
1. Symplectic geometry of the cotangent bundle

Given any smooth manifold Q, it has long been known (with roots in the Hamiltonian for-
mulation of classical mechanics) that its cotangent bundle is canonically an exact symplectic
manifold (T ∗Q,ω), with the primitive 1-form λ to ω given tautologically by λ(p,q)(v) = p(π∗v),
where q ∈ Q, p ∈ T ∗

q Q, and π : T ∗Q → Q is the projection. The symplectic structure is an
invariant of the smooth structure on Q. It is natural to ask:

Question 1.1 (Arnol’d, Eliashberg, ......): If Q is a closed manifold, does the symplectic
structure on T ∗Q determine the smooth structure on Q, i.e. is (T ∗Q,ω) a complete diffeo-
morphism invariant of Q?

Remark 1.2: If Q is allowed to be open, notice that there are infinitely many smooth struc-
tures on R4, but by h-principle their cotangent bundles are symplectomorphic. Thus the
restriction to closed Q.

Notice that in this question, we are viewing T ∗Q as an abstract symplectic manifold rather
than a bundle. In particular, we are asking whether any symplectomorphism ϕ : T ∗Q1 →
T ∗Q2 implies a diffeomorphism Q1

∼= Q2, where ϕ is not asked to send the zero section
Q1 ⊂ T ∗Q1 to the zero section in T ∗Q2.

The first observation is that the image of the zero section Q1 under ϕ in T ∗Q2 is a Lagrangian,
since Q1 itself is a Lagrangian in Q1. However being a Lagrangian in T ∗Q2 itself does
not impose a very good topological constraint — for example, in any T ∗Q2, there is an
abundance of Lagrangian tori coming from various Darboux charts; in fact, any Lagrangian
in the Euclidean space is a Lagrangian in any symplectic manifold of the same dimension!

The key lemma that reduces the study of Question 1.1 to a more tractable question about
Lagrangians is the following:

Lemma 1.3 (E.g. Lemma 11.2 in [CE12]): Any symplectomorphism ϕ : (T ∗Q, dλ) → (T ∗Q̃, dλ̃)

is diffeotopic to an exact symplectomorphism, i.e. a symplectomorphism ψ such that ψ∗λ̃−λ
is exact.

Proof. First notice that if we know ϕ∗λ̃−λ is 0 outside a compact set, then the standard Moser
argument would apply. In more details, Choose a family of λt such that λ0 = λ,λ1 = ϕ∗λ̃
and coincide outside the same compact set. We seek a family Xt of vector fields on T ∗Q
which integrates to diffeomorphisms gt : T

∗Q → T ∗Q such that

g∗t (dλt) = dλ, g∗t (λt) = λ+ d(function).

Taking the time-derivative of the first equation gives

g∗t (dλ̇t + LXtdλt) = 0

Now

dλ̇t + LXtdλt = dλ̇t + dιXtdλt
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by Cartan’s homotopy formula. Therefore we seek a solution to

λ̇t + ιXtdλt = 0.

E.g. if θ = ϕ∗λ − λ, then we can take λt = λ + tθ; since dλt stays the same, this equation
becomes

θ + ιXdλ = 0.(1.1)

But this equation has a unique solution X due to the non-degeneracy of dλ. Moreover λ̇t

vanishes outside a compact set, thus so is Xt, and therefore it indeed integrates to a flow gt.
Now

d

dt
g∗t λt = g∗t (λ̇t + dιXtλt + ιXtdλt) = g∗t dιXtλt.

Therefore this integrates to
g∗t λt − λ = d(function).

and we are done.

Now, we do not know in general that ϕ∗λ̃ − λ vanishes outside a compact set. As before
define the closed 1-form

θ := ϕ∗λ̃− λ.

