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Reconstructing a neural net

from its output

Charles Fefferman

Introduction.

Neural nets were originally introduced as highly simplified models
of the nervous system. Today they are widely used in technology and
studied theoretically by scientists from several disciplines. (See e.g.
[N]). However, they remain little understood.

Mathematically, a (feed-forward) neural net consists of

(1) A finite sequence of positive integers (Dg, Dy,...,Dyp),

(2) A family of real numbers (wfk) defined for 1 <4<L, 1<j<D,,
1< k SDZ—-I, and

(3) A family of real numbers (/) defined for 1<£<L, 1<j <Ds.

The sequence (Dy,Dy,...,Dp) is called the architecture of the
neural net, while the wf r are called weights and the Gf thresholds.

Neural nets are used to compute non-linear maps from R¥ to RM
by the following construction. We begin by fixing a nonlinear function
o(z) of one variable. Analogy with the nervous system suggests that we
take o(t) asymptotic to constants as ¢ tends to +oo; a standard choice,
which we adopt throughout this paper, is o(z) = tanh(z/2). Given
an “input” (t,...,tp,) € RP°, we define real numbers :cf for 0<4<L,
1 <j < D, by the following induction on £.

(4) I £=0then zf=t;.
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(5) If the z} ! are known, 1 <£< L, then we set

¢ ¢ _0-1 ¢ .
sza( Z Wik Ty, +9]~), for1<j<Dy.
1<k< Dy

Here zf, ... ,x‘b[ are interpreted as the outputs of D, “neurons” in the
2th “layer” of the net. The output map of the net is defined as the map

(6) ®:(t1,...,tp,) — (21,...,2D, ).
In practical applications, one tries to pick the neural net

[(DOaDla-' -aDL)’ (wjk)5 (9;)]

so that the output map ® approximates a given map about which
we have only imperfect information. The main result of this paper
is that under generic conditions, perfect knowledge of the output map
® uniquely specifies the architecture, the weights and the thresholds of
a neural net, up to obvious symmetries. More precisely, the obvious
symmetries are as follows. Let (79,71, ..,7L) be permutations, with

71:{17"'aDl}—+{1""7Dl};

and let {ef :0<£€< L, 1<j <Dy} be a collection of +1’s. Assume that
~e is the identity and af = +1 whenever £ = 0 or £ = L. Then one
checks easily that the neural nets

(") [(Do,Dr,...,Dr), (wfk), (ejl)] and

(8) [(Do,D1,...,Dr), (afk)’ (55)]

have the same output map if we set
~¢ _ £, L -1 at __ ¢
(9) Uik = € Wil €k a0 05 = €500, -

This reflects the facts that the neurons in layer £ are interchangeable,
1<£<L—1, and that the function o(z) is odd. The nets (7) and (8) will
be called isomorphic if they are related by (9). Note in particular that
isomorphic neural nets have the same architecture. Our main theorem
asserts that, under generic conditions, any two neural nets with the
same output map are isomorphic.
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We discuss the generic conditions which we impose on neural nets.
We have to avoid obvious counterexamples such as

(10) Suppose all the weights wfk are zero. Then the output map @ is
constant. The architecture and thresholds of the neural net are
clearly not uniquely determined by .

(11) Fix £o, j1,J2 with1<€y<L—1and 1<j; < j2 <Dy, . Suppose we

have 85° = 65 and w*, = w2, for all k. Then (5) gives z7° = z72.
Therefore, the output depends on wfjj'l and wfgjl only through
the sum wf;-j'l + wfgjl So the output map does not uniquely

determine the weights.

Our hypotheses are more than adequate to exclude these coun-
terexamples. Specifically, we assume that

(12) 6 %0, and |8f] # [6%] for j # 5.

(13) wfk # 0; and for j # j', the ratio wfk/wf,k is not equal to any
fraction of the form p/q with p, ¢ integers and 1 <¢ <100 DZ.

Evidently, these conditions hold for generic neural nets. The precise
statement of our main theorem is as follows. If two neural nets satisfy
(12), (13) and have the same output, then the nets are isomorphic. In
Section I we give a slightly different but clearly equivalent statement of
our main result. It would be interesting to replace (12), (13) by minimal
hypotheses, and to study functions o(z) other than tanh(z/2).

We now sketch the proof of our main result, sacrificing accuracy
for simplicity. After a trivial reduction, we may assume Dy = Dy = 1.
Thus, the outputs of the nodes :cf (t) are functions of one variable, and
the output map of the neural net is t — zF(t). The key idea is to
continue the a:g(t) analytically to complex values of ¢, and to read off
the structure of the net from the set of singularities of the zf. Note
that o(z) = tanh(z/2) is meromorphic, with poles at the points of an
arithmetic progression {(2m + 1)7i: m € Z}. This leads to two crucial
observations.

(14) When £ = 1, the poles of xﬁ(t) form an arithmetic progression
H;- , and

(15) When £ > 1, every pole of any z57(¢) is an accumulation point
of poles of any z’(t).
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In fact, (14) is immediate from the formula z}(t) = o(w},t +6}), which
is merely the special case Dy =1 of (5). We obtain

- {(2m+ 1)mi — 6}

(16) ; : mEZ}.

w}l
To see (15), fix ¢, j, %, and assume for simplicity that mé_l(t) has a

simple pole at tg, while mi—l(t), k # %, is analytic in a neighborhood of
to. Then

(1) H70) = o + 1),

with f analytic in a neighborhood of t; .
From (17) and (5), we obtain

(18) zi(t) = o(wi g\t —t0) 7" +¢(1)),

with

(19) 9(t) = Wirf(t) + Y wheai () + 6,
k#k

analytic in a neighborhood of ¢, .
Thus, in a neighborhood of ¢, the poles of xf(t) are the solutions
t.m of the equation

(20) t:-—J—t—- +g(tm) = (2m + )i, meZ.
0

There are infinitely many solutions of (20), accumulating at ¢o.
Hence, ty is an accumulation point of poles of z’f(t), which completes
the proof of (15).

In view of (14), (15), it is natural to make the following definitions.
The natural domain of a neural net is the largest open subset of the
complex plane to which the output map ¢ +— z£(t) can be analytically
continued. For £ >0 we define the £!* singular set Sing (£) by setting

Sing (0) = complement of the natural domain in C, and

Sing (¢ 4+ 1) = the set of all accumulation points of Sing (#).
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These definitions are made entirely in terms of the output map, without
reference to the structure of the given neural net. On the other hand,
the sets Sing(¢) contain nearly complete information on the architec-
ture, weights and thresholds of the net.

This will allow us to read off the structure of a neural net from the
analytic continuation of its output map. To see how the sets Sing(¥)
reflect the structure of the net, we reason as follows.

From (14) and (15) we expect that

(21) For1<#< L, Sing(L—?)is the union over j = 1,..., Dy of the set
of poles of xf(t), together with their accumulation points (which
we ignore here), and

(22) For £> L, Sing () is empty.

Immediately, then, we can read off the “depth” L of the neural net; it
is simply the smallest ¢ for which Sing(¢) is empty.

We need to solve for Dy, wfk, 0}. We proceed by induction on 4.
When £ = 1, (14) and (21) show that Sing(L — 1) is the union of
arithmetic progressions II}, J =1,...,Dy. Therefore, from Sing (L —1)
we can read off D) and the II}. (We will return to this point later
in the introduction.) In view of (16), II} determines the weights and

thresholds at layer 1, modulo signs. Thus, we have found D, wjl-k, 0} .

When £ > 1, we may assume that

(23) The Dy, wflk, Gfl are already known, for 1 </¢' <£.

Our task is to find Dy, wfk, Bf . In view of (23), we can find a pole tg of
xé_l(t) for our favorite . Assume for simplicity that ¢¢ is a simple pole
of xé"l(t), and that the z57!(t), k # %, are analytic in a neighborhood

of tg. Then a:é_l(t) is given by (17) in a neighborhood of ¢y, with A
already known by virtue of (23). Let U be a small neighborhood of t,.

We will look at the image Y of U N Sing (L — ¢) under the map
t — A/(t —to). Since A, to and Sing (L — £) are already known, so is
Y. On the other hand, we can relate Y to D, wfk, Hf as follows. From
(21) we see that Y is the union over j =1,..., Dy of

(24) Y; = image of U N { Poles of zf(t)} under t — A/(t — to).

For fixed j, the poles of mf(t) in a neighborhood of #4 are the #,, given
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by (20). We write

w‘ik/\ [ u.lfk)\ .
(25) ~]—= -—1 +g(tm)

tm—to  [(fm —to) + [9(to) — 9(im)] -

Equation (20) shows that the first expression in brackets in (25) is equal
to (2m + 1)7i. Also, since f,, — ty as |m| — +co and g is analytic in a
neighborhood of tg, the second expression in brackets in (25) tends to
zero. Hence,

¢
wjk/\

tm_tO

= (2m + 1)me — g(to) + o(1), for large m .

Comparing this with the definition (24), we sce that Y; is asymptotic
to the arithmetic progression

(26) I = {(2m i 127;; — g(to): m € Z} :
i

Thus, the known set Y is the union over j =1,..., D, of sets Y},
with Y; asymptotic to the arithmetic progression Hf. From Y, we can
therefore read off D, and the Hf. (We will return to this point in a
moment). We see at once from (26) that wf s 18 determined up to sign
by Hf. Thus, we have found D, and wfk. With more work, we can

also find the Of , completing the induction on .

The above induction shows that the structure of a neural net may
be read off from the analytic continuation of its output map. We believe
that the analytic continuation of the output map will lead to further
consequences in the study of neural nets.

