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Abstract We show that any planar straight line graph with n vertices has a con-
forming triangulation by O(n2.5) nonobtuse triangles (all angles ≤ 90◦), answering
the question of whether any polynomial bound exists. A nonobtuse triangulation is
Delaunay, so this result also improves a previous O(n3) bound of Edelsbrunner and
Tan for conforming Delaunay triangulations of PSLGs. In the special case that the
PSLG is the triangulation of a simple polygon, we will show that only O(n2) triangles
are needed, improving an O(n4) bound of Bern and Eppstein. We also show that for
any ε > 0, every PSLG has a conforming triangulation with O(n2/ε2) elements and
with all angles bounded above by 90◦ + ε. This improves a result of S. Mitchell when
ε = 3

8π = 67.5◦ and Tan when ε = 7
30π = 42◦.

Keywords nonobtuse triangulations · Delaunay triangulations · Gabriel condition ·
Thick/Thin decomposition
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1 Introduction

A planar straight line graph Γ (or PSLG from now on) is the disjoint union of a finite
number (possibly none) of non-intersecting open line segments (called the edges of
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Γ ) together with a disjoint finite point set (the vertices of Γ ) that includes all the
endpoints of the line segments, but may include other points as well.

If V is a finite point set in the plane, a triangulation of V is a PSLG with vertex set
V and a maximal set of edges. If Γ is a PSLG with vertex set V , then a conforming
triangulation for Γ is a triangulation of a point set V ′ that contains V and such that
the union of the vertices and edges of the triangulation covers Γ . We allow V ′ to be
strictly larger than V ; in this case V ′ \V are called the Steiner points. We want to build
conforming triangulations for Γ that have small complexity (the number of triangles
used) and good geometry (the shape of each triangle; no angles too large or too small),
but these two goals are often in conflict. In this paper, we are interested in finding the
best angle bounds on the triangles that allow us to polynomially bound the number of
triangles needed in terms of n, the number of vertices of Γ .

If we triangulate a 1×r rectangle into a fixed number of elements, it is easy to check
that some angles must tend to zero as r → ∞, so there is no uniform, strictly positive
lower angle bound possible, if we want the number of triangles to be bounded only in
terms of the number of vertices of the given PSLG. Since the angles of a triangle sum
to 180◦, if we had an upper bound of 90◦ − ε on the angles of a triangulation, then we
also have a 2ε lower angle bound. Therefore, no upper bound strictly less than 90◦ is
possible. Thus nonobtuse triangulation (all angles ≤ 90◦) is the best we can hope for.

In 1960 Burago and Zalgaller [15] showed that any polyhedral surface has an acute
triangulation (all angles< 90◦), but without giving a bound on the number of triangles
needed. This was used as a technical lemma in their proof of a polyhedral version of the
Nash embedding theorem. In 1984 Gerver [25] used the Riemann mapping theorem
to show that if a polygon’s angles all exceed 36◦, then there exists a dissection of it
into triangles with maximum angle 72◦ (in a dissection, adjacent triangles need not
meet along an entire edge). In 1988 Baker et al. [2] again proved that any polygon has
a nonobtuse triangulation, and their construction also gives a lower angle bound. As
noted above, in this case no complexity bound in terms of n alone is possible, although
there is a sharp bound in terms of integrating the local feature size over the polygon.
For details, see [7,40] or the survey [18].

A linear bound for nonobtuse triangulation of point sets was given by Bern et al. [7],
and Bern and Eppstein [4] gave a quadratic bound for simple polygons with holes (this
is a polygonal region where every boundary component is a simple closed curve or an
isolated point). Bern et al. [8] improved this to O(n1.85) for convex domains. Bern et al.
[9] gave a O(n) algorithm for nonobtuse triangulation of simple polygons with holes
in 1994 and their construction uses only right triangles. We shall make use of their
result in this paper. These and related results are discussed in the surveys [5,10]. Other
papers that deal with algorithms for finding nonobtuse and acute triangulations include
[20,33,35,37]. Giving a polynomial upper bound for the complexity of nonobtuse
triangulation of PSLGs has remained open (e.g., see [5, Pbm 3]). We give such a
bound by proving:

Theorem 1.1 Every PSLG with n vertices has a O(n2.5) conforming nonobtuse tri-
angulation.

Maehara [36] showed that any nonobtuse triangulation using N triangles can be
refined to an acute triangulation (all angles < 90◦) with O(N ) elements. A different
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proof was given by Yuan [55]. In our proof of Theorem 1.1 the triangulation will
consist of all right triangles, but the arguments of Maehara or Yuan then show the
theorem also holds with an acute triangulation, at the cost of a larger constant in the
O(n2.5). As noted above, simple examples give a quadratic lower bound for PSLGs
(see [4]), so a gap remains between our upper bound and the worst known example.
However, this gap can be eliminated in some special cases, e.g.,

Theorem 1.2 Any triangulation of a simple n-gon has a O(n2) nonobtuse refinement.

This improves a O(n4) bound given byBern andEppstein [4].We can also approach
the quadratic lower bound if we consider “almost nonobtuse” triangulations:

Theorem 1.3 Suppose θ > 0. Every PSLG with n vertices has a conforming triangu-
lation with O(n2/θ2) elements and all angles ≤ 90◦ + θ .

This improves a result of Mitchell [38] with upper angle bound 7
8π = 157.5◦ and

a result of Tan [47] with 11
15π = 132◦.

A triangulation is called Delaunay if whenever two triangles share an edge e, the
two angles opposite e sum to 180◦ or less. If all the triangles are nonobtuse, then this
is certainly the case, so Theorem 1.1 immediate implies

Corollary 1.4 Every PSLG with n vertices has a O(n2.5) conforming Delaunay tri-
angulation.

This improves a 1993 result of Edelsbrunner and Tan [19] that any PSLG has a
conforming Delaunay triangulation of size O(n3). Conforming Delaunay triangula-
tions for Γ are also called Delaunay refinements of Γ . There are numerous papers
discussing Delaunay refinements including [18,21,39–41,45]. The argument in this
paper does not seem to give a better estimate for Delaunay triangulations than for
nonobtuse triangulations, nor does the proof appear to simplify in the Delaunay case.
Finding an improvement (either for the estimate or the argument) in the Delaunay case
would be extremely interesting.

An alternative formulation of the Delaunay condition is that every edge in the
triangulation is the chord of an open disk that contains no vertices of the triangulation.
We say the triangulation isGabriel if every edge is the diameter of such disk. It is easy
to check that a nonobtuse triangulation must be Gabriel, so we also obtain a stronger
version of the previous corollary:

Corollary 1.5 Every PSLG with n vertices has a O(n2.5) conforming Gabriel trian-
gulation.

Given a finite planar point set V , and a point v ∈ V , the Voronoi cell corresponding
to v is the open set of points that are strictly closer to v than to any other point of V .
The union of the boundaries of the all the Voronoi cells is called the Voronoi diagram
of V . In [42], it is shown that given a nonobtuse triangulation with N elements, one
can find a set of O(N ) points so that the Voronoi diagram of the point set covers all
the edges of the triangulation. Thus we obtain
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Corollary 1.6 For every PSLG Γ with n vertices, there is a point set S of size O(n2.5)
whose Voronoi diagram covers Γ .

The authors of [42] were interested in a type of machine learning called “nearest
neighbor learning”. Given Γ and S as in the corollary, and any point z in the plane,
we can decide which complementary component of Γ z belongs to by finding the
element w of S that is closest to z; z and w must belong to the same complementary
component of Γ . Thus the corollary says that a partition of the plane by a PSLG of
size n can be “learned” from a point set of size O(n2.5). This answers a question from
[42] asking if a polynomial number of points always suffices.

Acute and nonobtuse triangulations arise in a variety of other contexts. In recre-
ational mathematics one asks for the smallest triangulation of a given object into
acute or nonobtuse pieces. For example, a square can obviously be meshed with two
right triangles, but less obvious is the fact that it can be acutely triangulated with
eight elements but not seven; see [16]. For further results of this type see [23,24,26–
31,43,56–58], the 2002 survey [60] and the 2010 survey [59]. There is less known
in higher dimensions, but recent work has shown there is an acute triangulation of
R
3, but no acute triangulation of Rn , n ≥ 4 [14,32,34,50–52]. Finding polynomial

bounds for conforming Delaunay tetrahedral meshes in higher dimensions remains
open.

In various numerical methods involving meshes, a nonobtuse triangulation fre-
quently gives simpler and better behaved algorithms. For example, in [54] Vavasis
bounds various matrix norms arising from the finite element method in terms of the
number n of triangulation elements; for general triangulations his estimate is expo-
nential in n, but for nonobtuse triangulations it is only linear in n. Other examples
where nonobtuse or Delaunay triangulations give simpler or faster methods include:
discrete maximum principles [12,17,53]; Stieltjes matrices in finite element methods
[13,46]; convenient description of the dual graph [6]; the Hamilton–Jacobi equation
[3]; the fast marching method [44]; the tent pitcher algorithm for meshing space–time
[1,48,49].

The ideas in this paper are used in a companion paper [11] to obtain conforming
quadrilateral meshes for PSLGs that have optimal angle bounds and optimal worst
case complexity. The precise statement from this paper used in [11] is Lemma 13.1;
this follows from a slightmodification of the proof of Theorem 1.3. The result obtained
in [11] says that every PSLG has an O(n2) conforming quadrilateral mesh with all
angles ≤ 120◦ and all new angles ≥ 60◦. The angle bounds and quadratic complexity
bound are both sharp.

In Sect. 2we recall a theoremofBern et al. [9] that connects nonobtuse triangulation
to finding Gabriel edges, and we sketch the proof of this result in Sect. 3. In Sect. 4
we use their theorem to give a simple proof of Theorem 1.2. In Sects. 5–8 we discuss
propagation paths, dissections and return regions; these are used in the proofs of
both Theorems 1.1 and 1.3. Sections 9–12 give the proof of Theorem 1.3 and Sect.
13 summarizes facts from the proof that are used in the sequel paper [11]. Section
14 gives an overview of the proof of Theorem 1.1 and Sects. 15–21 provide the
details.
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Fig. 1 A triangle that is not Gabriel and one way to add points so that it becomes Gabriel

2 The Theorem of Bern, Mitchell and Ruppert

Given a point set V and two points v,w ∈ V , the segment vw is called a Delaunay
edge if it is the chord of some open disk that contains no points of V and is called a
Gabriel edge if it is the diameter of such a disk (see [22]). We will call a PSLG Γ

with vertex set V and edge set E Gabriel if every edge in E is Gabriel for V . Given a
PSLG which is not Gabriel, can we always add extra vertices to the edges, making a
new PSLG that is Gabriel? We are particularly interested in the case when P = T is
a triangle. See Fig. 1.

The connection between Gabriel triangles and nonobtuse triangulation is given by
the following result of Bern et al. [9]. Suppose T is a triangle with three vertices
V0 = {a, b, c} and suppose V is a finite subset of the edges of T . Then T \ (V0 ∪ V )

is a finite union of segments and we let V ′ denote the midpoints of these segments.

Theorem 2.1 Suppose we add N points V to the edges of a triangle T , so that the
triangle becomes Gabriel. Assume further that no point of the interior of T is in more
than two of the Gabriel disks. Then the interior of T has a nonobtuse triangulation
consisting of O(N ) right triangles and the triangulation vertices on the boundary of
T are exactly the vertices of T and the points in V and V ′.

This follows from the proof in [9], but this precise statement does not appear there,
so in the next section we will briefly describe now to deduce Theorem 2.1 from the
arguments in [9].

We say that one triangulation T1 is a refinement of another triangulation T2, if each
triangle in T2 is a union of triangles in T1. If Γ is a PSLG that is a triangulation and we
add enough points to the edges of Γ to make every triangle Gabriel, then the resulting
nonobtuse refinements of each triangle agree along any common edges (the set of
boundary vertices is e ∩ (V ∪ V ′) for both triangles with edge e). Thus we get:

Corollary 2.2 Suppose that Γ is a planar triangulation with n elements, and that we
can add N vertices to the edges of Γ so that every triangle becomes Gabriel. Then Γ

has a refinement consisting of O(n + N ) right triangles.

