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TESTING THE MANIFOLD HYPOTHESIS

CHARLES FEFFERMAN, SANJOY MITTER, AND HARTHARAN NARAYANAN

ABsTrRACT. The hypothesis that high dimensional data tend to lie in the vicinity of a low dimensional man-
ifold is the basis of manifold learning. The goal of this paper is to develop an algorithm (with accompanying
complexity guarantees) for testing the existence of a manifold that fits a probability distribution supported
in a separable Hilbert space, only using i.i.d samples from that distribution. More precisely, our setting
is the following. Suppose that data are drawn independently at random from a probability distribution P
supported on the unit ball of a separable Hilbert space H. Let G(d,V,T) be the set of submanifolds of the
unit ball of H whose volume is at most V and reach (which is the supremum of all r such that any point
at a distance less than r has a unique nearest point on the manifold) is at least t. Let £(M,P) denote
mean-squared distance of a random point from the probability distribution P to M. We obtain an algorithm
that tests the manifold hypothesis in the following sense.
The algorithm takes i.i.d random samples from P as input, and determines which of the following two is

true (at least one must be):

(1) There exists M € G(d,CV, &) such that L(M,P) < Ce.

(2) There exists no M € G(d, V/C, Ct) such that L(M,P) < &.
The answer is correct with probability at least 1 — 6.

CONTENTS

Introduction

Definitions
A note on controlled constants

Sample complexity of manifold fitting
Proof of Claim [II

Constants:
D—planes:

Patches:

Imbedded manifolds:
Growing a Patch
Global Reach

A bound on the size of an e—net
Fitting k affine subspaces of dimension d
Tools from empirical processes
Dimension reduction
Overview of the algorithm
Disc Bundles
A key lemma
Constructing a disc bundle possessing the desired characteristics
. Approximate squared distance functions
Constructing cylinder packets
Constructing an exhaustive family of disc bundles
Finding good local sections
Basic convex sets
Preprocessing
Convex program
Complexity
Patching local sections together
The reach of the output manifold

HHEHpomaoneacE

=
o

BEEEEEEEEHERER



CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

16. The mean-squared distance of the output manifold from a random data point
17. Number of arithmetic operations

18. Conclusion

19. Acknowledgements

References

Appendix A. Proof of Lemma [I0]

Appendix B.  Proof of Claim [0]

EEEHEHEE

™
o



TESTING THE MANIFOLD HYPOTHESIS 3

1. INTRODUCTION

We are increasingly confronted with very high dimensional data from speech, images, and genomes and
other sources. A collection of methodologies for analyzing high dimensional data based on the hypothesis
that data tend to lie near a low dimensional manifold is now called "Manifold Learning". (see Figure
We refer to the underlying hypothesis as the "manifold hypothesis." Manifold Learning has been an area of
intense activity over the past two decades. We refer the interested reader to a limited set of papers associated
with this field; see [II, 4] [5] 6], 9] 14} 6] 17, 26, 27, 28], [30, 32, [34] B8] and the references therein.

The goal of this paper is to develop an algorithm that tests the manifold hypothesis.

Examples of low-dimensional manifolds embedded in high-dimensional spaces include: image vectors repre-
senting 3D objects under different illumination conditions, and camera views and phonemes in speech signals.
The low-dimensional structure typically arises due to constraints arising from physical laws. A recent empir-
ical study [4] of a large number of 3 x 3 images represented as points in RY revealed that they approximately
lie on a two-dimensional manifold knows as the Klein bottle.

One of the characteristics of high-dimensional data of the type mentioned earlier is that the number of
dimensions is comparable, or larger than, the number of samples. This has the consequence that the sample
complexity of function approximation can grow exponentially. On the positive side, the data exhibits the
phenomenon of “concentration of measure” [, [I8] and asymptotic analysis of statistical techniques is possible.
Standard dimensional reduction techniques such as Principal Component Analysis and Factor Analysis, work
well when the data lies near a linear subspace of high-dimensional space. They do not work well when the
data lies near a nonlinear manifold embedded in the high-dimensional space.

Recently, there has been considerable interest in fitting low-dimensional nonlinear manifolds from sampled
data points in high-dimensional spaces. These problems have been viewed as optimization problems general-
izing the projection theorem in Hilbert Space. One line of research starts with principal curves/surfaces [14]
and topology preserving networks [21]. The main ideas is that information about the global structure of a
manifold can be obtained by analyzing the “interactions” between overlapping local linear structures. The
so-called Local Linear Embedding method (local PCA) constructs a local geometric structure that is invariant
to translation and rotation in the neighborhood of each data point [29].

In another line of investigation [35], pairwise geodesic distances of data points with respect to the un-
derlying manifold are estimated and multi-dimensional scaling is used to project the data points on a low-
dimensional space which best preserves the estimated geodesics. The tangent space in the neighborhood of
a data point can be used to represent the local geometry and then these local tangent spaces can be aligned
to construct the global coordinate system of the nonlinear manifold [39].

A comprehensive review of Manifold Learning can be found in the recent book [20]. In this paper, we
take a “worst case” viewpoint of the Manifold Learning problem. Let H be a separable Hilbert space, and
let P be a probability measure supported on the unit ball By, of H. Let | - | denote the Hilbert space norm
of H and for any x,y € H let d(x,y) = |x —y|. For any x € By and any M C By, a closed subset, let
d(x, M) = infyer [x —yl and L(M,P) = [d(x, M)?dP(x). We assume that i.i.d data is generated from
sampling P, which is fixed but unknown. This is a worst-case view in the sense that no prior information
about the data generating mechanism is assumed to be available or used for the subsequent development.
This is the viewpoint of modern Statistical Learning Theory [37].

In order to state the problem more precisely, we need to describe the class of manifolds within which we
will search for the existence of a manifold which satisfies the manifold hypothesis.

Let M be a submanifold of H. The reach T > 0 of M is the largest number such that for any 0 < r < 7,
any point at a distance T of M has a unique nearest point on M.

Let Ge = Gc(d,V,T) be the family of d-dimensional C2—submanifolds of the unit ball in H with volume
<V and reach > t.

Let P be an unknown probability distribution supported in the unit ball of a separable (possibly infinite-
dimensional) Hilbert space and let (x1,x2,...) be i.i.d random samples sampled from P.

The test for the Manifold Hypothesis answers the following affirmatively: Given error &, dimension d,
volume V, reach T and confidence 1 — 9, is there an algorithm that takes a number of samples depending on
these parameters and with probability T — 6 distinguishes between the following two cases (as least one must
hold):

(a) Whether there is a
Me ge = ge(d) C\/»T/C)
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such that
Jd(M, x)2dP(x) < Ce .

(b) Whether there is no manifold
M e Ge(d,V/C,Cn)
such that
Jd(M,x)zdP(x) <¢/C.

Here d(M, x) is the distance from a random point x to the manifold M, C is a constant depending only on
d.

The basic statistical question is:

What is the number of samples needed for testing the hypothesis that data lie near a low-dimensional
manifold?

The desired result is that the sample complexity of the task depends only on the “intrinsic” dimension,
volume and reach, but not the “ambient” dimension.

We approach this by considering the Empirical Risk Minimization problem.

Let

£IMP) = [y M2aP(X)
and define the Empirical Loss

1 s
Lemp(M) = g Z d(xi) M)Z
i=1

where (x1,...,Xs) are the data points. The sample complexity is defined to be the smallest s such that there
exists a rule A which assigns to given (x1,...,%Xs) a manifold M 4 with the property that if x;,...,xs are
generated i.i.d from P, then

P {E(MA,P) _/\/ltléfgeﬁ(M’P) > £] < b.

We need to determine how large s needs to be so that

P lsup %Z d(x¢, M)? —E(M,”P)‘ < 51 >1-20.
Ge i=1

The answer to this question is given by Theorem 1 in the paper.

The proof of the theorem proceeds by approximating manifolds using point clouds and then using uniform
bounds for k—means (Lemma [11] of the paper).

The uniform bounds for k—means are proven by getting an upper bound on the Fat Shattering Dimension
of a certain function class and then using an integral related to Dudley’s entropy integral. The bound on
the Fat Shattering Dimension is obtained using a random projection and the Sauer-Shelah Lemma. The use
of random projections in this context appears in Chapter 4, [20] and [25], however due to the absence of
chaining, the bounds derived there are weaker.

The Algorithmic question can be stated as follows:

Given N points X1, ...,xN in the unit ball in R™, distinguish between the following two cases (at least one

must be true):
(a) Whether there is a manifold M € G, = G.(d, CV, C~'1) such that

N

1

N Z d(xy, M)z <Ce
i=1

where C is some constant depending only on d.
(b) Whether there is no manifold M € G. = G.(d, V/C, Ct) such that

1 N
N 2 dxi, M)? < e/C
i=1

where C is some constant depending only on d.
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The key step to solving this problem is to translate the question of optimizing the squared-loss over a family
of manifolds to that of optimizing over sections of a disc bundle. The former involves an optimization over a
non-parameterized infinite dimensional space, while the latter involves an optimization over a parameterized
(albeit infinite dimensional) set.

We introduce the notion of a cylinder packet in order to define a disc bundle. A cylinder packet is a finite
collection of cylinders satisfying certain alignment constraints. An ideal cylinder packet corresponding to
a d—manifold M of reach T (see Definition [I) in R™ is obtained by taking a net (see Definition [5|) of the
manifold and for every point p in the net, throwing in a cylinder centered at p isometric to 2T(Bgq X Bn_q)
whose d—dimensional central cross-section is tangent to M. Here T = ¢t for some appropriate constant c
depending only on d, By and B, _4 are d—dimensional and (n — d)—dimensional balls respectively.

For every cylinder cyl; in the packet, we define a function f; that is the squared distance to the d—
dimensional central cross section of cyl;. These functions are put together using a partition of unity defined
on Ujcyl;. The resulting function f is an “approximate-squared-distance-function" (see Definition . The
base manifold is the set of points x at which the gradient Vf is orthogonal to every eigenvector corresponding
to values in [c, C] of the Hessian Hessf(x). Here ¢ and C are constants depending only on the dimension
d of the manifold. The fiber of the disc bundle at a point x on the base manifold is defined to be the
(n — d)—dimensional Euclidean ball centered at x contained in the span of the aforementioned eigenvectors
of the Hessian. The base manifold and its fibers together define the disc bundle.