Let us touch briefly on a few points which we glossed over above.
First of all, suppose we are given a set Y C C, and we know that ¥
is the union of sets Yi,...,Yp, with Y; asymptotic to an arithmetic
progression II;. We assumed above that II,,...,IIp are uniquely de-
termined by Y. In fact, without some further hypothesis on the II;,
this need not be true. For instance, we cannot distinguish II; UIl; from
II5 if II; = {odd integers}, Il = {even integers}, II3 = {all integers}.
On the other hand, we can clearly recognize II; = {all integers} and
I, = {m\/i :m an integer} from their union II; UII,. Thus, irrational
numbers enter the picture. The réle of our generic hypothesis (13) is
to control the arithmetic progressions that arise in our proof.
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Secondly, suppose xé(t) has a pole at ty. We assumed for simplic-
ity that z¢(¢) is analytic in a neighborhood of ¢, for k # %. However,
one of the z4(t), k # %, may also have a pole at to. In that case, the
:cﬁ'“(t) may all be analytic in a neighborhood of ¢o, because the con-
tributions of the singularities of the z¢ in o ()" kwf;:'lzi + Gf“) may
cancel. Thus, the singularity at ¢, may disappear from the output map.
While this circumstance is hardly generic, it is not ruled out by our hy-
potheses (12), (13). Because singularities can disappear, we have to
make technical changes in our description of Sing (¢). For example, in
the discussion following (23), ¥ need not be the union of the sets Y;.
Rather, Y is their “approximate union”, in a sense to be made precise
in (IL.A.1) below.

Next, we should point out that the signs of the weights and thresh-
olds require some attention, even though we have some freedom to
change signs by applying isomorphisms. (See (9).) In effect, we in-
troduce in Section IV.A an extra induction on the number of neurons
in the net, in order to show that the signs come out correctly. The
induction comes into play in the substantial Lemma IV.B.16 below.

Finally, in the definition of the natural domain, we have assumed
that there is a unique maximal open set to which the output map
continues analytically. This need not be true of a general real-analytic
function on the line -for instance, take f(t) = (1 + t?)!/2. Fortunately,
Lemma III.A.1 below shows that the natural domain is well-defined
for any function that continues analytically to the complement of a
countable set. The defining formula (5) lets us check easily that the
output map continues to the complement of a countable set, so the
natural domain makes sense. This concludes our overview of the proof
of our main theorem.

Both the uniqueness problem and the use of analytic continuation
have already appeared in the neural net literature. In particular, it was
R. Hecht-Nielson who pointed out the role of isomorhisms and posed the
uniqueness problem. His paper with Chen and Lu [CLH] on “equioutput
transformations” on the space of all neural nets influenced our work.
E. Sontag [So] and H. Sussman [Su] proved sharp uniqueness theorems
for one hidden layer. The proof in [Su] uses complex variables.

At this stage, few non-trivial results are known for neural nets
with more than one hidden layer, i.e. with L > 1. However, a re-
cent paper of Macintyre and Sontag [MS] proves finiteness of the VC
dimension, a measure of the computing power of a neural net.
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I am grateful to R. Crane, S. Markel, J. Pearson, E. Sontag, R.
Sverdlove, and N. Winarsky for introducing me to the study of neural
nets.

I. Statement of the Main Results.
A. Definitions.

A neural net consists of the following:
(1) A finite sequence of positive integers (Do, D1, ..., D) with L > 1.

(2) A collection of real numbers (wfk), defined for 1 <€ <L,1<j< Dy,
1 < k < D[_l .
(3) A collection of real numbers (0]-[), defined for 1 <4< L, 1<j < D,.

Here, L is called the depth of the net, and (Dy, Dy,...,Dy) is called
the architecture of the net. The wfk are called weights, while the 9;'7 are
called thresholds.

Thus, a neural net has the form [(Dy,...,DL), (wfk), (6))]. We

denote neural nets by N, N’, j:I, etc.
For N = [(D,,...,DL), (wfk), (6], we define functions zh(ty, ...,
tDy, N) by the following induction on £.

(4) x?(tl,...,tDO,fN)ztj for 1<j<D,.

D,_,
(5) :cf(tl,...,tpo,:N) = O’(Z wkai_l(tl,...,tDO,N)+9f) ,
k=1

for 1 <5 < Dy, where

(6) o(z) = tanh (%) .

We call - (to,t1,---,tp,) € RPo the input to the neural net; we call
(xf(tl,...,tpo,N))lstD,_ € RPr the output, or the function com-
puted by the neural net; and we call xf(tl,...,tDO,N) the function

computed by the j** node of the £ layer.

When it is clear which neural net we are talking about, we may
write zf(tl, ...,tD,) in place of zf(tl, .« ostpy, N). Also, when Dy =1,
we may write xf(t) or zf(t,N) in place of xf(tl), xf(tl,N).
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The size of a neural net N = [(Do, ..., Dr), (w;), (6))] is defined

simply as Do+ Dy +-*-+ Dp.
Next we discuss isomorphisms of neural nets. Let

(7) N= [(DO, .. '1DL)7 (wfk), (0:)]
be a neural net. Then let
(8) vye:{1,...,De} = {1,..., Dy}

be permutations. Finally, let sf be a collection of signs,
(9) ef=+1, for 0<l<L, 1<j<Dy.

In terms of N, (7¢), (¢5), we define a new neural net

(10) ﬁ' = [(D(,, ceey DL)’ (afk)’ (55)] )
where
~f __ & 2 £-1
(11) Wik = €5 9 (i) (r-1k) €k
and
50 __ €t
(12) 0; = €5 0u)-

An easy induction on £ shows that

(13) zh(ty, ..., Epy, N) =€tal  (t1,...,tp,, N),

provided (#1,...,%p,) and (¢1,...,tp,) are related by

(14) i =€t (vi) for 1<j<Dy.

In particular, if we assume

(15) 85 =1 when £=0 or L and %, 71 are the identity permutation,
then (13), (14) show that

(16) zf(tlv"')tl)ovﬁ)=le"(tl7'--’tD07N)1 for 1<j<Dy.
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Thus, the neural nets N and N compute the same function. We say
that the nets N, N are isomorphic if they are related by (7),...,(12)
for some choice of (7g), (6§ ) satisfying (15). For fixed

[(ve)o<ecr, (e5)ocect, 1< D

satisfying (15), the map N — N given by (7), (10), (11), (12) is is called
the somorphism induced by [('yg),(ef)]. One checks easily that com-
positions and inverses of isomorphisms are again isomorphisms. Note
that any two isomorphic neural nets N, N have the same architecture.

It is useful to pick out a single representative from an isomorphism
class of neural nets. Thus, we say that N = [(D,,...,Dy), (wfk), (Of)]
is in standard order if for each ¢, 1 <4 < L, we have

(17) 0<@i<bi<..-<6h,.
The proof of the following observation is left to the reader.

(18) Lemma. Every neural net N = [(Dy,...,Dp), (wfk), (6))] sat-
1sfying the generic condition

(19) 9]‘ 7£ Ov lafl # ,0f', fOT ] ?éjl’ V

18 1somorphic to one and only one neural net in standard order.

B. The Main Theorems.
The main result of this paper is as follows.

(1) Uniqueness Theorem. Let N = [(Dy,...,DpL), (wfk), ()]

and N = [(ﬁo,...,ﬁz), (~fk), (55)] be neural nets in standard order,
satisfying the following generic conditions.

wt
(2) W0  and | 5[ £E,
erk q

forj#j', p,q €Z,1<9<100D7,

- ey, p
3) S A0 and [ ZE|£2
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forj#j',pq€Z,1 5qg1005§. Assume Dy = f)o, D = 53, and

(4) eh(ty, .. tpy, N) = zF(ty,...,tp,, N),

for all (t1,...,tp,) € RD° and allj, 1<j<Dy.
Then the nets N and N are identical:

(5) L=1L,
(6) D, = Dt fO'I‘OngL,
() wh =% for1<l<L, 1<j<Dy, 1<k<Dyy,

(8) 6f= 9‘-’ for1<€<L, 1<j<Dy.

The Uniqueness Theorem 1 reduces immediately to the special
case. Dy = 1, Dy = 1. To see this, we fix jg, 1<]0 <Dy, and ko ,
1<kog<Dy. Then we restrict attention to the ;& outputs z; ( N)
for inputs of the form (0,...,0,¢,0,...,0), where the ¢ occurs in the

kt* coordinate. Thus we obtain functions zL(t,N), zL(t,N) of a sin-
g}e variable ¢. These functions are computed by neural nets N;equceds
Nteduced obtained from N, N by deleting irrelevant input and output
nodes. The spec1al case Dy = Di = 1 of Theorem (1), applied to
Nreduced and Nreduceda shows that Nrequcea and Nreduced are identical.
Since jo and ko were arbitary, it follows that N and N are identical.
Thus, Theorem (1) is reduced to the special case Dy = D, = 1.

From now on, we change the definition of neural nets to include
the requirement Dy = Dy = 1. Thus, a neural net computes a single
function of one variable. In view of the elementary Lemma A.18, our
uniqueness theorem is reduced to the following statement.

9) Uniqueness Theorem. Let N=[(Do,...,Dr), (w}y), (6f)] and

N = [(Do,..., L), (w]k) (ﬁj)] be neural nets satisfying the generic
conditions

~e

we
(10) wh#£0, and |22,

w]-,k q

forj#j', p,g€Z,1<q<100D}, and

~£
~ Wik 4
(11) S A0, end  |ZE[2Z
ik
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forj #3j', p,a € Z, 1<q<100D3.
Ifzf(t,N) = a:{j(t,i\]') for all real t, then N and N are isomorphic.

The rest of this paper is devoted to the proof of Theorem 9.

C. A Small Technical Lemma.

The following observation on isomorphic neural nets will be used
much later, in the proof of Theorem B.9.

(1) Lemma. Let N = [(Dy,...,Dy), (w’), (6})] and N = [(Ds, ...,
Dyp), (@), (55)] be isomorphic neural nets. Assume that
(2) Wi #£0 forallé, j, k, 1<f<L,1<j<Dy, 1<k<Dyy,

(3) |wiil # Wiyl foralll, j#3', k, 1<€<L, 1<j,5'<Dy,
1<k<Dgq,

(4) wfk =‘-"fk for1<€<L—1,1<j<Dy, 1<k<Dpy.

(Note: We do not assume (4) for £=1L).

Then N and N are identical.