Now we can still solve equation (1.1), but we do not know the global existence of finite-
time solution due to non-compactness. However the non-compactness is well-controlled: first
notice that the geometry of T ∗Q outside a certain compact set looks homogeneous. Specifi-
cally, consider the hypersurface Σ ⊂ T ∗Q a cosphere bundle (i.e. covectors in T ∗Q of some
fixed length). Notice that there is an exact symplectic embedding Σ × [0,∞) → T ∗Q. Let
π : Σ× [0,∞) → Σ be the projection. Then we know that

θ|Σ×[0,∞) = π∗β + dF

for some F ∈ C∞(Σ×[0,∞)). Now define G : T ∗Q → R by setting it equal to F on Σ×[1,∞),
0 inside the the complement of Σ×[0,∞) (the disc bundle), and interpolate in between. Then
define

η := θ − dG.

Now η = π∗β on Σ× [1,∞) and coincides with θ in the compact domain, so we can solve the
(analogue of) equation (1.1)

η + ιXdλ = 0.

Moreover, since in the cylindrical end Σ × [1,∞), η looks like π∗β, the vector field X is
complete. One can then easily verify the time-1 flow of X gives the desired map. □

The proof illustrates an important point about the symplectic geometry of cotangent bundles:
that they have “bounded geometry”; specifically the geometry at infinity is “cylindrical”. In
general, such open exact symplectic manifolds are called Liouville domains. More on this in
the following weeks.

This lemma then allows us to say the following: if T ∗Q1 and T ∗Q2 are symplectomorphic,
then we can deform the symplectomorphism to an exact one ϕ : T ∗Q1 → T ∗Q2, so that
ϕ∗λ2 = λ1 + dF for some function F ; therefore the image of the zero section Q1 under ϕ is
an exact Lagrangian, i.e. λ2|ϕ(Q1) is an exact 1-form (if it were a non-exact Lagrangian, we
only know that this is a closed 1-form).
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This then reduces Question 1.1 to the following question:

Question 1.4: Is any closed exact Lagrangian in T ∗Q diffeomorphic to Q?

This question is still wide open.

We call any such closed exact Lagrangian L ⊂ T ∗Q a nearby Lagrangian. Exactness is a
strong condition, which excludes examples like “local” Lagrangians in Darboux charts. For
example, in T ∗S1 ∼= S1 × R, any circle one draws in the cylinder is a Lagrangian, but an
exact Lagrangian circle must have the same area above the zero section as that below the
zero section.

Finally we mention the famous nearby Lagrangian conjecture by Arnol’d, which is a (much)
stronger form of Question 1.4:

Conjecture 1.5: Given a closed smooth manifold Q, is any closed exact Lagrangian in T ∗Q
Hamiltonian diffeomorphic to Q?

This conjecture basically says any nearby Lagrangian is “indistinguishable” to the zero section
in symplectic topology.

2. Cotangent bundles of exotic spheres

Let us now restrict attention to Q being an exotic sphere, i.e. a closed smooth manifold
homotopy equivalent ( ⇐⇒ homeomorphic, by Poincaré conjecture) to a sphere.

By now, we know that the question we raised is not “obviously true” or “obviously false”.

On the one hand,

Proposition 2.1: Given any exotic sphere Σn, its disc cotangent bundle D∗Σn is diffeomor-
phic to that of the standard sphere D∗Sn.

Proof sketch? 1 This follows from putting together several big results in geometric topology.
First, let Σn be an exotic sphere, and consider the disc cotangent bundleD∗Sn of the standard
sphere. By Adams (might also be in Kervaire-Milnor?), Σn and Sn has isomorphic tangent
bundles. The Smale-Hirsch immersion theory/h-principle says that the space of immersions
is weak homotopy equivalent to the space of fiberwise injective bundle morphisms TΣn →
T (T ∗Sn). Therefore, there is an immersion Σn ↬ T ∗Sn in the same class as the zero section.
Now by Whitney trick, one can resolve it to an embedding. The normal bundle is isomorphic
to the cotangent bundle, so we get an h-cobordism between the unit cotangent bundle of
Σn and that of Sn. If the dimension is enough, we obtain the desired diffeomorphism by a
standard argument from h-cobordism theorem. □

1I have not carefully checked whether this argument is correct.



4

On the other hand, it turns out that

Theorem 2.2 (Abouzaid): Every nearby Lagrangian homotopy sphere in T ∗S4k+1 bounds a
compact parallelisable manifold.