The optimization over sections of the disc bundle proceeds as follows. We fix a cylinder cyl; of the cylinder
packet. We optimize the squared loss over local sections corresponding to jets whose C?>— norm is bounded
above by <, where c; is a controlled constant. The corresponding graphs are each contained inside cy1;.
The optimization over local sections is performed by minimizing squared loss over a space of CZ—jets (see
Definition constrained by inequalities developed in [I3]. The resulting local sections corresponding to
various 1 are then patched together using the disc bundle and a partition of unity supported on the base
manifold. The last step is performed implicitly, since we do not actually need to produce a manifold, but
only need to certify the existence or non-existence a manifold possessing certain properties. The results of
this paper together with those of [13] lead to an algorithm fitting a manifold to the data as well; the main
additional is to construct local sections from jets, rather than settling for the existence of good local sections
as we do here.

Such optimizations are performed over a large ensemble of cylinder packets. Indeed the the size of this
ensemble is the chief contribution in the complexity bound.

1.1. Definitions.

Definition 1 (reach). Let M be a subset of H. The reach of M is the largest number T to have the property
that any point at a distance v < T from M has a unique nearest point in M.

Definition 2 (Tangent Space). Let H be a separable Hilbert space. For a closed A C H, and a € A, let the
“tangent space” Tan®(a, A) denote the set of all vectors v such that for all € > 0, there exists b € A such that

O<l|la—bl< e and |v/|v| — ‘E:a | < €. For a set X CH and a point a € H let d(a, X) denote the Euclidean

distance of the nearest point in X to a. Let Tan(a,A) denote the set of all x such that x —a € Tan®(a, A).

The following result of Federer (Theorem 4.18, [I1]), gives an alternate characterization of the reach.
Proposition 1. Let A be a closed subset of R™. Then,
(1) reach(A) ™! = sup {2|b — a|?d(b, Tan(a,A))| a,b € A}.

Definition 3 (C"—submanifold). We say that a closed subset M of H is a d—dimensional CT—submanifold
of H if the following is true. For every point p € M there exists a chart (U C H,$ : U — H), where U
is an open subset of H containing p such that ¢ possesses k continuous derivatives and (M NU) is the
intersection of a d-dimensional affine subspace with &(U). Let By be the unit ball in H. Let G = G(d,V,T)
be the family of boundaryless CT'—submanifolds of By having dimension d, volume less or equal to V, reach
greater or equal to T. We assume that T <1 and r = 2.

Let H be a separable Hilbert space and P be a probability distribution supported on its unit ball By.
Let | - | denote the Hilbert space norm on H. For x,y € H, let d(x,y) := |x —y|. For any x € By and any
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FIGURE 1. Data lying in the vicinity of a two dimensional torus.

M C By, let d(x, M) = infyer Ix —yl, and
LM, P) = Jd(x,M)zdP(x).

Let B be a black-box function which when given two vectors v, w € H outputs the inner product B(u,v) =<
v,w > . We develop an algorithm which for given §,€ € (0,1), V> 0, integer d and T > 0 does the following.

We obtain an algorithm that tests the manifold hypothesis in the following sense.

The algorithm takes i.i.d random samples from P as input, and determines which of the following two is
true (at least one must be):

(1) There exists M € G(d, CV, &) such that L(M,P) < Ce.
(2) There exists no M € G(d, V/C, Ct) such that L(M,P) <

The answer is correct with probability at least T — 6.
The number of data points required is of the order of

€
c:

Npln® (%) +Ins!
n=

e2

where

1 1
Np :_V<Td+€d/2’fd/2>’

and the number of arithmetic operations is

\4 —1
exp <C <’td> nint ) .
The number of calls made to B is O(n?).

1.2. A note on controlled constants. In this section, and the following sections, we will make frequent
use of constants ¢, C,Cy,C2,Cy,...,C11 and cq; etc. These constants are "controlled constants" in the sense
that their value is entirely determined by the dimension d unless explicitly specified otherwise (as for example
in Lemma. Also, the value of a constant can depend on the values of constants defined before it, but not
those defined after it. This convention clearly eliminates the possibility of loops.

2. SAMPLE COMPLEXITY OF MANIFOLD FITTING

In this section, we show that if instead of estimating a least-square optimal manifold using the probability
measure, we randomly sample sufficiently many points and then find the least square fit manifold to this
data, we obtain an almost optimal manifold.
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Definition 4 (Sample Complexity). Given error parameters €,8, a space X and a set of functions (henceforth
function class) F of functions f : X — R, we define the sample complezity s = s(e, 8, F) to be the least number
such that the following is true. There exists a function A: X5 — F such that, for any probability distribution
P supported on X, if (X1,...,Xs) € X® is sequence of i.i.d draws from P, then fou := A((x1,...,Xs)) satisfies

P |Exopfout(x) < (inf Exqpf) + €:| >1—0.
feF

We state below, a sample complexity bound when mean-squared error is minimized over G(d,V, T).

Theorem 1. Forr >0, let

Ug(1/1) = CV <T1d + 1) .

(tr)d/2
Let
o (Ys(1/e) (4 (Ug(1/e)\) , 1 1
Sg(e, 5) = C (ez ].Og f + glog g .
Suppose s > sg(€,8) and x = {x1,...,xs} be a set of i.i.d points from P and Px is the uniform probability

measure over X. Let Merm denote a manifold in G(d,V,T) that approximately minimizes the quantity

D dlxi, M)?
i=1

in that
LMerm(x),Px) = inf LM, Px) < =.
MeG(d,V,T) 2
Then,
P E(Merm(x)»P) - inf E(M,,P) <e|>1-0.
Meg(d,V,T)

Let M € G(d,V,T). For x € M denote the orthogonal projection from # to the affine subspace Tan(x, M)
by TTx. We will need the following claim to prove Theorem

Claim 1. Suppose that M € G(d,V,T). Let
U :={ylly — Tyl < t/C}N{y|lx — Tyl < 1/C},

for a sufficiently large controlled constant C. There exists a C'1 function Fxu from T (U) to T (TT,(0))
such that

MNU={y+Fuly|y € M (W)}
such that the Lipschitz constant of the gradient of Fx u is bounded above by C.

3. ProoF ofF Cram [I]

3.1. Constants: D is a fixed integer. Constants ¢, C, C’ etc depend only on D. These symbols may denote
different constants in different occurrences, but D always stays fixed.

3.2. D—planes: H denotes a fixed Hilbert space, possibly infinite-dimensional, but in any case of dimension
> D. A D—plane is a D—dimensional vector subspace of H. We write TT to denote a D—plane and we write
DPL to denote the space of all D—planes. If TT,TT’ € DPL, then we write dist(TT,TT’) to denote the infimum
of ||T —IJ| over all orthogonal linear transformations T : H — H that carry TT to TT'. Here, the norm ||A|| of
a linear map A : 'H — H is defined as

JAV]

ver\{0} V]2

One checks easily that (DPL, dist) is a metric space. We write TT+ to denote the orthocomplement of TT in
H.
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FIGURE 2.

3.3. Patches: Suppose Br(0,1) is the ball of radius r about the origin in a D—plane TT, and suppose
Y:Br(0,1) — T+
is a C"'—map, with W(0) = 0. Then we call
N={x+V¥x):xeBn(0,7r)} CH

a patch of radius r over TT centered at 0. We define

[V¥(x) — V¥(y)||.

)

Tl o, = sup
¢! (Bn(0,m) distinct x,y€B (0,1) ”X*yH

Here,
VY(x):TT— T+
is a linear map, and for linear maps A : TT — TT+, we define ||A| as
AV

veT\{0} vl

If also
VY(0) =0

then we call " a patch of radius r tangent to IT at its center 0. If [y is a patch of radius r over TT centered at
0 and if z € H, then we call the translate I' =Ty + z C ‘H a patch of radius r over TT, centered at z. If T is
tangent to TT at its center 0, then we say that I is tangent to TT at its center z.

The following is an easy consequence of the implicit function theorem in fixed dimension (D or 2D).

Lemma 2. Let Iy be a patch of radius v1 over T1y centered at z1 and tangent to Tly at z1. Let zp belong to
I and suppose ||z2 — z1|| < cor1. Assume

Co

o

Let T, € DPL with dist(TT,,T11) < co. Then there exists a patch Ty of radius civ1 over Tly centered at z;
with

||r1 ||C1»‘ (Bri(z1,m1)) <

ITaller e
(B (0,ci7y)) = 1
and
N By (Zz, (:1%) =T1NBy (Zz, (:1%) .
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Here cp and cy are small constants depending only on D, and by rescaling, we may assume without loss
of generality that r1 =1 when we prove Lemma
The meaning of Lemma[2]is that if I" is the graph of a map

W:B, (0,1) — Ty
with W(0) = 0 and V¥(0) = 0 and the C"»'—norm of ¥ is small then at any point z; € T close to 0, and for
any D—plane TT, close to TT;, we may regard I' near z, as the graph I’; of a map

VY By, (0,¢) — TT3;
here T is centered at z; and the C'»'—norm of 1\ is not much bigger than that of W.

3.4. Imbedded manifolds: Let M C H be a "compact imbedded D—manifold" (for short, just a "mani-
fold") if the following hold:

e M is compact.
e There exists an 17 > 12 > 0 such that for every z € M, there exists T, M € DPL such that
M N By(z,12) =T N By(z,12) for some patch T over T, (M) of radius 17, centered at z and tangent
to T,(M) at z. We call T,(M) the tangent space to M at z.
We say that M has infinitesimal reach < p if for every p’ < p, there is a choice of r1 > 2 > 0 such that
for every z € M there is a patch I' over T,(M) of radius 17, centered at z and tangent to T,(M) at z which
has C"»'—norm at most &.

3.5. Growing a Patch.

Lemma 3 ("Growing Patch"). Let M be a manifold and let r1,72 be as in the definition of a manifold.
Suppose M has infinitesimal reach > 1. Let ' C M be a patch of radius v centered at 0, over To. M. Suppose
T 18 less than a small enough constant € determined by D. Then there exists a patch T of radius T + cr3
over ToM, centered at 0 such that T C T C M.

Corollary 4. Let M be a manifold with infinitesimal reach > 1 and suppose 0 € M. Then there exists a
patch T of radius € over To M such that T C M.

