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Models for the Speiser class

Christopher J. Bishop

Abstract

The Eremenko–Lyubich class B consists of transcendental entire functions with bounded singular
set and the Speiser class S ⊂ B is made up of functions with a finite singular set. In an earlier
work (J. Lond. Math. Soc. 92 (2015) 202–221), I gave a method for constructing Eremenko–
Lyubich functions that approximate certain simpler functions called models. In this paper, I
show that all models can be approximated in a weaker sense by Speiser class functions, and that
the stronger approximation of the earlier work (J. Lond. Math. Soc. 92 (2015) 202–221) can fail
for the Speiser class. In particular, I give geometric restrictions on the geometry of a Speiser
class function that need not be satisfied by general Eremenko–Lyubich functions.

1. Introduction

If f is an entire function, we say f is transcendental if it is not a polynomial. The singular set
of an entire function f is the closure of its finite critical values and finite asymptotic values,
and will be denoted by S(f). The Eremenko–Lyubich class B consists of transcendental entire
functions such that S(f) is a bounded set. The Speiser class S ⊂ B consists of functions for
which S(f) is a finite set. We let Sn,k ⊂ S denote the subcollection of functions with at most
n finite critical values and k finite asymptotic values. In this paper, we will be particularly
concerned with S2,0.

The Eremenko–Lyubich and Speiser classes are important in the study of transcendental
dynamics and it is known that the dynamical behavior in the Speiser class is more restricted
than in the Eremenko–Lyubich class. For example, a Speiser class function cannot have a
wandering domain (proved by Eremenko and Lyubich in [9], and Goldberg and Keen in [11]),
whereas an Eremenko–Lyubich function can have a wandering domain [2]. On the other hand,
various types of pathological behavior, such as a Julia set with no nontrivial path components
can be constructed in either class (see [2, 17]).

In this paper, we prove an approximation theorem involving the Speiser class that is
analogous to a result proven for the Eremenko–Lyubich class in [4]. However, the function
we construct here fails to satisfy some of the side conditions that could be imposed in [4].
Comparing the two results helps illustrate the differences between the two classes of functions.
To state our results precisely, we need to introduce some notation.

Suppose Ω =
⋃

j Ωj is a disjoint union of unbounded simply connected domains so that
sequences of components of Ω accumulate only at infinity. See Figure 1. Also suppose that
there exists a map τ : Ω → Hr + ρ0 = {x + iy : x > ρ0} that is holomorphic and such that

(1) the restriction of τ to each Ωj is a conformal map τj : Ωj → Hr + ρ0, and
(2) if {zn} ⊂ Ω and τ(zn) → ∞ then zn → ∞.

An open set Ω as above will be called a model domain and F = eτ will be called a model
function. Note that F : Ω → {z : |z| > eρ0} is a covering map. A choice of both a model domain
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Figure 1. A normalized model consists of an open set Ω with possibly several tracts, each of
which is mapped conformally by τ to Hr and then by ez to {|z| > 1}, giving the model function F
on Ω. The points F−1(1) partition each boundary component into arcs. In the Eremenko–Lyubich
class, τ can be rescaled independently on different tracts, so that the partitions on different tract
boundaries are unrelated, but we will prove that for the Speiser class, the partitions for different
tracts satisfy certain geometric relations.

Ω and a model function F on Ω will be called a model. If ρ0 = 0, we say the model is normalized;
this is the main case we will consider.

We call the connected components, {Ωj}, of a model domain Ω the tracts of Ω. In many
cases of interest, the tracts will be Jordan domains on the Riemann sphere with the point
∞ on the boundary. The number of tracts can be either finite or infinite. (Usually a domain
refers to an open connected set, so using ‘model domain’ for regions that may have several
connected components might be confusing. We are using the phrase to abbreviate ‘the domain
of definition of the model function’ rather than invent a new term for this — terrain, territory,
archipelago, etc. Except for this usage, the term domain will retain its usual meaning).

Given a normalized model (Ω, F ), we let

Ω(ρ) = {z ∈ Ω : |F (z)| > eρ} = τ−1({x + iy : x > ρ}),
and

Ω(ρ, δ) = {z ∈ Ω : eρ < |F (z)| < eδ} = τ−1({x + iy : ρ < x < δ}).
Given a tract Ωj of Ω, we let Ωj(ρ) = Ω(ρ) ∩ Ωj and similarly for Ωj(ρ, δ).

Suppose Ω is a normalized model domain and ρ > 0. The boundary of Ωj(ρ) has a natural
partition into subarcs with endpoints that satisfy τj(z) ∈ ρ + πiZ. We call this a τ -partition or
conformal partition of ∂Ω(ρ). It is easy to see from the distortion theorems for conformal maps
(for example, see Section 2 of this paper or [10, Theorem I.4.5]) that these subarcs of ∂Ωj(ρ)
are smooth with bounds depending only on ρ, and adjacent arcs have comparable lengths
(again with a constant depending only on ρ).

Suppose f is a transcendental entire function and that S(f) ⊂ DR = {z : |z| < R} (when
R = 1, we write D = D1). In [9], Eremenko and Lyubich observed that Ω = f−1({z : |z| > R})
is a disjoint union of analytic, unbounded simply connected domains and f acts a covering
map f : Ωj → {|z| > R} on each tract Ωj of Ω. Thus, each function f in the Eremenko–Lyubich
class that satisfies S(f) ⊂ D gives rise to a normalized model domain Ω = {z : |f(z)| > 1} and
a model function F = f |Ω (hence, τ(z) is a branch of log f(z)). The components of Ω are called
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MODELS FOR THE SPEISER CLASS 767

the tracts of f . We call a model arising in this way an Eremenko–Lyubich model. If f is in the
Speiser class, we call it a Speiser model.

The purpose of this paper is to quantify the differences between B and S in terms of models.
In [4], I showed that Eremenko–Lyubich functions can essentially behave like arbitrary models
near ∞; the tracts can have any shape and the choice of τ on each tract is independent of
the choice in other tracts. In this paper, I show that in Speiser models, the choice of τ in
different tracts must satisfy certain geometric constraints (for example, Theorems 1.4 and
10.1); however, given any model Ω, it is always possible to add extra tracts and define τ on
these new tracts so that the geometric conditions are satisfied. Thus, informally we say ‘every
model is an Eremenko–Lyubich model’ and ‘every model is a submodel of a Speiser model’.
More precisely, the following theorem is proved in [4].

Theorem 1.1 (All models occur in B). Suppose (Ω, F ) is a normalized model and ρ > 0.
Then there is a f ∈ B and a quasiconformal homeomorphism ϕ : C → C so that F = f ◦ ϕ on
Ω(ρ). In addition,

(1) we have |f ◦ ϕ| � eρ off Ω(ρ) (that is, f is bounded off ϕ(Ω));
(2) the singular set satisfies S(f) ⊂ D(0, eρ);
(3) the maximal dilatation K of ϕ depends only on ρ;
(4) the map ϕ is conformal except on Ω(ρ, 2ρ).

We will review the definition and basic properties of quasiconformal mappings in Section 2.
One of the main goals of this paper is to prove the following analog of Theorem 1.1 for the
Speiser class.

Theorem 1.2 (All models occur as submodels in S). Suppose (Ω, F ) is a normalized model
and ρ > 0. Then there is a f ∈ S and a quasiconformal homeomorphism ϕ : C → C so that
F = f ◦ ϕ on Ω(ρ). In addition,

(1) the function f has no finite asymptotic values and two critical values, ±eρ;
(2) every critical point of f has degree at most 12;
(3) the maximal dilatation K of ϕ depends only on ρ;
(4) the map ϕ is conformal on Ω(2ρ).

The maximal dilatation bound for ϕ remains bounded as ρ → ∞, but blows up as ρ → 0
(we will not be explicit about the dependence of K on ρ, but estimates could be derived from
a careful reading of [2]). It is not true that the maximal dilatation K tends to 1 as ρ → ∞, at
least for the construction given here, since the use of the folding maps from [2] introduces a
fixed amount of distortion, independent of ρ.

The degree of a critical point z of a holomorphic map f is taken to be the local valence of
f near z, for example, f(z) = z3 has a critical point of degree 3 at 0. The bound in (2) follows
immediately from the proof of the folding theorem in [2]. However, by making some simple
changes to the construction in [2], the 12 can be improved to 4. This will be discussed in more
detail at the end of Section 3.

The crucial difference between Theorems 1.1 and 1.2 is that the latter omits the conclusion
‘|f ◦ ϕ| � eρ off Ω(ρ)’. The function f ∈ B constructed in Theorem 1.1 is only large where the
model is large (inside Ω), so it has the same number of tracts as the model has. However, the
function f ∈ S in Theorem 1.2 might also be large outside Ω, and so it can have ‘extra’ tracts.
This is the sense in which approximation by Speiser functions is weaker than approximation
by Eremenko–Lyubich functions. In fact, our proof will always introduce extra tracts; we will
first give a construction that creates an infinite number of extra tracts, and then give a more
intricate construction that shows
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768 CHRISTOPHER J. BISHOP

Theorem 1.3. The function f in Theorem 1.2 may be chosen so that the number of tracts
of f is at most twice the number of tracts of the model (Ω, F ).

Simple examples show that some models with n tracts require the approximating Speiser
class function to have 2n tracts, so the bound in Theorem 1.3 is sharp. Roughly speaking, if
Ω has n tracts, then the domain W = C \ Ω(ρ) has n distinct ‘ends’ at infinity. If these ends
are each ‘large’ compared to the tracts of the model, then each end must contain at least one
extra tract of the approximating Speiser class function. A very concrete example is

Theorem 1.4. The half-strip S = {x + iy : x > 0, |y| < 1} cannot be mapped to any Speiser
class model domain by any quasiconformal homeomorphism of the plane.

In other words, there is no Speiser class function with a single tract, so that this tract is
the image of a half-strip under a quasiconformal map of the plane. However, there are Speiser
class functions with two tracts, one of which can be sent to a half-strip by a quasiconformal
map of the plane; moreover, this tract can approximate the half-strip in the Hausdorff metric
on the plane as closely as we wish (see Figure 17 and the remarks in Section 13). On the other
hand, Theorem 1.1 implies that there are Eremenko–Lyubich functions with single tracts that
approximate the half-strip as closely as we wish in the Hausdorff metric.

The referee of this paper asked if Theorem 1.4 also holds for any tract that is contained in
the half-strip S. While our proof of Theorem 1.4 extends to cover many cases of this type, and
it is not hard to see that no subdomain of S can itself be a Speiser class model domain, there
might be such a subdomain that can be mapped to a Speiser class model domain by some
quasiconformal map of the plane; deciding this would be an interesting problem. It would also
be very interesting to have a geometric characterization (even up to quasiconformal maps) of
the tracts of Speiser class functions that have a single tract.

Another difference between Theorems 1.1 and 1.2 concerns the proofs. The proof of
Theorem 1.1 given in [4] is mostly self-contained and depends on constructing a Blaschke
product in the disk that approximates a certain inner function arising from the model. On the
other hand, the proof of Theorem 1.2 in this paper depends on the more difficult quasiconformal
folding construction of Speiser class functions in [2]. The precise statement we use will be
reviewed in Section 3.

Finally, we mention an application of Theorem 1.2 to dynamics. We call a model (Ω, F )
disjoint type, if it is normalized and Ω ∩ D = ∅. An entire function is usually called disjoint
type if (1) it is hyperbolic (the singular set is bounded and every point in it tends to an
attracting periodic cycle of f under iteration) and (2) the Fatou set is connected (the Fatou
set is the largest open set on which the iterates of f form a normal family; its complement
is called the Julia set of f). Alternatively, [16, Proposition 2.1] states that a transcendental
entire function is disjoint type if and only if there is a Jordan domain D so that S(f) ⊂ D
and f(D) ⊂ D. This implies that if (Ω, F ) is a disjoint-type Eremenko–Lyubich model, then
F = f |Ω, where f is an Eremenko–Lyubich entire function that is disjoint type in the sense
above (just take D = D).