It is fairly easy to see that we can always add a finite number of vertices and make
each triangle Gabriel. Thus nonobtuse refinement of a triangulation is always possible,

123



48 Discrete Comput Geom (2016) 56:43–92

but the difficulty is to bound N in terms of n. Since any PSLG with n vertices can be
triangulated using O(n) triangles (and the same vertex set), Theorem 1.1 is reduced
to

Theorem 2.3 Given any triangulation with n elements we can add O(n2.5) vertices
to the edges so that every triangle becomes Gabriel.

We will prove this for general planar triangulations later in the paper. We start with
the simpler case of triangulations of simple polygons (Theorem 1.2) in Sect. 4. The
key feature of this special case is that the elements of such a triangulation form a tree
under adjacency (sharing an edge); this fails for general triangulations, and dealing
with this failure is the main goal of this paper.

In Theorem 2.3 we only need to check that each triangle becomes Gabriel, not
that the point set is Gabriel for the whole triangulation. The difference is that in the
first case if we take a disk D with an edge e as its diameter, we only have to make
sure that D does not contain any vertices belonging to the two triangles that have
e on their boundary. In the second case, we would have to check that D does not
contain any vertices at all. This apparently stronger condition follows from the weaker
“triangles-only” condition, but we don’t need this fact for the proof of Theorem 1.1.

3 Sketch of the Proof of Theorem 2.1

As noted above, Theorem 2.1 is due to Bern et al. in [9], but the precise result is
not given in that paper. For the convenience of the reader, we briefly sketch how our
statement is deduced using the argument in [9].

The basic idea in [9] is to pack the interior of a polygon P (which in our case is just
a triangle T ) with disks until the remaining region is a union of pieces that are each
bounded by three or four circular arcs, or a segment lying on the polygon’s boundary.
These are called the remainder regions.

Each remainder region R is associated to a simple polygon R+, called the aug-
mented region of R as follows. Each circular arc in the boundary of R lies on some
circle, and we add to R the sector of the circle subtended by this arc. Doing this for
each boundary arc of R gives the polygon R+. See Fig. 2.

The augmented regions decompose the original polygon into simple polygons and
the authors of [9] show how each augmented region can bemeshedwith right triangles.
Moreover, the mesh of R+ only has vertices at the vertices of R+ (the centers of the
circles), the endpoints of the boundary arcs (the tangent points between disks) or on
the straight line segments that lie on the boundary of P = T .

We modify their construction first placing the Gabriel disks along the edge of the
triangle, as shown in Fig. 3. The disk packing construction of [9] will only be applied to
the part of the triangle outside the Gabriel disks, hence none of the remainder regions
that are formed will have straight line boundary segments on the boundary of T .

Whenever two Gabriel disks overlap, we place a small disk D near each of the
intersection points of their boundaries. The disk D is tangent to both overlapping
disks and its interior is disjoint from all the Gabriel disks. See Figs. 4 and 5 for two
situations where this can occur: the boundaries of the Gabriel disks (which we call the
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Fig. 2 The light gray is a
3-sided remainder region R and
the dark gray is the
corresponding augmented region
R+

Fig. 3 The white points are the
set V that makes the triangle T
Gabriel. The Gabriel disks may
intersect in pairs, but we assume
that no three of them intersect

Gabriel circles) either have two intersections inside T or they have just one intersection
inside T .

Figure 4 shows what happens when the boundaries intersect at two points.We place
two disks near the intersections points (the dashed disks in the figure), and we form
a quadrilateral by connecting the centers of the four circles. This quadrilateral is then
meshed with 16 right triangles as shown in the figure. The overall structure is shown
on the left, and an enlargement is shown on the right. The black point on the right
where six triangles meet is the common intersection point of three lines: the line L0
through the two intersection points of the Gabriel circles, and the two tangent lines
l1, l2 between the dashed disk and the the Gabriel disks. It is proven in [9] that these
three lines meet at a single point, as shown. The center of the dashed circle in Fig. 4
is not necessarily on L0 (although it appears this way in the figure). Figure 5 shows
the case when two Gabriel circles have one intersection inside T (and the other is at
vertex of T ). The proof that all the triangles are right is fairly evident (see [9]).

From this point the proof follows [9]. Lemma 1 of the paper shows that we can
add disjoint disks until all the remainder regions have three or four sides and that the
number of disks added is comparable to the number of Gabriel disks we started with.
See Fig. 6.
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Fig. 4 Gabriel disks whose boundaries intersect twice inside T . We add tangent disks as shown (dashed)
and triangulate as shown. The picture on the right shows more detail near one of the added disks. The point
where six triangles meet is the intersection of the line through the intersection points of the Gabriel circles
and the two tangent lines between the added disk and the Gabriel disks

Fig. 5 Analogous to Fig. 4, but shows that case when two Gabriel circles have a single intersection inside
T (the other is at a vertex of T ). In this case, the mesh is a sub-picture of the previous case and only uses
10 right triangles

Because of the Gabriel disks, none of the remainder regions have straight line
boundary arcs, so all the augmented regions are meshed by right triangles whose
vertices are either interior to T or lie in the set V or in the set V ′ (the centers of the
Gabriel disks) and every such point is used. This gives Theorem 2.1.
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Fig. 6 After adding the disks
(dashed) tangent to the
intersecting Gabriel disks, we
pack the remaining region with
disjoint disks (gray) until only
circular arc regions with three or
four sides remain. This step and
the rest of the proof follow the
proof in [9] exactly

Fig. 7 The definition of Ck and
T ′
k

T T
k

kC
k

4 Proof of Theorem 1.2

A PSLG γ is a simple polygon if it is a simple closed Jordan curve. Suppose γ is a
simply polygon and {Tk}N1 is a triangulation of γ with no Steiner points. The union
of the edges and vertices of the triangulation is the PSLG Γ in Theorem 1.2. For each
triangle Tk , let Ck be the inscribed circle and let T ′

k ⊂ Tk be the triangle with vertices
at the three points where Ck is tangent to Tk . Note that the arcs between points of Ck

all have angle measure < π , so T ′
k must be acute. These vertices of T ′

k will sometimes
be called the cusp points of Tk . See Figs. 7 and 8.

Also note that Tk \ T ′
k consists of three isosceles triangles, each with its base as one

side of T ′
k and its opposite vertex a vertex of Tk . Foliate each isosceles triangle with

segments that are parallel to its base (foliate simplymeans towrite a region as a disjoint
union of curves). We call these P-segments (since they are “parallel” to the base and
they will also allow us to “propagate” certain points through the triangulation).

Given a vertex v of some T ′
k , this point is either on γ (the boundary of the trian-

gulation) or it is on the side of some other triangulation element Tj , j �= k. In the
first case do nothing. In the second case, either v is also a vertex of T ′

j or it is not. In
the first case, again do nothing. In the second case, build a polygonal path whose first
edge is the P-segment in Tj that has v as one endpoint. The other endpoint is a point
w on a different side of Tj . If w is on γ , or is a vertex of some T ′

i , i �= j , then end the
polygonal arc at w. Otherwise, w is on the side of some third triangle Ti and we can
add the P-segment in Ti that has one endpoint at w. See Figs. 9 and 10.
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Fig. 8 A triangulation {Tk } of a simple polygon, the inscribed circles (dashed) and triangles {T ′
k } (shaded)

a

b

dc

Fig. 9 A cusp point (vertex of a shaded triangle) can either be on γ (the boundary of the triangulation),
can be a vertex of another shaded triangle, or neither. In the last case we can “propagate” the vertex using a
P-segment and continue the process until one the first two conditions holds. Vertices a and b represent the
first two possibilities and vertices c and d both represent the third case; the dashed lines show how these
points propagate until they hit the boundary

Fig. 10 Here is the same triangulation as in Fig. 9 with all cusp points propagated until they terminate.
This refines the triangulation into acute triangles (shaded) and isosceles triangles and trapezoids (white).
We claim the new vertices make all the original triangles Gabriel
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We continue in this way, adding P-segments to our polygonal path until we either
reach a point on the boundary of the triangulation or hit a point that is the vertex
of some triangle T ′

m . We call the path formed by adjoining P-segments a P-path.
Since our triangles come from a triangulation of a simple polygon, they form a tree
under edge-adjacency and so the P-paths starting at the three vertices of T ′

k must cross
distinct triangles and hence can use at most n − 1 segments altogether. Thus every
P-path must terminate and all the P-paths formed by starting at all vertices of all the
{T ′

k} can create at most n(n − 1) new vertices altogether.

Lemma 4.1 The set U of vertices created by these P-paths crossing edges of {Tk}
makes every triangle Gabriel.

Proof Note that U contains every vertex of every T ′
k and we also include in U the all

vertices of all the Tk’s. To prove the lemma, consider a segment e that is a connected
component of Tk \U (so e is a diameter of one of our Gabriel disks). SinceU contains
the vertices of T ′

k , e lies on a non-base side of one of the three isosceles triangles inside
Tk . If we reflect e over the symmetry axis of this isosceles triangle we get an edge e′
on the other non-base side. Moreover, e′ is also one of the edges created by adding
U to the triangulation, and the disks D, D′ with diameters e and e′ respectively, are
reflections of each other through the symmetry line of the isosceles triangle. Thus the
boundaries of D and D′ intersect, if at all, on the line of symmetry, so D∩ e′ ⊂ e′ and
D′ ∩e ⊂ e. In particular, the open disk D does not contain the endpoints of e′ and vice
versa. This implies D can’t contain any of the points of U that lie on the same side of
Tk as e′. Clearly D does not contain any points of U on the side of Tk containing e′.
Finally, D does not contain any points ofU that are on the third side of Tk because D
is contained in the disk D′′, centered at the vertex of Tk where the sides containing e
and e′ intersect and passing through two vertices of T ′

k , and this disk does not hit the
third side of Tk . See Fig. 11. �

This argument also shows that two Gabriel disks can only intersect if they lie on
different non-base sides of one of the three isosceles sub-triangles. Thus no three disks
can intersect and the condition in Theorem 2.1 is automatically satisfied whenever the
set V contains the vertices of T ′

k for every k.

D

D

Tk
e

e

D

D

Tk

Fig. 11 The points where propagation paths cross triangle edges define Gabriel edges in each triangle.
Note that at most two Gabriel disks can intersect when the cusp points are included in set of endpoints (the
set V in Theorem 2.1)
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Fig. 12 P-paths can be stopped
when they hit an isosceles
triangle with angle ≥ 90◦ since
the corresponding Gabriel disks
can’t hit the other sides of the
triangle

Thus for each triangle Tk , the pointsU ∩Tk makes Tk Gabriel. By Theorem 2.1, TK
has a nonobtuse triangulation with only these boundary vertices and using O(#(U ∩
Tk)) triangles. These triangulations fit together to form a nonobtuse refinement of the
original triangulation of size O(#(U ) + n) = O(n2), which proves Theorem 1.2.

We can make a slight improvement to the algorithm above. As we propagated each
vertex, we could have stopped whenever the path encountered any isosceles triangle
with angle ≥ 90◦. In this case, the Gabriel condition will be satisfied no matter how
we add points to a non-base sides of the isosceles triangle, since the corresponding
disks don’t intersect the other non-base side of the triangle. See Fig. 12. In some cases
this might lead to a smaller nonobtuse triangulation. This observation will also be used
later in the proof of Theorem 1.1, when it will be convenient to assume we are dealing
only with isosceles triangles that are acute.

5 Dissections and Quadrilateral Propagation

We now start to prepare for the proofs of Theorems 1.1 and 1.3. The definitions and
results in this and the next three sections will be used in both proofs.

Suppose � is a domain in the plane (an open connected set). We say � has a
polygonal dissection if there are a finite number of simple polygons (called the pieces
of the dissection) whose interiors are disjoint and contained in � and so that the union
of their closures covers the closure of �. A mesh is a dissection where any two of the
closed polygonal pieces are either (1) disjoint or (2) intersect in a point that is a vertex
for both pieces or (3) intersect in a line segment that is an edge for both pieces. See
Fig. 13 for an example. A dissection is also called a non-conforming mesh. A vertex
of one dissection piece that lies on the interior of an edge for another piece is called a
non-conforming vertex. If there are no such vertices, then the dissection is actually a
mesh.

