{\mathcal{M}}: \text{ Given a homotopy class } \text{Eule} \pi_{2}(M, L_{\circ} \cup L_{\perp}), \text{ we denote}$$

$$\frac{\widehat{\mathcal{M}}(p,q; \text{Eul}, J) \coloneqq}{\widehat{\mathcal{M}}(p,q; \text{Eul}, J)} \coloneqq \left\{ u \colon \mathbb{R} \times \text{Eo,l} \to M \mid \begin{array}{l} \overline{\partial}u = 0, \ u(s, o) \in L_{\circ} \text{ and } u(s, l) \in L_{\perp} \text{ Vse } \mathbb{R}, \\ \lim_{s \to \infty} u(s, l) = p, \ \lim_{s \to \infty} u(s, l) = q, \ \mathbb{E}(u) < \infty \end{array} \right\}$$

There is an obvious R-action on $\hat{\mathcal{M}}(p,q; [u], J)$ given by $a \cdot u(s,t) = u(s-a,t)$. The quotient of $\hat{\mathcal{M}}(p,q; [u], J)$ by this action will be denoted by $\mathcal{M}(p,q; [u], J)$.

<u>Remark</u>: The boundary value problem defining $\mathcal{M}(p,q; [u], J)$ is a Fredholm problem in the sense that the linearization $D_{\overline{s}_{3,u}}$ of $\overline{\vartheta}_{3}$ at a given solution u is a Fredholm operator, hence has an index ind ([u]).

<u>Thm</u>: The space of solutions $\hat{M}(p,q; [u], J)$ is a smooth orientable manifold of dimension ind ([u]) if $D_{\bar{p}_{q,u}}$ is surjective at each point of $\hat{M}(p,q; [u], J)$ and L_i is spin.

<u>Def</u>¹: The Floer chain complex is the chain complex $CF(L_0, L_1) := (+) \quad A \cdot p$ $pe K(L_0, L_1)$ equipped with the Floer differential which is Λ -linear and given by

$$\frac{\partial \rho}{\partial \rho} := \sum_{\substack{q \in \mathbb{X}(L_{0}, L_{1}) \\ Euil: ind(Euil) = 1}} \left(\# \mathcal{M}(\rho, q; Euil, J) \right) \cdot T^{\omega(Euil)} \cdot q.$$

<u>Remark</u>: We make two observations.
 (i) Gromov's Compactness Theorem ensures that, given any energy bound Eo, there are only finitely many homotopy classes [u] with w([u]) < Eo for which the moduli space M(p,q; [u], J) is nonempty. This is precisely why we use Novikov coefficients and weigh the counts of pseudo-holomorphic strips by symplectic area.
 (ii) We consider homotopy classes of ind([u]) = 1 because then

$$\dim \mathcal{M}(p,q; [u], J) = \dim \mathcal{M}(p,q; [u], J) - L$$
$$= \operatorname{ind}([u]) - L = L - L = O$$

and #M(p,q; [u], J) makes sense.

Remark:

(i) Formally, Lagrangian Floer Homology can be considered as an infinite-dimensional analogue of Morse homology for the action functional on the universal cover of the path space $P(L_0, L_1)$, where $A(x, [r]) = -\int_{r} \omega$

(ii) Grading on the chain complex is as follows. Consider the LGr(n)-bundle $LGr(TM) \rightarrow M$. Note that $\pi_1(LGr(n)) \cong \mathbb{Z}$. Let LGr(TM) be the fiberwise universal bundle over M.

Fact: (1) The bundle LGr(TM) exists if $2C_1(M) = 0$. (2) There is a canonical short path between $L \xrightarrow{\sigma} LGr(TM)$ any two Lograngian subspaces in LGr(n).

We have the diagram on the right. The Maslov class is the obstruction to the existence of the lift $L \rightarrow LGr(TM)$. Given $p \in X(L_0, L_1)$, find a path X between $\tilde{S}_{L_0}(p)$ and $\tilde{S}_{L_1}(p)$. If σ denotes the canonical short path from $S_{L_1}(p)$ to $S_{L_0}(p)$, the grading of p is $deg(p) = [\sigma \cdot \pi(X)] \in \pi_1(LGr(n))$.

Let
$$M_{o,k+1} = \begin{cases} \text{ordered } (k+1) - \text{tuples of points on } S^{L} \\ A_{o} + (D) \end{cases}$$

and observe that dim $M_{o,k+1} = k-2$.