We can iterate a model function F as long as the iterates keep landing in Ω, and we define
the Julia set of a model as

J (F ) =
⋂
n�0

{z ∈ Ω : Fn(z) ∈ Ω}.

If F is a disjoint-type Eremenko–Lyubich model, then this is the same as the usual Julia
set of the extension of F . Lasse Rempe-Gillen has pointed out that Theorem 1.1 implies
that any disjoint-type model function is conjugate on its domain to a disjoint-type f ∈ B,
in particular, the Julia set and the escaping set for the model function F are homeomorphic
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MODELS FOR THE SPEISER CLASS 769

via a quasiconformal mapping of the whole plane to the corresponding sets for f . Thus, various
pathological examples in B can be constructed simply by exhibiting a model with the desired
property, for example, see [16].

For the Speiser class, the approximating function f may have extra tracts that do not
correspond to tracts of the model. In this case, Rempe-Gillen’s argument implies the model
function F restricted to its Julia set can be conjugated to a Speiser class function f restricted
to a certain closed subset A ⊂ J (f). More precisely,

Theorem 1.5. Suppose that (Ω, F ) is any normalized, disjoint-type model, f is a Speiser
class function, and ϕ is a quasiconformal mapping of the plane so that f = F ◦ ϕ on U = ϕ−1(Ω)
(this is a subcollection of tracts of f). Assume that (U, f |U ) is also a normalized, disjoint-type
model. Then there is a quasiconformal map Φ: C → C so that Φ ◦ f = F ◦ Φ on U .

In other words, the Julia set of the model function F is quasiconformally conjugate to a closed
subset A of the Julia set of the Speiser class function f . The set A consists of those points whose
orbits stay within U forever, where U is the subcollection of the tracts of f corresponding to
the tracts of F via Φ. This result is a straightforward application of [4, Theorem 9.1] (which
itself is simply a summary of an argument of Rempe-Gillen from [15]).

The use of quasiconformal techniques to build and understand entire functions with finite
singular sets has a long history with its roots in the work of Grötzsch, Speiser, Teichmüller,
Ahlfors, Nevanlinna, Lavrentieff, and many others. The earlier work was often phrased in terms
of Riemann surfaces and deciding if a simply connected surface built by branching over a finite
singular set was conformally equivalent to the plane or to the disk (the type problem; in
the first case, the uniformizing map gives a Speiser class function). Such constructions play an
important role in value distribution theory; see [7] for an excellent survey of these methods and
a very useful guide to this literature, also see [12, Chapter VII]. More recent work (including
this paper) is motivated by applications to dynamics, where the Speiser class provides an
interesting mix of structure (like polynomials, the quasiconformal equivalence classes are finite
dimensional [9]) and flexibility (as indicated by the results of [2, 3, 16], and the current paper).

In this paper, the notation A � B means that A � CB, where A,B are quantities that
depend on some parameter and C < ∞ is a constant that is independent of the parameter. The
notation means the same as A = O(B). Similarly, A � B is equivalent to B � A or B = O(A).
If A � B and A � B, then we say A 	 B, that is, A are B are comparable, independent of the
parameter.

2. Modulus and quasiconformal maps

Many of our arguments involve the modulus of path families, conformal maps, and quasiconfor-
mal maps, so we briefly review the basic facts here for the convenience of the reader. Everything
in this section can be found (in greater detail and with proofs) in standard references such as
[1] or [10].

An orientation preserving homeomorphism ϕ of the plane to itself is quasiconformal if it is
absolutely continuous on all lines and |ϕz| � k|ϕz| almost everywhere (with respect to area
measure) for some k < 1. At points of differentiability, this means that the tangent map of
ϕ sends circles to ellipses of eccentricity at most K = (1 + k)/(1 − k) � 1. The smallest K
that works for ϕ at almost every point is called the maximal dilatation of ϕ; such a map
is also called K-quasiconformal. A K-quasiconformal map ϕ satisfies a Beltrami equation
fz = μfz almost everywhere for some bounded measurable function μ called the dilatation
of f and ‖μ‖∞ � k = (K − 1)/(K + 1). A 1-quasiconformal map is conformal. The family of
K-quasiconformal maps of the plane to itself that fix two finite points (usually taken to be 0,1)
is compact.
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770 CHRISTOPHER J. BISHOP

The measurable Riemann mapping theorem (for example, see [1]) says that given any
measurable μ with ‖μ‖∞ = k < 1, there is a K-quasiconformal map with dilatation μ almost
everywhere. An important consequence of this is that if f is entire and ϕ is quasiconformal, then
there exists a quasiconformal ψ so that g = ϕ ◦ f ◦ ψ is entire. Two entire functions f and g that
are related in this way are called quasiconformally equivalent. Eremenko and Lyubich proved
that if f has q singular values, then the collection of entire functions that are quasiconformally
equivalent to f forms a (q + 2)-dimensional complex manifold (see [9, Section 3]).

Suppose Ω is a planar open set. A nonnegative Borel function ρ on Ω is called a metric on Ω.
Suppose Γ is a collection of locally rectifiable curves in Ω. We say a metric ρ is an admissible
metric for Γ if

inf
γ∈Γ

∫
γ

ρ ds � 1,

and we define the modulus of Γ as

M(Γ) = inf
ρ

∫
Ω

ρ2dx dy,

where the infimum is over all admissible metrics for Γ. The reciprocal of M(Γ) is called the
extremal length of Γ and is denoted by λ(Γ). The most important facts that we will need are
as follows.

Conformal invariance: If f : Ω → Ω′ is conformal, Γ is a path family in Ω and Γ′ = f(Γ),
then M(Γ′) = M(Γ).

Quasi-invariance: If f : Ω → Ω′ is K-quasiconformal, Γ is a path family in Ω and Γ′ = f(Γ),
then M(Γ)/K � M(Γ′) � K ·M(Γ).

Extension: If Γ,Γ′ are path families such that each path in Γ′ contains a subpath in Γ then
M(Γ′) � M(Γ). In particular, if Γ′ ⊂ Γ, then M(Γ′) � M(Γ).

Parallel rule: If Γ1, . . . ,Γn are defined on disjoint open sets, and every γ ∈ ∪jΓj contains
some curve in Γ then M(Γ) �

∑
j M(Γj).

Round annuli: the modulus of the path family separating the two boundary components of
the round annulus A(r,R) = {z : r < |z| < R} is (logR/r)/2π. We call this the modulus of the
annulus. Every topological annulus Ω ⊂ C is conformally equivalent to a round annulus, and
its modulus is equal to the modulus of the corresponding round annulus.

Topological annuli: There is a M0 < ∞ so that if Ω is a topological annulus with modulus
M � M0, then Ω contains a round annulus of modulus M ′ > 1 and M ′ tends to ∞ as M tends
to ∞.

Reciprocity: The modulus of the path family separating the two boundary components of a
topological annulus Ω is the reciprocal of the modulus of the path family in Ω that connects
the two boundary components.

Rectangles: The modulus of the path family connecting the sides of length a in a a× b
rectangle is a/b.

Another fact that we will use repeatedly is as follows.

Lemma 2.1. Suppose e, f ⊂ C are disjoint Jordan arcs and let Γ be the family of closed
curves in C \ (e ∪ f) that separates them. Let M be the modulus of Γ. Then

dist(e, f) � ε · min(diam(e),diam(f)), (2.1)

where ε > 0 depends only on a lower bound for M . Conversely, if (2.1) holds, then M is
bounded away from zero with an estimate depending only on ε. Moreover, ε tends to infinity
if and only if M tends to infinity.

Proof. This is fairly standard. Let r = min(diam(e),diam(f)). If there are points
x ∈ e and y ∈ f with |x− y| � ε, then we define a metric ρ on {z : εr < |x− z| < r/2} by
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MODELS FOR THE SPEISER CLASS 771

setting ρ(z) = (|z − x| log 2
ε )

−1. It is a standard exercise to show that ρ is admissible and
integrating ρ2 gives M � (log 2

ε )
−1, which tends to 0 with ε. This proves the first claim. For

the other direction, suppose dist(e, f) � εr. Then setting ρ(z) = (εr)−1 on an εr-neighborhood
of e (if diam(e) = r) or f (otherwise) gives an admissible metric for the path family connecting
e to f . Since this neighborhood has area at most π(εr + r)2, computing the integral of ρ2 shows
this family has modulus at most

(εr)−2π(εr + r)2 � π(1 + ε−2).

Since this modulus is the reciprocal of the modulus of the path family separating e and f , we get
a lower bound for the latter modulus in terms of ε. If M is large, then by the topological annuli
property, there is a large round annulus separating e and f , and hence ε is large. Conversely, if
ε is large, then there is clearly a large round annulus separating the curves and so the modulus
M is large. �

We will use the following in Section 11.

Lemma 2.2. If I, J are disjoint intervals on R, let M(I, J) be the modulus of the path
family in Hu = {x + iy : y > 0} (the upper half-plane) separating I and J . If I, J have unit
length and are distance r � 2 apart, then M(I, J) 	 log r.

Proof. There are several ways to estimate this modulus, but we will use a conformal map.
Without loss of generality, assume I = [−1, 0], J = [r, r + 1]. The Schwarz-Christoffel formula
(for example, see [8] and its references) that says that Hu is conformally mapped to an a× b
rectangle with I, J going to the sides of length a by the map

f(z) =
∫ z dw

(w + 1)1/2w1/2(w − r)1/2(w − r − 1)1/2
.

Moreover,

a =
∫ 0

−1

dx

|x + 1|1/2|x|1/2|x− r|1/2|x− r − 1|1/2 	 1
r

∫ 0

−1

dx

|x + 1|1/2|x|1/2 	 1
r
,

and similarly

b =
∫ r

0

dx

|x + 1|1/2|x|1/2|x− r|1/2|x− r − 1|1/2

	 1
r

∫ r/2

0

dx

|x + 1|1/2|x|1/2

	 1
r

+
1
r

∫ r/2

1

dx

x

	 1
r
(1 + log r).

Therefore, by conformal invariance and the rectangle rule, M(I, J) = b/a 	 1 + log r (and
1 + log r 	 log r since r � 2). �

Other proofs of the lemma are possible. For example, one can use a Möbius transformation
to map I to [−1, 1], map J to the complement of [−y, y] for some y 	 r, and then estimate the
modulus of the planar complement of these using explicit metrics.
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772 CHRISTOPHER J. BISHOP

Several times in this paper, we will use Koebe’s 1
4 -theorem and its consequences. Koebe’s

theorem says that if f : D → Ω is conformal (holomorphic and 1-to-1), then

1
4 |f ′(z)|(1 − |z|2) � dist(f(z), ∂Ω) � |f ′(z)|(1 − |z|2).

See [10, Theorem I.4.3]. A consequence of this is that if f is conformal on a region W and
E ⊂ W is compact, then |f ′| is comparable at any two points of E with a constant that depends
only on E and W (in fact, it only depends on the diameter of E in the hyperbolic metric
for W ).

The image γ of a line under a quasiconformal mapping of the plane to itself is called a
quasiline. Such curves γ are exactly characterized by the three-point condition: there is a
M < ∞ so that given any three points x, y, z ∈ γ with x, y in different connected components
of γ \ {z}, we have |x− z| � M |x− y|. Equivalently, the subarc of γ connecting x and y has
diameter O(|x− y|). We will use this in the following way.