There are exotic spheres that do not bound parallelisable manifolds (see Kervaire-Milnor).
This shows that symplectic structure does see smooth structures! This is yet another demon-
stration of the subtle rigidty of symplectic structures. The proof is essentially an ingenious
adaptation of an argument already present in Gromov’s 1985 pseudo-holomorphic curve pa-
per, and closely resembles Donaldon’s proof of diagonalization theorem using moduli of ASD
connections.

The assumption of L being a homotopy sphere in the theorem is in fact not necesssary:

Theorem 2.3 (..., Fukaya-Seidel-Smith, Abouzaid, Kragh): Nearby Lagrangians in T ∗Q are
homotopy equivalent to Q.

Understanding the proof of this theorem will be our goal for this semester. The proof uses
heavy machinery in Floer-Fukaya theory and categorical homological algebra. For now, we
will go into the proof of Theorem 2.2 which only uses analysis of pseudo-holomorphic curves.
The remainder of this note is a summary of (a version of) an argument by Gromov that
motivates Abouzaid’s proof.

3. Non-existence of exact Lagrangians in Euclidean spaces

Theorem 3.1 (Gromov [Gro85]): For an arbitrary closed C∞-smooth Lagrange submanifold
W ⊂ Cn, there exists a non-constant holomorphic map u : (D2, ∂D2) → (Cn,W ).

This theorem comes from a “Fredholm alternative” for the nonlinear Cauchy-Riemann equa-
tion:

• Either there is a non-constant solution to ∂̄u = 0;
• Or there is a solution to ∂̄u = g for any g which is a section of the appropriate bundle.

The geometry of Cn guarantees the second situation does not occur.

The remainder of this section sketches the proof. But we state a corollary first:

Corollary 3.2: There is no compact exact Lagrangians in Cn. It follows that any closed
Lagrangian in Cn must have non-trivial H1(L;Q) (e.g. spheres of any dimension2).

This follows by an energy argument: for any holomorphic map u : (D2, ∂D2) → (Cn,W ), its
L2-energy


D2 |du|2J dVol is the same as the “topological energy” 〈[u],ω〉 using any ω-tame

2Circles are not spheres but tori; Lagrangian tori exists in Cn for any n.
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almost complex structure (Lemma 2.2.1 of [MS12]). But

〈[u],ω〉 =


D2

u∗ω =



S1

u∗λ =



S1

u∗df = 0

by exactness of L.

Classical algebraic topology says embedded Lagrangians in Cn has Euler characteristic 0.
This gives a strong constraints on e.g. 2-manifolds, but does not constrain e.g. 3-manifolds.
Furthermore Gromov-Lees’s h-principle shows that L admits a Lagrangian immersion into
Cn if and only if TL ⊗ C is trivial. In contrast, Theorem 3.1 says e.g. S3 does not admit
Lagrangian embedding into C3 despite having “sufficient homotopy theoretic data” for doing
so.

(3a) Inhomogeneous Cauchy-Riemann equations: We shall present the argument in a
form that is close to Abouzaid’s proof. I learned the argument in this form from [Fuk06] and
an earlier version of this is in [Oh97]. Fix a compact exact Lagrangian in Cn.

We study the solutions to a perturbed Cauchy-Riemann equation, depending on one param-
eter λ ∈ [0,∞)

u : (D2, ∂D2) → (Cn, L), ∂̄u = gλ

where gλ is a section of some appropriate bundle, and compare the space of solutions at λ = 0
(when gλ = 0, i.e. the homogeneous Cauchy-Riemann equation), and that at λ → ∞.

We choose our perturbation in the following way: pick a family of cutoff functions χλ : R →
[0, 1] for each λ ∈ [0,∞) by

χλ(t) =


1, |t| < R− 1

0, |t| > R

and with bounded Ck-norm. Pick an arbitrary direction v and consider the Hamiltonian
H : Cn → R by

H(z) = 〈z,v〉.
Then the Hamiltonian flow φt := expt(XH) from integrating the Hamiltonian vector field XH

displaces L from itself by compactness: by rescaling we can assume

φ1(L) ∩ L = ∅.

In fact all that is needed for the argument is this “Hamiltonian displaceability” condition so
the precise choice of H does not matter.