Lemma [3] implies Corollary [d] Indeed, we can start with a tiny patch T' (centered at 0) over To.M, with
I' € M. Such T exists because M is a manifold. By repeatedly applying the Lemma, we can repeatedly
increase the radius of our patch by a fixed amount cr;; we can continue doing so until we arrive at a patch
of radius > €.

Proof of Lemma[3 Without loss of generality, we can take H = RP @ H’ for a Hilbert space H’; and we may
assume that
ToM =RP x {0} cRP @ H'.
Our patch T is then a graph
= {(X)W(X)) 1X € Bgo (O)T)} - RP o H'
for a C' map
Y : Bgo (0,7) — H',

with W(0) =0, V¥(0) =0, and

¥ller (8,0 0,m) < Co-
For y € Bgo (0, 1), we therefore have [Vi(y)| < Co. If r is less than a small enough € then Lemma together
with the fact that M agrees with a patch of radius r1 in Bgo gy ((y,¥(y)),2) (because M is a manifold)
tells us that there exists a C»! map

\yy : BRD (y, C/Tz) — rH/
such that

M N Brogy (Y, ¥(y),c"m2) ={(z,¥y(2)) : z € Bro (y,¢'12)} N Bro gy ((y, ¥(y)), ¢r2).

Also, we have a priori bounds on ||V ¥, (z)|| and on [[Wy||s1,1. It follows that whenever y1,y2 € Bgo (0,71)
and z € Bgo (y1,c¢”'12) N Bgo (y2,¢”'12), we have ¥, (z) =¥y, (2).
This allows us to define a global C'»! function

Yt Bro (0,1 +c”'1) = H;
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the graph of W is simply the union of the graphs of
Yyl

2D y c’ry)

as y varies over Bgro (0,1). Since the graph of each W ‘BRD (y,c'”'r,) 18 contained in M, it follows that the

graph of W* is contained in M. Also, by definition, W* agrees on Bgo (y,c’’r2) with a C"! function, for
each y € Bgro (0,1). It follows that
||‘P+||C"v‘ (0,rc’’12) <C.

Also, for each y € Bgo (0,1), the point (y,¥(y)) belongs to
C///T.2
MnN B]RDGBH’((Q)W(H))) W)»
hence it belongs to the graph of \yy‘BRD (y,c'r,) and therefore it belongs to the graph of W*. Thus I'" =
graph of W+ satisfies ' C T C M, and T'" is a patch of radius v + ¢”r2 over To.M centered at 0. That
proves the lemma. O

3.6. Global Reach. For a real number T > 0, A manifold M has reach > 7 if and only if every x € H such
that d(x, M) < T has a unique closest point of M. By Federer’s characterization of the reach in Proposition
if the reach is greater than one, the infinitesimal reach is greater than 1 as well.

Lemma 5. Let M be a manifold of reach > 1, with 0 € M. Then, there exists a patch T' of radius € over
ToM centered at 0, such that
M By (0,¢) = M N By(0,¢).

Proof. There is a patch I of radius € over To.M centered at O such that
N By (0,c*) € MNBy(0,ck).

(See Lemma ) For any x € TN By(0,cf), there exists a tiny ball B, (in H) centered at x such that
I'N By = M N By; that’s because M is a manifold.
It follows that the distance from

to

is strictly positive.

Suppose I, intersects By (0, ]00) 8aY Yno € By (0, 55) NTho. Also, 0 € By (0, 100) NTyes-

ot
> 100
o) —d(y,Tyes) is positive at y = 0 and negative at

The continuous function By (0, 1ouo) >y~ d(y,Ta

Y = Yno. Hence at some point,
f
c

)m)

YHam € BH(O

we have
d(yHam) ryes) = d(yHama rno)-
It follows that Yynam has two distinct closest points in M and yet

d YH M 7’:‘
<
( amy ) — 100

since 0 € M and Ypam € By(0, 100) That contradicts our assumption that M has reach > 1. Hence our

assumption that I, intersects B (0, 10“0) must be false. Therefore, by definition of I,, we have

¢ T ABy0, S
)COH(’W

MNBx(0 755

).

Since also

I N By (0,cf) € M N By (0,c?),
it follows that
t of

C

)
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proving the lemma. O

This completes the proof of Claim

4. A BOUND ON THE SIZE OF AN €—NET

Definition 5. Let (X,d) be a metric space, and v > 0. We say that Y is an r—net of X if Y C X and for
every x € X, there is a pointy € Y such that d(x,y) < r.

Corollary 6. Let
Ug: Rt = R
be given by

1 1
Let M € G, and M be equipped with the metric dyy of the H. Then, for any v > 0, there is an \/Tr—net of
M consisting of no more than Ug(1/r) points.

Proof. Tt suffices to prove that for any r < T, there is an r—net of M consisting of no more than CV (_JT + Tid),
since if r > T, a T—net is also an r—net. Suppose Y = {y1,y2,...} is constructed by the following greedy
procedure. Let y; € M be chosen arbitrarily. Suppose yi,...yx have been chosen. If the set of all y such
that minj<i<k [y —yil) > 1 is non-empty, let Y1 be an arbitrary member of this set. Else declare the
construction of Y to be complete.

We see that that Y is an r—net of M. Secondly, we see that the the distance between any two distinct
points yi,yj € Y is greater or equal to r. Therefore the two balls M N By (yi,7/2) and M N By (y;,7/2) do
not intersect.

By Claim [1] for each y € Y, there are controlled constants 0 < ¢ < 1/2 and 0 < ¢’ such that for any
T € (0,7, the volume of M N By (y,cr) is greater than c¢’r9.

Since the volume of

{z e Mld(z,Y) <7/2}
is less or equal to V the cardinality of Y is less or equal to C,% for all r € (0,7]. The corollary follows. O
4.1. Fitting k affine subspaces of dimension d. A natural generalization of k-means was proposed in [3]
wherein one fits k d—dimensional planes to data in a manner that minimizes the average squared distance
of a data point to the nearest d—dimensional plane. For more recent results on this kind of model, with the
average p'" powers rather than squares, see [T9]. We can view k—means as a 0O—dimensional special case of
k—planes.

In this section, we derive an upper bound for the generalization error of fitting k—planes. Unlike the
earlier bounds for fitting manifolds, the bounds here are linear in the dimension d rather than exponential in
it. The dependence on k is linear up to logarithmic factors, as before. In the section, we assume for notation
convenience that the dimension m of the Hilbert space is finite, though the results can be proved for any
separable Hilbert space.

Let P be a probability distribution supported on B :={x € R™|||x|| < 1}. Let H :=Hy q be the set whose
elements are unions of not more than k affine subspaces of dimension < d, each of which intersects B. Let
F,a be the set of all loss functions F(x) = d(x, H)? for some H € H (where d(x,S) := infyes [x —yl)) -

We wish to obtain a probabilistic upper bound on

S
2) sup | == e,
FEF, a S

where {x;}j is the train set and EpF(x) is the expected value of F with respect to P. Due to issues of
measurability, need not be random variable for arbitrary F. However, in our situation, this is the case
because F is a family of bounded piecewise quadratic functions, smoothly parameterized by ”H{fk, which has
a countable dense subset, for example, the subset of elements specified using rational data. We obtain a
bound that is independent of m, the ambient dimension.
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Theorem 7. Let x1,...,xs be i.i.d samples from P, a distribution supported on the ball of radius 1 in R™.
If
dk . 4 /dk d 1
s>C (ezlog (e) +€210g6> ,
then P | sup M —EpF(x)| <€l >1-—0.
FE]“k»d

Proof. Any F € Fy g can be expressed as F(x) = minj<i<i d(x, H;)? where each H; is an affine subspace of
dimension less or equal to d that intersects the unit ball. In turn, min;<i<x d(x, H;)? can be expressed as

. el —(x — e VAT AL (v — )
min ([—eif? = (= e A A =)

where A; is defined by the condition that for any vector z, (z — (Aiz))Jr and Ajz are the components of z
parallel and perpendicular to Hi, and c; is the point on H; that is the nearest to the origin (it could have
been any point on H;). Thus

F(x) := min <||><H2 —2chx + [lei]? = xTATA X + 2¢]ATA x — CIAIAiCi) .
1

Now, define vector valued maps @ and ¥ whose respective domains are the space of d dimensional affine
subspaces and H respectively.

1
Vvd+5

®(H;) == < ) (||ci||2,A1Ai, QATA ¢ —zcm)

and

Wix) = (\}g) (1,50t x1),

where A{{Ai and xx! are interpreted as rows of m? real entries.
Thus,

min (Hx”2 —2chx + [lei]? = xTATA X + 2¢TATA X — ciAIAici)
1

is equal to
x]I2 + v/3(d + 5) min ®(H;) - ¥(x).

We see that since ||x|| < 1, ||¥(x)|| < 1. The Frobenius norm HAIAiHZ is equal to Tr(AiAIAiAD, which is
the rank of A; since Aj; is a projection. Therefore,

(d+5)[@H)|1* < leill* + [ATALR + (21— AlA)eq]|?,

which, is less or equal to d + 5.
Uniform bounds for classes of functions of the form min; ®(H;) - ¥(x) follow from Lemma We infer

from Lemma [IT] that if
k 4 (k 1 1
S Z C (ezlog (e) +€210g6> s
< 4/3(d+5)e

dk 4 /dk\ d . 1
sZC(ezlog (€)+€210g5>,

<e]>1—6. O

then P [ sup w —EpF(x) > 1—20. The last statement can be rephrased as follows.

FEJ:k,d

If

then P l sup M — EpF(x)

FG]“k‘d
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L(M,P)

s d(zi,M)?

S

M

FIGURE 3. A uniform bound (over G) on the difference between the empirical and true loss.

5. TOOLS FROM EMPIRICAL PROCESSES

In order to prove a uniform bound of the form

Zi:] F(xi) o EPF(X)

FeF S

(3) P lsup

<e]>1—5,

it suffices to bound a measure of the complexity of F known as the Fat-Shattering dimension of the function
class F. The metric entropy (defined below) of F can be bounded using the Fat-Shattering dimension, leading
to a uniform bound of the form of .

Definition 6 (metric entropy). Given a metric space (Y, p), we call Z CY ann—net of Y if for everyy €Y,
there is a z € Z such that p(y,z) < 1. Given a measure P supported on a metric space X, and F a class
of functions from X to R. Let N(n,F,L2(P)) denote the minimum number of elements that an n—net of
F could have, with respect to the metric imposed by the Hilbert space L;(P), wherein the distance between
fi:X—=>Randfy : X >R is

If1 —f2llc,p) = \/J(fl (x) — f2(x))?dp.