Given any convex quadrilateral with vertices a, b, c, d (say in counterclockwise
order), there is a unique affine map from [a, b] to [c, d] that takes a to d and b to c.
A propagation segment in the quadrilateral is a segment connecting a point in [a, b]
to its affine image point in [c, d] (or connecting a point in [b, c] to its affine image
in [d, a] under the analogous map for that pair of sides). See Fig. 14. In a triangle
A, B,C with marked vertex, say A, propagation paths either connect points on [A, B]
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Fig. 13 On the left is a polygon dissected into quadrilaterals and triangles and on the right is the standard
propagation of the non-conforming vertices until the propagation paths leave the polygon. If all the paths
terminate, this gives a mesh, as described in the text

a

b

c d

A

C

B

Fig. 14 Standard propagation segments for a quadrilateral and a triangle with a marked vertex (A). In both
cases, “θ -niceness” is preserved by cutting a piece into sub-pieces by such segments

to their linear images on [A,C] or they connect any point on [B,C] to the single point
A (this is what we would get if we think of the triangle as a degenerate quadrilateral
A, B,C, D with A = D, i.e., one side of length zero).

Given θ > 0, we say a quadrilateral is θ -nice if all the angles are within θ of 90◦.
In this paper we will always assume θ < 90◦ so the quadrilateral is convex. We say a
triangle with a marked vertex is θ -nice if the two unmarked vertices have angles that
are within θ of 90◦.

Lemma 5.1 Suppose θ < 90◦ and that Q is a θ -nice quadrilateral. If Q is sub-divided
by a propagation line, then each of the resulting sub-quadrilaterals is also θ -nice.

Proof Set at = (1− t)a + tb and ct = (1− t)d + tc. Let It = [at , ct ] be the segment
connecting these points and let θ(t) be the angle formed by the segments [a, b] and It .
It suffices to show this function is monotone in t . If it were not monotone, then there
would be two distinct values of s, t ∈ [0, 1] where Is and It were parallel. Because
both endpoints move linearly in t , this implies Ir is parallel to Is for all s ≤ r ≤ t .
Because θ(t) is analytic in t , this means it is constant on [0, 1]. Thus θ is either strictly
monotone or is constant; in either case it is monotone, as desired. �

Similarly (but more obviously), when a θ -nice triangle is cut by such a propaga-
tion segment (of either type) the resulting pieces are θ -nice quadrilaterals or θ -nice
triangles.
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Fig. 15 The upper lefts shows an isosceles dissection of a region. The horizontal segment is S = [0, 1]
and the six vertices shown on this segment are (left to right) 0, α

2 , 1
2 , α, 1+α

2 , 1. A path started at a point
x ∈ S will visit x − α mod 1 after propagating once through the upper half-plane and once through the
lower half-plane. The upper right and lower left pictures show a path after 2 visits to the lower half-plane
and 50 visits for α = 1/

√
2. If α is irrational, then the propagation path becomes dense in the dissected

region. When α is rational, the propagation paths either connect non-conforming vertices or are loops; the
connecting paths give a mesh but there is no uniform bound on the number of elements. The connecting
paths for α = .7 are shown at lower right; the resulting tubes are filled with P-loops

Lemma 5.2 Suppose � has a dissection into θ -nice pieces (triangles and quadrilat-
erals). Suppose that every non-conforming vertex can be propagated so that it reaches
the boundary of� or hits another vertex after a finite number of steps. Then the result-
ing paths cut the θ -nice dissection pieces into θ -nice triangles and quadrilaterals that
mesh �.

The proof is evident since when we are finished, there are no vertices that are in
the interior of any edge of any piece. See Fig. 13. What is not so clear is whether,
in general, the propagation paths have to end; in the proof of Theorem 1.2 every
propagation path did end within a fixed number of steps, but in general, the paths may
never terminate (see Fig. 15) or may only terminate only after a huge number of steps.
Later in this paper we discuss two ways of “bending” the standard propagation paths
so that they terminate within a certain number of steps, and so that the pieces formed
satisfy certain geometric conditions.
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6 Isosceles Dissections

Next we discuss a special type of polygonal dissection. An isosceles triangle is a
triangle T with a marked vertex v so that the two sides adjacent to v have equal length.
An equilateral triangle can be considered as isosceles in three ways, but we assume
that if such triangles occur, a vertex is specified.

The side opposite v is called the base of T and the other two sides are the non-base
sides of T . The angle of an isosceles triangle will always refer to the interior angle at
the vertex opposite the base edge. A P-segment is a segment in T with endpoints on
the non-base sides that is parallel to the base. This is a special case of the propagation
segments for marked triangles in the previous section. We require the interior of the
segment to be in the interior of T , so the base itself is not a P-segment. We say a
triangle is θ -nice if all its angles are bounded above by 90◦ + θ .

An isosceles trapezoid is a quadrilateral that has a line of symmetry that bisects
opposite sides. This is equivalent to saying that there is at least one pair of parallel sides
(called the base sides) that have the same perpendicular bisector and the other pair of
sides (the non-base sides) have the same length as each other. We allow rectangles,
but in this case we specify a pair of opposite sides as the base sides. The angle of an
isosceles trapezoid is the angle made by the lines that contain the two non-base sides;
we take this to be zero if these sides are parallel (when the trapezoid is a rectangle).
The vertex of the trapezoid is the point where these same lines intersect (in the case
when they are not parallel; otherwise we say the vertex is at ∞). See Fig. 16. We say
a quadrilateral is θ -nice if all its interior angles are between 90◦ − θ and 90◦ + θ

(inclusive). This is the same as saying the angle of the trapezoid is ≤ θ .
As with isosceles triangles, we can define P-segments in an isosceles trapezoid as

segments in the trapezoid that are parallel to the base sides (again, these correspond to
propagation segments for quadrilaterals). A P-path is a simple polygonal arc formed
by adjoining P-segments end-to-end.

An isosceles piece is either an isosceles triangle or an isosceles trapezoid. We will
use this term when it is unimportant which type of shape it is. When referring to a base
side of an isosceles piece we mean either base side for a trapezoid and the base side
or the opposite vertex for a triangle; the vertex is considered as a segment of length 0,
so when we refer to the length of the smaller base side of an isosceles piece, we mean
zero if the piece is a triangle.

w

v
θ

Fig. 16 An isosceles trapezoid. The base sides are vertical in this picture. The vertex is the point v and the
width w is the length of the non-base sides. The angle of the trapezoid is θ
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A Q-segment in an isosceles triangle is a segment joining a point of the base to
the vertex opposite the base. The two non-base sides do count as Q-segments, and we
shall also call these the Q-sides of the isosceles triangle. A Q-segment for an isosceles
trapezoid is a propagation segment that connects the base sides of the trapezoids. As
with triangles, we count the non-base sides as Q-segments and call these the Q-sides
of the trapezoid. The width of the piece is the length of a Q-side (both Q sides have
the same length). It might be more natural to define the width as the distance between
the base sides, but the definition as given will simplify matters when we later join
isosceles pieces to form tubes.

Suppose that � is a domain in the plane (an open connected set). As might be
expected, an isosceles dissection of � is a finite collection of disjoint, open isosceles
triangles and trapezoids contained in �, so that the union of their closures covers
all of �. However, we also require that when two pieces have sides with non-trivial
intersection, these sides are both Q-sides. We do this so that in an isosceles dissection,
a P-path can always be continued unless the path hits a vertex of the dissection, or hits
the boundary of the dissected region. A θ -isosceles dissection is an isosceles dissection
where every piece is θ -nice.

For example, Fig. 8 in Sect. 4 shows a triangulated polygon. Let � be the part of
interior of the polygonwith the (closed) shaded triangles removed; the remainingwhite
region it is a union of isosceles triangles that only meet along non-base sides. Thus �

has an isosceles dissection; note that it is not a mesh since the isosceles triangles do not
always meet along full edges. When we remove the P-paths generated by propagating
the vertices of the central triangles, we obtain a mesh into isosceles triangles and
trapezoids (as required by Lemma 5.2). See Fig. 10. We call this an isosceles mesh.

Figure 15, upper left, shows an isosceles dissection of a region using 18 triangles.
In that example, if α is irrational, then the P-paths never hit the boundary of the region
and can continue forever without terminating. For α rational the P-paths starting at
non-conforming vertices terminate at other non-conforming vertices and these paths
create an isosceles mesh. However, the number of mesh elements depends on the
choice of α and may be arbitrarily large.

In Fig. 17, we show an isosceles dissection using only trapezoids, and an isosceles
mesh generated by propagating non-conforming vertices along P-paths.

A chain in a dissection is a maximal collection of distinct pieces T1, . . . , Tk so that
for j = 1, . . . k − 1, Tj and Tj+1 share a Q-side (the sides are identical, not just
overlapping). If a piece in the dissection does not share either Q-side with any other
piece, we consider it as a chain of length one. For example, the dissection in Fig. 17
has chains of length 2,4, 5 and 7 and four chains of length 1. The Q-ends of a chain
are the Q-side of T1 not shared with T2, and the Q-side of Tk not shared with Tk−1.
When T1 and Tk also share a Q-side, then the chain forms a closed loop. We will call
this a closed chain (this case is not of much interest to us since no propagation paths
will ever occur inside such a closed chain.)

Suppose T is an isosceles piece. Given θ > 0, a θ -segment is a segment in T
with one endpoint on each non-base side, and so that the segment is within angle θ

of being parallel to the base. We allow one endpoint of a θ -segment to be a vertex of
T , but the interior of the segment must be contained in the interior of T , so we don’t
consider base sides of T to be θ -segments. A θ -path is a polygonal arc made up of
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Fig. 17 A domain W dissected by isosceles trapezoids and a mesh generated by propagating non-
conforming vertices along P-paths. The P-sides of the trapezoids are drawn thicker

< θ < θ

Fig. 18 A θ -segment (dashed) makes angle at most θ with P-segments (solid). A θ -path is made up out
of θ -segments

Fig. 19 On the left the points make this piece Gabriel, on the right they do not

θ -segments joined end-to-end. We shall sometimes refer to this as a θ -bent path. Note
that if T is an θ -nice isosceles piece that is cut by a P-segment, then it is cut into two
θ -nice isosceles pieces. If it is cut by a θ -segment, then we get two pieces (triangles
or quadrilaterals) that are 2θ -nice (but not isosceles unless θ = 0). See Fig. 18.

We say that a finite set of points on the Q-sides of an isosceles piece make that
piece Gabriel if the following holds. Each Q side is split into several segments by
these points and we require that the open disks with these segments as diameters do
not contain any of the added points or corners of the piece. See Fig. 19.
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0y 1y

1γ

0x 1x

0γ

γ

γ

Fig. 20 Given a P-path γ that returns to the same Q-segment, there is an associated widest return region
consisting of all parallel paths. The P-boundary of this tube consists of the two curves γ0, γ1; bymaximality,
each must contain a base edge of a dissection piece (highlighted with darker edges in the figure). The points
x0, y1 form one pair of opposite corners; x1, y0 the other pair. We are interested in joining opposite corners
by a θ -path crossing the tube (dashed curve connecting x1 to y0)

7 Tubes

Two P-paths γ0, γ1 are parallel if each point of γ0 can be connected to a point of γ1
by a Q-segment (equivalently, the paths cross the same sequence of isosceles pieces,
in the same order). A tube in � is the union of two parallel P-paths γ0, γ1 and all
the Q segments that connect the first to the second. The P-paths γ0, γ1 are called the
P-sides or P-boundaries of the tube. See Fig. 20.

Suppose the endpoints of γ0 and γ1 are {x0, y0} and {x1, y1} respectively and that
[x0, x1] and [y0, y1] are Q-segments. These segments are called the ends or Q-ends of
the tube. These may or may not be disjoint segments. The two ends of a tube have the
same length, and this common length of each of the two Q-ends is called the width of
the tube (a tube can be thought of as a union of isosceles pieces, all of the same width,
joined end-to-end along their Q-sides). The points {x0, y0, x1, y1} are the corners of
the tube (although in some cases, these need not be four distinct points in the plane,
e.g. pure spirals that we will discuss later). Opposite corners of a tube mean either
the pair {x0, y1} or the pair {x1, y0}. A maximal width tube is the union of all P-paths
parallel to a given one. If a tube is maximal width, then each of the P-path boundaries
contains segments that are bases for at least one piece that the tube crosses (otherwise
we could widen the tube). See Fig. 20.