A quasidisk is the image of D under a quasiconformal map of the plane. Abusing notation
slightly, we will say Ω is an unbounded quasidisk if it is the image of a half-plane under a
quasiconformal map of the plane (this sounds better than ‘quasi-half-plane’, and would be
technically correct if we simply considered quasiconformal maps of the Riemann sphere to
itself, rather than just maps that fix ∞).

Lemma 2.3. Suppose Ω an unbounded quasidisk. Then there is a C < ∞ so that given any
x ∈ ∂Ω, there is a curve γ in Ω that connects x to ∞ and satisfies

dist(z, ∂Ω) � |z − x|/C,

for every z ∈ γ. If |z| � 2|x|, then dist(z, ∂Ω) � |z|/(2C), for every z ∈ γ.

Proof. Suppose Ω = f(Hr). Without loss of generality, we may assume x = f(0). The right
half-plane can easily be quasiconformally mapped to a quarter-plane by a quasiconformal map
g of the plane (leave radii fixed and contract angles by a factor of two in one half-plane and
expand them by a factor of 3/2 in the remaining half-plane; we leave the details to the reader).
Thus, if Ω1 ⊂ Ω is the image of the first quadrant under f , then it is also an unbounded
quasidisk, and hence ∂Ω1 satisfies the three-point condition with some constant C.

Suppose that there was a point on γ = f(R+) that was ‘too close’ to f(iR+) ⊂ ∂Ω, that is,
suppose there were s, t > 0 so that

|f(s) − f(it)| < ε|f(s) − f(0)|.

Then the arc of ∂Ω1 connecting f(s) and f(t) must have diameter � Cε|f(s) − f(0)| by the
three-point condition, but it contains both x = f(0) and f(s) so it has diameter at least |f(s) −
f(0)|. Thus, Cε � 1. The same argument applies to the image of the fourth quadrant and the
negative imaginary axis, and this proves the first part of the lemma. The final claim follows
easily. �

Mori’s theorem states that K-quasiconformal maps of the plane are bi-Hölder, that is,

1
C|z − w|α � |f(z) − f(w)| � C|z − w|α,

where α depends only on K. Quasiconformal maps of the plane are also quasisymmetric: there
is a homeomorphism η from [0,∞) to itself such that |x− y| � t|a− b| implies |f(x) − f(y)| �
η(t)|f(x) − f(y)| (see [13] and its references).
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MODELS FOR THE SPEISER CLASS 773

Lemma 2.4. Given a Jordan arc γ ⊂ C define

γ(r) = {z ∈ C : dist(z, γ) � r · diam(γ)}.
If f is a K-quasiconformal map of the plane to itself, then there are 0 < s < t < ∞ depending
only on r and K so that if σ = f(γ) then

σ(s) ⊂ f(γ(r)) ⊂ σ(t).

Proof. Without loss of generality, we may assume diam(γ) = diam(σ) = 1. Taking the metric
ρ = 1/r on γ(r), we see that the modulus of the path family connecting γ to ∂γ(r) is bounded
above by

area(γ(r))
r2

� π(1 + r)2

r2
= π

(
1 +

1
r2

)
.

Hence, the modulus of the path family separating γ and ∂γ(r) is bounded below by the
reciprocal of this upper bound. Thus, the f -image of this family therefore also has modulus
bounded below (by quasi-invariance), and thus the distance between σ and f(∂γ(r)) is bounded
below by a constant s times diam(σ). This gives the left-hand inclusion of the lemma.

The other inclusion is easier. If t is large, then the modulus of the path family surrounding σ
in σ(t) is also large and hence its preimage under f is also large. This means that the preimage
contains a large round annulus that surrounds γ, and hence contains γ(r) if t is large enough
compared to r (depending on K). �

We will also use the following well-known result of Teichmüller, Wittich, Belinskĭı, and Lehto
(for example, [6; 12, Theorem 7.3.1; 14, 18]).

Theorem 2.5. Suppose ϕ : C → C is K-quasiconformal with dilatation μ and∫∫
|z|>R

|μ(z)|dx dy|z|2 < ∞,

for some R < ∞. Then there is a nonzero, finite complex constant A so that ϕ(z)/Az → 1 as
|z| → ∞.

3. Quasiconformal folding

In this section, we review notation and results from [2]. Recall that S2,0 ⊂ S is the subcollection
of Speiser class functions that have two critical values and no finite asymptotic values. We will
start by describing how an element of S2,0 gives rise to a locally finite, infinite planar tree; we
then describe how to start with such a tree (satisfying some geometric regularity conditions)
and obtain an element of S2,0. This construction is the main result of [2], and contains much
of the work needed to prove Theorem 1.2.

Suppose f ∈ S2,0 and that the critical values of f are exactly {−1, 1}. Let T = f−1([−1, 1]).
Let U = C \ [−1, 1] and let Ω = f−1(U). Then each component of Ω is simply connected and f
acts as a covering map from each component of Ω to U . The boundary of Ω is an infinite tree,
where the vertices are the preimages of {−1, 1}. For each connected component of Ω, there is
a conformal map τ to Hr so that f = cosh ◦ τ . The edges of ∂Ω are mapped to intervals of
length π on ∂Hr (see Figure 2).

Given r > 0 and an edge e on ∂Ω, we define a neighborhood

e(r) = {z : dist(z, e) < r · diam(e)},
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774 CHRISTOPHER J. BISHOP

f cosh

exp
τ

_
2
_1 1

z(z+   )

Figure 2. A function with two critical values at {−1, 1} and no finite asymptotic values.
T = f−1([−1, 1]) is a tree with vertices mapping to ±1 (shown as black and white dots). τ is a
conformal map from each complementary component of T to the right half-plane and f = cosh ◦τ .

Figure 3. The neighborhood T (r) of a tree (a finite tree is shown, but the definition also makes
sense for infinite trees and graphs). The dashed regions show e(r) for two edges.

and define a neighborhood of T = ∂Ω by taking the union over all edges. This neighborhood
will be denoted by T (r) (see Figure 3).

Now suppose that we start with an infinite planar tree T and a holomorphic map τ : Ω → Hr

where Ω = C \ T , and τ is conformal from each connected component Ωj of Ω to Hr. We want
to construct an f ∈ S2,0 so that T approximates f−1([−1, 1]) and f approximates eτ away from
T . There are two basic conditions that we impose.

(I) Bounded geometry: This holds for T if

(1) every edge is C2 with uniform bounds on the derivatives;
(2) edges meet at angles uniformly bounded away from zero;
(3) any two adjacent edges have uniformly comparable lengths and their union is uniformly

quasiconvex;
(4) nonadjacent edges e, f satisfy dist(e, f)/diam(e) > ε with a uniform ε > 0.

Here ‘quasiconvex’ means that the arc-length distance between two points, x, y, on the
curve is O(|x− y|). Note that condition (2) implies that the vertex degrees of T are uniformly
bounded. A very useful alternate version of (4) comes from Lemma 2.1: (4) holds if and only
if any two nonadjacent edges of T are separated by a path family with modulus bounded
uniformly away from zero. Because of the conformal invariance of modulus, this allows us to
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MODELS FOR THE SPEISER CLASS 775

easily verify that under certain conditions, conformal images of bounded geometry trees still
have bounded geometry (see Section 4).

Later, we will also consider a bounded geometry ‘forest’ G that is a disjoint union of bounded
geometry trees, where (1)–(3) hold for all edges in the forest and (4) holds for all pairs of
nonadjacent edges in G (either from the same or from different components of G).

Each edge e of the planar tree T has two sides and each side may be considered as a boundary
arc of one of the complementary components Ωj of T (possibly both sides belong to the same
component). Conversely, the boundary of each component Ωj is partitioned into arcs by the
sides of the tree T . We say that two sides of T are adjacent if they are sides of adjacent edges
of T that are on the boundary of the same complementary component Ωj and the two sides
correspond to adjacent intervals after conformally mapping Ωj to Hr. Two sides of T can also
be adjacent if they are opposite sides of a single edge of T that has an endpoint of degree 1.

When Ωj is mapped to Hr by τj , the sides of T map to intervals on ∂Hr. The Euclidean
length of the image interval is called the τ -length of the corresponding side of T . The collection
of resulting intervals on ∂Hr form a partition, denoted by Pj , of this line.

For us, a partition of a line is a locally finite collection of disjoint open intervals whose
closures cover the whole line. The endpoints of the partition intervals form a countable, discrete
set that accumulates only at ∞. We say that a partition has bounded geometry if adjacent
elements (that is, partition intervals that share an endpoint) have comparable lengths with a
constant that is independent of the intervals. The bounded geometry constant of the partition
is the supremum |I|/|J | over all adjacent pairs of intervals. Occasionally, we will also consider
bounded geometry partitions of bounded open segments or arcs that are defined in the same way
(adjacent partition intervals have comparable lengths and accumulate only at the endpoints).

If the infinite tree T has bounded geometry then the partitions Pj of ∂Hr, corresponding to
each complementary component Ωj , also have bounded geometry, with a constant depending
only on the bounds in the definition of bounded geometry (see [2, Lemma 4.1]). In other words,
if T has bounded geometry, then adjacent sides of T have comparable τ -length. This fact is
the main way that we utilize the bounded geometry assumption.

(II) The τ -length lower bound: The second condition we require is that every side of T has
τ -length � π (but no upper bound is assumed).

An apparently weaker form of this is to simply require that for each complementary
component Ωj of T , there is a strictly positive lower bound εj > 0 for the length of every
interval in the partition Pj . If this weaker condition holds, then on each component Ωj of the
model domain Ω, we can replace τj by a positive multiple of itself, namely (π/εj) · τj . This
is still a conformal map of Ωj to the right half-plane but now every partition arc on ∂Hr

has length at least π. Thus if each tract has a positive τ -length lower bound, we can easily
choose a new model function for which it satisfies the stronger at least π bound. Therefore, in
most cases, we only need to check the weaker condition. Note that having a positive τ -length,
lower bound is a geometric property of each tract in Ω; if each tract has such a lower bound,
then having a positive lower bound that works simultaneously for all the tract depends on the
particular choice of model function F = eτ .

The following is the main result from [2].

Theorem 3.1. Suppose (T, τ) has bounded geometry and every side of T has τ -length at
least π. Then there is a f ∈ S2,0, r > 0 and a quasiconformal ϕ : R

2 → R
2 so that f ◦ ϕ =

cosh ◦τ off T (r). In addition,

(1) the map ϕ is conformal off T (r);
(2) the function f has only critical values ±1, and no finite asymptotic values;
(3) the number r and the maximal dilatation K of ϕ only depend on the bounded geometry

constants of T ;
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776 CHRISTOPHER J. BISHOP

(4) the degree of any critical point of f is bounded by 4D, where D is the maximum degree
of vertices in T .

This result is essentially [2, Theorem 1.1]. The statement there includes conclusions (1),
(2), and (3) explicitly. Conclusion (4) follows from the proof given in [2]; by construction, the
degree of any critical point of f equals the graph degree of a corresponding vertex v of a tree
T ′ that is obtained by adding finite trees to the vertices of T . The bounded geometry condition
implies that the vertices of T have uniformly bounded degree, D. Each of the added trees has
maximum vertex degree 4 and has degree 3 at the vertex that is attached to v ∈ T . At most
deg(v) such trees are added at v, so the new tree has maximum degree at most 4D. This gives
(4). Since the tree T that we construct in the proof of Theorem 1.2 will have maximum vertex
degree 3, this gives the ‘12’ in part (2) of Theorem 1.2.