We call InN(n, F, L2(P)) the metric entropy of F at scale  with respect to La2(P).

Definition 7 (Fat-shattering dimension). Let F be a set of real valued functions. We say that a set of points
X1y..., Xk 18 Y—shattered by F if there is a vector of real numbers t = (t1,...,tx) such that for all binary
vectors b = (by,...,bx) and each i € [s] ={1,...,s}, there is a function fp ¢ satisfying,

N >t 4y, ifbi=1;
(4) fb,t(xl){ <ti_'Y) ZbeZO

More generally, the supremum taken over (ti,...,tx) of the number of binary vectors b for which there is a
function fp ¢ € F which satisfies , is called the y—shatter coefficient. For each y > 0, the Fat-Shattering
dimension faty (F) of the set F is defined to be the size of the largest y—shattered set if this is finite; otherwise
fat, (F) is declared to be infinite.

We will also need to use the notion of VC dimension, and some of its properties. These appear below.

Definition 8. Let A be a collection of measurable subsets of R™. For x1,...,xx € R™, let the number of
different sets in{{x1,...,xxJNH;H € A} be denoted the shatter coefficient Na(x1,y...,xx). The VC dimension
VCA of A is the largest integer k such that there exist X1, ...x such that Na(x1,...,x) = 2¥.

The following result concerning the VC dimension of halfspaces is well known (Corollary 13.1, [7]).
Theorem 8. Let A be the class of halfspaces in R9. Then VCA =g+ 1.
We state the Sauer-Shelah Lemma below.

Lemma 9 (Theorem 13.2, [7]). For any x1,...,xx € RI, Nao(x1,...,%) < ZY:CO" (‘f)
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< RLL'Q
R.’L‘1
Random lt B
— 2
map R -
9 R’E4
R.Z‘g

FicURE 4. Random projections are likely to preserve linear separations.

For VCa > 2, ¥ Y (%) < kVea.
The lemma below follows from existing results from the theory of Empirical Processes in a straightforward

manner, but does not seem to have appeared in print before. We have provided a proof in the appendix.

Lemma 10. Let u be a measure supported on X, F be a class of functions f : X — R. Let x1,...,xs be
independent random variables drawn from p and us be the uniform measure on x :=={x1,...,xs}. If

=5 ((

P [Sup ‘Eus f(xi) —E.f
feF

e} 2
J faty (F) dy) +logl /6) :

CeE

then,

Z€:|§1—5.

A key component in the proof of the uniform bound in Theorem [I}is an upper bound on the fat-shattering
dimension of functions given by the maximum of a set of minima of collections of linear functions on a ball
in H. We will use the Johnson-Lindenstrauss Lemma [I5] in its proof.

Let ] be a finite dimensional vectorspace of dimension greater or equal to g. In what follows, by "uni-
formly random g—dimensional subspace in J," we mean a random variable taking taking values in the set
of g—dimensional subspaces of ], possessing the following property. Its distribution is invariant under the
action of the orthogonal group acting on J.

Johnson-Lindenstrauss Lemma: Let yi,...,Yys be points in the unit ball in R™ for some finite m. Let R be
log €
‘YZ

an orthogonal projection onto a random g—dimensional subspace (where g = C
absolute constant C). Then,

for some y > 0, and an

P

sup
Lie(l,..., 9}

(2) (Ryi) - (Ry;) —yi - yj

Y 1
> < =
2] 2
Lemma 11. Let P be a probability distribution supported on Byy. Let Fi ¢ be the set of all functions f from

By :={x € H:||x|]| <1} to R, such that for some k{ vectors vii,...,Vke € B,

f(x) = max min(vyj - x).
) 1

(1) faty (Fi,e) < S5 log? SKE.

@2 Ifs> S (ke1n4(ke/e2) +1n1/6>, then P [supger,  [Ep, f0xi) —Egf| > €] <1-8.
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Proof. We proceed to obtain an upper bound on the fat shattering dimension fat, (Fx ¢). Let x1,...,%s be
s points such that

VAC X :={x1,...,Xs},

there exists V = {vi1,...,vi¢} € B and f € Fy ¢ where f(x) = max; min; vij - x such that for some t =
(t1,...,ts), for all

(5) xr € A, Vj € [t], there exists i € [k] vij - %, <ty —7vy
and
(6) Y, € A, Jjelt,Vie [kl vij x>t 4.

We will obtain an upper bound on s. Let g := C; (1/*2 log(s + kﬂ)) for a sufficiently large universal
constant Cq. Consider a particular A € X and f(x) := max;j min; vij - x that satisfies and @

Let R be an orthogonal projection onto a uniformly random g—dimensional subspace of span(X U V); we
denote the family of all such linear maps . Let RX denote the set {Rx1,...,Rxs} and likewise, RV denote
the set {Rvy1,...,Rvi}. Since all vectors in XUV belong to the unit ball By, by the Johnson-Lindenstrauss
Lemma, with probability greater than 1/2, the inner product of every pair of vectors in RX U RV multiplied
by % is within y of the inner product of the corresponding vectors in X U V.

Therefore, we have the following.

Observation 1. With probability at least % the following statements are true.

(7) Vx, € A,¥j € [0], 3i e [K] (‘;‘) Rvi; - Rxy < t,
and
(8) Vx, & A,3j € [0, Vi e K] (1:) Rvij - Rxy > t,.

Let R € R be a projection onto a uniformly random g—dimensional subspace in span(X U V). Let
] :=span(RX) and let t/ : ] — R be the function given by

t(y) = ti, if y=Rx; for some i € [s];
vl= 0, otherwise.

Let Fj,x,¢ be the concept class consisting of all subsets of ] of the form

{z:mjaxm}n( V\;ij > . ( —tiz(z) ) < O},

where wi1,... Wy, are arbitrary vectors in J.

Claim 2. Let yi1,...,Ys € J. Then, the number W(s, Fy ) of distinct sets {yr,...,ys} N1, 1 € Fyie is

less or equal to sO(g+2)ke)

Proof of Claim[3 Classical VC theory (Theorcm tells us that the VC dimension of Halfspaces in the span
of all vectors of the form (z;—t/(z)) is at most g+ 2. Therefore, by the Sauer-Shelah Lemma (Lemma@), the

number W(s, Fj1,1) of distinct sets {y1,...,Ys}NJ, ) € Fj,1,1 is less or equal to Zlgioz (f), which is less or
equal to s912. Every set of the form {y1,...,ys}N1, 1 € Fj,x,e can be expressed as an intersection of a union

of sets of the form {y1,...,ys}N), ) € Fj,1,1, in which the total number of sets participating is kf. Therefore,
the number W(s, Fj i ¢) of distinct sets {y1,...,ys}N1, 1 € Fj 1,1 is less or equal to W(s, Fy 11 )k, which is
in turn less or equal to s(9T2)kl,

O

By Observation for a random R € R, the expected number of sets of the form RXM1, 1 € Fj i ¢ is greater
or equal to 2571, Therefore, there exists an R € % such that the number of sets of the form RXN1, 1 € Ty ke
is greater or equal to 257!, Fix such an R and set | := span(RX). By Claim

(9) 2571 < Sk(/,(g+2).
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Therefore s — 1 < k(g + 2)logs. Assuming without loss of generality that s > k{, and substituting
Cq (y‘z log(s + kE)) for g, we see that

s<O (k(’,y’z log2 s) R

ke
; S O <2> )
log~(s) Y

so(($) ()

8)) . We independently know that fat, (Fi¢)

and hence

implying that

Thus, the fat shattering dimension faty (Fi,¢) is O ((%) log? <

is 0 for vy > 2.
Therefore by Lemma if

2
C 2 /klog? (kt/v?)
(10) s> 3 J > dy| +log1/s |,
then,
P [sup ‘Eusf(xi) —E.f| > e} <1-34.
feF

Let t=1n (@) Then the integral in equals

In(vk1/2) )
kéJ —tdt < CvVkl (In(Cke/e?))”,
In(Cke/e?)

and so if
C
s> (ke In* (ke/e2) +log 1 /5) ,

then

P [sup ‘Eusf(xi) —E,f
feF

Ze}§1—6.
]

In order to prove Theorem [1, we relate the empirical squared loss s~ Zf:1 d(xi, M)? and the expected
squared loss over a class of manifolds whose covering numbers at a scale € have a specified upper bound. Let
U:R* — Z* be a real-valued function. Let G be any family of subsets of the unit ball By in a Hilbert space
# such that for all r > 0 every element M € G can be covered using U(%) open Euclidean balls.

A priori, it is unclear if

s 2
(11) sup M —Epd(x, M)?|,
MeG §
is a random variable, since the supremum of a set of random variables is not always a random variable
(although if the set is countable this is true). Let dpaus represent Hausdorfl distance. For each n > 1,
Q~n be a countable set of finite subsets of H, such that for each M € Q, there exists M’ € Gn such that
dhaus (M, M) < 1/n, and for each M’ € Gn, there is an M € G such that dpays(M”, M’) < 1/n. For each
n, such a Gy, exists because # is separable. Now is equal to
s 2
lim sup Lz dbxi, Mn) —Epd(x, Mp)?|,
mn—oo M/eg"n S
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and for each n, the supremum in the limits is over a countable set; thus, for a fixed n, the quantity in
the limits is a random variable. Since the pointwise limit of a sequence of measurable functions (random
variables) is a measurable function (random variable), this proves that

Zs d(xi)M)

2
sup i=1 S —Epd(x, M)?

MeG

b

is a random variable.

Lemma 12. Let € and & be error parameters. Let Ug : RT™ — R be a function taking values in the positive
reals. Suppose every M € G(d,V,T) can be covered by the union of some Ug(%) open Euclidean balls of radius

e, for every v > 0. If
s>C <u9“2/€) <log4 (Ug(]/e)>) + lzlog 1) ,
€ € € 5

Then,
S od(xq 2
P sup Zl_1(Xl’/\/l)—IE7:d(X,./\/l)2‘<e >1-—06.
MEG(d,V,T) S
Proof. Given a collection ¢ :={cq,...,cy} of points in H, let

fe(x) = £ngé Ix — cj|2.
)

Let Fi denote the set of all such functions for
C:{Ch"',ck}g B’H)

B4 being the unit ball in the Hilbert space.