We say a path strictly crosses a tube if it is contained in the tube and has one
endpoint on each Q-end. We say a path crosses a tube if it contains a sub-path that
strictly crosses the tube. The P-paths that strictly cross a tube can be parameterized
as γt with t ∈ [0, 1] where γ0 and γ1 are the P-sides of the tube as discussed above
and γt has endpoints xt = (1 − t)x0 + t x1 and yt = (1 − t)y0 + t y1. Moreover

	(γt ) = (1 − t)	(γ0) + t	(γ1),
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Fig. 21 On the left is a tube of length zero. On the right is a tube with positive length, but zero minimal-
length

where 	(γ ) denotes the length of a path γ . This formula is obvious for tubes that have
a single isosceles piece, and it follows in general since a sum of affine functions is
affine. The path with t = 1/2 is called the center path of the tube. Note that

	(γ1/2) = 1

2
(	(γ0) + 	(γ1)). (7.1)

The length 	(T ) of a tube T is the minimum length of the two P-sides, i.e.,

	(T ) = min(	(γ0), 	(γ1)).

It is possible for a tube to have length zero, e.g., when all the pieces are triangles with
a common vertex. See the left side of Fig. 21.

The length of an isosceles piece is the length of its shorter base edge (zero for
triangles). If a tube T is made up of isosceles pieces {Tk} then it is possible to have
both 	(T ) > 0 and and 	(Tk) = 0 for all k. See the right side of Fig. 21. We define
the minimal-length of a tube to be

	̃(T ) =
∑

	(Tk),

i.e., we sum over the minimal base length for each piece of the tube, whereas 	(T ) is
defined by summing over all segments in one P-boundary of the tube or all segments
in the other. Clearly 	̃(T ) ≤ 	(T ).

As noted above, it is possible to have both 	̃(T ) = 0 and 	(T ) > 0. However, if
we split a tube into two parallel tubes using the center path then this cannot happen
for either sub-tube:

Lemma 7.1 Let Q be a tube and Q1, Q2 the parallel sub-tubes obtained by splitting
Q by its center path γ . Then 	(Q) ≤ 	(Q1) and 	(Q) ≤ 4	̃(Q1).

Proof Let γ1 be the common P-boundary of Q and Q1, and γ2 the common
P-boundary of Q and Q2. See Fig. 22. By Eq. (7.1), the center path γ of Q has
length between the lengths of γ1 and γ2. Thus

	(Q) = min(	(γ1), 	(γ2)) ≤ min(	(γ1), 	(γ )) = 	(Q1).
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Fig. 22 The tube Q is split into
two parallel tubes Q1, Q2, by its
mid-path γ

Q

Q

1

2

γ

γ1

2

γ

Q

This is the first inequality in the lemma.
To prove the second inequality, suppose L = 	(Q) is the length of the tube Q and

γ1 is the P-boundary shared by Q and Q1. The length of γ1 is the sum of the lengths
of its segments and we group this sum into two parts, depending on whether or not the
segments are the longer or shorter base sides of the corresponding isosceles pieces in
Q (if the piece has equal length bases, its makes no difference in which sub-sum we
place the segment). Call the two sums L0 and L1 where these give the sums over the
shorter edges and longer edges respectively. By definition L = L0 + L1. If L0 ≥ 1

2 L ,
then the short sides of Q (and hence the short sides of Q1) add up to at least 1

2 L1. So
in this case 	̃(Q1) ≥ 1

2 L ≥ 1
4 L , as desired. If L0 < 1

2 L , then L1 > 1
2 L and hence the

corresponding mid-segments of the pieces add up to 1
4 L (since the mid-segment has

length as least half the longer base side). But these mid-segments are the shorter base
sides of pieces in Q1, so again 	̃(Q1) ≥ 1

4 L , as desired. This proves the lemma. �
The P-segments give an identification between the non-base sides of an isosceles

piece that preserves length. The displacement of a θ -segment [a, b] is |p − b| where
[a, p] is a P-segment. It is easy to check that this is unchanged if we reverse the roles
of a and b. Similarly, the two ends of a tube are identified by an isometry induced by
the parallel P-paths defining the tube. The displacement of a path that strictly crosses
the tube is |b − p| where a, b are the endpoints of the path and the P-path starting
at a hits the other end at p. The most important estimates in the remainder of the
paper involve how much displacement a path can have, given that it satisfies certain
limitations on its “bending” across each isosceles piece. For Theorem 1.3, the bending
is bounded by a fixed angle θ , and for Theorem 1.1 the amount of bending depends
on the piece and is determined by the Gabriel condition.

8 Return Regions

In this section we introduce a collection of regions, one of which must be hit by any
P-path that is sufficiently long (in terms of the number of pieces it crosses). We will
classify the regions into four types, and bound the total number of regions needed to
form such an unavoidable collection.

Suppose, as above, that� has an isosceles dissection. A return path is a P-path that
begins and ends on the same Q-side of some piece of the dissection, and that intersects
any Q segment at most three times. Figure 23 shows four ways that this can happen:
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Fig. 23 AC-curve, S-curve and the two types of G-curve. Each is named for the letter it vaguely resembles

C-curve both ends of γ hit the same side of S and γ ∪ S separates the endpoints of
S from ∞,

S-curve γ starts and ends on different sides of S, crossing S exactly once in between,
and this crossing point separates the endpoints of γ on S,

G1-curve γ starts and ends on different sides of S, crossing S exactly once, and this
crossing point does not separate the endpoints of γ on S,

G2-curve γ starts and ends on different sides of S with no crossings S.

When we refer to a G-curve, we can mean either a G1 or a G2-curve.

Lemma 8.1 Suppose n is the number of isosceles pieces in an isosceles dissection.
Every P-path γ with 2n + 1 segments contains a sub-path that is a return path of one
of the four types described above.

Proof A P-path γ with 2n+1 segments must cross some dissection piece three times
by the pigeon hole principle. Therefore γ crosses a non-base side S of such a piece at
least three times. By passing to a sub-path, if necessary, we can also assume γ does
not hit any Q-side more than three times. Suppose that γ does not contain a C-curve
or a G2-curve as a subpath. Then the sub-path between its first and second visit to S
starts and ends on the same side of S and the same for the sub-path between its second
and third visit (but now it starts and ends on the other side of S). Thus the subpath
formed between the first and third visits is either a S-curve or a G1-curve. Thus one
of the four types of curve must occur as a subpath. �

A tube consisting of parallel return paths will be called a return tube and be called
a C-tube, S-tube, G1-tube or G2-tube depending on the type of curves it contains
(clearly all parallel curves must be of the same type). We want to show that the length
of a return tube cannot be too small compared to its width. We do this by considering
the different types of tubes one at a time. We call a return tube a simple tube if the two
ends have disjoint interiors (they may share a corner); otherwise the region is called a
spiral. A C-tube or S-tube must be a simple tube; a G-tube can be either be a simple
tube or a spiral. As the name suggests, simple tubes are easier to understand and we
start with this case. See Fig. 24.
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x0

0y

y1

x1

Fig. 24 AG-region can form a single tube with disjoint ends (a simple G-tube) or the two ends can overlap
(a spiral)

Lemma 8.2 The length L of a C-tube is at least twice its width w.

Proof The ends of a C-tube are disjoint intervals on the same Q-segment S, so the
length of S is at least 2w. But both P-sides of the tube cover S when projected
orthogonally onto the line containing S, so both P-sides have length≥ |S| ≥ 2w. The
length of the tube is the minimum of these two path lengths, so is also ≥ 2w. �
Lemma 8.3 The length L of a S-tube is at least twice its width w.

Proof Split the S-tube into four sub-tubes as follows. Each P-path in the tube is cut
by a point where it crosses S and this cuts the tube into two sub-tubes that also have
width w, say U1, U2, which meet end-to-end. Each of these are split into two thinner
tubes by the central P-path γ1/2, giving four sub-tubes called Ui

1,U
o
1 ,Ui

2,U
o
2 , e.g.,

Ui
1 is the inner part of U1 and its endpoints on S separate the endpoints of the outer

part Uo
1 on S. See Fig. 25. Note that the length of the original S-tube is at least the

minimum of the lengths of the two outer tubes (since they each have a P-boundary
contained in the P-boundary of the S-tube).

However, the endpoints of the outer P-boundary of an outer part are separated by
at least distance 2w, and each P-boundary of S contains the outer P-boundary of one
of its outer parts. Thus both P-boundaries have length at least 2w. �
Lemma 8.4 The length L of a simple G-tube is at least its width.

Proof Suppose I and J are the ends of the spiral. If we project either P-side of the
tube orthogonally onto S, then it covers either I or J , so both sides of the tube are
longer than the tube is wide. �

Putting together the last three lemmas we get

Corollary 8.5 The length L of a simple return tube is at least its width w. If the tube
is not a G tube, then L ≥ 2w.

The more interesting and difficult return regions are the spirals: G-tubes where the
Q-ends [x0, x1] and [y0, y1] overlap but are not identical.
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w

w
Uo

1

Ui
2

Uo
2

Ui
1

Fig. 25 The outer tubes of a S-tube are shaded

Fig. 26 A spiral can always be
divided into a simple tube
(shaded) and a pure spiral. The
pure spiral can be thought of as
many parallel simple G-tubes
that don’t cross S, or as one very
long tube that crosses S multiple
times. The pure spiral here has
five windings. y

1

x1
z

x

0

0

y

Suppose S is a spiral return tube and the corners are ordered on S as x0 < y0 <

x1 < y1 and define Q-segments I0 = [x0, y0] and I1 = [x1, y1]. See Fig. 26. There is
a P-path in that starts at y0 and ends at a point z in I1 and is composed of P-paths in
the tube joined end-to-end where they cross S.

If z < y1, then we can remove the simple G-sub-tube with Q-end [z, y1] as shown
in Fig. 26 (the dark gray tube). What is left after removing this simple tube a pure
spiral, a union of parallel P-paths that each consist of N P-paths from the original
tube. We call N the winding number of the pure spiral (in this notation a simple tube
has winding number one).

Since a pure spiral is made up of N simple G-tubes all with the same width joined
end-to-end, it is clear that the length of a spiral with N windings should be at least N
times its width. However, we can do better than this, since each turn of the spiral is
longer than the previous one.

Lemma 8.6 A pure spiral with N turns and width w has length at least N 2w.

Proof Without loss of generality we may scale the spiral so the width w = 1. Use the
segment [x0, y1] to cut the entire spiral into N simple G-tubes. The first has length at
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Fig. 27 Estimating the length
of a G-curve

j

j+1

Fig. 28 A return path ending
inside a chain can easily be
modified to start and finish on
the Q-end of the chain (the
extensions are shown as dashed
lines and follow P-paths). Black
dots are the original endpoints of
the path an the white dots are the
modified endpoints

SC

2G1G

least w, because both P-boundaries project orthogonally onto one of the Q-ends. In
general, both the parts of the P-boundary paths of the j th sub-tube have length at least
2 j−1. To see this, consider the curves in each half-plane defined by the line L through
x0, y1, and project orthogonally onto L . The part in one half-plane projects to a segment
of length at least j−1 and the other to a segment of length at least j . See Fig. 27. Hence
the j th tube has length at least 2 j − 1. Summing 1 + 3 + 5 + · · · + (2N − 1) = N 2

gives the result. �
The argument proving Lemma 8.6 will be used again in Sect. 18. Next we slightly

refine Lemma 8.1

Lemma 8.7 Suppose n is the number of isosceles pieces in an isosceles dissection.
Every P-path γ with 3n + 1 segments contains a sub-path that begins and ends on
the Q-end of a chain and is a return path of one of the four types described above
(S, C, G1, G2).

Proof Apply Lemma 8.1 to the initial path of 2n + 1 steps, to get a return path of one
of the four types. If the path already begins and ends on the Q-end of a chain there
is nothing to do. If it begins and ends at an interior Q-segment of the chain then by
deleting or extending the paths as shown in Fig. 28 we can obtain a path that begins
and ends on the Q-end of the chain. The number of steps added is less than n, so the
new path must be a sub-path of γ . �

We say that a return region is standard if is of one of the types (C, S, G1, G2)
discussed above and if it begins and ends on segments that are the Q-ends of some
chains (possibly the same chain or two different chains). The following is one of the
key estimates of this paper.
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Lemma 8.8 If � has an isosceles dissection into n pieces with M chains, then there
are O(M) standard return regions with disjoint interiors so that any P-path with more
than 5n + 1 segments must hit one of the regions.

Proof Each chain in the dissection has two P-boundaries. Each of these P-boundaries
may or may not be part of the P-boundary of a standard return region. If it is, then
associate to the P-boundary of the chain the maximal width standard return region
that contains the P-boundary of the chain in its own boundary. Note that at most 2M
return regions can be selected in this way, since there are M chains and each has two
P-boundaries.