Conclusion (4) (and hence the estimate in Theorem 1.2) can be improved by making some
alterations to the folding construction in [2], but we only sketch the possibilities here; details
will appear elsewhere. It is fairly easy to modify the construction so that the finite trees we add
to T have degree 1 at the vertex that is attached to T ; this requires redrawing the diagrams in
[2, Figure 8] with a new vertical segment at endpoints of the horizontal segment and changing
some corresponding bookkeeping in the proof. This change lowers the bound in (4) above from
4D to 2D. If we replace τ by a positive multiple of itself, we can do even better. Subdivide
each edge of T into three subedges, so as to give a bounded geometry tree T ′ and rescale τ
so that each new edge has τ -length at least π. We then further modify the construction in [2]
by adding two extra vertices to the horizontal edges in [2, Figure 8] and make corresponding
changes to the bookkeeping. This results in a finite tree being added to every third vertex of T ′

viewed from a complementary component, and we can easily arrange all these to be the ‘new’
vertices of T ′, and these all have degree 2. We can add at most two trees to any such vertex,
making the degree at most 4. This makes the bound in (4) equal to max(D, 4).

As noted above, in the proof of Theorem 1.2, we apply Theorem 3.1 to a tree T with maximal
degree 3. Some of the complementary components of T correspond to components of Ω(ρ), and
on these components all the τ -lengths equal π. This implies that the folding construction
does not add any trees inside these components. The other complementary components of T
are ‘new’ components and we are free to choose any positive multiple of τ we want on these
components. Therefore, we may assume the τ -lengths in these new components are all large,
and hence the sketched argument above applies: finite trees are adjoined to vertices of degree
2 in T , and the added trees have maximum degree 4 and degree 1 at the vertex attached to T
(so the degree 2 vertex becomes degree at most 4). Thus, making the appropriate changes to
the folding construction in [2] will give the upper bound 4 in part (2) of Theorem 1.2.

One could improve the bound max(D, 4) to max(D, 3) if the finite trees we add have
maximum vertex degree 3. Figure 12 of [2] shows how degree 4 vertices arise when adjacent
trees are attached to each other. It seems plausible that this can be avoided, but requires more
extensive modifications and needs to be verified. We would also need to add at most one tree
to any vertex of T ′ (the tree obtained from T by splitting each edge into three edges). However,
this is easy to arrange by always attaching trees one vertex to the left of a vertex of T , when
viewed from the corresponding complementary component; this will attach at most one tree to
each of the two vertices of T ′ that lie on any edge of T . Together, these improvements would
give the bound 3 in part (2) of Theorem 1.2.

4. Glueing trees using conformal maps

In this section, we describe a way to combine two or more bounded geometry trees to obtain
a new bounded geometry tree.
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MODELS FOR THE SPEISER CLASS 777

It is convenient to introduce a stronger version of bounded geometry. We say that a Jordan
arc γ is ε-analytic if there is conformal map on

γ(ε) = {z : dist(z, γ) < ε · diam(γ)}
that maps γ to a line segment. We call a bounded geometry tree T uniformly analytic if there
is an ε > 0 so that every edge of T is ε-analytic. We say a vertex v of T is ε-analytic if it
has degree 2 and the union of the two edges meeting at v form a single ε-analytic Jordan arc.
Note that vertices of a uniformly analytic tree need not be analytic (the edges may meet at
various angles), but if we add vertices to the edges of a uniformly analytic tree T1 to form a
new bounded geometry tree T2, then all the new vertices are analytic with the same constant
as T1. A bounded geometry forest in which all the edges are uniformly analytic will be called a
uniformly analytic forest. An important example of such a forest is ∂Ω(ρ), where Ω is a model
domain and the vertices are the usual ones, τ−1(ρ + iπZ). In this case, all the vertices are
analytic as well (with a uniformly bounded constant).

Lemma 4.1. Suppose T is a uniformly analytic forest and Ω is a connected component of
C \ T . Suppose W is either D or Hr and τ : Ω → W is conformal. Suppose T0 ⊂ W is a uniformly
analytic tree (all open edges of T0 are in W , but some vertices may lie on the boundary of W ).
We assume that τ−1(T0) is locally finite in C. Suppose there is a M < ∞ so that for every edge
e of T0 either

(1) the edge e has hyperbolic diameter at most M (we call these the internal edges of T0),
or

(2) the edge e has one endpoint x = τ(v) ∈ ∂W , where v is an analytic vertex of T and

1
M

diam(τ(I ∪ J)) � diam(e) � M · diam(τ(I ∪ J)),

where we take Euclidean diameters, and I and J are the two edges of T adjacent to v.
We call such an edge e a boundary edge of T0.

Then T ′ = T ∪ τ−1(T0) is a uniformly analytic forest. The constants for T ′ depend only
on the bounded geometry and uniform analyticity constants for T and T0. If a component of
W \ T0 satisfies a positive τ -length lower bound, the same bound is satisfied by the image of
this component under τ−1.

Proof. The Koebe distortion theorem easily implies that conditions (1)–(4) in the definition
of bounded geometry are transferred from T0 to τ−1(T0) for all pairs of internal edges in T0.
Similarly, the images of all internal edges are clearly uniformly analytic. Moreover, because
of our assumption on the hyperbolic diameters, each internal edge e of T0 is separated from
∂W by a path family in W with modulus bounded uniformly away from zero. By conformal
invariance of modulus, this also holds for τ−1(e) and ∂Ω and hence (4) holds whenever one
edge corresponds to an internal edge of T0 and the other is an edge of T . A similar argument
works for an internal edge of T0 and a nonadjacent boundary edge of T0.

Each boundary edge e of T0 has an endpoint x corresponding to an analytic vertex v of
T and by Schwarz reflection the map τ−1 extends analytically a uniform neighborhood of
S = τ(I ∪ J), where I, J are the edges of T adjacent to v. Since diam(S) � diam(I ∪ J), this
implies τ−1(e) is uniformly analytic. Moreover, there is an ε · diam(e) neighborhood of e, where
τ−1 extends to be conformal and whose image hits I and J , but no other edges of T . This
(and the Koebe distortion theorem) implies the separation property (4) holds for τ−1(e). The
final statement holds simply because having a positive lower bound for τ -lengths is conformally
invariant by definition. �
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778 CHRISTOPHER J. BISHOP

T
T

Figure 4. The idea of the proof of Theorem 1.2 is to reduce it to Theorem 3.1 by joining the
components of Γ = ∂Ω(ρ) to form a bounded geometry tree T1 and then add extra edges to the
‘new’ components make a tree T2 so that the τ -length lower bound holds.

5. Proof of Theorem 1.2: part 1, bounded geometry

It is stated in [2] that Theorem 3.1 reduces constructing functions in S2,0 to ‘drawing a
picture’ of the correct tree. One then has to verify that the tree has bounded geometry and
the complementary components each satisfy a positive τ -length lower bound. This is exactly
what we will do to prove Theorem 1.2. In this section, we connect the various components of
Γ = ∂Ω(ρ) to form a bounded geometry tree T1. If ∂Ω(ρ) has N < ∞ components, then the
tree T1 will have 2N complementary components; N of these are the original components of
Ω(ρ) and the other N are subdomains of W = C \ Ω. When N is finite, it is easy to make the
connections if we are willing to allow the bounded geometry constant to grow. However, we
will give a more intricate construction that can also deal with infinitely many components and
gives uniformly bounded geometry.

The new components might not satisfy a τ -length lower bound condition, but we will fix
this in the next section by a simple trick that subdivides each of these new components into
infinitely many components, each with a positive τ -length lower bound. Later, in Section 9, we
will show how to replace each component by a single subdomain that has the desired τ -length
lower bound (see Figure 4).

We should note that the construction of T1 and T2 given in this paper was chosen for its
generality, but it might not be the most elegant or efficient choice for a particular Ω that arises
in some application. Very likely, the geometry of the model domain will suggest a natural way
of connecting the different components of ∂Ω(ρ), while satisfying the bounded geometry and
τ -length conditions. Theorems 1.2 and 1.3 simply ensure that there is always at least one way
to accomplish this.

Now we start the construction of T1. Let Γ = ∂Ω(ρ). This is a union of unbounded, analytic
Jordan curves and each curve comes with a set of marked points (or vertices) defined by
Im(τ(z)) ∈ πiZ (recall that this is called a conformal partition of ∂Ω(ρ)). Γ is a uniformly
analytic forest and every vertex is analytic with a uniform constant.

Let W = C \ Ω(ρ). This is a proper simply connected domain in the plane, so by the Riemann
mapping theorem, there is a conformal map Ψ: W → D. Each curve Γj = ∂Ωj(ρ) maps to an
open arc Ij ⊂ T under Ψ. We let E = T \ ∪jIj ; this compact set corresponds to ∞ under Ψ−1,
hence it has zero Lebesgue length (even stronger, it has zero logarithmic capacity, but we will
not need this). The partition of Γj = ∂Ωj(ρ) with endpoints τ−1

j (iπZ) corresponds via Ψ to
a partition of Ij . Because ∂Ω(ρ) is a bounded geometry forest (with constant depending only
on ρ), adjacent intervals in the partition of Ij have comparable lengths with a fixed constant,
depending only on ρ. In particular, we can choose a point vj ∈ Ij so that the distances from
vj to each endpoint of Ij are comparable to each other (just take an endpoint of a partition
interval that contains the actual center of Ij). We call vj the ‘approximate center’ of Ij . The
main objective of this section is to prove
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MODELS FOR THE SPEISER CLASS 779

Figure 5. The Whitney decomposition of the disk.

Lemma 5.1. Suppose that the notation is as above, that is, T0 is the tree consisting of
Γ = ∂Ω(ρ) with vertices given by the conformal partition on each component of ∂Ω(ρ). There
is a bounded geometry tree T1 that contains T0, so that

(1) all new edges are in W = C \ Ω(ρ);
(2) the vertices of T1 on ∂Ω(ρ) are exactly the vertices of T0 (no new vertices are added on

∂Ω(ρ));
(3) if Ω(ρ) has N < ∞ components then C \ T1 has 2N connected components, N of which

are the connected components of Ω(ρ) and N are subdomains of W .

Using Lemma 4.1, the proof of Lemma 5.1 reduces to the following construction on the disk.

Lemma 5.2. Suppose E ⊂ T is closed and has length zero, T \ E = ∪jIj and vj ∈ Ij are
the approximate centers, as above. Then there is a tree T in D that satisfies the following
conditions.

(1) The tree T has bounded geometry. In fact, T is uniformly analytic and every edge is
either a line segment or a circular arc. The maximum vertex degree is 3.

(2) For each vj , there is a boundary edge of T that has vj as a common endpoint. The
length of this edge is comparable to the lengths of the two partition arcs of Ij that have vj as
an endpoint. This edge makes an angle with T that is bounded uniformly away from zero.

(3) Every other arc of T has uniformly bounded hyperbolic diameter.
(4) The closure of every component of D \ T meets E in exactly one point. In particular, if

E is a finite set with N elements, then D \ T has N components.

Proof. Consider a Whitney decomposition of the disk, as illustrated in Figure 6. The
innermost part of the decomposition is a central disk of radius 1/4. Outside the central disk, the
annulus A1 = { 1

4 < |z| < 1
2} is divided into eight equal sectors, the annulus A2 = { 1

2 < |z| < 3
4}

into sixteen sectors, and so on, as shown in Figure 5. These sectors are called Whitney boxes.
Each Whitney box has two radial sides and two circular arc sides concentric with the origin.