For each fixed λ ∈ [0,∞), we then study the equation

ũ : Rs × [0, 1]t → Cn,
∂ũ

∂s
+ J


∂ũ

∂t
− χλ(s)XH(ũ)


= 0,

with boundary condition

ũ(s, 0), ũ(s, 1) ∈ L

and finite energy 

R×[0,1]
ũ∗ω < ∞.
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Remark 3.3: This “topological” energy is related to the “analytic” L2-energy as follows:


R×[0,1]


∂ũ

∂s


2

ds dt =



R×[0,1]


∂ũ

∂t
−XH(u)


2

≤


R×[0,1]
ũ∗ω + H

where H is some constant (the “Hofer norm”) depending on H; see [Oh97].

At |s| ≫ 0, the equation reduces to the homogeneous Cauchy-Riemann equation ∂̄ũ = 0, and
by the finite energy condition, we can apply the removable singularity theorem by Gromov
and Oh to extend ũ to a map

u : (D2, ∂D2) → (Cn, L)

where we view R× [0, 1] as D2 \ {±1}.

(3b) Behavior in the limits of λ: We now consider solutions to the equation as we take
λ = 0 and λ → ∞.

At λ = 0, the equation reduces to the homogeneous Cauchy-Riemann equation ∂̄u = 0, and
by exactness the only solutions are the constant maps.

At λ → ∞, we claim that displaceability implies there are no solutions. A rough idea of
the proof is as follows: supposing that solutions exist for all λ ≫ 0. Take a sequence uk of
solutions with parameter λk → ∞. Then the proportion of the strip Rs × [0, 1]t that follows
the inhomogeneous Floer equation becomes larger and larger, and we can extract a limit
which is a finite-energy Floer strip, i.e. a map

u∞ : (R× [0, 1],R× {0, 1}) → (Cn, L),
∂u∞
∂s

+ J


∂u∞
∂t

−XH(u∞)


= 0

with finite energy

E(u∞) =



R×[0,1]


∂u∞
∂s


2

ds dt =



R×[0,1]


∂u∞
∂t

−XH(u∞)

 ds dt < ∞,

which should limit to Hamiltonian chords on L (i.e. a path following the Hamiltonian vector
field with starting and ending points on L) as s → ±∞, following a by now standard argument
in Floer theory. Hamiltonian chords on L corresponds to intersection points of L with φ1(L),
and this is the contradiction. For slightly more details see Proposition 3.3 of [Fuk06] or
Lemma 2.2 of [Oh97].

Remark 3.4: In the argument, finiteness of energy of the limit Floer strip follows from an a
priori estimate of energies of uk, and this is where the bounds of the derivatives of the cutoff
function χλ are needed.

(3c) Moduli space for the family: We form the moduli space N, consisting of pairs (λ, ũ)
of λ ∈ [0,∞) and

ũ : (R× [0, 1],R× {0, 1}) → (Cn, L), ∂sũ+ J

∂tũ− χλ(s)XH(ũ)


= 0

with finite energy, and such that the the unique extension u : (D2, ∂D2) → (Cn, L) is trivial
as a homotopy class in π2(Cn, L). Supposing transversality, this is a smooth manifold of
dimension

dimN = n+ 1
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from standard index theory (relative Riemann-Roch formula; see Theorem C.1.10 in Appendix
C of [MS12]).

We now consider the topology of this moduli space. Define the projection π : N → [0,∞) to
the first coordinate λ and denote by N(λ) := π−1(λ); then N(0) = π−1(0) ∼= L is a topological
boundary of N. There are no other topological boundaries, and the possible non-compactness
comes from the equation.

There are 4 possible sources of non-compactness (best understood with pictures):

(1) λ → ∞, which is impossible because we know there are no solutions at large λ;
(2) Energy concentration at an interior point of R× [0, 1], which results in non-constant

a holomorphic sphere by a standard rescaling argument plus removable singularity
theorem; this is impossible since the symplectic structure on Cn is exact;

(3) Energy concentration at some boundary point of R × [0, 1], which results in a non-
constant holomorphic disc with boundary on L by similar arguments, which is im-
possible by exactness of L;

(4) Energy goes off to ±∞ in the R direction, which results in a non-constant holomorphic
disc with boundary on L by similar arguments, which is impossible by exactness of
L.