PROOF. Since N, N are isomorphic, there are permutations 7, and
signs 6f such that

£ _ _t~e -1
() Wik = €5 W) vk Ek
e _ _ege
(6) 0; = €50(xs) >
) 7o = identity, v, = identity, €9 =1, ef =1.
Since &fk = wf) for £< L —1, (5) implies
(8) Wik = & Wik €k > for 1<fsL—1,

so that

(9) |w§kl = |wf-nj)(~/,_1k)| ’ for 1<€<L-1.
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From (7) we have 7o = identity. By (3) and (9), y¢—1 = identity implies
~ve¢ = identity for 1<¢<L — 1. Hence v, = identity for all /<L — 1.
Since vy = identity by (7), we know that all the v, = identity. Thus,
(8) becomes

(10) wfk = efwfk ei-t, for 1<¢<L—-1.

From (7) we have ¢} = 1, since Dy = 1. By (2) and (10), 5! =1
(all k) implies af =1 (all j) for 1<£<L — 1. Hence & = 1 whenever
£<L — 1. Since also (7) gives sJ-L = 1 because Dy = 1, we know that
5f =1foralll j,0<€<L,1<j5<D,. Since Ef =1 and v, = identity,
(5) and (6) show that the nets N, N are identical.

II. Approximate Arithmetic Progressions.

A. Preliminaries.

(1) Definition. Let E, Ey,...,E, C C be given. We say that E is
the approzimate union of Ey,..., E, if the following conditions hold.

(2) ECEyU---UE,, and

(3) Any point belonging to ezactly one of the Ey, ..., E, belongs to E.

(4) Definition. Forw, € C withw # 0, define [I(w, ) = {wk+B:k €
Z}. We say that E C C approzimates Il(w, ) if for every € > 0 the
following conditions hold.

(5) All but finitely many points of E lie within distance € of some
point in Il(w, ), and

(6) All but finitely many points of Il(w,B) lie within distance € of
some point in E.

Note that

(7) I(w,p) =0 p")if and only if w' = +w and f' = B+ wm for

some m € Z.



520 CH. L. FEFFERMAN

(8) Definition. Let H be a set of integers. We define the upper and
lower densities A*(H), A(H) by setting

9) A*(H) = limsup Number of integers in [M, N]N H
N—oo N-M

M——o0

and

Number of integers in [M, N]|N H
N-M )

(10)  A.(H) = liminf

M——o0

If A*(H) = A(H), then we write A(H) for their common value, and
we say that H has density A(H).

We will need the following special case of H. Weyl’s Theorem on
the equidistribution mod1 of arithmetic progressions (See [W]).

(11) Theorem. Suppose 8 € R is irrational and 0 < ¢ < 1/2. Let
B €R. Then A({k € Z: |6k + B — m| < & for some m € Z}) = 2¢.

(12) Corollary. Let w, w', B, B' be complez numbers, with w,w' # 0.
Assume that w'/w is real and irrational. Then we can make the density

A*({k € Z: dist {wk + B, II(w", B')} < €})

arbitrarily small, by taking € > 0 small enough.

B. The Deconstruction Lemma.

Suppose E C C is the approximate union of sets F1,...,Ep; and
suppose that each E; approximates an arithmetic progression II(w;, §;).
We want to know that the progressions II(w;, ;) are uniquely deter-
mined by E. Also, for each j;, we want to pick out infinitely many
points (z,),»1 that belong to E;; but not to any Ej, j # jo. The
following result provides this information.

Deconstruction Lemma. Let E, Ey,...,Ep, El,...,Eﬁ be sub-
sets of C, and let Il(wy,B1),...,1(wp, Bp), (&1, p1),..., (L5, B5)

be arithmetic progressions. Assume the following conditions.



RECONSTRUCTING A NEURAL NET FROM ITS OUTPUT 521

(1) E 13 the approzimate union of Ey,...,Ep.
(2) Each E; approzimates the arithmetic progression II(w;, B;).

(8) Forj +# j' and p, q integers with 1 < ¢ <100 D?, we have |w;/w;:| #
/e

(4) E 1s the approzimate union of Ei,.. .,Eb.
(5) Each Ej approzimates the arithmetic progression H(G]-,Bj).

(6) Forj#j', and p, q integers with 1 <q <100 D2, we have @ /@
#p/q-

Then D = D, and there is a permutation
v:{1,...,D} - {1,...,D}
with the following properties:
(7)  T(wj,B5) = W(@yj, By;) for L<j<D.
(8) Given jo, 1<jo <D, there 13 a sequence (z,),51 in C such that
(9) |zy| — 00 as v — oo,
(10) Each z, belongs to Ej, but not to E; for j # jo,

(11) Each z, belongs to E.j,, but not to E; for j # v jo.

C. Preparation for the proof of the Deconstruction Lemma.

We begin with a definition. We say that II(w, 3) fits into E C C
if for any € > 0 we have

(1) A({k € Z: dist {wk + B, E} <e})219—0.
Note that (1) is phrased in terms of w and A3, but in fact depends only
on II(w, B). (See (A.7)).

(2) Lemma. IfE, E;, II(wj, B;) are as in the Deconstruction Lemma,
then II(wj, B;) fits into E.
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PROOF. Fix j' # j. For small enough € > 0 we will estimate
(3) Ae(jaj') = A*({k € Z: dist {wjk + :8_1'3 H(wj',ﬂj’)} < 6}) .
Let ¢;,4;: denote the lines w;R + B;, wjyR + B in C. We distinguish

several cases.

CASE 1: £; # £j. Then dist {z,£;} is bounded below by a positive
constant as z € £; tends to infinity. Hence, A.(j,j') = 0 for ¢ > 0 small
enough.

CASE 2: £; = {; and wj/wjr is irrational. Then by (A.12), we can
make A,(j, ;') arbitrarily small by taking € > 0 small enough.

CASE 3: £j ={j and wj/wj = p/q in lowest terms, with p,q € Z and
¢ > 0. In view of (B.3), we have ¢ > 100D?2.

Assume we are given distinct integers k;, k2 € Z with

(4) dist {w;k1 + B, (wjr, Bj+)} <e,
and
(5) dist {wjkz + ,BJ, H(wj:,ﬂj/)} <E€.

Thus, for integers m; and mq, we have

(6) |(wjk1 + Bj) — (wjrmi + Bjr)| < e,
and
(7) l(wjkz + B;) — (wjrmz + Bj1)| < €.

Subtracting (6) from (7), and recalling that w;/w; = p/q, we get

< 2¢
|wje| k2 — k1]

8 _
® g k2—k

‘2 ma —m;

pr/q sé (m2 - ml)/(k‘z - k]), then

‘P mg —my

g ki—k

S 1
“qlke— k1|’

which contradicts (8) provided we take ¢ < |w;s|/(2¢). Hence, p/q =
(mg—my)/(k2—k1). Since p/q is in lowest terms, it follows that k; — k3
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is a multiple of q. So we have shown that (4), (5) imply k2 = k; mod q.
It follows at once that A.(j,;7') <1/g, for € > 0 small enough.

Since ¢ > 100 D? in CASE 3, our analysis of the above cases gives
A.(7,5") < 1/(100 D?) for j' # j, if € > 0 is small enough.

Summing over all j' # j and recalling (3), we get

A*({k € Z: dist {wjk + B;,[I(wj, Bj7)} < € for some ;' # j})
(9) 1

<1000
Now suppose k € Z satisfies

(10) dist {ij + ,BJ', H(wj,,ﬂj,)} >e€, for all j' #7.

Since E; approximates II(wj, 3;), we can find mi € E; for all but
finitely many k so that

; €
(1) o — (st + B < o
In particular, |:1:£| —ooas k— 0.

On the other hand, since E; approximates II(wj/,3;:), we have
Ej C Fj U{z € C:dist {z, II(wjs, Bj»)} < €/10} with F} finite. Hence,
(10) implies

(12) diSt{wjk_*-ﬁj’Ej'}Zi%ev for a'llj,#j?

for all but finitely many k. Comparing (11) and (12), we see that
z} ¢ Ej, j' # j. Thus, all but finitely many k satisfying (10) have
the property mi € E; \Uji4;E;. Since E is the approximate union of
E,,...,Ep, it follows that :1:{c € E. Hence, (11) implies

(13) dist {w;k + B, E} <.

So (13) holds for all but finitely many of the k that satisfy (10). There-
fore, by (9), we have A,({k € Z: dist {wjk+8;,E}<e}) >1-1/(100 D),
which shows that II(w;, 8;) fits into E.

(14) Lemma. Let II(w,3) and II(w',B') be arithmetic progressions,
with II(w, B) ¢ I(w',8"). Fiz D >0, and define

W . .
q, sz _P in lowest terms, with p,q€Z, ¢>2.
q

(15) g(w,w)= {

oWl . .
100 D?%, if — 18 irrational, an integer, or non-real.
w
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Then
* L Y] 1
(16)  AT({k € Zidist {wk + AT, B} <)) s ———
for € > 0 small enough.
PROOF. As in the previous lemma, we set £ = wR + 3, £ = w'R+ ',

and we distinguish several cases.

CASE 1: £ # £'. As in the proof of the previous lemma, the left-hand
side of (16) is equal to zero if € is small enough.

CASE 2: £ = {' and w/w' irrational. As in the proof of the previous
lemma, we can make the left-hand side of (16) arbitrarily small by
taking € small enough.

CASE 3: £ = £ and w/w' = p/q in lowest terms, with p,q € Z and
g >2. As in the proof of the previous lemma,

dist {wk; + B, I(w', B)} <e, dist {wk, + B, II(w",8')} < ¢,

imply k2 = k1 mod ¢, so that (16) is obvious.
CASE 4: £ ={' and w/w' = p for some integer p. Then B' — 3 is not a
multiple of w’, since II(w, ) ¢ I(w', B').
Take € < minkez |8’ — B — kw'|. Then for all k,m € Z we have
((wk + ) — (w'm + ') = |8~ B' — (m — pk)w'| > ¢,

so that dist {wk+3,II(w’, ')} > €, and the left-hand side of (16) equals

Zero.

(17) Lemma. Assume the hypotheses of the Deconstruction Lemma,
and suppose

(18) lwi| < Jwe] < -+ < |wpl.