The circular arc closer to the origin is called the top of the box and the arc further from the
origin is called the bottom. Each bottom arc is divided into two pieces by the tops of the
Whitney boxes below it (‘below’ means between the given box and the unit circle). We call
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780 CHRISTOPHER J. BISHOP

Figure 6. The paths from the boundary to the central disk described in the text. Any boundary
point can be joined to the central disk by a path moving along edges of Whitney boxes: move
radially toward the origin whenever possible, and move counterclockwise (right in the figure)
otherwise.

these the left and right sides of the bottom arc (left is the one further clockwise). We will call
the sides and bottoms of Whitney boxes as the Whitney edges, their endpoints as Whitney
vertices. The union of these edges and vertices forms an infinite graph in D, which we call the
Whitney graph. The radial projection of a closed Whitney box B onto the unit circle, T, is a
closed arc that we denote B∗ (this is sometimes called the ‘shadow’ of B, thinking of a light
source at the origin). The union of a closed Whitney box B and all the closed Whitney boxes
B′ so that (B′)∗ ⊂ B∗ is called the Carleson square with base I = B∗.

Each point on the unit circle can be connected to the central disk by a path in the Whitney
graph that moves toward the origin whenever possible and moves counterclockwise otherwise
(see Figure 6).

Note that such a path never contains the ‘left-half’ of the bottom of any Whitney box
(otherwise the path would have moved up the left radial side of the box). For each arc Ij ⊂ T,
we connect the approximate center vj of Ij to the central disk by such a path. The union of all
such paths, together with the boundary of the central disk, is a closed set and divides the disk
into countably many simply connected subdomains {Uj}. By removing one of the eight arcs
that bounds the central disk, we join the central disk to one of the domains Uj . This makes
every subdomain Uj an infinite union of Whitney boxes; a finite union would contain a box
closest to the unit circle and the bottom of this box would be on a path, which is impossible
since the left side of the bottom cannot be on any path.

Thus, every subdomain Uj has a boundary that hits T, and Jj = ∂Uj ∩ T must be a closed
interval; if Jj is not connected, then there is a component of D \ Uj that is separated from
the central disk by Uj , but this is impossible by construction (points on the boundary of this
component are on a path that continues all the way to the central disk).

The closed interval Jj must hit E = T \ ∪jIj , otherwise two paths were generated in the same
component Ij of T \ E, contrary to the construction. Also Jj must hit E in a single point, xj ,
otherwise Uj separates some component Ik of T \ E from the central disk, contradicting the
fact that the approximate center of Ik is connected to the central disk.

We would like to turn the curve ∂Uj \ E into a tree by using the partition vertices on T ∩ ∂Uj

and using the Whitney vertices on ∂Uj , but there are infinitely many Whitney vertices on ∂Uj

that accumulate at each approximate center vj . To fix this, recall that vj is the endpoint of
two partition intervals of comparable length. Suppose r is the length of the shorter of these
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MODELS FOR THE SPEISER CLASS 781

Figure 7. The paths connecting vj to the central disk approach vj through a nontangential cone
near the boundary. Thus, if the path to vj ∈ Ij is truncated at an appropriate scale and replaced
by a line segment, this segment makes an angle with T that is uniformly bounded away from zero.

two and let wj ∈ ∂Uj ∩ D be a Whitney vertex on the path starting at v with distance from T

between r and r/2. We call this the truncation point associated to vj . The path terminating at
vj lies in a cone in D with radial axis, fixed angle, and vertex at vj and there are no other paths
that hit the disk D(vj , |vj − wj |), so we can replace the part of this path between these points
by the line segment [vj , wj ]. The length of this segment is comparable to the distance between
vj and its neighboring partition points and is also comparable to the adjacent segment in the
path ∂Uj . Moreover, the angle between this segment and the unit circle is uniformly bounded
away from zero, so we obtain a bounded geometry tree (even uniformly analytic), as desired
(see Figure 7). �

6. Proof of Theorem 1.2: part 2, the τ -length bound

In the previous section, we showed how to connect the components of Γ = ∂Ω(ρ) into a single,
connected, bounded geometry (even uniformly analytic) tree T1. In this section, we modify the
construction further to give a positive τ -length lower bound on each complementary component;
as noted earlier, it is then easy to modify τ by multiplying it by a positive constant on each
component of Ω(ρ) to make the lower bound π, as required in Theorem 3.1. We only have to
prove a lower bound on the ‘new’ complementary components that we create; the sides of the
components of Ω(ρ) have τ -length equal to π by definition.

Let T ⊂ D be the tree constructed in the Section 5 and let T ′ be the tree we obtain by adding
a vertex at the midpoint of each edge of T (all the edges are segments or circular arcs so the
midpoint is well defined). Note that all the ‘new’ vertices are analytic vertices with a uniform
constant. These vertices all have degree 2, and later we will attach single edges to them, giving
vertices of degree 3; the resulting trees will have maximum degree 3.

Let {Uj} = D \ T be the complementary components of T . Let xj = ∂Uj ∩ E be as defined
in the previous section, and let Φj : Uj → Hr be conformal with Φj(xj) = ∞. The vertices of
T ′ on ∂Uj map to points on ∂Hr; let Pj be the bounded geometry partition of ∂Hr induced by
these points. The ‘new’ vertices of T ′ induce a bounded geometry partition Qj whose endpoints
are alternating endpoints of Pj .

Lemma 6.1. With notation as above, fix j and consider the union of horizontal rays in Hr

that start at each endpoint for the partition Qj . Along each ray, add vertices that are equally
spaced, with a spacing that is equal to the distance between that ray and the closer of the two
adjacent rays (see Figure 8). This is a uniformly analytic forest that we denote by Gj . Then
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782 CHRISTOPHER J. BISHOP

Figure 8. Given a partition of ∂Hr where adjacent intervals have comparable lengths, add a
horizontal ray in Hr at each partition point in ∂Hr and place equally spaced vertices on each ray,
where the spacing equals the smaller width of the two adjacent half-strips. It is easy to see that
this gives a bounded geometry tree that satisfies a positive τ -length lower bound. Note that the
vertices of the tree have maximum degree 3.

T2 = T1 ∪ ∪jΦ−1
j (Gj) is a bounded geometry, uniformly analytic tree that satisfies a positive

τ -length lower bound.

Proof. It is obvious that Gj has bounded geometry and is uniformly analytic and that
it satisfies all the other hypotheses of Lemma 4.1, so that T2 = T1 ∪ ∪jΦ−1

j (Gj) is indeed a
bounded geometry, uniformly analytic tree. To prove that each connected component of T2

satisfies a τ -length lower bound, we simply note the conformal map of a half-strip to a half-
plane has exponential growth (we can check this via an explicit formula involving sinh(z)), so
if the partition segments on the boundary of the half-strip have Euclidean lengths bounded
below by a constant times the width of the strip, then the τ -lengths grow exponentially with
a uniform bound. In particular, the τ -lengths are uniformly bounded away from zero. �

Verifying the τ -length condition for a half-strip above is simple because there is an explicit
formula for the conformal map to Hr. One could also use the more geometrical and more
general Lemma 8.1, which will be stated and proved later.

7. Proof of Theorem 1.2: part 3, final details

The construction in the previous section created a forest in Hr with infinitely many comple-
mentary components, each of which satisfies a positive τ -length lower bound. We now apply
this construction to the partitions {Qj} corresponding to the analytic vertices of the tree T ′

constructed at the beginning of Section 6. Using Lemma 4.1, we can attach a conformal image
of the forest created in Lemma 6.1 to T ′ to give a bounded geometry tree. A positive τ -length
lower bound holds automatically by the conformal invariance of this condition. As before, we
can multiply τ by positive constants on each component, so that the τ -length lower bound is
π. We then apply Theorem 3.1 and multiply the resulting function by eρ to get
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MODELS FOR THE SPEISER CLASS 783

Theorem 7.1. Suppose Ω is as in Theorem 1.1. Then there is a f ∈ S2,0 and a
K-quasiconformal map φ of the plane so that f ◦ φ = cosh ◦ τ on Ω and φ is conformal on
Ω \ T (r). The constants K, r < ∞ depend on ρ but are otherwise independent of Ω and τ . The
function f has no finite asymptotic values, exactly two critical values, ±eρ, and every critical
point has degree at most 12.

There are a few slight differences between this and Theorem 1.2, but it is easy to deduce
Theorem 1.2 from Theorem 7.1 as follows.

First, Theorem 7.1 uses cosh instead of exp. However, these functions are almost the
same in Hr away from the boundary. Consider the map z → 1

2 (z + 1
z ); this is a conformal

homeomorphism of {|z| > 1} to U = C \ [−1, 1] and maps the circle C = {|z| = eρ} to some
ellipse E. Define a quasiconformal map ψ that equals the inverse of this map outside E
and extends it diffeomorphically to the interior. Since cosh = 1

2 (ez + e−z), we get exp(z) =
ψ(cosh(z)) when | exp(z)| > eρ. Therefore, if we use the measurable Riemann mapping theorem
to find a quasiconformal ϕ so that F = ψ ◦ f ◦ ϕ, this function satisfies Theorem 7.1 with cosh
replaced by exp.

Second, Theorem 7.1 only claims that ϕ is conformal off T (r), whereas Theorem 1.2 says
that it is conformal on all of Ω(2ρ). The first step in verifying this stronger condition is to
prove

Lemma 7.2. With notation as above, there is a A < ∞, depending only on ρ and r so that
T (r) ∩ Ω(A · ρ) = ∅.

Proof. The proof is a modulus argument. The modulus of the path family in Hr + ρ
separating a segment of length π on {x = ρ} from the vertical line {x = Aρ} is easily seen
to increase to infinity as A increases to infinity. Thus, by conformal invariance of modulus and
Lemma 2.1

dist(I, ∂Ω(Aρ))
min(diam(I),diam(∂Ω(Aρ)))

=
dist(I, ∂Ω(Aρ))

diam(I)
→ ∞

as A → ∞. This proves the intersection is empty if A is large enough. �

We can easily choose a quasiconformal map H : Hr → Hr so that H

(1) is the identity on {0 < x < ρ};
(2) is of the form (x, y) → (ax + b, y) mapping {ρ < x < 2ρ} to {ρ < x < Aρ};
(3) is a horizontal translation from {x > 2ρ} to {x > Aρ}.

Defining G = τ−1
j ◦H ◦ τj on each Ωj and letting G be the identity elsewhere gives a

quasiconformal map of the plane to itself so that ϕ̃ = ϕ ◦G is conformal off Ω(2ρ) and satisfies
all the other conclusions of Theorem 1.2.

Finally, the tree we have explicitly constructed has maximal vertex degree 3. Hence by the
folding theorem (Theorem 3.1), the corresponding entire function will have critical points of
degree at most 12. (As noted at the end of Section 3, this bound can be improved to 4 by some
modifications to the construction in [2].)

8. Two estimates on τ -length

In this section, we give two explicit estimates for τ -lengths that we will use during the proof
of Theorem 1.3 in the next section.

Given two disjoint intervals K,J on the real line, let M(K,J) be the modulus of the path
family in the upper half-plane, Hu, that separates K from J (these are the paths in Hu with
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784 CHRISTOPHER J. BISHOP

two endpoints in R \ (K ∪ J), exactly one of which separates K and J). This is the reciprocal
of the modulus of the path family that joins K and J (paths in Hu that have one endpoint in
each of K and J).

The first result is helpful for domains that look like ‘tubes’ built by attaching quadrilaterals
of bounded modulus end-to-end (for example, as the half-strip is a union of squares joined
end-to-end).

Lemma 8.1. Suppose K = (−∞,−1] and {Jj} is a sequence of disjoint intervals in [1,∞)
such that M = supj M(Jj ,K) < ∞. Also assume that the {Jj} are in increasing order (that
is, Jj+1 is to the right of Jj). Then the lengths of Jj grow exponentially in j; in particular,
these lengths are uniformly bounded below by a constant depending only on M .