Consider M € G = G(d,V,7). Let ¢(M,€) ={¢1,...,C} be a set of K= Ug(1/€) points in M, such
that M is contained in the union of Euclidean balls of radius y/Te/16 centered at these points. Suppose
x € By. Since ¢(M, e) C M, we have d(x, M) < d(x,c(M,€)). To obtain a bound in the reverse direction,
let y € M be a point such that [x —y| = d(x, M), and let z € c(M, €) be a point such that [y —z| < \/T€/16.
Let 2z’ be the point on Tan(y, M) that is closest to z. By the reach condition, and Proposition

|Z_Z/| = d(Z,T(lTl(y,M))
o y-—2?
- 2T
€
< -
- 512
Therefore,
y—z,x—y) = 2y—z'+z'—zx—y)
2(z' —z,x —y)
< 2z—2'[x—yl
€
< —
- 128
Thus

d(X)C(M) e))Z S ‘X _Z|2
< x—yP? +2(y—z,x —y) + [y —z?
< d(x, M) + 155 + 7==.

Since T < 1, this shows that

@2, M) < &2 (M, ©)) < &5, M) + 5
Therefore,
(12) P |:sup W—Epd(x,/\/l)2’ < €:| S P sup M Bt ()| < e .
MeG s fc(X)EFﬁ S 3
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Inequality reduces the problem of deriving uniform bounds over a space of manifolds to a problem of
deriving uniform bounds for k—means. (For the best previously known bound for k—means, see [23].)
Let

O:x— 27 "%(x,1)
map a point x € H to one in H & R, which we equip with the natural Hilbert space structure. For each 1i, let

o= 2 1/2(c. HCiHZ
(13) ¢i = (ci, > ).

The factor of 271/2 (which could have been replaced by a slightly larger constant) is present because we want
¢; to belong to to the unit ball. Then,
fe(x) = x> +4min((®(x),&1),. .., (P(x), Ex)).
Let Fo be the set of functions of the form 4min]f:1 ®(x) - ¢; where ¢; is given by and

C:{Ch"')ck}gBH~

The metric entropy of the function class obtained by translating Fo by adding |x|? to every function in it
is the same as the metric entropy of F¢. Therefore the integral of the square root of the metric entropy of
functions in F¢ x can be bounded above, and by Lemma [T} if

k 4 (k 1 1
> - - _ _
s C(ez <log <e>) e? 10g6>’

Zf:] d(Xh M)z

S

then

P [sup —Epd(x, M)?

MeG

<e]>16.

Proof of Theorem[1l This follows immediately from Corollary [6] and Lemma

6. DIMENSION REDUCTION

Suppose that X = {x1,...,xs}is a set of i.i.d random points drawn from P, a probability measure supported
in the unit ball By of a separable Hilbert space H. Let Mcrm(X) denote a manifold in G(d,V,T) that
(approximately) minimizes

> d(xi, M)?
i=1

over all M € G(d,V,T) and denote by Px the probability distribution on X that assigns a probability of 1/s
to each point. More precisely, we know from Theorem (1| that there is some function s¢g(€, ) of €,9,d,V and
T such that if

s > sg(€, )
then,
(14) P C(Merm(x),Px) _/\l/lnefg‘C(M,’P) <e|>1-0.

Lemma 13. Suppose € < ct. Let W denote an arbitrary 2sg(e,d) dimensional linear subspace of H con-
taining X. Then

(15) inf LM, Px) < Ce+ inf LM, Px).
G(d,V,t(1—c)) 9 MCW MEeG(d,V,T)

Proof. Let M5 € G:=G(d,V,T) achieve

(16) L(M3,Px) < Ai/lrggﬁ(M,Px) + €.

Let N denote a set of no more than sg(€,d) points contained in M that is an e—net of M,. Thus for
every x € My, there is y € N such that [x —y| < €. Let O denote a unitary transformation from H to H
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that fixes each point in X and maps every point in N to some point in W. Let TTyy denote the map from H
to W that maps x to the point in W nearest to x. Let M3 := OM;. Since O is an isometry that fixes X,

(17) 'C(M.’n PX) = L(MZ)PX) < /\ilang‘C(M)PX) + €.

Since Px is supported in the unit ball and the Hausdorff distance between TTyw M3 and M3 is at most €,

|L(Mw M3, Px) — LIM3,Px)| < Exoipy [d(x, TTwM3)? — d(x, TTwM3)?|
< Exopy4]d(x, TiwM3) — d(x, TTwM3)|
< 4e.
By Lemma, we see that TTyy M3 belongs to G(d, V, (1 — c)), thus proving the lemma. O

By Lemma it suffices to find a manifold G(d, V,;T) > Merm(X) C V such that

E(Merm(x))Px) < Ce+ inf LM, Px).
VOoMeG(d,V,T)

Lemma 14. Let M € G(d,V,T), and let TT be a map that projects H orthogonally onto a subspace containing
the linear span of a cet—net S of M. Then, the image of M, is a d—dimensional submanifold of H and

M) € G(d,V,t(1 — CVe)).

Proof. The volume of TT(M) is no more than the volume of M because TT is a contraction. Since M is
contained in the unit ball, TTI(M) is contained in the unit ball.

Claim 3. For any x,y € M,
Mix—y)l > (1 CVe)x —yl.
Proof. First suppose that [x —y| < v/eT. Choose X € S that satisfies
x —x| < Cyert.

Let z 1= x 4 (y—xJver, By linearity and Proposition

ly—x|
(18) d(z, Tan(x, M)) = d(y,Tan(x,M))(ly\/_a;')
x—yl* [ Vet
(19) S T (IyXI>
€T
(20) < 5

Therefore, there is a point §j € Tan(x, M) such that
ly —x|
By Claim [T} there is a point §y € M such that

Yy @’ < Czet.
Let g € S satisfy
[y —1yl < cer.
Then,
‘Q - <>z+ y—xver - X)fT> ’ < Cyer,
i.e.
y—x (y—x)
_ < .
(V) - s
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Consequently,
y—x
21 - —-1< .
@) (V)| -r=cwve
We now have
@) =¥m) - o) e B - 220)
ly —x|” et ly—xI"ly—x| ly—x"\ Vet |y—x|
y—x (y—x y—x
(23) < —x|’ (fT Iy—XI)>
(24) > 1 —Cyv/e.

Since x and y belong to the range of I1, it follows from and that

Mx —y)l > (1 —=CVe)lx —yl.
Next, suppose that [x —y| > /€T, Choose X, € S such that [x —X| + |y —y| < 2ceT. Then,

x—y =9\ _ /x-y x=y\ o oo /x-y oo
<X yl’ |X—y|> B <x—y|’|i_g|>+(|x yl )<|X_y|( —x)—(y y)>
1-Cye,

and the claim follows since X and y§ belong to the range of TT. O

Y

By Claim [3] we see that
(25) Vx € M, Tan®(x, M) Nker(IT) = {0}.

Moreover, by Claim [3} we see that if x,y € M and TI(x) is close to TT(y) then x is close to y. Therefore, to
examine all TT(x) in a neighborhood of TI(y), it is enough to examine all x in a neighborhood of y. So by
Definition [3} it follows that TT(M) is a submanifold of H. Finally, in view of Claim [3| and the fact that TT is
a contraction, we see that

r - M(x) —T(y)I?

(26) each(TT(M)) = ,Zuelj\/( 2d(T1(x), Tan(TT(y), TT(M)))
Ix —yl?

(27) = (1=CVe) S0 20, Tan(y, M)

28) = (1 —Cy/€)reach(M),

the lemma follows. O

7. OVERVIEW OF THE ALGORITHM

Given a set X := {x1,...,Xxs} of points in R™, we give an overview of the algorithm that finds a nearly
optimal interpolating manifold.

Definition 9. Let M € G(d,V,T) be called an e—optimal interpolant if

(29) D d(xi, M)* < se+ inf Zd xi, M')?,
i=1

M'€G(d,V/C,Cn)
where C is some constant depending only on d.

Given d,T,V, € and §, our goal is to output an implicit representation of a manifold M and an estimated
error € > 0 such that
(1) With probability greater than 1 — 6, M is an e—optimal interpolant and
(2)
_ € _
se < Zd(x,/\/l)2 <s (E + e).

xeX
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i

FIGURE 5. A disc bundle Do ¢ prorm

Thus, we are required to perform an optimization over the set of manifolds G = G(d, T, V). This set G can
be viewed as a metric space (G, dpaus) by defining the distance between two manifolds M, M’ in G to be
the Hausdorff distance between M and M’. The resulting metric space contains a large family of manifolds
that are mutually non-homeomorphic. Our strategy for producing an approximately optimal manifold will
be to execute the following steps. First identify a O(t)—net Sg of (G, dnaus). Next, for each M’ € Sg,
construct a disc bundle D’ that approximates its normal bundle. The fiber of D’ at a point z € M’ is
a n — d—dimensional disc of radius O(t), that is roughly orthogonal to Tan(z, M’) (this is formalized in
Definitions [10| and . Suppose that M is a manifold in G such that

(30) dhaus(M)M/) < O(T)

As a consequence of and the lower bounds on the reaches of M and M/, it follows (as has been shown
in Lemma that M must be the graph of a section of D’. In other words M intersects each fiber of D’ in
a unique point. We use convex optimization to find good local sections, and patch them up to find a good
global section. Thus, our algorithm involves two main phases:

(1) Construct a set D™ of disc bundles over manifolds in G(d,CV,t/C) is rich enough that every
e—optimal interpolant is a section of some member of D™,

(2) Given D®™ ¢ D™ yse convex optimization to find a minimal € such that D™ has a section
(i. e. a small transverse perturbation of the base manifold of D**™) which is a €—optimal interpolant.
This is achieved by finding the right manifold in the vicinity of the base manifold of D**™ by finding
good local sections (using results from [I2] [13]) and then patching these up using a gentle partition
of unity supported on the base manifold of D™°™,

8. Disc BUNDLES

The following definition specifies the kind of bundles we will be interested in. The constants have been
named so as to be consistent with their appearance in and Observation 4} Recall the parameter v from
Definition [3

Definition 10. Let D be an open subset of R™ and M be a submanifold of D that belongs to G(d,t,V) for
some choice of parameters d,T,V. Let 7 be a C* map w: D — M such that for any z € M, n(z) = z and
1 (z) is isometric to a Euclidean disc of dimension n— d, of some radius independent of z. We then say
D 5 M is a disc bundle. When M is clear from context, we will simply refer to the bundle as D. We refer
to D, := 7 '(z) as the fiber of D at z. We call s : M — D a section of D if for any z € M, s(z) € D, and
for some £,V >0, s(M) € G(d,7, V). Let U be an open subset of M. We call a given C2—map sioc : U — D
a local section of D if for any z € U, s(z) € D, and {(z, s10c(2))|z € U} can locally be expressed as the graph
of a C2—function.
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Definition 11. For reals 2,V > 0, let D(d,%,V) denote the set of all disc bundles D™™ " M with the
following properties.