Fiz an integer s, 1<s<D. Let lI(w,B) be an arithmetic progression
with the following properties:

(19) II(w,p) fits into E,
(20) w# pw;/q forp,g €Z, 1<q<10s, if j<s.
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Then either I(w, B) = Il(ws, Bs), oT else |w| > |ws|-
PROOF. Assume the lemma is false. Thus,

(21) [(w, B) # T(w,, B,),
(22) ] < ol

Suppose for the moment that II(w, ) C II(w;, §;) for some j, 1 <j <D.
Then

(23) ' w=pwj, for an integer p # 0.
If j < s, then (23) contradicts (20). Hence, j >s and (18), (23) yield
(24) |wl = lp [wjl > |wj] > |ws| -

Moreover, at least one of the inequalities in (24) will be strict, unless
p = £1 and j = s. Therefore, (22) yields p = +1 and j = s. Since
I(w, B) C I(wj, B;) = II(ws, Bs) and w = pw; = Fwy, it follows that
(w, B) = II(ws, Bs), contradicting (21). This contradiction proves that

(25) I(w, B) ¢ (wj, B;), for 1<j<D.

Next, we apply (19) and (1) to conclude that
(26) A.({k € Z:dist{wk+B,E} <e})> % , for any € > 0.
Since E is the approximate union of Ey,...,Ep, we have E C E; U

---UEp, so that dist {wk + 8, E} < ¢ implies dist {wk + 8, E;} < ¢ for
some j. Hence, (26) yields

D
(27) ZA*({k € Z: dist {wk + B,E;} <e})> Tgﬁ , foranye>0.

i=1

Moreover, each E; approximates II(wj, ;). Hence, given ¢ > 0, we
have

E; C F;U{z € C: dist {2, II(wj,B;)} < e}

with F} finite. So, for large integers k, dist {wk + B, E;} < € implies
dist {wk + 8,II(wj, Bj)} < 2¢. Thus, (27) implies

D
. 9
(28) ;A*({k € Z: dist {wk + §,11(w;, )} < 2e}) 2 75 »
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for any € > 0. Taking € small enough, and using (25) to apply Lemma
(14), we obtain

(29)  A*({k € Z: dist {wk + B, T(wj, 5;)} < 2¢}) < 2@715—) ’

where

q, if 2 =2 in lowest terms, with p,q € Z, ¢>2,
(30) q(w,w;) = “i 4
100 D?, otherwise.

From (28), (29), we obtain

b 9
(31) 2 oy 0

On the other hand, we can prove an upper bound for the left-hand side
of (31). Immediately from (20) and (30), we have g(w,w;)>10s for
J < s, so that

1 1
(32) 1521;3 o) <10
To control g(w,w;) for j >s, we prove
(33) g(w,wj) 22,
and
(34) g(w,w;)<10D, for at most one j >s.

In fact, (33) is immediate from (30). If (34) were false, then we would
have

2 w
(35) "

)

Ele

with p,q,p',q' € Z, j,j'>s, j # j', 1<q,q¢' <10 D. From (18), (22),
(35) we have |w| < |ws| < |wj| so that |p| < |g|; and similarly, |p'| <|¢'|- In
particular,

(36) 0<|pl, Ip'l, lgl, l¢'| <10 D,
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by another application of (35). A final application of (35) gives

w;j gqp P
37 = =18 =
#0 wip  pq¢ Q
Since 1<|Q|<100D? by (36), equation (37) contradicts hypothesis
(B.3) of the Deconstruction Lemma. This contradiction proves (34).
Immediately from (33), (34), we obtain

1 1 D-s 1 1
(38) 2. oSt TOD 52T

8<j<

Together, (32) and (38) yield

contradicting (31). Thus, assuming our lemma to be false, we arrived
at a contradiction.

(39) Lemma. Assume the hypotheses of the Deconstruction Lemma.
Then there i3 no arithmetic progression Il(w, B) with the following prop-
erties:

(40) I(w,p) fits into E,
(41) w# gwj for p,q € Z,1<q<10D, whenever 1 <j <D.
PROOF. Assume II(w, 3) satisfies (40), (41). By (40) and (1), we have

A({k € Z: dist {wk + B,E) < €}}>9/10, for any € > 0. As in the
proof of the previous lemma, this implies that

D
(42) Y A({k € Z: dist{wk + 8,T(w;, B)} < 2¢}) > % ,

i=1

for any € > 0. Moreover, (41) shows that II(w,8) ¢ II(wj, 8;) for any
J, 1<j <D, so that Lemma (14) applies. We obtain from (14) and (42)
the estimate

D
(43) Y
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with
e W D. .
q, if — == in lowest terms, with p,q € Z, ¢ >2,
w; g

j
100 D?, otherwise.

(44) g(w,wj) = {

On the other hand, (41) and (44) imply ¢(w,w;) >10.D for all j, so that

contradicting (43).

D. Proving the Deconstruction Lemma.

Let E, E1,...,Ep, Ei,...,Ep, I(w;, B;), (&}, B;) be as in the
Deconstruction Lemma. Hypothesis (B.3) shows that the |w;| are all
distinct. Without loss of generality, we may therefore permute the E;
and II(wj, B;) to reduce matters to the case

(1 wi| <+ < |wpl.
Similarly, we may assume

(2) 61| < -+ <@gl
Also, we may assume

(3) D< D.

For the rest of the proof, we will assume (1), (2), (3). We will prove
that

(4) I(wj, ;) = 0(@;,8;),  for 1<j<D.

To see this, fix s, 1 <s <D, and suppose

(5) I(wj, B;) = (T, B;), for 1<j5<s.

(This assumption is vacuous for s = 1). We will see that (5) implies

(6) H(wsvﬂs) = H(as,,&s)-
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In fact, (5) and (A.7) show that
(7) wj==xw&; for 1<j<s.
The analogue of Lemma C.2 for the E; and II(&;, 8;) shows that
(8) (&, B,) fits into E.
Since s < min{D, D}, equation (7) and hypothesis (B.6) show that

(9) Eu's;égwj, for 1<j<s,p,g€Z, 1<qg<10s.

Conditions (8), (9) are the hypotheses of Lemma (C.17), which tells us
that

(10)  either II(@,,Bs) = M(w,,B,), orelse |&] > |ws|.

The same argument works with the réles of the II(w;, 8;) and I(&;, §;)
interchanged, so we have also

(11) either II(w,, B,) = I(Ty, B,), or else |wy| > [T
Since at least one of the inequalities |w,| > |W,], |@s] > |ws| must be
false, (10) and (11) imply (6). Thus, (5) implies (6), completing the
proof of (4).
Next we show that
(12) D=D.
If (12) were false, then by (3) we would have
(13) D>D+1.
By the analogue of Lemma C.2 for the Ej and II(&;, Bj), we know that
(14) H(5D+1’,BD+1) fits into F.
Also, by (4) and (A.7) we have

(15) L?j=:i:wj', for lngD.
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Hence, hypothesis (B.6) shows that

(16) §D+17é§wj, for 1<j<D, p,g€Z, 1<q<10D.

Together, conditions (14) and (16) contradict Lemma C.39. This con-
tradiction completes the proof of (12).

Next, fix jo, 1<jo<D. We will construct a sequence (z,),51
such that

(17) |z,| = o0,

(18) z, € Ej,\ |J Ej,
J#Jo

(19) z, € B\ |J E;.
J#Jo

To construct (z,) with these properties, we first note that

(20) W(wjo, Bjo) € W(w;, Bj),  for j# jo,

since wj, is not an integer multiple of w;. Hence for € > 0 small enough,
Lemma C.14 shows that

(21)  AT({k € Z: dist {wjk + B, I(w;, B;)} < €}) <

- Q(wjo ) wj) ’
where

q,if w—j‘.’zg in lowest terms, with p,q € Z, ¢ >2,
9(wjo,wj) = wi 4
100 D?, otherwise .

Hypothesis (B.3) shows that g(wj,,w;) >100D? for j # jo, so that (21)
implies

* . 1 .,
A*({k € Z: dist {wjok + Bj,, [I(w;, Bj)} < €}) <100D2 for j # jo.
Summing over j, we obtain

A*({k € Z: dist {wj,k + Bj,,II(w;,B;)} < €, for some j # jo})
(22) L1
~100D°
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Let K = {k € Z: dist {wj,k + Bj,,II(wj, Bj)} > for all j # jo}. Recall
that E; approximates II(wj, 3;), so that

E; C F;U{z € C: dist {2,1I(w;,8;)} < /3}
with F} finite. Therefore, for all but finitely many k € Z we have
dist {wj, k + Bjo, Ej} < 2—; implies dist {w; k + Bj,, I(w;,B;)} < €.
It follows that
(23) dist {wjok+,3jo,Ej}2§6, for all j # jo,
for all but finitely many k € K.

Similarly, E; approximates II(Z;, 5;) = II(w;, 8;) by (4) and (12),
so the proof of (23) yields also

(24) dist {wi b+ B By 2 3¢, forall j # jo,

for all but finitely many k£ € K.
On the other hand, E;, approximates II(wj,, 8j,). Hence, for all
but finitely many k£ € K we can find

(25) & € Ej, satisfying
. €
(26) |xk'_(wjok+ﬂjo)| < 5

Comparing (26) with (23), (24), we conclude that all but finitely many
k € K satisfy

(27) &x ¢ E; for j# jo, and

(28) &x ¢ E; for j# jo.

Since E is the approximate union of Ej,...,Ep, we know from (25)
and (27) that Z; € E. This in turn gives £ € E; U---U Ep, since E
is the approximate union of the E'_,-. In view of (28), we obtain

(29) i € Ej,
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for any k satisfying (25)-(28).
Thus, for all but finitely many k € K, the following hold:

(30) |2k — (wjok + Bjs)| <€,
31) ¢, € E;,\ U E;,
(31) ik € Jo\j#].0 j

(32) & € Ejo \ U E]‘ .
J#Jo

Finally, let (z,),»1 be an enumeration of the 2 for k € K that
satisfy (30), (31), (32). Estimate (22) and the definition of K show that
there are indeed infinitely many such Z;, so we get an infinite sequence.
Estimate (30) shows that |z,| — oo as v — oo. Hence, (17), (18), (19)
follow at once from (30), (31), (32). We have proven the conclusions of
the Deconstruction Lemma, with 4 = identity.