 $\frac{\text{Def}^{P}}{M} \quad \text{Given a homotopy closs } \text{Eule} \Pi_{2}(M, L_{o} \cup \dots \cup L_{k}), \text{ we denote}$ $\frac{\text{D}(P_{1}, \dots, P_{k}, q; \text{Eul}, 5) := \left\{ \begin{array}{c} D \cdot \sum_{z_{0}, \dots, z_{k}} \sum_{u} \sum_{u} \sum_{z_{i} \in U} \sum_{z_{i} \in U} \sum_{u} \sum_$

where we consider each strip up to the action of $Aut(D^2)$ by reparametrization. Assuming transversality and taking into account the movement of z; for $i \le k+1$ on $S^1 = \partial D$, the expected dimension of this moduli space is $\dim \mathcal{M}(p_1, \dots, p_k, q; [u], J) = \operatorname{ind}([u]) + (k+1) - \dim \operatorname{Aut}(D^2)$ $= \operatorname{ind}([u]) + k-2$ <u>Def</u>: Let Lo,..., Lk be Lograngian submanifolds with spin structures. The operation $\mu^k: CF(L_{k,1}, L_k) \otimes \cdots \otimes CF(L_0, L_k) \to CF(L_0, L_k)$

is the Λ -linear map

$$\mu^{k}(P_{k},\dots,P_{1}) = \sum_{q \in X(L_{o},L_{k})} (\#\mathcal{M}(P_{1},\dots,P_{k},q;L_{u}J,J)) \cdot T^{w(L_{u}J)}$$

$$E^{uJ:ind(LuJ)=2-k}$$

<u>Remark</u>: In particular, μ^{L} is the Floer differential $\partial : CF(L_{o}, L_{L}) \rightarrow CF(L_{o}, L_{L})$. The most important property of the higher product operations μ^{L} is the following.

Theorem: $(A_{\infty} - relations)$ If $[w_{2} \cdot \pi_{2}(M, L_{i}) = 0$ for all i, then the operations μ^{k} satisfy the $A_{\infty} - relations$ $\sum_{l=1}^{k} \sum_{j=0}^{k-l} (-1)^{*} \mu^{k-l+L} (P_{k}, ..., P_{j+l+L}, \mu^{l}(P_{j+l}, ..., P_{j+L}), P_{j}, ..., P_{L}) = 0$ where $* = j + deg(p_{1}) + ... + deg(p_{j})$. Let us comment further on these relations by considering the summands for distinct values of l and j. When l=1, the product autside is always μ^{t} , therefore inside is always μ^{t} , therefore

$$\begin{aligned} \dot{J} = O \implies \mu^{k}(P_{k}, \dots, P_{2}, \mu^{t}(P_{1})) \\ \vdots & \vdots \\ \dot{J} = k - 1 \implies \mu^{k}(\mu^{t}(P_{k}), P_{k-1}, \dots, P_{1}). \end{aligned}$$

When l=2, the product atside is always μ^{k-1} and inside is always μ^2 , therefore $j=0 \Rightarrow \mu^{k-1}(p_k, \dots, p_3, \mu^2(p_2, p_1))$ $\vdots \qquad \vdots \qquad \vdots$ $j=k-2 \Rightarrow \mu^{k-1}(\mu^2(p_k, p_{k-1}), p_{k-1}, \dots, p_1)$

Continuing in this manner, when l=k (and j can only be 0), the product ∞ -taide is μ^{L} and inside is μ^{K} , therefore

$$j=0 \implies h_{\tau}(h_{\kappa}(b^{\kappa},\dots,b^{\tau})) = g(h_{\kappa}(b^{\kappa},\dots,b^{\tau}))$$

Hence, one can see the A_{∞} -relations as a certain compatibility condition of

the higher products µk. Corollary: (Floer product) There is a product $:: CF(L_2, L_1) \otimes CF(L_1, L_n) \longrightarrow CF(L_2, L_n)$ satisfying the Leibniz-type formula $\partial(p_2 \cdot p_1) = \mp (\partial p_2) \cdot p_1 + p_2 \cdot (\partial p_1).$ In particular, this product induces a well-defined product $HF(L_2, L_1) \otimes HF(L_1, L_2) \longrightarrow HF(L_2, L_2)$

which is independent of the chosen almost complex structure and Hamiltonian perturbations and is associative.

$$\frac{Proof}{Proof} \cdot \text{Letting } P_2: P_1:=\mu^2(P_2,P_1), \text{ the } A_m \text{-relations imply that}$$

$$\partial(P_2:P_1) = \mu^2(\mu^2(P_2,P_1)) = \mp \mu^2(\mu^2(P_2),P_1) \mp \mu^2(P_2,\mu^2(P_1))$$

$$= \mp (\partial P_2) \cdot P_1 \mp P_2 \cdot (\partial P_1)$$

as desired.

<u>Def</u>: The Liouville vector field on an exact symplectic manifold $(M, \omega = d\theta)$ is the unique vector field Z sotisfying $L_Z \omega = \theta$, or equivalently by Cartan's formula, $\mathcal{L}_Z \omega = \omega$.

<u>Def</u>: A Liouville manifold is an exact symplectic manifold $(M, \omega = d\theta)$ such that the Liouville vector field Z is complete and outward pointing at infinity.

More precisely, we require that there is a compact domain M^n with boundary ∂M on which $\alpha = \Theta|_{\partial N}$ is a contact form. Moreover, Z is positively transverse to ∂M and hos no zeros autside of M^n .

Then, the flow of Z can be used to identify $M \cdot M^{in}$ with the symplectization $(1, \infty) \times \partial M$ equipped with the symplectic form w = d(rx) and Liouville vector field $Z = r^{2}/\partial r$.