Therefore we conclude that N is a compact manifold-with-boundary N(0) ∼= L. This then
has a fundamental chain [N] ∈ Hn+1(N, ∂N).

(3d) Concluding the proof: Fixing the point 1 ∈ D2 (the point at +∞ from the viewpoint
of R× [0, 1]), we get an evaluation map

ev: N → L; (λ, ũ) → u(1).

Restricting to N(0), the map

ev|N(0) : N(0) ∼= L → L

is the identity map and therefore the induced map on homology (ev|N(0))∗ pushes forward
the fundamental class of N(0) to the fundamental class [L] ∈ Hn(L). However, since
the map extends to a null-cobordism of N(0), the pushforward of the fundamental chain
[N] ∈ Hn+1(N, ∂N) has [L] ∈ Hn(L) as its boundary, and therefore [L] is null-homologous, a
contradiction!

4. Some remarks

We will follow Abouzaid’s summary of the argument in section 2 of [Abo12] in the talk;
however we will make some brief remarks about features of the proof.

(4a) Buhovsky’s displaceability trick: It will be nice if we can use this argument for
exact Lagrangian homotopy spheres in cotangent bundles! But exact Lagrangians cannot be
Hamiltonian displaced, as Gromov’s argument shows.

The key point that starts the proof is the following trick (first mentioned in [ALP94] and
used for obstructing Lagrangian embeddings by [Buh04]) that embeds T ∗Sn symplectically
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into a bigger symplectic manifold in which Lagrangians are Hamiltonian displaceable. First
recall that by construction (as a symplectic reduction), the Fubini-Study symplectic form on
CPn−1 is characterized by

π∗ωCPn−1 = ωCn |S2n−1 ,

where π : S2n−1 → CPn−1 is the Hopf fibration. Therefore the map

S2n−1 ↩→ Cn × CPn−1,

where the first factor is inclusion and the second factor is the Hopf map, is a Lagrangian
embedding. Therefore, by Darboux-Weinstein theorem, a neighborhood of the zero section
in T ∗S2n−1 embeds symplectically in Cn × CPn−1.

Therefore, any Lagrangian L in T ∗S2n−1 embeds as a Lagrangian in Cn ×CPn−1. Moreover,
due to the Cn-factor, L is Hamiltonian displaceable. It then makes sense to repeat the
argument by constructing the moduli space of solutions to the deformed Cauchy-Riemann
equation. However, as Gromov’s argument shows, this manifold cannot be compact and we
have to deal with the non-compactness coming from sphere and disc bubblings.

(4b) The bounding manifold: Abouzaid’s proof of Theorem 2.2 is to build a paralleliz-
able manifold with boundary diffeomorphic to the nearby Lagrangian homotopy sphere Σn in
T ∗Sn using moduli spaces of curves. It is not too hard to show that the moduli space given by
1-parameter family of perturbations of the Cauchy-Riemann equation is parallelizable (if the
appropriate transversality results are in place), but exactly because of Gromov’s argument
we know that this moduli space cannot be compact, and the non-compactness can be due to
either sphere or disc bubblings. Therefore some careful sculpture-work on the moduli space
needs to be performed. Very briefly, this is possible because the codimension-1 stratum of
disc bubbling can be “closed up” by constructing another moduli space of disc bubble con-
figurations whose boundary is our codimension-1 stratum (thanks to the simply-connectivity
of Σn), and the codimension-2 stratum of sphere bubbling can be dealt with because we
have explicit knowledge about what that stratum (and its neighborhood) looks like (since
the sphere bubbles live in CPn−1).

(4c) A related result: A construction in the same spirit is used by Ekholm-Smith ([ES16,
ES14]) to prove rigidity result beyond homotopy type for Lagrangian immersions (with fixed
number of double points!) in Cn:

Theorem 4.1 (Ekholm-Smith): In even dimension n, a homotopy sphere Σn admits an exact
Lagrangian immersion Σn ↬ Cn with exactly one transverse double point (and no other self-
intersections) if and only if Σn is diffeomorphic to the standard Sn.
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