We conclude this section with a simple special case of the Decon-
struction Lemma.

(33) Corollary. Suppose E; approzimates II(wj, ;) for 1<j<D.
Assume that |wj/wji| # p/q for j # j', p,q € Z, 1<q<100D?. Then
for each jo, 1<jo<D, we can find a sequence (z,),1 of complez
numbers, such that

(34) |zy| — 00 as v — oo, and

(35) z, € Ej,\ U E;j for each v.
J#30

PROOF. Set E; = E;, (&5, B;) = I(w;, B;), E = E,U---U Ep. Then
the Deconstruction Lemma applies, and it gives a sequence (z,),»1
satisfying (34) and (35).

IT1. Analytic Continuation of Neural Nets.
A. Preliminaries.

Let N = [(Do,...,Dy), (wfk), (6/)] be a neural net. We will
show that the functions z%(¢,N), defined initially for ¢ real, continue
analytically to an open subset of C with countable complement. We
will analyze the largest domain Q to which we can analytically continue
the output z£(¢,N). The point-set topology of  leads us to define a
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hierarchy of singular sets Sing(¢,N) in the complex plane. The sets
Sing (¢, N) are defined entirely in terms of the output function t
zL(t,N) (t € R), yet they carry a lot of information on the architecture,
weights and thresholds of N.

We begin our discussion with a simple, general result on analytic
functions defined in the complement of a countable set.

(1) Lemma. Let f(t) be a function on R, and suppose that f continues
analytically to an open set Q@ C C, with R C 2 and C \ Q countable.
Then there is one and only one open set 2, C C with the following
properties:

(2) RcCQ,,
(3) C\ Q. 13 countable,

(4) Let Q' C C be any connected open set that meets R. Then f
continues analytically into Q' if and only if Q' C Q..

We call Q, the natural domain of f.

PRrOOF. We start with the following remark.

(5) Suppose 24,Q,; C C are open sets, with ; connected and C\ Q,
countable. Let Fj, F3 be analytic on Q;, 22 respectively, and
assume F; = F5 to infinite order at some point of 23 N 22 . Then
F, =F,onall of 2; NQ,.

Indeed, (5) is immediate from the fact that €; N Q5 is the com-
plement of a countable set in 2, and thus £2; N 2, is connected.
Now let W be the collection of all open sets Q' C C such that

R C @, C\ Q' is countable, and f continues analytically to Q'. If Q',

Q" € W, and if F, G denote the analytic continuations of f to ', Q"

respectively, then F = G in Q' N Q" by (5). It follows that f continues

analytically to Q. = Ugrew2'. Since Q2 € W by hypothesis, properties

(2) and (3) are obvious, and we know that

(6) f continues analytically to any open set Q' C .

Next, suppose Q' C C is open and connected, and meets R; and
assume f continues analytically to an analytic function G on . Let F’
denote the analytic continuation of f to Q,. Then F = G on Q' N Q.
by (5), so that f continues analytically to Q'US.. We have shown that

(7) If Q' C C is open, connected and meets R, and if f continues
analytically to ', then Q' C Q..
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Assertions (6) and (7) complete the proof of (4). It remains only to
prove the uniqueness of (.. Thus, suppose 2! and Q2 both have prop-
erties (2), (3), (4). Then Q! is an open, connected set that meet R, and
f continues analytically to QL. Since Q2 has property (4), it follows
that Q! C Q2. Similarly, Q2 C Q1, which proves that 2, is unique.

(8) Definition. Let f be a function on R. If f continues analyti-
cally to an open set with countable complement, then we define the sets

Sing (£, f) C C for £>0 by the following induction:
(9) Sing(0, f) is the complement of the natural domain of f,
(10) Sing(£+ 1, f) s the set of accumulation points of Sing (4, f).

We will take f to be the output of a neural net. The next two lem-
mas help us to show that f continues analytically to an open set with
countable complement, and to understand the sets Sing (¢, f).

(11) Lemma. Let F be analytic on a connected, open set Q C C.
Let II(w, B) be an arithmetic progression. Suppose that F' is either non-
constant, or else identically equal to a constant not belonging to Il(w, B).
Then the set E = {t € Q: F(t) € II(w, B)} has no accumulation points
wn Q. In particular, E is countable.

PROOF. Suppose t, — t, as v — oo, with t, € F and t, € 2. Then
F(t,) — F(t.) and F(t,) € II(w,p). It follows that F(t,) is even-
tually constant: F(t,) = b for all v >vy, with b € II(w,f). Since
{t,} accumulate at t, and § is connected, it follows in turn that
F(t) = b for all t € 2, contradicting our hypothesis on F. Thus,
E has no accumulation points in Q. This implies that Ex = {t €
E: |t| <N and dist {t, C\Q} >1/N} is a bounded set without accumu-
lation points. Hence E is finite, so that E = Uy 1En is countable.

(12) Lemma. Let U be a disc centered at zg € C. Suppose ® 1s
meromorphic and U analytic in a neighborhood of U. Assume ® has a
single pole at zg (not necessarily simple). Let II(w, 3) be an arithmetic
progression. Then the set

(13) E={®(t)+ 9(t): t €U\ {20} and &(t) € (w,p)}
approzimates the arithmetic progression

(14) (w, B+ ¥(z0)).
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PROOF. Suppose that ¢ has a pole of order m at zo. Then for large
enough ¢ € C, the solutions of

(15) ®(z)=¢
are given by a Puiseux expansion. That is, the solutions to (15) are

(16) 2= H(TY™),

where H is analytic in a neighborhood of the origin, and ¢~'/™ runs

over all the m*® roots of (~1. Also, H(0) = zo and H'(0) # 0 (see [H]).
Let € > 0 be given. We have to verify

(17) All but finitely many ¢ € E lie within distance € of II(w, 8+ ¥(z)),
and

(18) All but finitely many ¢ € II(w, 8 + ¥(z)) lie within distance ¢ of
E.

Pick 6 > 0 so small that

(19) |z — 29| <6 implies z € U and |¥(z) — ¥(z)|<e.
To verify (17), suppose

(20) 0<|z—20/<é and @(z)€ (w,f).

Then dist {®(2) + ¥(2),[I(w, B+ ¥(20))} <|¥(z) — ¥(z0)| < €. On the
other hand, @ is analytic on a neighborhood of the closure of U= {z €
U:|z — z¢| > 6}, and @ is non-constant on U since ® has a pole at z.
Hence, & is bounded on U, and {z € U: &(z) = ¢} is finite for any ¢.
It follows that {z € U: &(z) € II(w, 8)} is finite. Thus, all but finitely
many points of E arise as { = ®(z) + ¥(z) for some z satisfying (20),
and therefore satisfy dist {¢,I(w, 8 + ¥(z0))} < €. This proves (17).

To verify (18), let £ € II(w, B + ¥(z0)) be sufficiently large, and
let z = H((é — ¥(zp))~1/™) for any choice of the m*" root. Thus,
z € UN{20} and ®(2) = £ —U(2¢) € II(w, B), so that ( = B(z)+¥(z) =
€ — ¥(29) + ¥(2) belongs to E. Moreover, if £ is large enough, then
(€ —¥(zp)) /™ will be so small that |z — z| = |H((£ — ¥(2))~ /™) —
H(0)| < 6. Therefore, |¥(z) — ¥(z0)| < € by (19), so that | —£] =
|¥(z) — ¥(20)| < €, and thus dist {¢, E} < e. This completes the proof
of (18).
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B. Continuing the Output to the Complement of a Countable
Set.

Fix a neural net N = [(Do,...,Dr), (w5;),(6f)]. Recall that
Dy = Dy, = 1. By induction on £ (0 < <€ <L) we w111 deﬁne for1<j <Dy
a set Qg C C and a function zf(t,N) on Qf. For £ = 0, we set

(1) Q9 =C, and

(2) zi(t,N)=t.
Assume we have defined the 57" and z%7'(¢,N) for a fixed £, 1 <£ < L.
Then set

(3) ot= () o,
1<j< Dy
« Dy
4) Ei= {t e Y whal N, N) +6f € H(27rz',7ri)},
k=1
(5) QO = Q7 N Ef,
and

Dy

(6) f(tN)_a(Zw,kxk tN)+0> for t e Q5.

Note that (6) makes sense because we need not evaluate o( - ) at one of
its poles. The poles of o are precisely II(27:, w:). Note also that R C Qf,

since ZkD;T wfk:ti_l(t,N) + 6/ is real for ¢ real, so that RN Ef = @.
For real t, our formulas (2) and (6) agree with the definition of a:f (t,N)
given in Section I. Hence we have extended the outputs of the nodes
from R to subsets Qf of the complex plane.

Note that (3) leaves QL undefined. We make the natural definition

(M) Q; =Qy
(recall that Dy = 1 and compare with (3)). Our definitions have the

obvious consequences

D,
(8) Q=00 NJE,  1<e<L,

=1
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and
D,
(9) ct= |J UE!, 1<e<L.
1< <t j=1

(10) Lemma. The following properties hold for 1 <€<L,1<j<D,.
(11) Q% is open, and C Q% is countable.

(12) E]‘i i3 a countable subset of 4™, with no accumulation points in
Q.

(13) z4(t,N) is analytic on Q.

(14) zf(t, N) has poles at the points of Ef

PrOOF. We use induction on £. Fix £, 1 < £< L, and assume
(15) Qf‘l is open, and C \ Qf'l is countable, 1 <j < Dy_;, and
(16) :cf_l(t,'N) is analytic on Qﬁ—l y1<j <Dy
Note that (15), (16) are obvious for £ =1 by (1), (2).
We will show that (15), (16) imply (11)-(14). This will imply

Lemma (10). From (15), (16) and (3), we see that Q¢! is open, that
C ~ Q471 is countable, and that

Dy—1
(17) Xty =Y whe NN +6f,  1<j<Dy,
k=1

is analytic on Q1. Moreover, R C Q577, and X/(t) is real for ¢ € R.
Hence, if Xf(t) is constant on Q4~!, then that constant is real. In
particular, X J’f (t) is either non-constant on 27!, or else identically equal
to a constant not in II(27¢, 71). Therefore, by Lemma A.11 and (4), the
set E'f C Q%41 is countable and has no accumulation points in Q¢!
This proves (12), from which (11) follows at once by virtue of (5), since
Q%! is open and has countable complement. Assertion (13) follows
from the formula z(t,N) = o(X4(t)), since X{(t) ¢ TI(2ni, 7s) for
t¢ Ef. To verify (14), let to € Ef C Q4~!. By (12), we can find a disc
Us = {t € C: [t —to| < 8} C Q&7 such that Us\ {to} does not meet Ef.
Thus, Us ~ {to} C Q%, so X}(t) ¢ II(2wi, i) and zh(t,N) = o(X}(1))
for t € Us \ {to}. Moreover, X]’f(t) is analytic on Q4~!, hence on Us;
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and we have Xf(to) € II(27,73) since to € Ej. These remarks show
that z(t,N) has a pole at to, proving (14). The proof of (11)-(14) is
complete.