<u>Def</u>: An exact Lograngian in $(M, d\theta)$ is a Lograngian L such that there is a function $f \colon L \rightarrow \mathbb{R}$ with the property $\theta|_{L} = df$.

We restrict our attention to exact Lograngian submanifolds L in M which are canonical at infinity, i.e. if L is noncompact, then at infinity, if must coincide with the cone $(1, \infty) \times \partial L$ over some Legendrian submanifold ∂L of ∂M .

<u>Def</u>ⁿ: Given two Lograngians Lo, L₁, the wropped Floer complex, denoted by $CW(L_0, L_1; H)$, is generated by points of $\overline{P}_{H}^{*}(L_0)$ th L₁ over K. The differential counts solutions to Floer's equation, as before.

Remark:

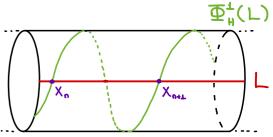
- (i) We only consider Hamiltonians $H: M \rightarrow \mathbb{R}$ which, outside a compact set, satisfy $H = r^2$ where $re(x, \infty)$ is the radial coordinate.
- (ii) It turns out that the naturally defined product map would take values in $CW(L_0, L_2; 2H)$. There is a rescaling trick solving this issue.
- (iii) Using the rescaling trick, the higher products can also be defined $\mu^{k}: CW(L_{k-1}, L_{k}, H) \otimes \cdots \otimes CW(L_{o}, L_{1}; H) \longrightarrow CW(L_{o}, L_{k}; H)$

which makes the wrapped Fukaya category, denoted W(M), on A_{∞} - category, whose objects are exact Lagrangians that are cononical at infinity and $\operatorname{Hom}_{W(M)}(L_{0}, L_{1}) := CW(L_{0}, L_{1})$.

Example: Wrapped Floer Complex in IR×St

Let $M = T^*S^1 = IR \times S^1$ be equipped with the standard Liouville form rd9 and the wrapping Hamiltonian $H = r^2$. Consider the exact Lograngian $L = IR \times 2pt3$. $IR \times 2pt3$.

We can label the intersection points by integers: $X(L,L) = \{X_i : i \in \mathbb{Z}\}$



Recall that the differential counts rigid pseudoholomorphic strips with boundon L and $\underline{P}_{H}^{L}(L)$. It is clear from the diagram that no such strip exists. Hence $\partial = 0$ and

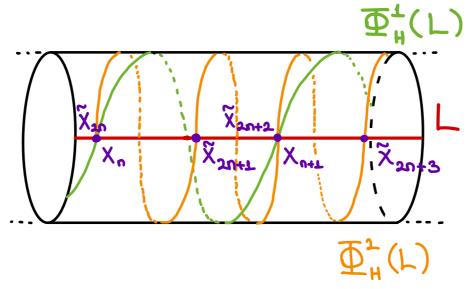
$$HW(L,L) = CW(L,L) = span \{ X_i : i \in \mathbb{Z} \}$$

<u>Kemark</u>: Since L is invariant under the Liouville flow, the rescaling trick from before simply amounts to identifying

$$X(L,L;2H) = \overline{\Phi}_{H}^{2}(L) \cap L \qquad \& \qquad X(L,L;H) = \overline{\Phi}_{H}^{2}(L) \cap L$$

via the radial rescaling $r \mapsto 2r$. In other words, the intersection point of $\Phi^2_{H}(L)$ and L lying between X_n and X_{n+L} is \tilde{X}_{2n+L} and is identified with X_{2n+L} ;

and the intersection point of $\Phi^2_{\mu}(L)$ and L lying at x_n is \overline{x}_{2n} and is identified with X_{2n} .



After this identification, we see that $x_n \cdot x_{n+1} = \tilde{x}_{2n+1} = x_{2n+1}$. This further generalizes to $x_i \cdot x_j = x_{i+j}$.

<u>Theorem</u>: (Wrapped Floer Complex of T^*S^4) There is an A_{∞} -algebra isomorphism $CW(L,L) \cong IK[X,X^4]$.

The above theorem is a simple cose of a more general result.

<u>Theorem</u> (Abouzaid) Let N be a compact spin manifold. Let $L = T_q^* N$ be the cotangent fiber at some point qeN. Then there is a quosi-isomorphism

 $CW^*(L,L) \simeq C_{-*}(\Omega_qN)$

of A_{∞} -algebras, where the right hand side is the chains on the based loop space.

Remember the conjecture by Arnold that Shuhao told us about in the first two weeks.

<u>Conjecture</u>: (Arnold) Let N be a compact closed manifold. Then any compact closed exact Lagrangian submanifold of T*N is Hamiltonian isotopic to the zero section.

This conjecture remains out of reach of current technology, however we have: <u>Theorem</u>: (Fukaya-Seidel-Smith, Nodler-Zoslow, Abouzaid, Kragh) Let L be a compact connected exact Lagrangian submanifold of T*N. Then, as an object of W(T*N), L is quasi-isomorphic to the zero section and the restriction $\pi |_{L}: L \rightarrow N$ is a homotopy equivalence.