Proof. Fix some Jj = [aj , bj ] with 1 < aj < bj . If bj − aj � εaj for some 0 < ε < 1, then Jj
is separated from K by the annulus

A = {z ∈ Hu : εaj < |z − aj | < aj}.
Any path connecting different components of ∂A ∩ R also separates J and K so the modulus
of the first family is a lower bound for the modulus of the second. However, this modulus
is 1

2π log 1
ε , so ε � εM = exp(−2πM). Hence, bj > (1 + εM )aj . By induction |Jj | = bj − aj �

εM (1 + εM )j−1, as desired. �

The next lemma is helpful when we build a domain by taking a ‘tube domain’ and attach
‘rooms’ along the sides of the tube.

Lemma 8.2. Suppose K = [s, t], I = [x, y], J = [u, v] are intervals on the real line so that
t � x < u. If M(J,K) � M(I,K), then |I| � |J |.

Proof. We prove the contrapositive. Suppose |I| > |J |. After translating (if necessary) we
may assume that t = 0. Then dilate by λ = u/x > 1. Note that K ⊂ λK and J ⊂ λI (strictly),
so using the monotonicity and conformal invariance of modulus, we deduce M(J,K) >
M(λI, λK) = M(I,K). �

9. Proof of Theorem 1.3

In this section, we improve Lemma 6.1 by showing that instead of creating infinitely many
complementary components, we can accomplish the same result using a single complementary
component.

Lemma 9.1. Suppose Q is a bounded geometry partition of ∂Hr with constant C (that is,
adjacent intervals have length ratio at most C). Then there is a bounded geometry, uniformly
analytic forest T ′′ ⊂ Hr which satisfies the hypotheses of Lemma 4.1 and so that W ′′ = Hr \ T ′′

consists of a single component that satisfies a positive τ -length lower bound. The constants
associated to T ′′ depend only on C. Moreover, the boundary edges of T meet ∂Hr exactly at
the partition points of Q.

Given the lemma, we can complete the proof of Theorem 1.3 just as we finished the proof of
Theorem 1.2 in Section 7. Briefly, we had constructed a tree T ′ that contained the analytic arcs
∂Ω(ρ) as well as arcs that connected the various components of ∂Ω(ρ). The complementary
components of T ′ consist of the N components of Ω(ρ) (which already satisfy the τ -length
condition because all their sides have τ -length π by definition) and N other components {U ′

j}
(which might not satisfy the τ -length condition; this is what we want to fix). The tree T ′ is
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MODELS FOR THE SPEISER CLASS 785

Figure 9. This figure encapsulates the proof of Lemma 9.1 by showing the relevant tree. On the
left is the central region, in the center is the central tube, and on the right is the tree T ′′. We
can easily add vertices to make this a bounded geometry tree, and we will use extremal length
estimates to show W ′′ satisfies a positive τ -length lower bound.

uniformly analytic, and alternate vertices are analytic (T ′ was obtained from an analytic tree
T by adding midpoints of edges). We then map each of the U ′

j conformally to Hr, take Q to be
the image of the new analytic vertices and apply Lemma 9.1 to this partition. The resulting
forest T ′′ is then mapped conformally back to U ′

j and attached to T ′. Using Lemma 4.1, we
see that the resulting tree has bounded geometry and satisfies a lower τ -length condition. The
rest of the proof of Theorem 1.3 then exactly follows the proof of Theorem 1.2. Thus to prove
Theorem 1.3, it suffices to establish Lemma 9.1.

We now start the proof of Lemma 9.1. Fix a partition Q of ∂Hr. Choose a base interval I0
in the partition. Without loss of generality, we may assume I0 = [−i, i] and label the partition
endpoints {zj} = {ixj} ⊂ ∂Hr so that

· · ·x−3 < x−2 < x−1 = −1 < x1 = 1 < x2 < x3 · · ·
Note that the elements of Q are labeled by Z, but the endpoints are labeled by Z

∗ = Z \ {0}.
It will be convenient to define k∗ = k + 1 if k > 0 and k∗ = k − 1 if k < 0; for k ∈ Z

∗, k∗ is
the integer adjacent to k, but farther from 0. With this notation, we can write Ik = (xk, xk∗)
without needing to have special cases for k > 0 and k < 0 (although we accept that an interval
can be written as either (a, b) or (b, a)).

Define the central region in Hr as the union of the rectangle [0, 1] × [−1, 1] and the sector
{x + iy ∈ Hr : |y| < x}. This region is illustrated in the left part of Figure 9. The boundary of
the central region consists of the segment I0 ⊂ ∂Hr and two infinite paths in Hr that we will
call the upper and lower boundaries.

It would be very convenient for us if the partition Q was symmetric with respect to the origin,
that is, J−k = −Jk. Since this need not be the case, we will build a new partition Q′ that is
symmetric, has bounded geometry, and is ‘finer’ than Q in a certain sense. More precisely,

Lemma 9.2. Given a bounded geometry partition Q of ∂Hr normalized as above, and a real
number 1 < M < ∞, there is a bounded geometry partition Q′ = {I ′j}Z of ∂Hr so that
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786 CHRISTOPHER J. BISHOP

(1) the interval I ′0 = I0 is an element of Q′;
(2) the partition is symmetric, that is, I ′−j = −I ′j ;
(3) the length of I ′j is a nonincreasing function of |j|;
(4) the length of every Ij is an integer power of 2;
(5) if any interval I ′ ∈ Q′ \ {I0} intersects an interval I ∈ Q, then |I ′| < |I|/M ;
(6) the bounded geometry constant of Q′ is bounded above depending only on M and the

bounded geometry constant C of Q.

Proof. Cover I1 by a collection D1 of closed dyadic intervals that all hit I1 and have lengths
strictly less than |I1|/4M and greater or equal to |I1|/8M (since there is exactly one power of
two in this range, all the chosen intervals have the same length, call it �1). In general, suppose
we have already covered I1 ∪ · · · ∪ Ij−1 by a collection Dj−1 of closed dyadic intervals such
that

(1) the interiors are disjoint;
(2) every J ∈ Dj−1 hits some Ik, 1 � k < j;
(3) the lengths are nonincreasing;
(4) if J ∈ Dj−1 hits Ik, 1 � k < j then |J | < |Ik|/M ;
(5) adjacent dyadic intervals have comparable lengths.

Let �j−1 be the length of the last (rightmost) dyadic interval in Dj−1. Cover Ij by a collection
Cj of dyadic intervals, all with the same length �j , where �j is the integer power of 2 satisfying
|Ij |/8M � �j < |Ij |/4M .

First, suppose �j � �j−1. Remove the last interval in Dj−1 and replace it by its dyadic
subintervals of length �j that do not hit Ij . Also add the dyadic intervals in Cj to Dj−1 to get
the collection Dj . Clearly, (1)–(4) all hold. Moreover,

�j−1 � �j � |Ij |/8M � |Ij−1|/8MC � �j−1/2C,

where C is the bounded geometry constant of Q. Thus, (5) also holds.
Next, suppose �j > �j−1. Then subdivide each dyadic interval in the cover Cj of Ij into

dyadic subintervals of length �j−1 and redefine �j = �j−1. Add these intervals to Dj−1 to give
Dj (except possibly the first interval, if it is already in the collection). Then (1)–(5) are all
obvious.

Next, do the analogous construction for j < 0 and reflect the resulting dyadic cover of
(−∞,−1] across zero to get a dyadic covering of [1,∞). By taking the shortest interval covering
each point, we get a dyadic covering of [1,∞), which satisfies all the desired conditions. �

Fix M � 8C (recall C is the bounded geometry constant of Q) and apply Lemma 9.2 to
get a symmetric partition Q′ = {Ij}j∈Z∗ . We will use the partition Q′ to fill the central region
with a meandering tube. Let {aj} ⊂ [1,∞) be the positive endpoints of Q′ (Ij = (iaj , iaj+1)).
Let ηj = aj+1 − aj = |Ij |. Now add the vertical segments

Vj =
{
x + iy : x = aj , −aj + ηj

1 + (−1)j

2
� y � aj − ηj

1 + (−1)j+1

2

}

inside the central region; more geometrically, we are adding segments on the vertical lines
{x = an} that lie inside the central region so that one endpoint lies on the boundary of the
central region and the other is distance ηj below or above the boundary. Alternate segments
alternately touch the ‘top’ and ‘bottom’ sides of the central region. This defines a simply
connected subregion of the central region that we call the central tube. The boundary of the
tube consists of I ′0 and two connected components that we call the upper and lower components.
The central tube is illustrated in the center of Figure 9.
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MODELS FOR THE SPEISER CLASS 787

Hk

Hk Hk
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zk wk

wk

wkzk
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Figure 10. We build approximate trapezoids by joining partition points on ∂Hr by almost
horizontal lines to partition vertices on the boundary of the central region. A small segment is
then removed from the boundary of the central region so that the interior of the trapezoid is
joined to the central tube. In this figure, k < 0, so k∗ = k − 1.

We make the boundary of the central tube into a tree by adding vertices on the vertical
segments at their endpoints and at points spaced ηj apart on Vj . On the upper and lower
boundaries of the central region, we add a vertex at all the points {aj ± iaj}j�1. It is easy
to see that this makes the boundary of the central tube into a bounded geometry tree (since
ηj 	 ηj+1).

As before, let {zj} = {ixj} be the endpoints of the partition Q = {Ij}. For each k ∈ Z
∗,

choose a yk = an(k) so that |xk − yk| < |Ik|/M . This is possible by condition (5) of Lemma 9.2.
Define the segment Hk = [ixk, wk], where wk = |yk| + iyk. This segment connects ixk to a
vertex on the boundary of the central tube and is close to horizontal (the absolute value of
its slope is � 1/M ; by abusing notation, we will refer to these segments as ‘horizontal’. Doing
this for every k divides the complement of the central region into quadrilaterals that look like
trapezoids, and which we will call trapezoids by an another abuse of notation.

We can also make the choice above so n(k) is even if k < 0 and is odd if k > 0. This means
that the right-hand vertex wk of the segment Hk is a degree 2 vertex of the central tube, and
hence forms a degree 3 vertex when the segment Hk is added. This is important because we
want the final tree to have maximum degree 3 (otherwise we would end up with the upper
bound 16 instead of 12 in part (2) of Theorem 1.2).

For k ∈ Z
∗, the kth trapezoid has left side Ik ⊂ ∂Hr, two ‘horizontal’ sides Hk and Hk∗ ,

and a right-hand side of slope ±1 along the boundary of the central region (see Figure 10).
Vertices are added to the ‘horizontal’ sides Hk that break Hk into segments that start at the
left with length comparable to the length of Ik and end on the right with lengths comparable
to (but larger than) ηn = an+1 − an, where n = n(k). Thus, the subsegment of Hk that meets
the boundary of the central tube has length comparable to the edges of the central tube at the
meeting point. Hence, we have a bounded geometry forest in Hr. However, this forest cuts the
plane into infinitely many components (the trapezoids and the central tube). We want to form
a single component by removing some segments.

For each k ∈ Z
∗, choose n = n(k) so wk∗ = an ± ian then remove the open segment (an−1 ±

ian−1, wk∗) from the boundary of the central region; this is the segment on the boundary of
the central tube that is also on the boundary of the kth trapezoid and has wk∗ as one endpoint
(see Figure 10). Removing this segment connects the kth trapezoid to the central tube. When
we have removed all such segments, we have a bounded geometry forest T ′′ with a single
complementary component W ′′ in Hr (see the right side of Figure 9).