Lemma (10) shows in particular that the output of the neural net
t — zL(¢,N) continues analytically from R to an open subset of C with
countable complement. Hence, the natural domain of zf(¢,N) and the
sequence of singular sets Sing (¢, zF(¢,N)) are well-defined. We write
Sing (£, N) for Sing (¢, zF(¢,N)), and note that
(18) The sets Sing(¢,N), £ >0, are determined completely by the out-
put t - zL(t,N) (t € R) of the neural net N.

In a similar spirit, we see at once from the definitions (1)-(7) that

(19) Foreach?,1<¥< L, the sets Qf, Q¢ Ef and the functions x?(t, N)

are determined completely by the Dy, wfk, Gf’ with
1<0'<e.

C. The Structure of the Singular Sets.

In this section, we will study the sets Sing (¢, N) associated to a
neural net N = [(D,,...,Dyp), (wfk), (61)], in terms of the sets Q, Qf,

EJ‘? defined in the previous section.

L D,
(1) Lemma. EF CSing(0,N)c |J U E.

=1 j=1

PROOF. Let Q, be the natural domain of z{(¢,N) and let X(t) be
the analytic continuation of z£(¢,N) to Q,. Lemma B.10 shows that
zE(t,N) continues analytically from R to QL. Hence the defining prop-
erty (A.4) for the natural domain tells us that
(2) QfcQ., and
(3) X(t)=zf(t,N) for teQf.

From (2), (B.7), (B.9) and (A.9), we get

D,
Sing(O,N)=C~Q.cC~Qf=C~0f= |J |JE,
1<f<L j=1

which is half of Lemma 1.
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To verify the other half of Lemma 1, suppose to € EL N, . Since
EL c QL' and EF has no accumulation points in Q£~1, we know that
a small enough disc

Us = {te C: |t —to| <6}

is contained in 27!, and that Us \ {to} does not meet EL. Then (3)
shows that X (t) = zf(t,N) in Us \ {to}, while (B.14) gives

lim |zf(¢,N)| = oo.

t—'to

t#to
Hence, limy_¢,, t2¢, | X (t)| = 0o, which contradicts the fact that X (¢) is

analytic on an open set {2, containing to. Therefore, EL N, is empty,
i.e. EL C C\ Q, = Sing(0,N).

Next we study the EJ‘f, as well as
(4) E{=EiN | B
J'#5
To do so, we impose the following hypothesis on the weights (wf k)

(5) Assumption. wfk # 0, and for j # j', the ratio wfk/wf,k
i3 not equal to any fraction of the form p/q with p, q integers and
1<¢<100D3.

Immediately from (B.1)-(B.4), we see that E} consists of all ¢ € C such
that wl;t + 6] € II(274,71). In other words,

i mi— 61
(6) E}=H($, : J), 1<j<Dr.

wh’  wh
From (4), (5), (6) and Corollary I1.D.33, we get
(7) E}is infinite. 1<j <D.

The following lemma shows how Ef'“ and E;*! look near a point

of EOJj[.
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(8) Lemma. Fiz ty € Eio, 1<l<L—-1,1<ky<D,. For § >0, set
9) Us={teC: |t—to| <é}.
If § is small enough, then the following properties hold.

(10) Ups Cc Q471
(11) Uss \ {to} C Qf, ; thus, z§ (t,N) is analytic on Uss \ {to}, with
a pole at ty.

(12) Uas C Q% for k # ko ; thus 2t (t,N) is analytic on Uss .

(Us ~ {to}) N ESH

(13) Sy .
=¢teUs\ {to}: ij;:'lxk(t,N) + 9]-+1 € (273, 72) p
k=1

for 1<j<Dgyy.

E e set I’y = {z; (t,N):t € (Us \ {to}) N E; approzimates
(14) Th Ff = {zf,(t,N):t € (Us \ {to}) N E;*'} app

41 £+1

the arithmetic progression 11 (27ri/w]-ko » Bikg ) for some complez

number ﬂf}:’ol , 1< <Dypyq .

(15) For each jo, 1 <jo<Dpy1, to is an accumulation point of Ef;“
PROOF. We know that ¢y € Ef, C E;, C QL7 by (B.12), so (10) holds
simply because Q¢! is open. Another application of (B.12) shows that

Uas {to} meets none of the Ef 1<k <Dy, if § is small. Since t, € Eio,
it follows that Uss \ {to} C Qio and Uys C Qi for k # kg, by (B.5) and
(10). Therefore, (11) and (12) follow from (B.13), (B.14).

Next note that (11), (12) yield Uzs~\{to} C Q2¢. Hence (13) follows
at once from the definition (B.4).

We set U = Uy,

D,
o(t) = > wil' si(t,N) + 67,
k=1

£
Y(t)=— Y wiflai(t,N) -6,
1<k< D,
(k#ko)
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zo = to, [I(w,B) = II(27i,7¢). Then (11) and (12) show that the
hypotheses of Lemma A.12 are satisfied. In view of (13), that lemma
shows that {wf'{olzio(t,N): te (U~ {te})N Ef“} approximates an
arithemtic progression of the form II(274, 3;). This yields (14) at once.
It remains to verify (15). By (5), (14) and Corollary I1.D.33, we
can find a sequence (z,), » 1 satisfying
(16) |zy| > 00, as v — o0,
(17) T, € Fjo ,
(18) $V¢Fj’ for j#jOy 1<3< Dy
By definition of F}, (17) means that

(19) z, = z§ (t,,N), with
(20) t, € (Us \ {to}) N E{F.

If wehad t, € Ef'“ for some n # jo, then (19), (20) would imply

z, € Fj, contradicting (18). Hence t, ¢ Ef“ , J # Jo, so that (20) can
be sharpened to

(21) t, € (Us~ {to}) N E4H.

Also, (11), (19) and (16) show that ¢, — to as v — co. Therefore, (21)

shows that tq is an accumulation point of Ef:‘l, which is (15).
(22) Corollary. The set Ef 18 infinite, for 1<€<L, 1<j<Dy.

PROOF. We use induction on £. For £ = 1, the Corollary is already

known (see (7)). If Ef_ is non-empty, then (15) shows that Ef"’l must
be infinite, completing the induction.

(23) Corollary. The output function z¥(t,N) is non-constant.

PrOOF. If zf(t,N) were constant, its natural domain would be all
of C, so that Sing(0,N) would be empty. However, we know that

I(:J'f‘ = El C Sing(0,N) by Lemma C.1, and 137{‘ is infinite, by the
preceding corollary.
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(24) Corollary. All the functions xf(t,N), 1<l<L, 1<j<Dy, are
non-constant.

PROOF. Fix ¢, j. Then wg(t,:N ) is the output of a simpler neural net
Ny =[(DF,...,D¥,), vk, (67)], defined by

L#=[, D#=D[, for €<L#,DL#=1,
wﬁl = wfk and 92#1 = 9]-[ , for £ < Ly,
wﬁe = wJ{ and 6% = 0]{ .
The net N4 again satisfies (5), so Corollary (23) applies to Nx. Thus
a:lL# (t, Ny ) is non-constant, and we observed that xfﬁ(t, N)= xf# (t,Ng).

Next, we relate Sing (¢,N) for £ >1 to the sets Ef'.
(25) Lemma. Ef C Sing(L —£,N) for 1<£<L,1<j<D,.

PROOF. We use downward induction on £. When ¢ = L, (25) is con-
tained in (1). For the induction step, fix £ (1 <£<L — 1), and assume

(26) E* C Sing(L—£—1,N).

We shall prove that
(27) EY CSing(L—£,N), for 1<ko<Dy.

In fact, (26) and (15) show that every point of Eoi'io is an accumulation
point of Sing(L — £ — 1,N) and thus belongs to Sing(L — £,N) by
Definition A.10. Hence, (26) implies (27), completing the induction.

(28) Lemma. Sing(L-4LN)c U U Ef, for 1<f<L.
1<<f 1<j< Dy

PROOF. Again we use downward induction on L. When £ = L, (28) is
contained in (1). For the induction step, fix £, 2 <¢ < L, and assume

D,
(29) Sing(L-4,N)c |J (JE:.

1<<2 =1
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We shall prove that

D,
(30) Sing(L—Z+1,N) C U E;.
<t j=1

IA

In fact, (B.9) shows that the right-hand side of (29) is a closed set.
Hence, any accumulation point of Sing (L — £, N) is again contained in
the right-hand side of (29). By definition (A.10), this implies that

D,
Sing(L-Z+1,N)c |J UES.
1<£<t j=1
Therefore, (30) will follow if we can prove

_ D,
(31) No point of Efo is an accumulation point of LLI 'Ul E'f ,
1<e<l j=

1 Sjo < D[.
Assertion (31) is equivalent to

(32) Ef_o contains no accumulation points of Ef 1<¥¢ 57, 1<jo <Dy,
1<j<Dy,.
Thus, (30) follows from (32). To prove (32), we distinguish two cases.

CASE 1: £ < {. From (B.9) and (B.12) we see that

cNott= @E‘i
* J

1<e< j=1

and ‘_chat Ef—o C Q41 Since 271 is open, these remarks imply (32) for
£ <X

CASE 2: £ ={. Then (B.12) shows that Efo C Q41 and that EJ‘f_ has
no accumulation points in Q¢~!. These remarks imply (32) for £ = 2.

