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Let (M", g) be a Riemannian n-manifold, p € M.
Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincar¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Dimension < 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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There are many known Einstein metrics on S, n >
5 which do not have constant curvature.

In fact, the moduli space of Einstein metrics on S°
has infinitely many connected components, because
J sequences unit-volume Einstein metrics with A—07.

(Bohm, Collins-Székelyhidi)

Connected sums (S? x S3)# - - - #(S5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli spaces typically disconnected.

Similar results for most simply connected spin 5-
manifolds. (Boyer-Galicki-Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, Kobayashi-Todorov)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional
“Goldilocks Zone” for Einstein metrics:

When n = 4, there are obstructions to existence of
Einstein metrics. Some just depend on homotopy
type, while others depend on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But does not exclude geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to plausibly call this a geometrization.



What'’s so special about dimension 47



What'’s so special about dimension 47

The Lie group SO(4) is not simple



What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = 50(3) P s0(3).



What'’s so special about dimension 47

The Lie group SO(4) is not simple:

50(4) = 50(3) @ 50(3).
On oriented (M4, g),



What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) P so(3).

On oriented (M4, g), —
A=At @A~



What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2



What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

-] (2wt 18).
X =gz [l T e SR

for Euler-characteristic x (M) = Z(—l)j bi(M).
J

4-dimensional Thom signature formula

1
(M) = —
12702 J g

for signature 7(M) = by (M) — b_(M).

(W2 = W) du
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, g) is locally hyper-Kahler.
The latter case happens only if (M, qg) finitely
covered by a flat T* or a Calabi- Yau K 3.
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Kahler metrics:
(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

dw =0

w 1s also defines a symplectic structure on M.
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an
Finstein metric g (unrelated to w)? What if we
also require A > 07
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Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M g{ K3/79,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surtfaces.
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Uniqueness: Bando-Mabuchi 87, L. "12.
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One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

[s Einstein moduli space connected?

Progress to date:

Nice characterizations of known Einstein metrics.

Peng Wu proposed one beautiful characterization,
in terms of an open condition on

Wy AT > AT,

Wu's criterion:
det(W+) > ().
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Theorem (Wu/lL 21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

W AT = AT
satisfies
d6t<W+) > ()

at every point of M. Then M s diffeomorphic to
a del Pezzo surface, and g is one of the confor-
mally Kahler Einstein metrics weve discussed.

Corollary. Every simply-connected compact ori-
ented Einstein (M*, h) with det(W,) > 0 is dif-
feomorphic to a del Pezzo surface. Conversely,
every del Pezzo M?* carries Finstein h with
det(Wi) > 0, and these sweep out exactly one
connected component of moduli space & (M ).
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We've focused on compact Einstein manifolds.

But non-compact, complete solutions are often key
to proving theorems about compact ones.
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Joint work with

Olivier Biquard
Sorbonne Université

and

~Paul Gauduchon
Ecole Polytechnique

e-print:
arXiv:2310.14387 math.DG]
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F' = *dV closed 2-form, [%F] € HQ(RB—{pj}, 7).
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Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:

Diffeotype:

Plumb together & copies of 7% S?
according to diagram.
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Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162

df) = xdV

Kahler with respect to three complex structures
Hence holonomy C Sp(1) = SU(2).

Hence Ricci-flat!

Calabi later called such metrics “hyper-Kahler.”

Gibbons and Hawking were unaware of all this!
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Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
When « = 0, they are ALE:

“Asymptotically locally Euclidean”

—4
gik = 01 + O(|z] )
In particular, volume of large ball is

?
T2
Vol(B,)~ L2

Notice that £ = 1 case is just flat R?!

The ¢ = 2 case is Eguchi-Hanson ~ T*52.
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Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:
Vol(B)) ~ const - p’

This last property distinguishes the ALE spaces
from other classes of gravitational instantons:

ALG, ALH, ALG* ALH* ...
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g = V(da® + dy* + dz*) + V162

1
V=14+—
+2Q
Can also write as
7“‘|‘1 9 9 T 9
dr? 1
g=——dr + (14 7)|o] —‘;—02]—|—T+103

for left-invariant coframe {o;} on 5% =8U(2).

Taub-NUT becomes Hermitian metric on C2.
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—1
1 2 2

et (1__m) d@u(l__m)dﬂ o
Y

2
Hawking: set ¢ = 4mf and 0 = 2m + g .
This makes ¢ into a Ricci-flat metric on R? x S2.

g =dr® + r°do’ + 4m2952 + O(frz)



Example. Riemannian Schwarzschild metric:

—1
1 2 2

et (1__m) d@u(l__m)dﬂ o
Y

2
Hawking: set t = 4m0 and ¢ = 2m + ¢ .
This makes ¢ into a Ricci-flat metric on R? x S2.
Makes h into extremal Kahler metric on C x CIPy.



C2
R? x §2

R x S°
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Definition. A gravitational instanton is a
complete, non-compact, non-flat, Ricci-flat
Riemannian 4-manifold.

Many excellent mathematical papers cleverly
narrow the definition for technical convenience,
by assuming at the outset that the metric is
hyper-Kahler.

But now my French collaborators Biquard and
Gauduchon have fortunately done us all the
favor of reminding us that the hyper-Kahler
oravitons are only one small part of the story!
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Each of the metrics ¢ in question is conformal to a
complete extremal Kahler metric with s > 0.

This implies that they always satisty Peng Wu's
criterion

det(W ™) > 0,

allowing one to generalize methods first explored in
the compact case.
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other Ricci-flat Riemannian metric g on M which
15 sufficiently C’%—close to g is conformal to some

strictly extremal Kahler metric h, and so s, in

particular, Hermitian. Moreover, every such g

carries at least one Killing field.
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tian ALF gravitational instanton. Then any Ricci-
flat metric g on M which s suffictently 013 close
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This optimal result combines Theorem A with a
result of Mingyang Li, arXiv:2310.13197.
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