(1) D™ is a disc bundle over the manifold M € G(d,%,V).

(2) Letzo € M. Forzo € M, let DI := 71 (z0) denote the fiber over zo, and T1,, denote the projection
of R™ onto the affine span of D2™. Without loss of generality assume after rotation (if necessary)
that Tan(zo, M) = R4 & {0} and Nor,, a1 = {0} &R 4. Then, D™™ N B(zo,¢11%) is a bundle over
a graph {(Z,‘P(Z))}ZEQZO where the domain Q. is an open subset of Tan(zg, M).

(3) Any z € By (z0,C11) may be expressed uniquely in the form (x,¥(x)) + v with x € Bq(zo,C10%),v €
M w(x))Bn-alx, 6‘2"%). Moreover, x and v here are C<—?—smooth functions of z € By (x,¢11%), with
derivatives up to order k — 2 bounded by C in absolute value.

(4) Letx € Ba(zo,C10%), and let v € Ty wx))R™. Then, we can express v in the form

(31) v = Tew v
where v € {0} @ R4 and v¥#| < 2.

Definition 12. For any D™™ — M. € D(d, %, V), and « € (0,1), let aD(d, R, V) denote a bundle over
Mypase, whose every fiber is a scaling by o« of the corresponding fiber of D™™.

9. A KEY LEMMA

Given a function with prescribed smoothness, the following key lemma allows us to construct a bundle
satisfying certain conditions, as well as assert that the base manifold has controlled reach. We decompose
R™ as RY @ R™~ 4. When we write (x,y) € R™, we mean x € R¢ and y € R* 4.

Lemma 15. Let the following conditions hold.
(1) Suppose F:B,(0,1) = R is C*—smooth.
(2)

(32) 07y Fxy) < Co

for (x,y) € BR(0,1) and || < k.
(3) Forx € RY andy € R4 and (x,y) € Bn(0,1), suppose also that

(33) c1lyl? + 0] < [F(x,y) + p?] < Cillyl* + p?,
where
(34) O<p<c

where ¢ is a small enough constant determined by Co,cq1,Cq,k,n.
Then there exist constants cz,...,c7 and C determined by Co,c1,Cq,k,n, such that the following hold.

(1) For z € B,,(0,c2), let N(z) be the subspace of R™ spanned by the eigenvectors of the Hessian 9*F(z)
corresponding to the (n—d) largest eigenvalues. Let TThi(z) : R™ — N (z) be the orthogonal projection
from R™ onto N(z). Then |0%TTwi(z)] < C for z € Bn(0,c2),la] < k—2. Thus, N(z) depends
C*=2—smoothly on z.

(2) There is a C*~2—smooth map

(35) Y:Ba4(0,cq4) — Br_qa(0,c3),
with the following properties
(36) [W(0)] < Cps W] < C'*
on B4(0,cq), for 1 <|a| < k—2. Then, the set of all z= (x,y) € Ba(0,c4) X Bn_a(0,c3), such that
{2lMhi(2)9F(2) = 0} = {(x, ¥(x))|x € Ba(0,ca)}

is a C*~2—smooth graph.
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(3) We fix V¥ as above. Any point z € B (0,c7) can be expressed uniquely in the form z = (x,¥(x)) + v,
with x € Bq(0,¢5),v € N(x,¥(x)) NB,(0,ce). Define

(37) @y :B4(0,c4) x Brn_qa(0,c3) — B4(0,c5)
and
Dn_gq: Bd(oa C4) X and(oy C3) — Bn(O)CG)

by z = (x,¥(x)) +v. Then, @4 and ®n_q are C*"2—functions of z and their derivatives of order up
to k — 2 are at most C in absolute value.

Proof. We first study the gradient and Hessian of F. Taking (x,y) = (0,0) in , we see that

(38) c1p® < F(0,0) < Cyp?.
A standard lemma in analysis asserts that non-negative F satisfying must also satisfy

[VF(z)] < C(F(z))2 .
In particular, applying this result to the function F + p?, we find that

(39) |VF(0,0)| < Cp.

Next, we apply Taylor’s theorem : For (|x|> + \ylz)% < p%, for z = (z1,...,2zn) = (X,Y), estimates

and and Taylor’s theorem yield

[F(xy) + F(—x,—y) — ) 35F(0,0)ziz| < Cp?.
i,j=1

Hence, (33) implies that
n
clyl> —Cp* < Y dF(0,0)ziz; < C(lyl* + p?).
i,j=1
Therefore,

n
clyl? — Cp* 3z < )~ 03F(0,00ziz < € (yP + o3 12P)

i,j=1
for |z| = p?/3, hence for all z € R™. Thus, the Hessian matrix (aisz(O)) satisfies

(40) ( *Cgm o ) < (03F(0,0)) < ( +ng/3 2 )
That is, the matrices
(33F(0,0) — [~Cp*/ 3555 + ciy1i5-a] )
and
(c[o?28 + 8i1i5-a] — 2F(0,0)) .
are positive definite, real and symmetric. If (Ay;) is positive definite, real and symmetric, then

Ay |2 < AiiAjj

Al Ay
Aji Ay
must also be positive definite and thus has a positive determinant. It follows from that
[05F(0,0)] < Cp*/?,

for i # j, since the two—by-two submatrix

if i < d, and
[95F(0,0)| < C
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for any j. Therefore, if i < d and j > d, then

02,F(0,0)|* < [9%F(0,0)] - |[94F(0,0)] < Cp?/3.
Thus,
(41) 95F(0,0)] < Cp'/?

if1<i<dand d+1 <j<n. Without loss of generality, we can rotate the last n — d coordinate axes in
R™, so that the matrix
(95F(0,0))

L,j=d+1,..,n
is diagonal, say,

Aas1 - O
2 _ . ) .
(aiiF(O’O))i,j:dH,...,n - :
0 An
For an n x n matrix A = (ay;), let
IA]l oo := sup lagl.

(i,j)em]xn]

Then and show that

Oaxa | Oax1 -+ Oaxi
Oixa [Aa+1 -+ O

(42) EFFO0) sy | - | . < Cp'/?
Oixa| O -+ Ay -~

and

(43) c<A<C

for each j = d 4+ 1,...,n. We can pick controlled constants so that , and , imply the
following.

Notation 1. For A; satisfying , let ¢ be a sufficiently small controlled constant. Let Q be the set of all
real symmetric n X n matrices A such that

Oaxda | Oax1 -+ Oaxi
Oixa | Aa+1 -+ 0

(44) A— ) o . < c#.
Oixa| O -+ Aq

o0

Then, (aij(z))i’j:h”‘n for |z| < €4 belongs to Q by and . Here Ogqxd, 01xa and 0gx7 denote
all-zero d x d,1 x d and d x 1 matrices respectively.

Definition 13. If A € Q, let TThi(A) : R™ — R™ be the orthogonal projection from R™ to the span of
the eigenspaces of A that correspond to eigenvalues in [C2,C3l, and let TIio : R™ — R™ be the orthogonal
projection from R™ onto the span of the eigenspaces of A that correspond to eigenvalues in [—C1,Cq].

Then, A — TT1;(A) and A +— TTi4(A) are smooth maps from the compact set Q into the space of all real
symmetric n X n matrices. For a matrix A, let |A| denote its spectral norm, i.e.

Al ;= sup [|Avu].

[lul|=1
Then, in particular,
(45) [Thi(A) = TThi(A")] 4 |TTe (A) —TTie (A")] < C|[A = A'].
for A,A’ € Q, and
(46) [0ATThi(A)] + [04TTo (A)| < C

for A € Q,|af < k. Let
(47) ﬂhi(z) = ”hi (azF(Z))
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and
(48) ﬂlo (Z) = nlo (azF(Z)) )

for z < €4, which make sense, thanks to the comment following . Also, we define projections TTq : R™ —
R™ and TT,,_4 : R™ — R™ by setting

(49) Ma:(z1y..0yzn) = (21,.+.,24,0,...,0)
and

(50) Maa:(z1yeeeyzn) = (000302415 ey Zn ).
From and we see that

(51) TThi(0) — My—a| < Cp'/3.

Also, and together give

(52) [02TThi(z)] < C

for |z| < C4,lf < k — 2. From , and , we have

(53) Mhi(z) =TTy —al < Cp'/?
for |z| < p'/3. Note that TTni(z) is the orthogonal projection from R™ onto the span of the eigenvectors of
02F(z) with (n — d) highest eigenvalues; this holds for |z| < €4. Now set
(54) ((z) = T _aTThi0F(2)
for |z| < €4. Thus
(55) C(Z) = (Cd+1 (Z))---)Cn(z)) S Rnida
where
n
(56) Ci(z) = ) [Mni(z)]i;0,;F(2)
j=1
fori=d+1,...,n,lzl <T4. Here, [IThi(z)]i; is the 1j entry of the matrix TThi(z). From (52 . ) and (32]) we see
that
(57) [0%C(z)| < C

for |z| < €4,]a] < k—2. Also, since TT,,_4 and TTn;i(z) are orthogonal projections from R™ to subspaces of

R™, and yield
(58)
From , we have

1C(0)] < cp.