Thus, (32) holds in either case, which completes the proof of (30). We
have shown that (29) implies (30), completing the downward induction.

(33) Corollary. Sing(¢,N) is empty for £>L.
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PROOF. Lemma (28) yields Sing(L — 1,N) C U,D=I1 E}. From (6) we
see that U-D__fl E} has no accumulation points. Hence, Sing(L,N) is
empty, from which (33) is obvious.

(34) Lemma. Fisto € EL , 1<f<L—1, 1<ko <Dy, and set
ko
(35) Us={teC: |t—to| <}, for 6§ >0.

If 6 is small enough, then Sing (L — £ — 1,N) N (Us \ {to}) i3 the ap-

prozimate union of the sets

Ef'n(Us~{te}), j=1,-..,De41.

PRrOOF. We must prove two assertions:

Dy
(36) Sing(L—£-1L,N)N(Us~{to}) C |J EF n(Us ~ {to})

i=1
and

(37) Any point belonging to exactly one of the sets Ef'“ N(Us~ {to}),
1<j <Dg41, belongs also to Sing (L — £ —1,N) N (Us ~ {to})-

However, (37) is immediate from (25), so it remains only to prove (36).
From (28) we have
(38)

Dy

Sing(L—£—-1,M)nUs~{thc | U (E;i’ N (Us ~ {tg})).

1< <41 j=1

On the other hand, since t, € Ef_, (32) shows that Efl N(Us ~ {to}) is
empty if £' <£ and 6 is small enough. Therefore, (38) implies (36).

(39) Lemma. Sing(L—1,N) is the approzimate union for the sets E}
forj=1,...,D;.

PROOF. Immediate from Lemmas 25 and 28.
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D. Summary.

Let N = [(Dy,...,DL), (wfk), (6))] be a neural net. We make the

following

(1) Assumption. wfk # 0, and for j # j', the ratio wfk/wf,k
is not equal to any fraction of the form p/q with p, q integers and
1<¢<100D7.

(2) Lemma. For each £ (1<£<L), the sets 5, Qf, Ef, lo':'f and the
functions xf(t,N) are determined entirely by the Dy, wflk and Bfl for

£' < £ (see (B.19)).

(3) Lemma. For each £ >0, the set Sing (¢, N) is determined entirely
by the output t — zL(t,N) (t € R) of the neural net (see (B.18)).

(4) Lemma. For 1<{<L, 1<j <Dy, the function .’tf(t,N) is analytic
on Qf, with poles at the points of Ef (see (B.13) and (B.14)).

(5) Lemma. Sing(¢,N) i3 empty for £>L (see (C.33)).
(6) Lemma. Sing (L—1,N) is the approzimate union of the arithmetic

progressions 11 (2mi/w}y, (mi — 6})/w},) for j = 1,...,D; (see (C.6)
and (C.39)).

(7) Lemma. For 1<f<L, 1<j<D,, the set 1'075 is infinite (see
(C.22)). ’

(8) Lemma. Fiz tg € Eio ,1<l<L—1, 1<ko<Dy. For 6 >0, set
(9) Us={teC:|t—to] <8}, Vs=Us~\{to}.
Then the following properties hold if 6 13 small enough.

(10) Vs C Qio (see (C.11)).
(11) Uzs C Q% for k # ko (1 <k < Dy) (see (C.12)).
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(12) Sing(L—£—1,N)NVj is the approzimate union of the sets Ef"'lﬂVa
forj=1,...,D¢41, (see (C.34)).

D, .
(13) Ej*'nV,; = {t €Vs Y wit'sh(t,N)+6;" € H(27ri,m')} :
k=1

1<j <Dgy1, (see (C.13)).

(14) The set Fj = {z} (t,N): t € Efﬂ NVs} approzimates an arith-

41 41

metic progression of the form II (27ri/wjk0 s Biks ) for some com-

plez number ﬂﬂ'ol , (see (C.14)).

(15) Lemma. For 1<f<L, 1<j<Dy, the function t — a:f(t,fN)
(t € R) i3 non-constant (see (C.24)).

IV. Proof of the Uniqueness Theorem.
A. Setting up the Induction.

In this section, we start the proof of Theorem 1.B.9. We be-
gin with some preliminary remarks. Let N = [(D,,...,Dp), (wfk),
(6)] be a neural net satisfying condition (1.B.10). By (IILD.6) and
Corollary I1.D.33, the set Sing (L — 1,N) is non-empty. On the other
hand, (III.D.5) shows that Sing(¢,N) is empty for £> L. Hence, the
depth L of the neural net can be inferred from a knowledge of the
sets Sing(¢,N), £>0. Lemma II1.D.3 therefore shows that L can be
inferred from knowledge of the output function t — zf(¢,N). Thus,
if two neural nets produce the same output, then they have the same
depth. 5 5 5

Now let N = [(Do,...,Dr), (wi), (89)], N = [(Do,...,D;),

(@5k), (55)] be neural nets satisfying the hypotheses of Theorem I.B.9.

We must show that N and N are isomorphic. If Theorem 1.B.9 were
false, then we could find a counterexample with max{Size (N), Size (N)}
as small as possible. (Recall that the size of N is defined as the sum
Dy +---+ Dy.) Thus, we may assume that

(1) max{Size(N), Size(N)} = S, and that
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(2) Theorem I.B.9 holds for any two neural nets N, N of size strictly
less than S.

Also, from the preceding paragraph, we know that
(3) ' L="L.

By induction on £, 1 <Z < L, we will prove that by subjecting N, N to
1somorphisms we can achieve

(4) D¢ =Dy, for £<?,
(5) wh =%, for 1<€<l, 1<j<Dy, 1<k<Dyy
(6) 0/ =64, for 1<l<l, 1<j<D,.

If we can prove this for £ = L, then Theorem 1.B.9 is established.

We will prove (4), (5), (6) by induction on £. In this section, we
treat the case £ = 1, while the next section gives the induction step.
Thus, suppose £ = 1. Lemmas II1.D.3 and IIL.D.6 show that the set
Sing (L — 1,N) is the approximate union of the arithmetic progressions
II (27ri/w}1, (w1 — 0})/0.1]1-1), 1<j < D,, and also the approximate union

of the progressions II (271'2'/5]1-1, (mi — 5})/&}1), 1<j <D;. The Decon-
struction Lemma therefore tells us that D; = ]51, and that

. 71_'_01 . 7(”1:‘—@'1
H(?—’?, - J>=H( 2m T ”“>, 1<j<Dy,

= 1
Wit Yi Yapr o Yt

for a permutation v: {1,...,.D;} — {1,..., D;}. Remark [.A.7 yields
(1) wh=¢;80,,, 0 =¢0;+2mm;, 1<j<Di,

for €; = +1 and integers m;. Since 6} and 5} are real, we must have

m; = 0. Also, by subjecting N to an isomorphism that permutes the
nodes of layer 1, we can achieve v = identity in (7). Thus,

(8) wh=e@h, Ol=¢;0), e=%1, 1<j<D,.

If L > 1, then we can subject N to an isomorhism that changes the
signs of the nodes at layer 1, to achieve €; = 1, 1 <j <Dy, in (8).
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Thus, we have achieved (4), (5), (6) with £ =1, unless L = 1. If
L =1, then there is no isomorphism that changes the signs at layer 1,
since layer 1 is the output layer. In this case we argue as follows. For
L =1, the outputs of the nets N, N are

(9) s (EN) = o(wht+61) 24, N) = o(@],t +6)).
Equation (8) says that |
(10) wh=edl,, 6l=cb!, e=+1.

From (9), (10) we get zL(¢,N) = ezlL(t,ﬁ) for t € R. On the
other hand, hypothesis of Theorem 1.B.9 gives z¥(t,N) = xf’(t,j:f),
and zF(¢,N) is not identically zero. Hence, ¢ = +1, so that we have
achieved (4), (5), (6).

B. The Inductive Step.

Suppose £ is given, 1 <£ < L—1, and the nets N, N in the previous
section satisfy

(1) Dz=5¢, for OSZSE,
(2) Wi =5, for 1<f<l,1<j<Dy, 1<k<Dey,
(3) 0! =6%, for 1<¢<¥,1<j<Dy,.

Then we will prove that

(4) D = 52+1 )

and that we can subject N, N to isomorphisms to achieve

(5) W§k=‘3fka for 1<0<f+1,1<j<Dy, 1<k<D,_;,
(6) 0/ =6, for 1<l<l, 1<j < D,.

This inductive step will complete the proof of Theorem I.B.9.
o
Let Ef, Ej“’, Qf, Q¢ be the sets constructed from N in Section
o

II1, and let Ef, Ef, ﬁf, ﬁi be the analogous sets arising from N. By
(1), (2), (3) and Lemma III.D.2, we have

(1) Ei=E., E=E, =0, 0!=0, for £<Z,



RECONSTRUCTING A NEURAL NET FROM ITS OUTPUT 549

and

(8) b6, N) = 24(t,N),  for £<l, teQf.
Set

9) ko = Dj.

Lemma II1.D.7 shows that Eio = Eio is infinite. Fix any ¢, € Eio. For
6 >0, set

(10) U5={t€C: ‘t—t0|<5}, V§=U5\{to},

and take § so small that (II1.D.10)-(IIL.D.14) hold with £ in place of ¢,
both for N and N. Lemma IIL.D.3 gives

(11) Sing(L —Z—1,N) = Sing(L — £~ 1,N).
We will check that
F={zf (t,N): t € Vs N Sing(L — € - 1,N)}

is the approximate union of the sets F) defined in (II1.D.14). This
amounts to showing that

Dry,y

(12) FC U Fj, and
Jj=1

(13) Any point z belonging to exactly one of the F; must belong to F'.