We claim that any P-path γ in the dissection with 5n + 1 steps contains a sub-path
that crosses one of the selected return regions. Let γ ′ be the path obtained by deleting
n steps from each end of γ . By Lemma 8.7, γ ′ contains a sub-path γ ′′ that is a return
path of one of the four standard types and which begins and terminates on the Q-
end of a chain. Thus the set of paths parallel to γ ′′ forms a standard return tube T of
maximal width. If T is one of the chosen return regions, thenwe are done since γ ′′ ⊂ γ

crosses T .
On the other hand, suppose T is not one of the chosen regions. Since T is maximal,

it contains the P-boundary of some chain C within its own P-boundary. Since T was
not chosen, there must be another return region T ′, at least as wide as T , that was
chosen and T ∩ C ⊂ T ′ ∩ C . Thus every path crossing T hits T ′. Thus γ ′′ hits T ′. If
we add n steps to both ends of γ ′′, the new, longer path must now cross T ′, but it is
still a sub-path of γ . Thus γ crosses some return region in the chosen collection. This
proves the claim.

The collection of maximal width return regions defined above may overlap. To get
disjointness, we order the chosen regions R1, . . . , Rm , m = O(M), from widest to
narrowest and label the first region “protected” and label the remainder “unprotected”.
At each stage we look at the first unprotected region Rk in the current list and see if
there are any P-paths strictly crossing it that intersect a protected region (anything
earlier in the list). If there is no such path, then label Rk protected, and move to the
next region.

If there is a P-path γ strictly crossing Rk that hits a protected region R j , then
remove from Rk any P-paths that hit R j . Since R j is at least as wide as Rk , removing
these paths gives a connected return region R′

k ⊂ Rk (possibly empty). Now re-sort
the list by width. R′

k either stays where it is or moves later in the list; the protected
regions all stay where they are. Since two regions will never overlap after the first time
they were compared, this process stops after at mostm2 steps, and gives a collection of
return regions with disjoint interiors. Moreover, once a region is protected, it is never
modified again and is part of the final collection.

Finally, we have check that every long enough P-path hits one of the disjoint
regions. If γ is any path with 5n + 1 segments then it crossed some region in the
original list. Suppose Rγ is the first region on the original sorted list that is crossed
by γ . If a part of Rγ containing γ is deleted in the construction, then γ must hit a
protected return region. Thus γ hits a return region in the final collection, as desired.

�
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This lemma is used in the proofs of both Theorems 1.1 and 1.3. In both cases we
will reduce to meshing a region � that has an isosceles dissection. We will propagate
the non-conforming vertices until they either hit the boundary of � or hit the Q-end
of a return region. By Lemma 8.8, one of these two options must occur within O(n)

steps. The proofs of the two theorems differ mostly in how we construct � and how
we mesh inside the return regions.

9 Proof of Theorem 1.3: Reduction to a Meshing Lemma

This is the first of four sections that construct the almost nonobtuse triangulation
in Theorem 1.3. Unlike the proofs of Theorems 1.1 and 1.2, the proof of Theorem
1.3 does not make use of Theorem 2.1 to create the triangulation; we shall construct
the triangulation directly. However, we will use the result of Bern et al. [9] that any
simply n-gon has a nonobtuse triangulation with O(n) triangles. We will also make
use of return regions and bending paths, both ideas we shall use again in the proof of
Theorem 1.1.

As in the proof of Theorem 1.2, we start with a PSLG that is a triangulation. In
that earlier proof we divided each triangle T into a central triangle and three isosceles
triangles. Here we will replace the single central triangle by a simple polygon that
approximates a triangle with circular edges.

Given a triangle T with vertices v1, v2, v3, let C be the inscribed circle and let
z1, z2, z3 be the three points where this circle is tangent to the triangle (numbered so
that zk lies on the side of T opposite vk). Any pair of the z’s is equidistant from one
of the vertices of T and hence is connected by a circular arc centered at this vertex.
This defines a central region bounded by three circular arcs, each pair of arcs tangent
where they meet (see the shaded area on the left of Fig. 29). We will replace each of
these circular arcs by a polygonal path inscribed in the arc. For example, let γ1 be a
polygonal arc inscribed in the circular arc connecting z2 and z3. If γ1 consists of m
equal length segments, then the angle subtended from v1 by these segments is less
than π/m (since γ1 subtends at most angle π ). If we then connect the vertices of γ1
to v1 we obtain a chain of isosceles triangles all with angle ≤ θ = π/m. See the right

v2

v3

z1

z2

γ
1

3z

v1

Fig. 29 We define a simple polygon by inscribing polygon arcs on circular arcs as shown above. If we use
m evenly points on each arc then remaining region clearly has a θ -isosceles dissection for θ = π/m
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Fig. 30 Each isosceles triangles
T in the dissection of � is
meshed by at most O(n/θ)

quadrilaterals and triangles (here
a chain of four triangles is
shown). Connecting “extra”
vertices (white dots) on the base
of T to the opposite vertex thus
creates at most O(n/θ) extra
mesh pieces per dissection
triangle

side of Fig. 29. Taking the union of these isosceles triangles over all T in the original
triangulation gives the region �, that clearly has a θ -nice isosceles dissection with
O(n) chains and O(n/θ) pieces.

Lemma 9.1 Suppose � is a region that has a θ -nice isosceles dissection (both trian-
gles and quadrilaterals are allowed). Assume that the dissection has O(n) chains and
O(n/θ) pieces. Then there is a mesh of � using O(n2/θ2) θ -nice quadrilaterals and
triangles. Moreover, each dissection piece T contains at most O(n/θ) mesh elements
and every mesh element Q contained in T is bounded by at most two sub-segments of
the Q-sides of T (possibly points) and at most two θ -paths in T (possibly the vertex
of T , if T is a triangle).

We will prove this in the next three sections. We can deduce Theorem 1.3 from
Lemma 9.1 as follows. By a result of Bern,Mitchell and Ruppert, each central polygon
has a nonobtuse triangulation with at most O(1/θ) triangles. This triangulation may
place extra vertices on the edges of the central polygon, but not more than O(1/θ)

vertices in total. Each such edge e is the base of one of the isosceles triangles T in
the dissection, and we connect the extra vertex on e to the opposite vertex of T by a
Q-segment S. See Fig. 30.

This creates a new θ -nice quadrilateral or triangle for each θ -path that S crosses.
Since there are at most O(n/θ) such paths per piece, each extra vertex on e creates at
most O(n/θ) new elements of the mesh. Since there are O(n) central polygons and
each has at most O(1/θ) extra boundary points coming from its nonobtuse triangula-
tion, at most O(n2/θ2) extra pieces are created overall.

As the final step, we add diagonals to the quadrilateral pieces of the mesh, getting
a triangulation. Since all the quadrilaterals are θ -nice, the resulting triangles have
maximum angle 90◦ + θ , which proves Theorem 1.3.

Our application of Lemma 9.1 to Theorem 1.3 only needs to apply to dissections
consisting entirely of triangles, but has been stated for more general isosceles dissec-
tions which may use both triangles and quadrilaterals. The extra generality does not
lengthen the proof at all, but it is useful for the application to optimal quad-meshing
given in [11]. That application involves an isosceles dissection that uses only trapezoid
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pieces; the precise variant of Lemma 9.1 that is needed in that paper will be stated and
proved in Sect. 13.

10 Proof of Lemma 9.1: Outside the Return Regions

We continue with the proof of Theorem 1.3, by starting the proof of Lemma 9.1. In
this section we will mesh the part of � that is outside the return regions.

Let {Rk}N1 be the disjoint return regions for � given by Lemma 8.8. Since there are
O(n) chains there are O(n) return regions. For each triangle Tk , and each of the three
vertices of T ′

k on its boundary, construct the P-path starting at this point and continued
until it hits another cusp point, leaves � or enters a return region. Lemma 5.2 says
these paths cut the isosceles pieces of the dissection into isosceles pieces that form a
mesh. By Lemma 8.8, each P-path we generate terminates within O(n/θ) steps and
there are less than 3n of these paths (at most three per triangle), so a total of O(n2/θ)

mesh pieces are created outside the return regions. Moreover, each such path crosses a
single dissection piece at most O(1) times. Thus each dissection piece can be crossed
at most O(n) times but such paths.

Next we place O(1/θ) evenly spaced points on both Q-sides of each return region
(the reason for this will be explained in the next section). Each of these points is
propagated by P-paths outside the return region it belongs to, until it runs into the
boundary of � or hits the Q-side of some return region (possibly the same one they
started from). As above, this generates a θ -nice mesh outside the return regions. There
are O(n) return regions and O(1/θ) points per region to be propagated. Each path
continues for at most O(n/θ) steps, so at most O(n2/θ2) mesh elements are created
in total. Moreover, each dissection piece is crossed at most O(1) times by each path,
so is crossed O(n/θ) times in total by such paths.

11 Proof of Lemma 9.1: The Simple Tubes

Next, we have mesh inside the return regions. In this section, we deal with the return
regions that are simple tubes and in the next section we deal with spirals.

For the first time we will use θ -paths rather than P-paths (recall that a θ -path is
made up of segments that are within θ of parallel to the base of the isosceles piece;
when we cut a θ -nice piece by a θ -path we get two 2θ -nice pieces). We need the
following lemma.

Lemma 11.1 Suppose Q is a tube whose width w is at most sin θ times its minimal-
length 	̃. Then opposite corners of Q can be connected by a θ -path inside the tube.

Proof Suppose T is a θ -nice isosceles piece and x, y are the endpoints of a P-segment
S = [x, y] crossing T . Then any point z on the same side as y and within distance
sin(θ)|x − y| can joined to x by a θ -path. See Fig. 31. Thus if {Tk} is an enumeration
of the pieces making up the tube and 	k is the minimal base length of the kth piece,
then we can create a θ -path that crosses the tube and whose endpoints are displaced
by

∑
k 	k sin θ = 	̃ sin θ with respect to a P-path. This proves the lemma. �
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Fig. 31 Clearly |p − y| ≥
|q − y| = |x − y| sin θ ≥ 	̃ sin θ

where q is the closest point to y
on the line making angle θ with
the segment xy

yθ

q

p

x

w

Corollary 11.2 If R is return region that is a C-tube, S-tube or simple G-tube, then
we can cut R into O(1/θ) parallel sub-tubes and connect opposite corners of the each
tube by a θ -path contained in that tube.

Proof Suppose the return region R has length L and width w. Choose an even integer
M ≥ 4/sin θ and split the return region R into the disjoint union of M thinner tubes
{Tj } of width w/M . By Lemmas 8.2, 8.3 and 8.4 each of these new tubes has length
that is at least w and width equal to w/M . Thus each has length that is at least M
times as long as its width.

Since M ≥ 2, each of our thin tubes is half of a thicker tube that is still inside the
given tube R. By Lemma 7.1

	̃(Tj ) ≥ 1

4
	(Tj ) ≥ 1

4
	(R) ≥ 1

4
w.

On the other hand, the width of Tj is w/M . Hence the minimal-length of each tube
Tj is more than M/4 = 1/ sin θ times its width, so the previous Lemma 11.1 applies
to Tj , as desired. �

We can now continue with the proof of Lemma 9.1. We cut the return region into
O(1/θ) parallel tubes as described above, and divide each tube by a θ -path connecting
opposite corners. This meshes each tube using 2θ -nice pieces. Any P-path hitting a
Q-end of one of these tubes is then propagated to a corner on the opposite end of the
tube by standard quadrilateral propagation paths. This gives a 2θ -nice mesh of the
tube that is consistent with all the meshes created outside the tube.

Since there were at most O(n/θ) P-paths that might terminate and each return
region has at most O(n/θ) isosceles pieces, at most O(n2/θ2) 2θ -nice triangles and
quadrilaterals are created inside all the return regions. Moreover, each dissection piece
is crossed by at most O(n/θ) paths (there are O(1/θ) paths per return region and O(n)

return regions), so it contains at most this many mesh pieces.

12 Proof of Lemma 9.1: The Spirals

This is the final section in the proof of Theorem 1.3. Here we prove Lemma 9.1 inside
the spiral return regions.