All that remains is to prove that W ′′ satisfies a positive τ -length lower bound. First, consider
sides of W ′′ that are also sides of the central tube. If such a side lies on the upper boundary,
it can clearly be separated from the lower boundary by a path family with uniformly bounded
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788 CHRISTOPHER J. BISHOP

J

K

K

Figure 11. The modulus of the shaded tube in the top panel gives an upper bound for M(J,K).
The interval J is on the side of the trapezoid, and K is on the boundary of the central tube. The
modulus of the shaded rectangle in the bottom panel gives a lower bound for M(I0,K).

modulus. Thus, Lemma 8.1 implies that the τ -lengths of such sides grow exponentially and
hence are bounded away from zero. A similar argument applies to sides on the lower boundary
of the central tube.

Next, we have to consider sides of W ′′ that are sides of the kth trapezoid. We want to use
Lemma 8.2 with I = I0, J a side of kth trapezoid, and K a side of the central tube, chosen
as shown in Figure 11. To prove M(J,K) � M(I,K), we will first give an upper bound for
M(J,K) and then give a lower bound for M(I,K) that is larger than this bound.

Replacing J by a subinterval only increases M(J,K), and every side of the kth trapezoid
has length at least ηn∗ , where n∗ = n(k∗) is defined by the relation yk∗ = an∗ . So, we assume
that J is any interval of length ηn∗ on the side of the kth trapezoid. Any such J is one side of
a generalized quadrilateral Q ⊂ W ′′ whose opposite side is K and so that the two remaining
sides are at least distance ηn∗ apart (see Figure 11).

Moreover, we can choose Q so its area is at most (|Ik| + yk∗)ηn∗ . Therefore, the modulus
of the path family separating J from K in the quadrilateral is at most (|Ik| + yk∗)/ηn∗ (just
take the constant metric ρ = 1/ηn∗ in the definition of modulus; any admissible metric gives
an upper bound for the modulus.) Any path separating J and K in W ′′ contains a subpath
that separates them in Q, so by the extension principle

M(J,K) � (|Ik| + yk∗)/ηn∗ .

Now, we give a lower bound for M(I,K). Note that there is ηn∗ × (2yk∗ − 2ηn∗) rectangle
that separates K from I0; it is contained in the vertical section of the central tube just above
the opening to the kth trapezoid and the lower portion of the rectangle is shown as a shaded
region in the bottom panel of Figure 11 (the rectangle extends upwards almost to the upper
boundary of the central region). The horizontal segments that cross this rectangle separate
K from I0, so by the extension principle again, we see that the modulus of these horizontal
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MODELS FOR THE SPEISER CLASS 789

segments is a lower bound for M(I,K), hence (since the modulus of a rectangle is the ratio of
its sides),

M(I,K) � 2yk∗

ηn∗
− 2. (9.1)

Now we have to compare our lower bound for M(I,K) to our upper bound for M(J,K). By
the definition of the bounded geometry constant C for Q, if |k| = 1 then Ik ∈ Q is distance
1 from the origin and |Ik| � C|I0| � 2C, so 1 � |Ik|/2C. If |k| > 1, then Ik ∈ Q is separated
from the origin by another partition interval of length at least |Ik|/C. So in either case,

yk∗ � xk∗ � |Ik| + |Ik|/2C,
so that |Ik| � (1 − 1

4C )yk∗ (here we use that (1 + ε)−1 < 1 − ε/2 if 0 < ε < 1). Hence,

M(J,K) � |Ik| + yk∗

ηn∗
�

(
2 − 1

4C

)
yk∗

ηn∗

� 2yk∗

ηn∗
− yk∗

4Cηn∗
� 2yk∗

ηn∗
− |Ik|

4Cηn∗

� 2yk∗

ηn∗
− M

4C
.

Since we assumed M � 8C, and using (9.1), we have

M(J,K) � 2yk∗

ηn∗
− 2 � M(I,K).

Thus by Lemma 8.2, the τ -length of J is greater than that of I = I0 and hence is bounded
uniformly from below. As before, it is easy to check that the constructed tree has maximum
vertex degree 3. This completes the proof of Lemma 9.1 and hence the proof of Theorem 1.3
(the number of tracts in the approximation is at most double the number of tracts in the
model).

10. Geometric restrictions on Speiser models

So far, this paper has dealt with methods for building Speiser class functions. The remainder
of the paper is devoted to placing limits on what can be accomplished in this direction. In
this section, we show that the choice of τ on different tracts of a Speiser class function must
satisfy certain constraints; no such restriction needs hold for the Eremenko–Lyubich class by
the results of [4]. This is a clear difference between the two classes.

Suppose f ∈ S and S(f) ⊂ D. Since S(f) is finite, there is an ε > 0, so that

dist(S(f), ∂D) > 4ε

and

min{|a− b| : a, b ∈ S(f), a �= b} > 4ε.

For a ∈ S(f), let Da = D(a, ε) and let 2Da = D(a, 2ε). The open disks Da are evidently
pairwise disjoint and all lie inside D.

For each a ∈ S(f), the set W (a, ε) = f−1(Da) only has simply connected components, and
on each such component U the map f : U → Dj acts either as

(1) a 1-to-1 map onto Dj ;
(2) a finite-to-1 branched cover of Dj with a single critical value at a; or
(3) an ∞-to-1 cover of Da \ {a}.
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790 CHRISTOPHER J. BISHOP

Figure 12. Each D(a, ε) can be connected to {|z| = 1} by a path γ of length � π that stays at
least distance ε from every singular point. Such a path can be covered by O(ε−1) disks, each of
which has a double that misses the singular set. Therefore, the derivative of any branch of f−1

on γ has comparable sizes at any two points of γ (with a constant depending only on ε).

In the first two cases U is bounded, and in the third case it is unbounded and contains a path
to ∞ along which f has asymptotic value a. Moreover, the preimages f−1(a + ε) partition
∂W (a, ε) into arcs. Let X = D \⋃a∈S(f) D(a, ε).

Recall that given r > 0 and an arc I, we define a neighborhood of I by

I(r) = {z : dist(z, I) < r · diam(I)}.

Theorem 10.1. There is an r < ∞, depending only on ε, so that for each partition arc I of
∂W (a, ε) there is an edge J of ∂Ω with I ⊂ J(r) and J ⊂ I(r). Moreover, diam(I) 	 diam(J) 	
dist(I, J) and the lengths of I and J are comparable to their diameters.

Proof. Fix a ∈ S(f). Then ∂Da can be covered by a uniformly bounded number of disks
whose doubles do not hit S(f) and so f−1 is conformal from each such disk to any of its
preimages under f . If I is a partition arc of ∂W (a, ε), this fact and Koebe’s distortion theorem
imply that I has bounded geometry and its diameter is comparable to its length with constants
that are uniform (the constants only depend on the number of disks covering ∂Da, which is
uniformly bounded).

Similarly, T = ∂D is covered by O(ε−1) disks of radius ε whose doubles do not intersect S(f),
so the same argument shows that a partition arc J of ∂Ω has bounded geometry, but now with
constants that depend on ε.

Finally, ∂Da and T can be joined by a curve γ that is never closer than ε to any point of
S(f) (use a straight line segment and replace its intersection with any Da by the shorter arc of
∂Da connecting the same two points; see Figure 12). This arc can also be covered by O(ε−1)
distinct ε-disks whose doubles miss S(f).

Therefore, all the lifts of γ via f have bounded geometry with constants depending only on
ε. Thus if we take I as above and a lift of γ with one endpoint on I, then the other endpoint
of the lifted curve γ′ is on a partition arc J of ∂Ω. By Koebe’s theorem, |f ′| has comparable
values at all points of I ∪ γ′ ∪ J with constant that depends only on ε. Since ∂Da, γ and T

all have comparable lengths (within a factor of O(ε−1)), so do I, γ′, and J . This proves the
lemma (see Figure 13). �
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MODELS FOR THE SPEISER CLASS 791

Da

z

f
W

f z

a

Figure 13. As noted earlier, each D(a, ε) can be connected to {|z| = 1} by a path γ that stays
at least distance ε away from the singular set. A lift of this path via f is a path that connects
partition arcs of ∂Ω and ∂W (a, ε). As explained in the text, the lengths and diameters of the
lifted curve and the arcs it connects are all comparable with a constant depending only on ε.

Corollary 10.2. With notation as above, there is a r < ∞, depending only on ε, so that
f−1(X) ⊂ TΩ(r).

Proof. Note that ∂W (a, ε) ⊂ T (r) and this implies f−1(X) ⊂ T (r), as claimed. �

Theorem 10.1 immediately implies.

Corollary 10.3. Suppose f is in the Speiser class and S(f) ⊂ D. For every ε > 0, there is
a r < ∞ so that each connected component of C \ (Ω ∪ TΓ(r)) (where Γ = ∂Ω) maps under f
into some disk Da for some a ∈ S(f). If the connected component is unbounded, then a must
be an asymptotic value of f .

If the critical points of f have uniformly bounded degree D, then the components of W (a, ε)
containing critical points have boundaries with at most D partition arcs, each with diameter
comparable to the whole component (the constant depending only on D). Since one of these
arcs in contained in some J(r) the whole component will be contained in J(Cr) for some C
depending only of D. Thus,

Corollary 10.4. If f ∈ S, S(f) ⊂ D, and f have no finite asymptotic values and every
critical point has uniformly bounded degree D, then there is a r > 0 so that C = Ω ∪ T (r)
(as before, Ω = {|f | > 1}, and r depends only on D and ε, where ε is the minimal separation
between different points of S(f) and between S(f) and T).

For the half-strip S = {x + iy : x > 0, |y| < 1}, the partition elements decay exponentially
fast and it is obvious that Ω ∪ TΩ(r) is not the whole plane for any finite r. Thus, this
model cannot be approximated in the sense of Theorem 1.2 without using extra tracts. In the
remainder of the paper, we will show that something even stronger is true: the approximation
of a half-strip by a Speiser model domain with a single tract is not possible even if we allow

(1) finite asymptotic values;
(2) high degree critical points; and
(3) ϕ to be nonconformal everywhere in the plane.

Very briefly, the problem with the half-strip is that the τ -lengths for it and its complement
behave so differently, that the comparability implied by Theorem 10.1 cannot hold (see
Figure 14).

 1460244x, 2017, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12025 by Suny Stony B

rook U
niversity, W

iley O
nline L

ibrary on [08/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



792 CHRISTOPHER J. BISHOP

Figure 14. Suppose T is the boundary of a half-strip with unit spacing of the vertices, as
shown above. The conformal map of the half-strip (left) to a half-plane is sinh(z), and it
expands exponentially, so the unit segments shown in each contain exponentially many conformal
partition elements for the half-strip. However, the conformal map of the exterior domain (right)

to Hr behaves like z1/2 near ∞, so the unit segments are much smaller than conformal
partitions elements should be. This ‘imbalance’ of τ -sizes is what prevents the half-strip (or
any quasiconformal image of it) from being a Speiser model domain. The following sections will
make this precise.

J

I

I

R

R

J

z

Figure 15. The family of all separating curves for two unit intervals distance n apart on ∂Hr

has modulus � log n. Thus, in Ω any separating family must have modulus � log n. Applying
this observation to the two path families defined in the text gives the desired size and separation
estimates for the image intervals.

