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oV xV X V=R

J

X oo
k

is sald to be multilinear if the associated maps

V— é(V, Vs, ..., V)
V— ¢(V,V, ..., V)

V— gb(Vl,Vg,...,V)

are all linear maps V — R, for any fixed vectors
Vi,Vo,..., V. e V.
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defined to be
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Proposition. If V is an n-dimensional vector
space, then

dim ®F V* = n¥.

In fact, if {e!, e, ..., e"} is a basis for V*, then
("@e?2® - -@e*|1<i,... i <n}
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Alternating tensors. A multilinear map

O:VYXxVx---xV R
i
is said to be alternating if

OV, Viy oo Vi V) = =V, VoV,

for any integers 7, 7 with 1 <1 < 7 < k.
Sufficient if true for « = 1, but ;7 arbitrary.

Equivalent to

¢(VO‘<1)7 e 7V0‘<k)> — <_1>0¢(V17 T 7\/]{)
for every permutation o € Sy,
where (—1)7 = sign of permutation.
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Exterior products. Let ol a2, ... of € V*.
We define

oE€S],

Then ol A a2 A+ Aok is alternating.

Notice that
k

ozl/\on/\---/\oz = —042/\041/\---/\0/~C

= —a" AN A

and so forth.
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k
Notice that AFV* ¢ @FV* is a linear subspace.

Proposition. If V is an n-dimensional vector
space, then

|
dim AV = () = —
. <k> Kl(n — k)!
In fact, if {e',e?,...,e"} is a basis for V*, then

{TNE2A- Nk |1 <i)<...<ip<n}
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There is an important projection
Alt: @FV* — ARV

defined by

ARGV - Vi) = 7 37 (-1 6V,

oES],

This is a projection, in the sense that

Alt o Alt = Alt.

Notice that
elA---/\ek:k!Alt(el®---®ek).
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Differential forms.

If M is a smooth manifold, we thus have vector
spaces

AMT*M = {Alternating T,M x TpM x --- x T,M — R},

k
and we can now construct vector bundles

o ATV s M
which are of sub-bundles of @FT* M/ .

Elements of the space of smooth sections
QF (M) == T(AFT* M)

are called the differential k-forms on M.
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Example. The general 2-form ¢ € Q%(R?) is

© = P12 dz' A dz? + L3 dz> A daz?
o15dzt A da + ooy da? A da?
©14 dz! A dzt + 093 dz? A dz?

1

where the ;; = ¢;(z, . . ., ZC4> are arbitrary smooth

functions of the coordmates (!, ..., zh).
Nothing like a vector field!

Most ¢ € Q%(R*) cannot be written as a wedge
product o A 3 of two 1-forms:

(aAB)A(aAB)=—aANaABAB=0.
(de' Ada?+dz Ada YA (da Ada?+da Ada?t) = 2 de! Ada? Adz? Ada?
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Example. The general k-form on R" is

p = Z gpil...z-kdxil/\- Adz'* € Qk(Rn),
1<ij<-<ip<n

where the

Piqeif, = gpz-l...ik(afl, o)

are arbitrary smooth functions of (:1;1, N )

“Multi-index” abbreviated notation:

o= ¢z’

|T|=F

where [ =11 -1.
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Exterior Derivative. We now generalize this to
an operator

d: QF(M) — Q¥ .
This i1s best first done in local coordinates.

On R" it takes the explicit form

d Z ordz! | = Z (dop) A da!
=k =k
— Z a—gpl.dxj A da!

, OxJ
7,11 |=k
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Pull-backs. If
F:M— N

any smooth map, there is an induced “pull-back”
map

F*: QF(N) — QF (M)

for every k.
Notice this “goes backwards:”
QF () £ QF ()

M N
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Exterior Derivative. We now generalize this to
an operator

d: QF(M) — QFFL ().
Key properties:
e Linear, as a map of real vector spaces;
e Civen by our previous definition on QV:
e Commutes with pull-backs:
d(F*p) = F*dy

for any smooth map F’;
ed’=dod=0; and
e Obeys the following Leibniz rule:

d(p A1) = (d) A + (1) A dif
where k is the degree of .