Since any spiral can be divided into a simple G-tube and a pure spiral, and we can
treat the simple tube as above, it suffices to deal with the pure spirals. Let N be the
winding number of the spiral; we may assume N ≥ 2, since otherwise the spiral can
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Fig. 32 Cut the inner and outer
tubes into O(1/θ) parallel
narrow tubes and θ -bend all
entering P-paths so they
terminate inside these narrow
tubes. The corners of the narrow
inner tubes are then propagated
around the N turns of the spiral
until they hit the corners of the
narrow outer tubes. This creates
a 2θ -nice mesh of the spiral
using O(nN/θ) pieces. The
figure shows p = 9 and N = 6

be treated as a tube and can be triangulated as in the previous section. Let p be the
number of isosceles pieces that are hit by the spiral (this is the number of steps it take
to complete one winding of the spiral).

The spiral can be divided into N tubes joined end-to-end, each starting and ending
on the same Q-edge of some isosceles pieces.We divide the first and last of these tubes
into O(1/θ) parallel thin tubes. Then any P-path that enters the tube from either end
can be θ -bent so that it terminates at the corner of one of the thin tubes after winding
once around the spiral.

If N = O(1/θ), then we simply propagate all the interior corners of the thin tubes
at one end of the spiral around the spiral until they run into the corners of the thin
tubes at the other end. This generates O(N · p · θ−1) = (pθ−2) new vertices. See
Fig. 32.

If N � 2θ−1 ≥ 1/ sin(θ) then after O(θ−1) spirals, we can create a θ curve that is
a closed loop and we let the paths generated by the interior corners of the inner thin
part hit this closed loop. We create another θ -bent closed loop at radius N − 2 and
let the paths generated by the corners of the outer thin tubes hit this. No propagation
paths enter the region between the two closed loops and a total of O(pθ−2) vertices
are used. See Fig. 33.

The propagation paths cut the spiral into 2θ -nice triangles and quadrilaterals.More-
over, as in the case of simple tubes, it is easy to check that each dissection piece is
crossed by at most 1/θ paths in the construction of each spiral. Since there are O(n)

spirals, this means there are at most O(n/θ) such crossings of a dissection piece in
total. The propagation paths that enter each spiral cross each dissection piece at most
once, and there are O(n/θ) such paths in total, hence O(n/θ) such crossings of each
piece.

This completes the proof of Lemma 9.1, and hence the proof of Theorem 1.3.

13 A Lemma for Quadrilateral Meshing

We now restate our conclusions in a form that is useful for proving the theorem on
optimal quad-meshing in [11]. Readers interested only in Theorem 1.1 may skip this
section.
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Fig. 33 If the winding number is much larger than 1
θ
, then after O(1/θ) windings we can create a closed

θ -bent loop (the dashed curve). We then propagate the corners of the narrow inner tunes until they hit a
vertex of this closed loop. We can also create a θ -bent loop one winding in from the outer tube and use it
similarly to propagate the corners of the narrow outer tubes until they hit a vertex of this loop

Theorem 13.1 Suppose that W is a polygonal domain with an isosceles trapezoid
dissection with n pieces. Suppose also that 0◦ ≤ θ ≤ 15◦ and that every dissection
piece is θ -nice. Finally, suppose the number of chains in the dissection is M. Then
we can remove O(M/θ) θ -nice quadrilaterals of uniformly bounded eccentricity from
W so that the remaining region W ′ has a 2θ -nice quadrilateral mesh with O(nM/θ)

elements. At most O(M/θ) new vertices are created on the Q-boundary of W ′. At most
O(M) vertices are created on the P-boundary of W ′, and no more than O(1) vertices
are placed in any single P-side of any dissection piece of W ′. For this quad-mesh,
any boundary point on a Q-side of W ′ propagates to another boundary point after
crossing at most O(n) quadrilaterals.

Proof The proof is exactly the same as the argument of the last few sections, except
for some slight modifications inside the return regions.

For each return region we place O(1/θ) equally space points along the two Q-sides
of the region and propagate these outside the return regions until they hit the boundary
of � or hit the Q-side of some return region. There are O(M/θ) such paths and they
generate at most O(Mn/θ) quadrilaterals and O(M/θ) endpoints on Q-sides of ∂�.

First consider return regions that are simple tubes. As before, split each such region
into O(1/θ) parallel sub-tubes and so that in each sub-tube we can connect opposite
corners by a θ -path. Now, however, we remove a small quadrilaterals at a pair of
opposite corners of the tube. These quadrilaterals have one edge on a P-boundary of
the tube, one edge on a Q-end of the tube, one vertex in the interior of the tube and
the two edges adjacent to this vertex are chosen to lie a P-segment and a Q-segment.
See Fig. 34.

We then connect the interior corner of each of the two quadrilaterals by a θ -curve.
This requires less displacement than connecting the corners, so it is clearly possible
to do this (to make it easier to see, we could always increase the number of tubes
and decrease their width by a fixed factor). We have freedom in choosing the size
of the quadrilaterals, and so we can arrange for all the quadrilaterals chosen in the
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Fig. 34 We place quadrilaterals (shaded) at opposite corners of a tube, and connect the internal corners by
a θ -path. Every path entering tube either immediately hits the shaded quadrilateral at that end, or propagates
to hit the shaded quadrilateral at the other end. We also have to propagate the interior corner of the shaded
quadrilateral along a Q-path. This gives a mesh of every tube by 2θ -nice quadrilaterals

same dissection trapezoid to have sides along the same Q-segment. Thus when we
Q-propagate the corners of the quadrilaterals, only two extra points will be created on
the P-side of the dissection piece containing such a quadrilateral.

If we apply quadrilateral propagation to each P-path entering the tube from either
end, it crosses the tube and hits a Q-side of the removed quadrilateral at the other end
of the tube. See Fig. 34. This gives a 2θ -nice quadrilateral mesh inside the modified
tubes.

Inside the spirals we do a similar thing. In the previous proof, paths inside spirals
were terminated by bending them in a sub-tube of the spiral until they hit a corner on
the opposite side of the tube from where they entered, in order to form a loop. so the
same construction works. Outside the return regions, the P-paths convert the θ -nice
dissection into a θ -nice quadrilatal mesh (previously the only triangles created by the
P-paths were in triangular pieces of the dissection, which we now assume don’t exist).
See Figs. 35 and 36. �

14 Overview of the Proof of Theorem 1.1

The remainder of the paper gives the proof of Theorem 1.1. In this section we give the
overall strategy of the proof and we will provide the details in the following sections.

The proof combines ideas already seen in the proofs of Theorems 1.2 and 1.3 but
requires a different displacement estimate in tubes and a more intricate construction
in the spirals. As explained in Sect. 2, it suffices to prove Theorem 2.3: assume Γ is
a triangulation and show we can place O(n2.5) points along the edges so that each
triangle becomes Gabriel. As in the proof of Theorem 1.2 we start taking the dissected
domain � to be the original triangles {Tk} with the central triangles {T ′

k} removed
(recall the vertices of Tk are the three points where the inscribed circle touches the
triangle Tk). We do not use the “approximate circular-arc triangles” that were used in
the proof of Theorem 1.3.
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Fig. 35 For spirals with � θ−1

windings, we can make a θ -path
loop in the j th spiral when
j � 1/θ (solid thick curve).
Then place a quadrilateral as
shown with one edge on the
loop; one corner is θ -propagated
around the spiral once to hit the
center of a side of the same
quadrilateral (thin dashed
curve). The boundary of the
spiral is θ -bent to hit the other
corner (thick dashed curve)

Fig. 36 The quadrilateral
construction near the outside of
a large spiral. This is similar to
the construction in Fig. 35, but
we can do it in the sub-tube
adjacent to the outermost one.
The two constructions give a
2θ -nice mesh of the entire spiral
(minus the two quadrilaterals)

For each triangle Tk , remove the closed triangle T ′
k as in Sect. 4. As before, Tk \ T ′

k
is a union of three isosceles triangles. Keep the isosceles triangles with angle < 90◦;
as explained at the end of Sect. 4, isosceles triangles with angles≥ 90◦ can be ignored
because adding any set of points to the Q-edges will make the triangle Gabriel. The
remaining region � thus has an isosceles dissection by O(n) acute triangles. We
construct return regions for � just as before.

Each vertex of each T ′
k are propagated by P-paths until then leave � or hit the

Q-side of a return region. This creates O(n2) crossing points on Γ .
If a return region has k isosceles pieces then we will place O(

√
k) even spaced

points in each Q-end of the region and propagate these until they leave � or hit a
return region. Since k = O(n), this creates at most O(n2.5) new points. If different
return regions had to use distinct isosceles pieces this estimatewould be O(n2) instead.
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a
b

a b
a

b

Fig. 37 A θ -bent path can reach any point defined by a cone with angle 2θ , but a Gabriel bent path can
only reach points defined by the cusp between two tangent disks. Moreover, this is a two part condition: the
exit point must be the cusp defined by the entrance point and the entrance point must be in the cusp defined
by the exit point

Improving the exponent in Theorem 1.1 seems to be entirely a matter of understanding
the behavior of distinct return regions that share isosceles pieces.

Why do we split the Q-ends of the return regions into O(
√
k) pieces? When we

bend the P-paths inside the return regions, we must verify that the Gabriel condition
is satisfied by the points that we generate. This is a more restrictive condition than the
θ -bending of the earlier proof, so paths can be bent less and hence take a more steps
to terminate. The difference is illustrated in Fig. 37. The left side shows the range
of options for a θ -segment crossing a single rectangle; the allowable displacement
is roughly θ |a − b|. The center and right pictures of Fig. 37 show the restrictions
on a Gabriel path. Note that there are two such restrictions: the exit point b must be
between the Gabriel disks tangent at a and the entrance point a must be between the
disks tangent at b. This restricts b to an interval of length approximately |a − b|2/w,
where w is the width of the piece. This estimate will be made more precise in the
next section; the main point is that it shrinks quadratically with |a − b| whereas the
estimate for θ -paths decreased linearly. Thus the proof of Theorem 1.1 requires longer,
narrower tubes than the proof of Theorem 1.3.

To illustrate the idea, consider a simple case: a square divided into k thin parallel
rectangles. See Fig. 38. A Gabriel path crossing the square takes k steps, each with
displacement � 1/k2, so the total displacement is � 1/k. At first glance, this seems
to say we should cut the square into O(k) parallel tubes; then we could get all entering
paths to terminate before hitting the far side of tube. This works, but leads to the
estimate O(n3) in Theorem 1.1.

We can do better. Cut the square into
√
k tubes instead. Now the tangent disks

have diameter k−1/2 and the cusp regions where we choose our next point have height
� 1√

k
( 1√

k
/ 1
k )

2 = k−3/2. Thus a Gabriel path takes k steps, each with displacement

� k−3/2, for a total displacement � k−1/2, which is the approximate width of the
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Fig. 38 A Gabriel-bent path must stay outside certain pairs of tangent disks. When we cut a unit square
into 1

k × 1 rectangles then a Gabriel path has total displacement at most O(1/k). If we cut the square

into O(
√
k) horizontal tubes, paths in each tube take k steps with displacement of k−3/2 and hence total

displacement of 1/
√
k. Since this is also the width of the tube, we can Gabriel-bend a path to hit the side

of a tube before leaving it

tube. Thus using only O(
√
k) tubes, we can bend Gabriel paths enough to hit the far

corner of the tube (and thus terminate).
We shall prove in the next two sections this holds for any return regions that are

simple tubes, not just squares with rectangular pieces. Each return region that is a
C-tube, S-tube or simple G-tube will be split into O(

√
k) narrow parallel tubes and

the entering propagation paths will be Gabriel bent until they a far corner of the tube;
here k is the number of isosceles pieces forming the tube.

We also place O(
√
k) narrow parallel sub-tubes at the two ends of spiral return

regions, i.e., we subdivide the innermost and outermost windings of the spiral. As
with simple tubes, all paths entering the spiral can be bent within these narrow tubes
to terminate within O(k) steps. But then we have to propagate both the external and
internal corners of the narrow tubes. The external corners propagate outside the spiral
until they terminate just as described for the corners for narrow tubes in the previous
paragraph.

The most difficult part of the proof of Theorem 1.1 is dealing with the
√
k internal

corners that propagate through the spiral; since we have no bound for the number
N of windings of the spiral in terms of n, this could produce arbitrarily many new
vertices. Thus propagation paths of the internal corners must be bent to terminate
earlier. Consider the case of paths that start near the inner end of the spiral (the outer
part is handled in the sameway, but is easier, since thewindings of the spiral are longer).
We consider what happens for very large spirals (where the number of windings N is
bigger than the number k of isosceles pieces in the spiral; for smaller values of N we
truncate the construction at the appropriate stage.)