11. A polynomial lower bound for thick tracts

Suppose Ω is a simply connected planar domain bounded by a Jordan curve on the sphere that
passes through ∞. Suppose τ : Ω → Hr is conformal, maps ∞ to ∞, and J is the partition of
∂Ω that corresponds via τ to the partition of ∂Hr with endpoints iπZ (recall that this is called
a conformal partition of ∂Ω). In this section, we want to prove that if a tract Ω is ‘large’ in a
certain sense, then the size of elements in J cannot tend to zero too quickly. By ‘large’ we will
mean that Ω contains an unbounded quasidisk. For example, a sector Wθ = {z : | arg(z)| < θ},
0 < θ < π is an example of an unbounded quasidisk, so if Ω contains a sector, its partition
elements cannot have diameters that decrease exponentially quickly.

Lemma 11.1. Suppose Ω is bounded by a Jordan curve through ∞ and {J } is a conformal
partition of ∂Ω. Suppose Ω contains an unbounded quasidisk W . Then there is a R0 < ∞ so
that any partition arc J that hits a circle {|z| = R} with R > R0 satisfies diam(J) � CR−σ

for some C > 0, σ < ∞, independent of J .

Proof. Since Ω contains an unbounded quasidisk, Lemma 2.3 says that there is a curve
γ ⊂ Ω that connects some point z0 ∈ Ω to ∞ and has the property that there is a C1 < ∞ so
that dist(z, ∂Ω) � C1|z|, for all z ∈ Γ (see Figure 15).

Choose R0 large enough so that |z0| < R0 and so that {|z| < R0} contains some partition
element I ′ = τ−1(I) ∈ ∂Ω ∩ J . Fix R  4R0 and choose a partition element J so that
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MODELS FOR THE SPEISER CLASS 793

J ′ = τ−1(J) ⊂ ∂Ω hits {|z| = R}. If J ′ has diameter greater than 1, there is nothing to do, so
we may assume ε = diam(J ′) � 1 and hence J ′ ⊂ {z : R− 1 � |z| � R + 1} (see Figure 15).

Suppose I and J (which are equal length intervals on ∂Hr) are separated by n other partition
elements. By Lemma 2.2, M(I, J) 	 log n (recall that M(I, J) is the modulus of the path family
that separates I and J in Hr).

We consider two other path families in Ω. First, let Γ1 be the family of circular arcs in
Ω ∩ {z : R0 < |z| < R/2} concentric with 0 that connect the two components of ∂Ω \ I ′ (see
Figure 15). Let zJ ′ be any point of J ′ and let Γ2 be the path family consisting of circular arcs in
{z : diam(J ′) < |z − zJ ′ | < 1} that are concentric with zJ ′ and connect different components
of ∂Ω \ J ′ (see Figure 15).

Each path in Γ1 and Γ2 separates I ′ from J ′ in Ω, so by conformal invariance and the parallel
rule for modulus, we have

log n 	 M(Γ0) � M(Γ1) + M(Γ2),

and thus both terms on the right are bounded by C2 log n for some C2 < ∞.
Because γ crosses each element of Γ1 and each crossing point z is at least distance C1|z|

from ∂Ω, we deduce that there is a quadrilateral region

Q = {w : | arg(w) − arg(z)| � A, 1 � |w/z| � B}
contained in Ω for some A > 0, B > 1 depending only on the constant C1. The path family in Q
connecting the two radial sides of Q has fixed modulus MQ and this modulus is a lower bound
for the modulus of the path family in Ω ∩ {|z| < w < B|z|} connecting different components of
∂Ω \ I ′. Thus, by the parallel rule, the modulus of Γ1 is bounded below by MQ · �logB(R/R0)�.
In other words, logn � M(Γ1) � logR, for R large. Hence, when R is large, we have R � nα

for some α that only depends on the constant C1.
On the other hand, the usual estimate of the modulus of an annulus says that

log
1

diam(J ′)
� log n,

so diam(J ′) � n−β , for some β > 0. Thus

diam(J ′) � (R1/α)−β � R−β/α = R−σ,

as desired. �

12. An exponential upper bound for thin tracts

We now want to do the opposite of the previous section: show that if Ω is ‘thin’, then the
diameters of partition elements decay faster than any polynomial.

Lemma 12.1. Suppose Ω is the image of the half-strip S = {x + iy : x > 0, |y| < 1
2} under

a K-quasiconformal map φ of the plane fixing 0 and 1 and J is a conformal partition of ∂Ω.
Then all the partition elements satisfy

diam(J) � C1 exp(−C2dist(J, 0)α),

for some finite, positive constants C1, C2, α depending on K.

Proof. Using the measurable Riemann mapping theorem, we can write φ as a composition of
two K-quasiconformal maps φ = g2 ◦ g1, where both maps also fix both 0 and 1, g1 is conformal
outside S, and g2 is conformal on W = g1(S).

Consider the square Sn inside S between the vertical lines {x = n} and {x = n + 1}. Then
Wn = g1(Sn) is a quasidisk and its image in Hr under the conformal map τ : Hr → W is
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794 CHRISTOPHER J. BISHOP

G

Q Wn

S
S W WnS S

g g g S
n

Figure 16. The modulus separating S0 and Sn in the half-strip is comparable to n, so by quasi-
invariance the same is true for Q0 and Qn in Hr. This implies that the Euclidean diameter of Qn

grows exponentially, hence ∂Qn ∩ ∂Hr contains exponentially many partition points. The map
from Qn to Wn is conformal, so the same is true of Wn and partition arcs for W = g1(S).

generalized quadrilateral Qn with two sides on ∂Hr and modulus bounded above and below,
depending only on K (see Figure 16).

Since the extremal length between S0 and Sn in S is 	 n, the same is true for the extremal
distance between Q0 and Qn in Hrin Hr (with a constant depending on the maximal dilatation
g1). This implies that the diameters of Qn must grow exponentially, as do the component
intervals of ∂Qn ∩ ∂Hr (this is the same argument as in the proof of Lemma 8.1). Thus, ∂Qn

hits � cecn partition intervals on ∂Hr for some fixed c > 0 (depending only on K). Hence,
Wn hits the same number of partition arcs on ∂W . Because Wn is the image of Un under a
bi-Hölder map (since it is a quasidisk), each of these partition arcs has diameter bounded by
Cdiam(Wn) exp(−an) for another constant a depending only on K.

Since g1 has dilatation supported in the half-strip S and∫
S

dx dy

1 + x2 + y2
< ∞,

Theorem 2.5 implies that |g1(z)/z| has a limit as z → ∞. Thus, if Rn = dist(Wn, 0) we have
Rn 	 n and diam(Wn) � n. Thus, all the partition elements hitting Wn have diameters less
than cne−an, where a, c are positive constants that depend only on K.

Since g2 is conformal on W , the partition for Ω is just the image of the partition for W
under g2, and since g2 is bi-Hölder (with exponent depending only on K), the estimate in the
lemma follows. �

The proof can be applied to other tracts that look like thin tubes, for example,

Ω = {x + iy : x > 0, |y| � η(x)},
if η(x), η′(x) → 0 as x → ∞. However, the proof does not work for all subdomains of the half-
strip, since adding ‘rooms’ to the sides of a half-strip can create partition arcs whose diameters
do not tend to zero (in fact, we used a similar construction in the proof of Lemma 9.1.)

13. The half-strip is not the quasiconformal-image of a Speiser model domain

Before starting the proof of Theorem 1.4, we record the following result that is immediate from
Lemma 2.4.
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MODELS FOR THE SPEISER CLASS 795

Figure 17. Although the half-strip cannot be a Speiser class model domain (or even quasicon-
formally mapped to a Speiser class model domain), it can be approximated by a tract of such a
model. These figures show some ways this can occur using two, three or infinitely many tracts.

Corollary 13.1. Suppose Ω is a model domain. If φ is a K-quasiconformal map of the
plane that is conformal on Ω, then

Tφ(Ω)(t) ⊂ φ(TΩ(r)) ⊂ Tφ(Ω)(s),

where t, s depend only on r and K.

We can now prove Theorem 1.4: the half-strip S = {x + iy : x > 0, |y| < 1} cannot be
mapped to any Speiser class model domain by any quasiconformal homeomorphism of the
plane.

Proof. Suppose there were a K-quasiconformal map φ of the plane taking S to the tract
Ω = {z : |f(z)| > R} of some f ∈ S. Choose ε as in Theorem 10.1 and let r be as given by that
theorem. Let s be as given by Corollary 13.1.

As in the proof of Lemma 12.1, write φ = g2 ◦ g1, where g1 is conformal off S, g1 is conformal
on W = g1(S). Using Theorem 2.5 again implies that we can choose g1 so that

W ∪ TW (s) ⊂ V = {z : |z| < R} ∪ {z : | arg(z)| < π/4},
if R is large enough (depending on s). Note that V c is a quasidisk and hence V ′ = g2(V c) is a
quasidisk as well. By Lemma 13.1, this domain is contained in the complement of Ω ∪ TΩ(t).
Therefore, V ′ is contained inside some component U of W (a, ε) for a ∈ S(f).

Lemma 11.1 applies to U and Lemma 12.1 applies to Ω, giving estimates that contradict
the conclusion of Theorem 10.1 (partition elements for ∂U are contained in r-neighborhoods
of partition elements for ∂Ω). This proves that Ω could not have been the tract of any
f ∈ S. �

Although the half-strip cannot be approximated by Speiser class model domains with a
single tract, Figure 17 shows how it can be approximated by functions in S2,0 with two, three,
or infinitely many tracts. To apply Theorem 3.1, we must add vertices so that the bounded
geometry and τ -length conditions are satisfied. Bounded geometry is trivial in these figures
using vertices from the obvious lattice and Lemma 8.1 easily gives a strictly positive τ -length
lower bound for each tract (as usual, we can then multiply τ on each component by a positive
constant to attain a τ -length lower bound of π).

Lemma 8.1 also implies that the conformal partition of each of the drawn tracts has
elements whose sizes decay exponentially quickly. This implies that T (r) (the set where the
quasiconformal correction map ϕ in Theorem 3.1 has its dilatation supported) has finite
Lebesgue area. If we replace τ by a large positive integer multiple of itself, say N · τ , each
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edge of the conformal partition is divided into N segments. This implies that the area of
T (r) decreases to zero as N ↗ ∞. However, the maximal dilatation of ϕ remains bounded,
independent of N . A standard argument then shows that the corresponding map ϕ tends
uniformly on compact sets (or uniformly on the Riemann sphere) to the identity map as N
increases. A more careful argument shows that we can normalize the correction maps so that
they tend to the identity uniformly with respect to the Euclidean metric on the whole plane (for
example, see [5, Theorem 1.1]; our examples satisfy the (ε, ϕ)-thin hypothesis of that result).
Thus, the tracts of the resulting Speiser functions can approximate the tracts in Figure 17 as
closely as we wish in the Hausdorff metric on the plane.

In general, it seems that the shapes of individual tracts of Speiser model domains and
Eremenko–Lyubich model domains do not differ significantly. However, Speiser models only
allow disjoint tracts to be combined in certain ways depending on the choice of τj in each
tract, whereas Eremenko–Lyubich models allow disjoint tracts to be combined arbitrarily, and
τj can be chosen on each tract independently of the choices in other tracts.

Roughly speaking, each tract of a Speiser class function can ‘see’ other nearby tracts in the
sense that it can be connected to such tracts by path families that avoid the singular set and
come with nice geometric estimates (see the proof of Theorem 10.1). However, the singularities
of an Eremenko–Lyubich function can effectively ‘block the view’ between different tracts. It
would be reasonable to expect that if the singular set of an Eremenko–Lyubich functions was
infinite but ‘sparse’ in an appropriate sense, then nearby tracts would be forced to satisfy
compatibility conditions similar to Speiser class functions. What can be said about entire
functions where the singular set is restricted to lie in a given closed set E, or satisfies some
bound on its area, dimension or capacity, or satisfies some other natural geometric restriction?
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