To see (12), let z € F. Then z = z§ (¢, N) with ¢ € V5N Sing (L —
¢ —1,N), so that t € V; N E]“'1 for some j, by (III.D.12). Since z =
zio(t,N) with t € V5N Ef'“, we have z € Fj, proving (12). To check
(13), suppose z belongs to Fj, but not to any other Fj. Then since
z € Fj,, we have z = zf_(t,N) with ¢ € Ef:'l NVs. Ift € Ef“ for some
J # Jjo, then it would follow that z € Fj, contradicting our assumption.
Hence, t belongs to Ef:'l but not to Ef+1 for j # jo. Since also t € Vj,
(II1.D.12) implies ¢t € V5 N Sing(L — £ — 1,N), so that z = xio(t,N)
belongs to F. This completes the proof of (13), and shows that F is

the approximate union of the F;, 1<j <D, ;. In view of (11), an
analogous argument shows that F is also the approximate union of the
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F] ,1<3 <Dt+1 , where {F } are the analogues of the {F}} arising from

N. Moreover, F; approximates II (2m /wf'{ol,ﬂ]) for suitable §;, while

approximates II (27ri/t7)f','c'1,5j) for suitable ﬁj, by (III.D.14). -
Since also the (w“‘l) and (~‘+1) satisfy (I.B.10) and (I.B.11),

the Deconstruction Lemma apphes Hence, (4) holds, and for some
permutation v: {1,...,Dz,} — {1,..., Dz} we have

SR

27rz 27r :
Jko (‘YJ)ko
In particular,
(14) “’f_;:l =& ~fj,}1)ko » 1<7<Dgq, with ¢; = £1.

By subjecting N to an isomorphism that permutes the nodes of layer
(£ + 1), we can preserve (1)-(4) and (7), (8), (11), and bring about
= identity in (4). Thus we may assume
(15) Wil =e;at!,  1<j<Dgy,
with €; = +1 and v = identity. Recall that kg = Dy (see (9)).
The next step is to establish the following result.

(16) Lemma. wf;c“ =€;W f;'c'l, 1<j <Djyy, 1<k <Dy, and 651 =
;05! , 1<j<Dgy, .

Note that the proof of (15) applies to other k, not just ko, and

l+1

shows that w;;™ = e]kwh ik with €z = £1, and 7' depending on k.

However, (16) gives sharper restrictions on the w’s and &@’s.

PROOF OF LEMMA 16. We return to the Deconstruction Lemma ap-

plied to F, Fj, ﬁj, H(21ri/wf}c:1,ﬂ,) H(Qm/wf;fl, ) Since v =
identity, the Deconstruction Lemma yields for each fixed jo,

1<jo <Dy, asequence (,),51 with the properties

(17) |z, > 00, as v— oo,

(18) z, € Fj,~ |J Fj,
J#Jo

(19) z,eFoN | F.

J#Jo
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Since z, € F},, we have

(20) z, = 2§ (t,,N),
with
(21) t, € VsNELH.

Observe that
(22) t, ¢ VsNEM,  for j#jo.

In fact, if (22) were false, then (20) would show that z, € F; with
J # Jjo, contradicting (18). Similarly, we know from (19) that

(23) t, ¢ VsNES,  for j#jo.
From (21), (22) and (IIL.D.12), we see that t, € V5 N Sing(L — £ —
1,N). Hence also t, € V5N Sing (L — £—1,N) by (11), so that another

application of (II.D.12) yields ¢, € V5 N Eﬁ'l for some ;. In view of
(23), we must have j; = jo. Hence,

(24) t, € VsnEL.
From (17), (20), t, € Vs, and (I1I11.D.4), (III,D.10), we see that
(25) t, = tg, as v —o00, t,F#tg.

From (21), (24) and (IIL.,D.13), we get

D[ _ _ _
(26) toeVs, Y wihizh(t,N)+6 €I(2ri,mi)
k=1

and

D[ _ B - _
27)  t,eVs, Y @Rl N)+ 65 € I(2ri, mi).
k=1
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In view of (15), (26), (27), we obtain

D;—1
( Z Wit 2k, N) + ef“)

D[ 1 _ _ N_
- ( Z (610 ~5:'kl):ti(t,,,N) + (952-161‘0 )) € H(27ri, 0) .

k=1
That is,
(28) F(t,) € II(273,0),
with

(Z gt ak N)+9‘?TI)

(29)

D;—-1

(Z (e B b (6, N) + (¢ “laf“)) .

Since to € Ef with ko = Dy, (IILD.4) and (IIL.D.11) show that F(t)
is analytic on Us. Also, (25) yields F(t,) — F(tg) as v — oo. This
shows that F(¢,) is eventually constant, by (28). Another application
of (25) shows that F(t) is constant on Us. In view of (28), there is
an integer m such that F(t) = 2mim for all ¢ € Us. However, F(t)
is analytic on Q¢ (by (7), (29) and (IIIl._D.4)). Since Q¢ contains V;
(by (IIL.D.10), (III,D.11)), and since Q¢ is connected, it follows by
analytic continuation that F(t) = 2rim for all t € Qf. In particular,
F(t) = 2mrim for t € R. A glance at (29) shows that F(¢) is real for
t € R. Hence, m = 0, so that F(t) = 0 for ¢ real, i.e.

D[_ _ D[ 1 _ - o
(30) Z W2k, N) + 65 = S @5 e 2k, N) + (85 e5,)
k=1
forallt € R.

To complete the proof of (16), we distinguish two cases.

CASE 1: Dy = 1. Then already (15) shows that w“’l =¢j w“’l for

0

1<k < Dy, and (30) shows that 0?:’1 = aJDGf;H. Smce Jo is arbxtrary,
1<jo £ Dgy,, the proof of (16) is complete in Case 1.
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CASE 2: Dg > 1. Then the left and right-hand sides of (30), composed

~ v
with o( - ), are the outputs of auxiliary neural nets N and N respectively.
Specifically, we set

(31) N =[(Do,D1,...,Dg_y, Dy —1,1), (@%), (B%)], with
(32) A€k=wfk, 5‘1=0.‘ for £<?, and

(33) ~0+1 41 0l+1 _0[+1

Wix =Wiok> ;s 5 and we set

(34) N:[(DO,Dla'-'v‘Df—l’DZ_1’1)7 (w]k)( )]7 with

v

v ~, —
(35) w§k=$§k, (9‘i =9§ for £<¢, and
VEI+l _ ~e+1 ni+1 _ _ pi+1
(36) wiy =¢j@ jok 677" = 5106]'0

That is, N is made from N by deleting the following nodes:

(a) Node kg at level £;
(b) All nodes except node j, at level £+ 1;
(c) All nodes at levels higher than £+ 1.

For the surviving nodes in N, the weights and thresholds are the same
as those of N. Thus, wfoﬂ(t,N) is the output of the net N.

Similarly, 3\<f is made from N by deleting the same nodes as in (a), (b),

\4
(c) above. For the surviving nodes in N, the weights and thresholds
are the same as those of N, except that we multiply the weights and

thresholds at the output level of N by €j,. Thus, e]-omfj'l(t,j\vf) is the
output of the net 3\/@ Note that our assumption D; > 1 was needed to
define 5\\1, 3v\f as neural nets.

Equation (30) shows that the nets N and J{I produce the same
output. Also, N and th satisfy (I.B.10) and (I.B.11). Moreover, the

size of N is strictly less than that of N, and the size of ?if is strictly less
than that of N. (For, one node at level Z, and possible additional nodes,

are deleted from N, N to make N, N) Hence by (A.1) and (A.2), the

umqueness Theorem 1.B.9 apphes to N N Therefore, N is 1somorph1c
to N. Also, by definition of N, N and by (1), (2), (3), the nets N, N
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are identical below their output level, i.e. &;\fk = ka, ﬁf = éf for £ < 2.
Also, for fixed ¢, k, we have Gfk # 0 and |&3§k| # |0§,k| for j # j',
by (32) and hypothesis (I.B.10). Therefore, Lemma I.C.1 applies, and

—~ v
shows that the nets N, N are identical. In particular,

41 _ . ~Ef+1 _ 41 _ . pt+1
(87) wj =¢j,W; for 1<k<D;—1, and 6,7 =¢; 0, .

Since jo, 1 <jo < Dj,, , was arbitrary, Lemma 16 follows from (9), (15)
and (37).

To finish the proof of Theorem 1.B.9, we distinguish two cases.

CASE 1: L > £+ 1. Then by subjecting N to an isomorphism that
changes the signs of the nodes at level £+ 1, we can achieve (5) and
(6). (That is obvious from (1), (2), (3), (16).) We already proved (4),
so we have completed the inductive step in the proof of Theorem 1.B.9
in Case 1.

CASE 2: L = £+ 1. Then (1), (2), (3), (16) show that D, = D,
0<£4< L, and that

(38) W=, 0f=6%, if L<L,

(39) wh =l , 0L =cfF,  with e=+1.

It follows at once that zZ(t,N) = ezL(¢,N) for all t € R. How-
ever, from the hypothesis of Theorem 1.B.9, we know that zf(¢,N) =
a:lL(t,j:I) since L = L. Since also z£(t,N) is a non-constant function
(see (II1.D.15)), it follows that € = +1, hence (38), (39) show that the
nets N, N are identical. In particular, we have achieved (4), (5), (6),
completing the inductive step in the proof of theorem (I.B.9) in Case
2.
The proof of Theorem 1.B.9 is complete.

References.

[CLH] Hecht-Nielson, R. et al., Hecht-Nielson transformations.
[H] Hille, E., Analytic Function Theory 1. Chelsea, 1976.
[MS] Maclntyre, A. and Sontang, E., to appear.
[N] Moody, J., Hanson, S. and Lippmann, R., eds., Neural Information
Processing Systems 4. Morgan Kaufmann, 1992.



RECONSTRUCTING A NEURAL NET FROM ITS OUTPUT 555

[So] Albertini, F. and Sontag, E., Uniqueness of weights for neural networks,
to appear.

[Su] Sussman, H., Uniqueness of the weights for minimal feedforward nets
with a given input-output map. Neural Networks 5 (1992), 589-593.

[W] Weyl, H., Collected Works. Springer-Verlag, 1968.

Recibido: 18 de junio de 1.993

Charles Fefferman*
Department of Mathematics
Princeton University

Princeton, NJ 08544, U.S.A.

* This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Air Force Office of Scientific Research
under Contract F49620-92-C-0072. The United States Goverment is authorized to repro-
duce and distributé reprints for governmental purposes notwithstanding and copyright

actation hereon. This work was also supported by the National Science Foundation.