We first bend the propagation paths so that adjacent paths merge, and then merge
adjacent merged paths, and continue until all the propagation paths generated by the
O(

√
k) internal corners have merged into a single path. This occurs around winding

k1/3. This path is then propagated as a P-path out to winding k1/2. See Fig. 39.
At this stage we have enough freedom to bend the curve to hit itself, forming a

closed loop that wraps once around the spiral. This is similar to what we did in the
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Fig. 39 This illustrates the
stages in the spiral construction.
First (light gray), we divide the
tube into thinner tubes and
entering paths are bent to hit the
sides of these. Next (white), the
thin tubes are bent and collapsed
in pairs; in this figure four tubes
are merged into one after two
windings. In the third stage
(gray), the single tube is
propagated until we can bend it
to intersect itself. Next (white)
comes a sequence of closed
loops that gradually grow further
apart. Finally we reach the
empty region (gray), where no
paths propagate. This figure
gives a rough idea of the
construction, but scales have
been drastically compressed to
make all the stages visible in the
same picture

proof of Theorem 1.3, but in this case, in order for this closed loop to be Gabriel,
there must be another (larger) closed loop parallel to it. This did not occur in Theorem
1.3. This constraint requires us to construct a sequence of parallel closed loops in the
spiral between windings k1/2 and k. The closed loops gradually can become farther
and farther apart; only O(

√
k) loops are used in all. At winding k, there is no need

for a “next” loop and the sequence of closed loops ends. The part of the spiral beyond
winding k is an “empty” region until we reach a closed loop coming from the analogous
construction in the outer half of the spiral.

In the remainder of the paper we give the details of the argument sketched above.

15 Gabriel Bending in Isosceles Pieces

This section contains the main estimate used in proof of Theorem 1.1.
Suppose a and b are endpoints of a P-path in an isosceles piece T . If we keep a

fixed, how far we canmove b and still have theGabriel condition hold?More precisely,
can we find an ε > 0 so that all points on the same Q-side as b that are within distance
ε of b can be connected to a by a Gabriel segment? If this holds we say that the
allowable displacement for the piece is at least ε.

Lemma 15.1 Suppose T is an isosceles piece of width w. Suppose [a, b] is a
P-segment crossing T and R is the distance of a from the vertex of the piece (R = ∞
if the piece is a rectangle). Then if c is a point on the same Q-side as b and is within
distance

ε = |a − b|2
4

max
( 1

w
,
1

R

)
, (15.1)
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Fig. 40 The segment [a, b] is a
P-segment for a rectangular
piece. A simple estimate shows
|c − b| ≥ |a − b|2/r and
|d − b| ≥ |a − b|2/s

sr

a

bc d

w

D D21

of b, then [a, c] is a Gabriel segment crossing T . In particular, the allowable displace-
ment is at least ε.

Proof First suppose the isosceles piece is a rectangle (R = ∞). Consider disjoint sub-
segments of the Q-side containing a that have a as a common endpoint and consider
the disks D1, D2 with these segments as diameters. See Fig. 40. Assume these disks
have radii r and s. The diameters of these disks are disjoint segments that both lie on
the same non-base side of an isosceles piece, so their length adds up to be less than
the width of the piece, i.e., 2r + 2s ≤ w. Thus max(2r, 2s) ≤ w.

Suppose [c, d] is the Q-segment containing b that is disjoint from these disks (again,
see Fig. 40). We want to estimate |c− b| and |d − b| from below. Such a lower bound
gives the desired lower bound on the allowable displacement.

If the disk D1 is too small, i.e., r < |a − b|, then the disk D1 does not hit the
Q-side containing b and the Gabriel condition is automatically satisfied. Thus we may
assume r ≥ |a − b|. Then by the Pythagorean theorem

|c − b| = r −
√
r2 − |a − b|2,

or (using 1 − √
1 − y ≥ y/2 on [0, 1]),

1

r
|c − b| = 1 −

√

1 − |a − b|2
r2

≥ |a − b|2
2r2

so |c − b| ≥ |a − b|2/2r . The calculation for the other disk is identical, so the two
disks omit all points within distance

ε = |a − b|2 min
(1
r
,
1

s

)
≥ |a − b|2

2w
.

of b. Since 1/R = 0 in this case, this implies (15.1).
Next we consider what happens when the piece is not a rectangle. To be concrete,

we assume one Q-side lies on the real axis, the vertex of the piece is at −R and the P-
path connects a = 0 to b in the upper half-plane. Suppose the piece has angle θ . Some
elementary trigonometry shows that the disk D1 does not hit the Q-side containing b
if (see Fig. 41)

r < (R − r) sin θ.
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Since |a − b| = 2R sin θ/2, this is equivalent to

r < R
sin θ

1 + sin θ
= |a − b| sin θ

2 sin(θ/2)(1 + sin θ)
. (15.2)

By the double angle formula, for 0 ≤ θ ≤ π/2 we have sin θ = 2 sin θ
2 cos

θ
2 , so

sin θ

2 sin(θ/2)(1 + sin θ)
= cos θ/2

(1 + sin θ)
≥ cosπ/4

(1 + sin π/2)
= 1

2
√
2
. (15.3)

Hence (15.2) holds if r < |a − b|/2√2. If this condition holds, then the point c is a
corner of the piece T , so the estimate holds trivially to the left of b. Therefore we may
assume r ≥ |a−b|/2√2 in what follows. Note also that this implies w ≥ |a−b|/√2
since r ≤ w/2.

A similar calculation shows D2 does not hit the opposite Q-side if

s <
|a − b| sin θ

sin(θ/2)(1 − sin θ)
= 2|a − b| cos θ/2

1 − sin θ
.

See Fig. 41. The trigonometric function on the far right is increasing for θ ∈ [0, π/2]
(compute the derivative), so it takes its minimum value 1 at θ = 0. Hence D2 does not
hit the opposite Q-side if s < 2|a − b|. In this case d is a corner of the isosceles piece
and the lemma holds trivially to the right of b. Therefore we may assume s ≥ |a − b|
in what follows.

Now suppose we have an isosceles piece with angle θ > 0. We normalize the
picture as in Fig. 42 with one Q-side along the real axis, the vertex of the piece at
−R. The other Q-side is labeled L . We consider a P-path with one endpoint at the
origin and the other endpoint (labeled b in the figure) on L in the upper half-plane.
We also consider disks D0, D1, D2 centered at points −R,−r , s on the real line that
are tangent at the origin. We let [c, d] be the segment of L \ (D1 ∪ D2) that contains
b. See Fig. 42.

Now apply the map z → 1/z. The origin is mapped to infinity and the circles
centered on the real line passing through 0 now map to vertical lines. (The map
z → 1/z is a linear fractional transformation that maps 0 to ∞, so circles through
0 map to circles through ∞, i.e., lines.) See Fig. 43. The boundary of D1 maps to

Fig. 41 If r, s are small enough
then the Gabriel disks for one
Q-side don’t hit the other
Q-side

r

s

θ
a

b
c

d

R

R−r

R+s
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0D

2D1D

R

θ

r
s

b

=0a

c d

L

Fig. 42 We want a lower bound on |b − c| and |b − d| in terms of |a − b|, r , s and R. We prove this by
applying the transformation z → 1/z to this picture, to get the picture in Fig. 43

Fig. 43 This is the inversion of
Fig. 42. The point a = 0 maps to
a′ = ∞ and the circles through
0 map to vertical lines, whose
distance apart is easy to
compute. The line L maps to a
circle L ′

2s
1

2r
1

b

L > 1/2 s
> 1/4 r

c d

D1 D2

D0

1
2R

0

L1 = {x = −1/2r}, the boundary of D2 maps to L2 = {x = 1/2s} and the boundary
of D0 maps to L0 = {x = 1/2R}. Since R ≥ 2r , we have the distance between L0
and L1 is at least 1/4r .

The line L is distance ρ = R sin θ from the origin, whereas |a−b| = 2R sin(θ/2),
so by a similar calculation to (15.3), we get

ρ = |a − b| sin θ

2 sin(θ/2)
≥ |a − b|√

2
,
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since we assume 0 ≤ θ ≤ π/2. This means that on the line L , the derivative of 1/z is
bounded above by 2/|a − b|2. Therefore the image of the segment [c, b] has length at
most 2|c − d|/|a − b|2. Thus

|c′ − b′| ≤ 2
|c − d|
|a − b|2 .

However, the image of this segment is a circular arc that connects the lines L1 and L0
and hence has length at least

|c′ − b′| ≥ | 1
2r

− 1

2R
| ≥ 1

4r

since r ≤ R/2. Combining these inequalities gives

2
|c − b|
|a − b|2 ≥ 1

4r
.

Since r ≤ w/2 and r ≤ R/2 this gives

|c − b| ≥ |a − b|2
8r

≥ max
( |a − b|2

4w
,
|a − b|2

4R

)
.

Similar calculations show

2|d − b|
|a − b|2 ≥ |b′ − d ′|,

and

|b′ − d ′| ≥ 1

2R
+ 1

2s
≥ 1

2R
+ 1

w

from which we deduce

|d − b| ≥ |a − b|2
4

( 1

R
+ 1

w

)
≥ |a − b|2

4
max

( 1

R
,
1

w

)
.

�

16 Gabriel Bending in Tubes

Nextwe apply theCauchy–Schwarz inequality to our displacement estimate for pieces,
to get a displacement estimate for tubes:

Lemma 16.1 Suppose T is a tube of width w, minimal-length L = 	̃(T ) and consists
of p isosceles pieces. Let a, b be points on opposite ends of T that are connected by a
P-path in T . Then a can be connected by a Gabriel path to any point on the opposite
end of T that is within distance d = L2/(4pw) of b.
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Proof For the j th piece in the tube, let 	 j be the length of the piece (the shorter
of its two base lengths, zero for triangles). Then L = ∑

j 	 j by definition. By the
Cauchy–Schwarz inequality

L2 =
( ∑

j

	 j

)2 ≤
( ∑

j

12
)

·
( ∑

j

	2j

)
= p

∑

j

	2j .

The allowable displacement of each piece is at least 	2j/4w, so the total allowable
displacement is at least

∑

j

	2j

4w
≥ L2

4pw
.

�
Corollary 16.2 If T is a tube with minimal-length L, width w composed of p pieces
and w ≤ L/2

√
p, then opposite corners of the tube can be connected by a Gabriel

path inside the tube.

Proof By assumption we have L ≥ 2w
√
p so the allowable displacement is at least

(2w
√
p)2

4wp
≥ w,

where w is the width of the tube. Thus opposite corners can be connected. �
Corollary 16.3 Suppose T is aC-tube, S-tube or simpleG-tube composed of p isosce-
les pieces and we cut T into M parallel, equal width sub-tubes with M ≥ 8

√
p. Then

the opposite corners of each sub-tube can be connected by a Gabriel path in that
sub-tube.

Proof Since M ≥ 2, each sub-tube is half of a wider tube inside T and hence has
length that is at most four times its minimal length by Lemma 7.1. Moreover, the
length of each sub-tube is bounded below by the length of T . By Corollary 8.5 every
simple return tube has length that is at least its width w and hence its minimal-length
is at least w/4. Thus each sub-tube has minimal-length at least M/4 ≥ 2

√
p times

longer than its width. The conclusion then follows from Corollary 16.2. �

17 Gabriel Bending in Spirals

Finally we have to consider bending in pure spirals. This is the final, but most com-
plicated, step in the proof of Theorem 1.1, and we break the construction into several
steps described in different sections.

Lemma 17.1 Suppose S is a pure spiralmade up of atmost k isosceles pieces. Thenwe
can mesh the interior of the spiral using at most O(k1.5) quadrilaterals and triangles
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so that the added vertices make every isosceles piece in the spiral Gabriel. Also, every
path entering the spiral can be Gabriel bent to terminate within one winding. The
bound on the number of points added is independent of N , the number of windings of
the spiral.

