
MAT 536, Spring 2024, Final Exam, Friday May 10, 11:15am-1:45pm

Name ID

Part I Part II Total

Part I: True/False. Put a “T” or “F” in each box. 2 points each, 20 points total.

(1) F (3 + i)(2− 2i) = 6− 4i

(2) T
∑

∞

n=0
(πi)n

n!
= −1

(3) F If f is bounded and analytic on D = {|z| < 1} its Taylor series must
converge at z = 1.

(4) F If f is analytic and non-zero on a domain Ω there exists an analytic g on

Ω so that g2 = f .

(5) F If f is a 1-1, analytic map from D to a simply connected domain Ω, then

f extends continuously to the boundary.

(6) T If {fn} are analytic functions on a domain Ω that converge uniformly on

Ω to a function f , then f is analytic.

(7) T If F is the family of analytic functions f on D so that Re(f) is bounded

by 1, and f(0) = 0, then f is a normal family.

(8) F If {gn} are non-vanishing analytic maps on a domain Ω, that converge

uniformly on compact subsets to g, then g must be non-vanishing.

(9) T There are only three conformally distinct simply connected Riemann sur-

faces.

(10) T
∫
∞

−∞

cos ax
x2+1

= πe−a.

1



Part II: Do three of the following four problems. Mark the boxes next to the problems
you want graded. 10 points each, 30 points total.

(1) Prove the identity sin2 z + cos2 z = 1 holds for all complex z. (You many

assume the standard trigonometric identities for z real.)

Sketch: You can calculate using the definitions or simply observe that sin2 z+
cos2 z− 1 = 0 is analytic on the plane and zero on the real line, so is zero every-
where in the plane (zeros of a non-constant analytic function must be countable
and have no accumulation points).

(2) Prove that if u(x, y) is a positive harmonic function on R
2, then u is

constant.

Sketch: The plane is simply connected so u has a harmonic conjugate v so
that f = u+ iv is analytic on the whole plane and maps the plane into the right
half-plane (since u > 0). The half-plane can be mapped to the unit disk by a
linear fractional transformation τ . Thus τ ◦ f is constant by Lioville’s theorem.
Thus f , and hence u, is also constant.

(3) Suppose that f is analytic in D, that f(0) = 1 and that |f | ≤ M on D.

Show that number of zeros of f inside {|z| < r} is at most lnM/ ln(1/r).

Sketch: Replacing f(z) by f(tz) and taking t ր 1, we may assume f is
analytic on a neighborhood of the closed unit disk. Let {zk}

n

k=1 be the zeros of
f inside D(0, r), counted with multiplicity. Let B be a finite Blaschke product
with these zeros. Then g = f/B is analytic in the unit disk. Hence log |g| is
subharmonic on the unit disk, and log |g| ≤ logM on the unit circle. Therefore
log |g(0)| ≤ logM and |B(0)| =

∏
k
|zk|. Moreover,

log |g(0)| = log |f(0)| − log |B(0)| = 0−
n∑

k=1

log |zk| ≥ −n log r = n log(1/r),

so n ≤ logM/ log(1/r).

(4) If f is non-constant, non-linear entire function, prove f(f(z)) = z has at

least one solution. (Hint: Consider g(z) = (f(f(z)) − z)/(f(z) − z). You may
assume g is non-constant if f is neither constant nor linear; this is true but a
little trickier to prove.)

Sketch: By the hint we may assume g is not constant. So, by Picard’s theorem
g can omit at most two values and hence must take on at least one of the values
0, 1,∞. If g(z) = 0 then f(f(z)) = z, as desired. If g(z) = ∞ then f(z) = z, so
f(f(z)) = f(z) = z. Finally, if g(z) = 1, then f(f(z)) = f(z) so w = f(z) is a
fixed point of f , hence also a fixed point of f(f(z)).



Proof of the hint (not required for exam): Claim: If f is an entire
function, and g(z) = (f(f(z)) − z)/(f(z) − z) is constant, then f must be
constant or linear.
Sketch: Suppose g is constant, but f is not constant. If g is the constant 1,

then f(f(z)) = f(z) on the image of f . This image is dense in the plane, so f
must be the identity, thus linear. If g is the constant 0 then f(f(z)) = z implies
f is a 1-1 map, hence linear. Finally, suppose c is neither 0 nor 1, and

f(f(z))− z = c(f(z)− z).

Differentiating gives

f ′(f(z))f ′(z)− 1 = c(f ′(z)− 1).

f ′(z)(f ′(f(z))− c) = 1− c.

The right side is not zero, so neither factor on the left is ever zero. Thus f ′ omits
zero. It also omits c unless it only takes this value at the points that f omits.
Thus f ′ takes the value c at only finitely many points. By Picard’s theorem
f ′ has a pole at ∞, so f ′ is a polynomial. Since f ′ never equals zero, it is a
constant, so f is linear.

Bonus: For 10 extra points do the following (from the midterm):

Suppose fn : D → D is analytic for n = 1, 2, . . . , and suppose that

fn(z) → f(z) for every z ∈ D. Prove that f is analytic on D.

Sketch: If R is a compact rectangle D, then since |fn| ≤ 1 and fn → f
pointwise on ∂R, the Lebesgue dominated convergence theorem applies to prove∫

∂R

fdz = lim
n

∫
∂R

fndz = 0.

Hence f is analytic on D by Morera’s theorem.


