MAT 536, Spring 2024, Sample Final Exam

Name	ID	
Part I	Part II	Total

Part I: True/False. Put a "T" or "F" in each box. 2 points each, 20 points total.
(1)
$T(1+i)^{2}=2 i$
(2)
$T \sum_{n=1}^{\infty} \frac{(\pi i)^{n}}{n!}=-2$

(3) If f is bounded and analytic on $\mathbb{D}=\{|z|<1\}$ then its Taylor series

converges uniformly to f on \mathbb{D}.
(4) T If f is analytic and non-zero on a simply connected domain Ω there exists
an analytic g on Ω so that $e^{g}=f$.
(5) T
extend conformal map of the unit disk to a bounded polygonal domain must
conto the boundary.
(6)

F
Ω to a fu

(7) F If \mathcal{F} is the family of analytic functions f on \mathbb{D} so that $\left|f^{\prime}\right|$ is bounded by 1 , then f is a normal family.
(8)
F If \mathcal{F} is a Perron family, then $-\mathcal{F}=\{-f: f \in \mathcal{F}\}$ is also a Perron family.
(9)
F If u is bounded and harmonic on \mathbb{D}, then its harmonic conjugate is also bounded on \mathbb{D}.
$T \int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=2 \pi / 3$.

Part II: Do three of the following four problems. Mark the boxes next to the problems you want graded. 10 points each, 30 points total.
(1) \square Prove that if $f=u+i v$ is analytic on the plane and $|u| \leq|v|+1$, then f is constant.

Sketch: If this condition holds, then f maps into a region on the plane the does not include the disk $\{z:|z-3|<1\}$ (many other disks would work too). Thus $1 /(f(z)-3)$ is analytic map of the plane into the unit dis, so it must be constant by Liouville's theorem. Thus f is constant.
(2) \square Suppose f is entire (analytic on whole plane). Must f have a fixed point (a solution of $f(z)=z$)? Prove or give a counterexample.

Sketch: No. e^{z} is never zero, so $f(z)=z+e^{z}$ is never equal to z.
\square Suppose f and g are entire and $f^{3}+g^{3}=1$. Prove f and g are constant. (Hint: apply Picard's theorem to f / g).

Sketch: Suppose there are such a non-constant pair f and g. If the equation holds then $(f / g)^{3}+1=1 / g^{3}$. Since g is assumed non-constant, this implies f / g is meromorphic and non-constant. Since f / g is meromorphic and nonconstant, by Picard's little theorem it can omit at most two values. So there must be some z where f / g is equal one of the three cube roots of -1 . But then $1 / g^{3}(z)=1-1=0$, so $g(z)=\infty$, contradicting that g is analtyic. The contradiction means there is no such pair f, g.
\square Suppose f is analytic on $\mathbb{D}=\{|z|<1\}$ and that it extends to be continuous and non-vanishing on $\mathbb{T}=\{|z|=1\}$. Prove there is a analytic g on \mathbb{D} so that $|g|=|f|$ on \mathbb{T} and g is non-vanishing on all of $\overline{\mathbb{D}}$.

Sketch: Since f is continuous on the closure of the disk and non-vanishing on the boundary, all its zeros are bounded away from the circle. Since the zeros can't accumulate inside the disk, there can only be finitely many. Let $B(z)=\Pi\left(z-a_{n}\right) /\left(1-\overline{a_{n}} z\right)$ be the finite Blaschke product with the same zeros as f (counted with multiplicity). Then $|B|=1$ on the circle, so $g=f / B$ is analytic with no zeros in \mathbb{D} and $|g|=|f| /|B|=|f|$ on the circle.