(59) %)=y 2 el S @) + Y M)y o2
0z 7 5 0z w2l a = (2l 0z¢0z;
for |zl <C4andi=d+1 ,n, =1,...,n. We take z=10 in . From and , we have
|a U—[hl 1]| <C
and
0
—F(z)| < Cp
aZj
for z =0. Also, from and , we see that
|Mhi(2)]5 — 84| < Cp3

forz=0,i=d+1,...,n,j=d+1,...,n

[Mhi(z)lyl < Cp'/3
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forz=0,andi=d+1,...,mand j=1,...,d; and
| 0°F

aZj aZe
forz=0,5=1,...,n,{=d+1,...,n.
In view of the above remarks, shows that
| aCl
aZe

for i, =d+1,...,n. Let Bq(0,7),Bn,_q(0,7) and B,, (0, 1) denote the open balls about 0 with radius r in
R4, R4 and R™ respectively. Thanks to , , , , and the implicit function theorem (see

Section 3 of [24]), there exist controlled constants Cs < €5 < 5C4 and a C*~?—map

(z) = 8jehe| < Cp*,

(60) (0) — A¢die| < Cp'/?

(61) Y:B4(0,€6) = Bn—_qa(0,Cs),
with the following properties:

(62) %W < C

on B4(0,¢¢), for |of <k —2.

(63) [¥(0)| < Cp.

Let z = (x,y) € B4(0,C6) X Bh_q(0,Cs5). Then

(64) {(z) = 0if and only ify = ¥(x).

According to and , the following holds for a small enough controlled constant ¢;. Let z € B (0,¢7).
Then TThi(z) and TT,,_gTThi(z) have the same nullspace. Therefore by , we have the following. Let
z € Br(0,C7). Then ((z) = 0 if and only if TTy;(z)0F(z) = 0. Consequently, after replacing €5 and Cg in ,
1) , by smaller controlled constants Co < Cg < 1267, we obtain the following results:

(65) Y:Bq4(0,C9) — Bn_qa(0,Cs)
is a C*2—smooth map;
(66) %W < C
on B4(0,Co) for |of < k —2;
(67) w(0)] < Cp;
Let
z=(x,y) € Bq(0,To) x Br_q(0,Cs).
Then,
(68) TMhi(z)0F(z) =0

if and only if y = ¥(x). Thus we have understood the set {TT;(z)0F(z) = 0} in the neighborhood of 0 in R™.
Next, we study the bundle over {TT;(z)0F(z) = 0} whose fiber at z is the image of TTy;(z). For x € B4(0,Co)
and v =(0,...,0,Va41,...,Vn) € {0} @ R" 4 we define

(69) E(x,v) = (x, ¥(x)) + [Mhi(x, ¥(x))lv € R™.
From and 7 we have
(70) 0% JE(x,v)| < C

for x € B4(0,C9),v € Br_4q(0,Cs), ||l < k—2. Here and below, we abuse notation by failing to distinguish
between R and R @ {0} € R™. Let E(x,v) = (E1(x,V),...,En(x,v)) € R™. Fori=1,...,d, gives

(71) Ei(x,v) = xi + thi(x»‘y(x))]i]‘\’j-
iz

Fori=d+1,...,n, (69) gives

(72) Ei(x,v) =Wi(x) + ) [Mhi(x, ¥(x)]5v5,
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where we write W(x) = (Way1(x)y ..., ¥Yn(x)) € R4, We study the first partials of E;(x,v) at (x,v) = (0,0).
From , we find that

0E;
(73) TXj(X)V) = 6L]
at (x,v) = (0,0), for i,j =1,...,d. Also, shows that [(0,¥(0))| < cp; hence gives
(74) [TThi (0,W(0)) — My —q| < Cp'/3,

forie{1,...,d} and j € {1,...,n}. Therefore, another application of yields

OE; 1/3
(75) v oV < Co/

forie[dl,je{d+1,...,n}and (x,v) = (0,0). Similarly, from we obtain
| i (0, W(0))]i5 — 84| < Cp'/?
fori=d+1,...,nand j=d+1,...,n. Therefore, from , we have

(76) | av; (x,v) = 8y] < Cp'/
for i,j = d+1,...,n, (x,v) = (0,0). In view of , , , , the Jacobian matrix of the map
(x1,...,xd,vd+1, ...,vn) — E(x,v) at the origin is given by
la 0(p'?)
(77) )

O(1) | In—a +0(p"?)

where I4 and I,,_4 denote (respectively) the d x d and (n— d) x (n— d) identity matrices, O(p'/3) denotes
a matrix whose entries have absolute values at most Cp'/3; and O(1) denotes a matrix whose entries have
absolute values at most C.

A matrix of the form is invertible, and its inverse matrix has norm at most C. (Here, we use (34)).) Note

also that that [E(0,0)] = |(0,¥(0))| < Cp. Consequently, the inverse function theorem (see Section 3 of [24])
and imply the following.

There exist controlled constants €1o and €17 with the following properties:

(78) The map E(x,Vv)is one-to-one when restricted toBg4(0,€19) X Bn_aq(0,C10).
(79) The image of E(x,T) : Bq(0,C10) X Bn_q(0, 6]70) — R™contains a ball B, (0,€11).
(80) In view of (78)), (79), the map

B 1B (0,11) — Bal0,10) % B_a(0, 210)

2
is well-defined.

(81) The derivatives of E~' of order < k — 2 have absolute value at most C.
Moreover, we may pick C1p in small enough that the following holds.
Observation 2.

(82) Let x € B4(0,C10), and letv € Ty (x, ¥(x))R™.

(83) Then, we can express vin the form v = TThi(x, ¥ (x))v* wherev® € {0} &R % and V7| < 2.

Indeed, if x € B4(0,¢C10) for small enough C1o, then by l. (166)), (67), we have |(x,¥(x))| < c for small c;
consequently, (83] . follows from , |. Thus , 79), (80)), (1) and . hold for suitable controlled
7

constants €10,C11. From 1 3)), we learn the following.
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Observation 3. Let x,x € B4(0,C10), and let v,v € By,_4(0, %610). Assume that v € Tlhi(x, ¥(x))R™ and
Ve YE)IR™ If (x,¥Y(x)) +v = (X, ¥(X)) +V, then x =X and v = V.

Observation 4. Anyz € Bn(0,€11) may be expressed uniquely in the form (x,¥(x))+v withx € Ba(0,€10),v €
i (%, W(x))R™ N By —a(0, $2). Moreover, x and v here are C*2—smooth functions of z € B (0,T11), with
derivatives up to order k — 2 bounded by C in absolute value.

O

10. CONSTRUCTING A DISC BUNDLE POSSESSING THE DESIRED CHARACTERISTICS

10.1. Approximate squared distance functions. Suppose that M € G(d,V,T) is a submanifold of R™.
Let

(84) T:=C127T.
For T > 0, let

Mz ={z] ilenjlf/I lz —z| < T}

Let d be a suitable large constant depending only on d, and which is a monotonically increasing function of
d. Let

(85) d := min(n, d).

We use a basis for R™ that is such that RY is the span of the first d basis vectors, and RY is the span of the
first d basis vectors. We denote by TT3, the corresponding projection of R™ onto R9.

Definition 14. Let asdff\,l denote the set of all functions F: Mz — R such that the following is true. For
every z € M, there exists an isometry ©, of R™ that fizes the origin, and maps R to a subspace parallel to
the tangent plane at z such that ¥, : Bn(0,1) = R given by

(36) o) = HEETR0)
satisfies the following.

ASDF-1 F, satisfies the hypotheses of Lemma |15 for a sufficiently small controlled constant p which will be
specified in Equation [88 in the proof of Lemma[I6. The value of k equals v+ 2, v being the number
in Definition [3 )

ASDF-2 There is a function F, : RY — R such that for any w € B (0,1),

(87) Fo(w) = F2 (TTg(w)) + w —TTg (w) P2,
where R4 C R4 C R™.
Let
I = (w5 (w)aF. (w) = 0},
where TTy; is as in Lemma (15| applied to the function ..

Lemma 16. Let F be in asdff\,[ and let T, and ©, be as in Definition .

(1) The graph T, is contained in RY.
(2) Let cq and cs be the constants appearing in m Lemma once we fix Co in @ to be 10, and
the constants c1 and Cq to 1/10 and 10 respectively. The "putative” submanifold

Mput = {Z S Mmin(C4,C5)f|nhi(Z)a}E(Z) = O} )

has a reach greater than ct, where ¢ is a controlled constant depending only on d.

Here Tlni(z) is the orthogonal projection onto the eigenspace corresponding to eigenvalues in the interval
[C2, C2] that is specified in Definition .
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Proof. To see the first part of the lemma, note that because of , for any w € B, (0,1), the span of
the eigenvectors corresponding to the eigenvalues of the Hessian of F = F. that lie in (c2,C3) contains the
orthogonal complement of RY in R™ (henceforth referred to as R“*a). Further, if w ¢ Ra, there is a vector
in R4 that is not orthogonal to the gradient 9F,(w). Therefore

r, C RY.

We proceed to the second part of the Lemma. We choose €12 to be a small enough monotonically decreasing
function of d (by and the assumed monotonicity of d, €y, is consequently a monotonically decreasing
function of d) such that for every point z € M, F, given by satisfies the hypotheses of Lemma

with p < €& where C is the constant in Equation [36| and where ¢ is a sufficiently small controlled constant.

Suppose that there is a point 2 in My such that d(2, M) is greater than min(ea,cs)T where ¢4 and cs

are the constants in . Let z be the unique point on M nearest to 2. We apply Lemma to F,. By
Equation [36]in Lemma there is a point Z € My such that

Clem’f

C

The constant ciem is controlled by ¢ and can be made as small as needed provided it is ultimately controlled
by d alone. We have an upper bound of C on the first-order derivatives of ¥ in Equation which is a
function whose graph corresponds via @, to M in a %—neighborhood of z. Any unit vector v € Tan®(z), is
nearly orthogonal to Z — Z in that

(88) lz—2z| < Cp <

ZCLem|i - 2’

(89) (E=29) < e e

We can choose e small enough that (89) contradicts the mean value theorem applied to ¥ because of the
upper bound of C on [0¥| from Equation
This shows that for every 2 € My its distance to M satisfies

min(cq,cs5)T

(90) d(Z, M) < >

Recall that
M'Put = {Z € Mmin(c4,65)f|ﬂhi(z)afz(z) = O} :

Therefore, for every point Z in My, there is a point z € M such that

(1) B, (2, ““““;CS)T) C ©. (Ba(0,c47) X By_a(0,c57)).