Without loss of generality we will assume the bound k on the number of isosceles
pieces is a power of 4, k = 4K = 22K and that it is at least 16 times larger than
that actual number of isosceles pieces in the spiral. We do this so that we can apply
Corollary 16.3 with the valueM = √

k instead ofM = 16
√
k. This will make notation

slightly easier and does not affect the statement of the lemma.
For simplicity, we rescale so that the entrance and exit segments of the spiral have

length 1, i.e., the width of the tubes in the spiral is w = 1. The spiral is a topological
annulus, with one bounded and one unbounded complementary component. The two
ends of the spiral corresponding to these two regions will be called the inner-end
and outer-end respectively. The spiral is a union of N simple G-tubes joined end-
to-end. We number these consecutively starting at the inner-end and denote them
T1, . . . , TN . We will call T1 and TN the innermost and outermost tubes (or windings)
respectively.

If the number of windings satisfies 1 < N ≤ 100 then we can treat the spiral like
a simple tube. We divide both T1 and TN into

√
k = 2K parallel sub-tubes just as we

did for simple G-tubes. We call these the narrow tubes. Then every P-path entering
the innermost tube either hits a corner of one of the narrow tubes, or it enters one of
the narrower sub-tubes. In the latter case, it can be Gabriel bent to hit a far corner of
this narrow sub-tube. Similarly for paths entering the outermost tube. The

√
k corners

of the narrow tubes are propagated as P-paths through the spiral until they hit the
corners of the narrow tubes at the other end. This creates at most O(k1.5) vertices in
the spiral. See Fig. 44.

For larger N there are four different types of construction we will use, divided by
certain “phase transitions” in our ability to bend curves as N increases. The transitions
occur at N � k1/3, k1/2 and k, as described in the next few sections.

Fig. 44 For small spirals (less
than 100 windings) we divide
the tubes into

√
k narrow

sub-tubes. Every entering path
can be Gabriel bent to terminate
within one winding. Here we
show N = 2
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18 100 < N ≤ 16k1/3 : Dyadic Merging of Paths

We now consider the case 100 < N ≤ 16k1/3. As above, we subdivide the innermost
andoutermost tubes into

√
k = 2K narrow, parallel sub-tubes,we terminate all entering

paths within these narrow sub-tubes and we propagate the 2K corners of the narrow
sub-tubes through the spiral. However, if we propagate each corner of a narrow tube as
a separate path all the way through the spiral we will generate too many new vertices.
The solution is to merge paths as they propagate through the spiral.

The general idea is to take pairs of adjacent paths and bend them towards each other
until they meet; this reduces the number of paths from

√
k to

√
k/2. We then define

new adjacent pairs and bend these towards each other, until they merge, creating
√
k/4

paths. We continue merging pairs of paths, reducing the number of paths by a factor of
two each time, but needing more steps to accomplish this each time. Since each pair
of paths to be merged at some stage starts twice as far apart as pairs in the previous
stage, we need a total displacement that is twice as long as before. Moreover, since the
tubes are twice as wide, the allowable displacement is half as large per piece. Since
the formula for displacement in Lemma 16.1 involves a factor of L2, the length only
needs to double to merge the next set of tubes.

However, this does notmeanweneed twice asmanywindings. Since thewindings of
the spiral become longer as we move outwards, fewer windings are needed to achieve
a given length, so the number of pieces crossed grows, but does not double, i.e., it
grows at a geometric rate that is strictly less than 2. This will allow us to obtain the
desired bound. We do the same construction starting at both ends of the spiral, so that
when paths meet at the center of the spiral, the surviving paths from both ends match
up. Next we give the details about how the merging and matching process works. See
Fig. 45.

If N is even write N = 2M ; otherwise write N = 2M + 1. We will give the details
for the merging process in the inner-half of the spiral, i.e., T1 ∪ · · · ∪ TM . The same
procedure is used in the outer half TN−M ∪ · · · TN ; these tubes are all longer than the
corresponding tubes in the inner half of the spiral, and so the allowable displacements
will be larger; thus any displacement that can be achieved in the inner half can also

Fig. 45 Between windings 100
and 16k1/3 we merge the paths
generated by the internal corners
of the narrow tubes at the
entrances to the spiral. Here we
show four tubes merging into
two tube in the first winding and
the remaining two tubes merging
into one in the second winding.
(In general though, it will take
more windings to merge wider
tubes.)
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(more easily) be attained in the outer half. Thus we can assume the merged paths in
the inner half terminate at the same points as the merged paths in the outer half when
N is even and that they can be joined by P-paths in TM+1 when N is odd.

Let λ = 22/3 < 2 and let λ j be the integer part of λ j . Let S j = Tλ j+1 ∪· · ·∪Tλ j+1 ,
i.e., this is a sub-tube of the spiral that goes from winding λ j to winding λ j+1. By the
argument proving Lemma 8.6 this part of the tube has length at least

λ j+1∑

i=λ j+1

(2i − 1) ≥ λ2j+1 − (λ j + 1)2 ≥ (λ j+1 − 1)2 − (λ j + 1)2

= [λ2 j+2 − 2λ j+1 + 1 − λ2 j − 2λ j − 1]
= λ2 j [λ2 − 2λ− j+1 − 1 − 2λ− j ].

An explicit calculation shows that for j = 5

λ2 − 2λ− j+1 − 1 − 2λ− j ≈ 1.00644 ≥ 1,

and since this function is increasing in j , we deduce that S j has length≥ λ2 j if j ≥ 5.
Moreover λ10 = 220/3 ≈ 101.594 ≥ 100.

Suppose S j is divided into 2m parallel sub-tubes of width w = 2−m . By Lemma
16.1 a path entering one of these sub-tubes can be Gabriel bent within the tube to hit
either of the far corners of the tube if

w ≤ L2

4pw
.

In this case L ≥ λ2 j , p = kλ j (each piece is repeated in the tube kλ j times; once per
spiral), and w = 2−m , so this inequality becomes

2−m ≤ (λ2 j )2

4λ j k2−m

and this occurs iff

4k2−2m ≤ λ3 j .

Since 22 j = λ3 j and k = 22K , this is equivalent to

2−m ≤ 2 j−1/
√
k = 2 j−1−K .

So for j ≥ 5 we divide S j into 2K− j+1 parallel sub-tubes. The tube S j shares an
end with S j−1. The corners of the narrow sub-tubes of S j on this end form a subset of
the corners of the narrow sub-tubes of S j−1 on the shared end. The remaining corners
are mid-points of one end of the narrow tubes in S j and can be propagated by Gabriel
paths through the narrow sub-tubes of S j so that they hit far corners of these sub-tubes,
merging another set of paths.
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The total number of vertices created in S j is therefore O(λ j ·2K− j ·k) (the number
of windings of the tube, times the number of paths propagating through the tube, times
the number of pieces crossed in each winding). The inner half of the spiral contains
tubes S5, . . . , Sm as long as λm = 22m/3 < M , or m ≤ 3

2 log2 M . Summing over all
j ∈ [5,m] gives the upper bound

O
( 3

2 log2 M∑

j=5

λ j2K− j22K
)

= O
(
23K

∞∑

j=5

2
2
3 j− j

)
= O(23K ) = O(k1.5).

Therefore if N = O(k1/3), we can terminate every path entering the spiral using only
O(k1.5) new vertices in the spiral.

19 16k1/3 < N ≤ 8k1/2 : a Single Path
If 16k1/3 < N ≤ 8k1/2 we duplicate the construction of the previous section up
to and including SK+5 and after this point we simply let the single remaining path
propagate as a P-path. Since the path winds around the spiral at most

√
k times, at

most O(k1.5) new vertices are created between 2k1/3 and k1/2, and the path in the
inner half eventually hits the analogous path from the outer half of the spiral.

20 8k1/2 < N ≤ k : Multiple Closed Curves

When j = 8
√
k we hit a new transition point: S j now has length 8

√
k = 2K+3, hence

minimal length ≥ 2
√
k. Hence Lemma 15.1 says that if j ≥ 8

√
k, then the allowable

displacement in S j is at least

	̃(S j )

4k
= (2 j)2

4k
≥ 1,

i.e., the allowable displacement is larger than the width of the tube, so we can connect
opposite corners of S j by a Gabriel path (Gabriel assuming the tangent disks have
diameter 1, the width of the tube).

The idea is that for j ≥ 8
√
k we cut the spiral by closed curves γ j in S j . See

Fig. 46. If we choose one such curve from every S j for
√
k ≤ j ≤ k then we generate

� k curves, each with k vertices, giving a total of k2 new vertices. This will eventually
lead to a O(n3) estimate in Theorem 1.1 (still a polynomial bound, but larger than we
want). Instead, we will select a subsequence of tubes {S jp } to contain closed curves.

We want to choose at most O(
√
k) indices between

√
k and k and we want γ jp to be

Gabriel with respect to annular region bounded between γ jp−1 and γ jp+1 . The length
of the Q-segments connecting these two curves is exactly δp ≡ jp+1 − jp−1 and the
minimal-length of S jp is at least 1

4 jp, so by Lemma 16.1 (taking L = jp/4, p = k,
w = δp) the Gabriel condition can be met if
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Fig. 46 Between windings k1/2

and k we use closed Gabriel
loops that start with unit spacing
near k1/2 and eventually reach
spacing � k. We shall see in the
next section that beyond radius
� k, no more loops are needed.

( jp/4)2

4kδp
≥ 1,

or equivalently

δp ≤ j2p
64k

.

Suppose we have an increasing sequence of integers { ji }Pi=1 with

(1) j1 = √
k = 2K ,

(2) jP = k = 22K ,
(3) P = O(

√
k),

(4) ji+1 − ji ≤ 1
128k j

2
i .

The fourth condition implies

| ji+1 − ji−1| ≤ | ji+1 − ji | + | ji − ji−1| ≤ 1

128k
( j2i + j2i−1) ≤ 1

64k
j2i ,

since ji−1 ≤ ji . So if we can find such a set of integers, we will have constructed the
desired closed loops.

We divide the interval [√k, k] = [2K , 22K ] into geometrically increasing blocks

[2K , 2K+1], . . . , [2K+q , 2K+q+1], . . . , [22K−1, 22K ].

In the qth block we can take our sequence to be separated by gaps of size
1

128k (2
q
√
k)2 = 22q−7 and hence 2K+7−q evenly spaced integers suffice to cross

this block with the desired spacing. Summing over all q’s shows that at most

K∑

q=0

2K+7−q ≤ 27 · 2K = 128
√
k,
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integers jp are needed. Thus at most O(k1.5) new vertices are created in this phase of
the construction.

21 N > k : The Empty Region

In the previous section we created Gabriel loops in the spiral, assuming there were
other loops nearby to prevent the Gabriel disks from getting too large; thus we needed
a sequence of larger and larger loops. However, once j ≥ k, we no longer need to
limit the size of the Gabriel disks and this sequence of loops can end. More precisely,

Lemma 21.1 Suppose the spiral has k pieces and the spiral has more than k/4 wind-
ings. Then each sub-tube Tj with j ≥ k/4 is crossed by a closed loop so that the
vertices of the loop make each isosceles piece Gabriel.

Proof As above, we assume Tj has width 1. Lemma 15.1 implies that the allowable
displacement for an isosceles piece is at least |a − b|2/4R, where R is the distance to
the vertex of the piece. We also have |a − b| = 2R sin(θ/2) where θ ∈ [0, π) is the
angle of the piece. Since sin(θ/2) ≥ √

2θ/π , the allowable displacement for such a
piece is at least

R sin2(θ/2) ≥ R
2

π2 θ2.

If we only bend the path for pieces where the vertex direction points towards the
center of the spiral, the sum of the angles is at least 2π , so by the Cauchy–Schwarz
inequality, the sum of the angles squared is at least (2π)2/k. Hence the total allowable
displacement in the tube Tj is at least 8R/k times theminimal-length of Tj . In Tj every
piece with vertex towards the center of the spiral has R ≥ m − 1 ≥ m/2 (since all our
pieces have angle ≤ π/2, there are at least 4 of them) so the allowable displacement
is at least 4m/k ≥ 1, the width of Tj . �

Up to this point, we have divided the spiral into inner and outer halves, but at this
stage this is not necessary. The outermost tube contains a Gabriel curve that connects
opposite corners, forming a loop and every entering path can be Gabriel propagated
to hit this same corner. The region between this loop and the loop formed in Sk is left
empty.

The number of points created in a spiral constructed from k isosceles pieces is
O(k1.5) with a constant that is bounded independent of N , the number of windings.
Since for each spiral k = O(n) (n recall that n is the number of vertices in the PSLG)
and since there can only be O(n) spirals (each is a return region and there are only
O(n) return regions), the total number of points added due to all spirals is O(n2.5).
This completes the proof of Theorem 1.1.
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