We have now shown that My lies not only in Myin(c,,cs)e but also in Muwiney,c5). This fact, in con-

2
junction with (36) and Proposition |I| implies that My is a manifold with reach greater than ct.
O

Let
(92) Dlﬁwrm - Mput

be the bundle over My wherein the fiber at a point 2 € M., consists of all points z such that

(1) 12—z <€j,7, and -
(2) z—w lies in the span of the top n — d eigenvectors of the Hessian of F evaluated at Z.

Observation 5. By Lemma M is a C"—smooth section of D%"’"”’ and the controlled constants c1,...,C7
and C and depend only on c1,Cq,Co,k and n (these constants are identical to those in Lemma . By ,
we conclude that the dependence n can be replaced by a dependence on d.



30 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

11. CONSTRUCTING CYLINDER PACKETS

We wish to construct a family of functions F defined on open subsets of B, (0,1) such that for every
M € G(4d,V, ) such that M C B, (0,1), there is some F € F such that the domain of ¥ contains Mx and the
restriction of F to M is contained in asdfj,[.

Let RY and R™ ¢ respectively denote the spans of the first d vectors and the last n — d vectors of the
canonical basis of R™. Let By and Bn_g respectively denote the unit Euclidean balls in R¢ and R™ 4.
Let TTq be the map given by the orthogonal projection from R™ onto RY. Let cyl := T(Bq X By_q), and
cyl? = 27(Bg x Bn_q). Suppose that for any x € 2TBq and y € 2TBy_q, Geyrz : REGR™ 4 — R is given by

d)cylz (XJJ) = |1J|2,
and for any z ¢ cy1?,
cI)cyl2 (Z) =0.

Suppose for each i € [N] := {1,...,N}, x; € Bn(0,1) and o; is a proper rigid body motion, i.e.the
composition of a proper rotation and translation of R™ and that 0:i(0) = x;4.
For each i € [N], let cyl; := oi(cyl), and cyl? := oi(cyl?). Note that x; is the center of cyl;.

We say that a set of cylinders Cy, := {cy14,..., cylZN} (where each cyl? is isometric to cy1?) is a cylinder
packet if the following conditions hold true for each 1.
Let S; = {cylizl, cyll‘S ‘} be the set of cylinders that intersect cyliz. Translate the origin to the

center of cyl? (i.e.x;) and perform a proper Euclidean transformation that puts the d—dimensional central
cross-section of cyl? in R4,

There exist proper rotations Uy, ,..., Uiy

respectively of the cylinders cyliz] y...,cyl? in Si such that

I\S
U;, fixes the center x;; of cylizj and translations Try,,... »Tri\s” such that
(1) For each j € [ISl], Tri; Uy, cylizj is a translation of cy1? by a vector contained in R¢.
(2) f (Id — Uy, )v‘ < c12Tv —xy1, for each j in {1,...,[S;[}
(3) [MTri; (0)] < CT for each j in {1,...,|S;[}.
4) U; T'rl)ull cyl ) D Bq4(0,37).

We call {o1,...,0x} a packet if {07 (cyl),...,on(cyl)} is a cylinder packet.

12. CONSTRUCTING AN EXHAUSTIVE FAMILY OF DISC BUNDLES

We now show how to construct a set D of disc bundles rich enough that any manifold M € G(d,,V)
corresponds to a section of at least one disc bundle in D. The constituent disc bundles in D will be obtained
from cylinder packets.

Define

(93) 0:RY—[0,1]

to be a bump function that has the following properties for any fixed k for a controlled constant C.
(1) For all « such that 0 < |« <k, for all x € {0} U{x]|[x| > 1}

0%0(x) =0,
and for all x € {x||x| > 1}
B(x) =0
(2) for all x,
]6"‘9( | C,

and for |x| < %,
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Definition 15. Given a Packet 6 :={o1,...,0x}, define F° : |J; cyl; — R by
T'(2) Ma(o; ' (2)
Z Cbcylz(o szZ )e< = Oer = )

= cyl1?
(94) FO(Z) = Y 132 Z 6 (ﬂd(o- ](Z))>
cylfaz "

Definition 16. Let Ay and Ay be two d—dimensional affine subspaces of R™ for somen > 1, that respectively
contain points x1 and x2. We define <(A1,A2), the "angle between Ay and A", by

V1,V
<(Aq,A) = sup ( inf arccos (<1’2>>> .
X14viEA\x; \X2FV2EA2\X2 [villlvl

Let M belong to G(d,V,T). Let Y :={yi1,...,yn} be a maximal subset of M with the property that no
two distinct points are at a distance of less than % from each other. We construct an ideal cylinder packet
{cy12,..., cylzﬁ} by fixing the center of cyl? to be yi, and fixing their orientations by the condition that for
each cylinder cyl?, the d—dimensional central cross-section is a tangent disc to the manifold at y;. Given an
ideal cylinder packet, an admissible cylinder packet corresponding to M is obtained by perturbing the the
center of each cylinder by less than ¢12T and applying arbitrary unitary transformations to these cylinders

whose difference with the identity has a norm less than C ?

Lemma 17. Let M belong to G(d,V,T) and let {cyly,..., cylyg} be an admissible packet corresponding to
M

Then,
FO € asdf},.
Proof. Recall that asdff\,l denotes the set of all F: Mz — R (where T =Cj,1 and M3z is a T—neighborhood
of M) for which the following is true:

e For every z € M, there exists an isometry © of H that fixes the origin, and maps R¢ to a subspace
parallel to the tangent plane at z satisfying the conditions below.
Let £, : Bn(0,1) = R be given by
F(z+tO(w))
T

Then, £,
(1) satisfies the hypotheses of Lemma [15| with k = r 4 2.
(2) For any w € By,
(95) Fo(w) = F2 (TTg(w)) + w — T (w) P2,
where R™ D R4 D R4, and TT3 is the projection of R™ onto R4,
For any fixed z € M, it suffices to check that there exists a proper isometry © of H such that :
(A) The hypotheses of Lemma [15| are satisfied by
FO(z + TO(w))
- 2

(96) Fo(w):

b

and
B)
F2(w) = F2 (Ma(w) + lw — TTa(w)P,
where R™ D R4 D RY, and T3 is the projection of R™ onto RA,
We begin by checking the condition (A). It is clear that ?S :Bn(0,1) — R is C*—smooth.
Thus, to check condition (A), it suffices to establish the following claim.
Claim 4. There is a constant Co depending only on d and k such that
ca.1 0% Fo(x,y) < Co for (x,y) € Bn(0,1) and 1 < |af < k.

XYz
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C4.2 For (x,y) € B (0,1),
cillyl? + % < Fo(x,y) + 021 < Ciliyl? + o],

where, by making c12 and C12 sufficiently small we can ensure that p > 0 is less than any constant
determined by Co,c1,Cq,k, d.

Proof. That the first part of the claim, i.e.(C4.1) is true follows from the chain rule and the definition of
?S (x,y) after rescaling by T. We proceed to show (C4.2). For any i € [N] and any vector v in R%, For p
taken to be the value from Lemma we see that for a sufficiently small value of €1, = % (controlled by d
alone), and a sufficiently small controlled constant as the value of ¢q2, (97) and follow because M is a

manifold of reach greater or equal to T, and consequently Proposition [I] holds true.

(97) Ixi — TTaxi] < %

(98) < (01(RY), Tan(TMas(x:), M) < %.

Making use of Proposition |1 and Claim |1} we see that for any xi,x; such that |x; —x;| < 37,

(99) <(Tan(TTaq(x1), M), Tan(TTaq(x5), M)) < 137‘)0

The inequalities , and imply (C4.2), completing the proof of the claim. O

We proceed to check condition (B). This holds because for every point z in M, the number of i such that
the cylinder cyl; has a non-empty intersection with a ball of radius 21/2(7) centered at z is bounded above
by a controlled constant (i.e.a quantity that depends only on d). This, in turn, is because M has a reach
of T and no two distinct yi,y; are at a distance less than % from each other. Therefore, we can choose © so
that ©(TT;(w)) contains the linear span of the d—dimensional cross-sections of all the cylinders containing z.
This, together with the fact that H is a Hilbert space, is sufficient to yield condition (B). The Lemma now

follows. H

Definition 17. Let F be set of all functions F° obtained as {cyliz}ie[m ranges over all cylinder packets
centered on points of a lattice whose spacing is a controlled constant multiplied by T and the orientations are
chosen arbitrarily from a net of the Grassmannian manifold Gry (with the usual Riemannian metric) of scale
that is a sufficiently small controlled constant.

By Lemma [17] F has the following property:

Corollary 18. For every M € G that is a CT—submanifold, there is some FeF that is an approrimate-
squared-distance-function for M, i. e. the restriction ofiE to Mz is contained in asdf),.
13. FINDING GOOD LOCAL SECTIONS

Definition 18. Let (x1,Y1)y..., (XNn,YN) be ordered tuples belonging to Bq x Bn_q, and let r € N. Recall
that by definition[3, the value of v is 2. However, in the interest of clarity, we will use the symbol v to denote
the number of derivatives. We say that that a function

f:Bg — Bn_q

is an e—optimal interpolant if the C*—norm of f (see Definition @)) satisfies

[fller < e
and
N N
100 f(xi) —yil> < CNe + inf f(xi) —yil?
( ) ;| ( 1) y1| = {f:HfHCrgC*]c};| ( 1) yl| y

where ¢ and C > 1 are some constants depending only on d.



TESTING THE MANIFOLD HYPOTHESIS 33

FIGURE 6. Optimizing over local sections.

13.1. Basic convex sets. We will denote the codimension n—d by n. It will be convenient to introduce the
following notation. For some i € N, an "i—Whitney field" is a family P = {P*}xcE of i dimensional vectors
of real-valued polynomials P, indexed by the points x in a finite set E C RY. We say that P= (Px)xcE is a
Whitney field "on E", and we write Whl'(E) for the vector space of all i—Whitney fields on E of degree at
most T.

Definition 19. Let C"(RY) denote the space of all real functions on RS that are T—times continuously
differentiable and
sup sup |6°‘f|x| < oo.
Jo| <7 xeRd
For a closed subset U € RY such that U is the closure of its interior U°, we define the C"™—norm of a
function f: U — R by

(101) ]

¢r(u)) = Sup sup Ia"‘f’XI.
J|<rxeue

When U is clear from context, we will abbreviate ||f||cr(u) to ||f]lcr-

Definition 20. We define C"(Bg,Bn) to consist of all f: Bq — Bn such that f(x) = (f'(x),...,f*(x)) and
for each i € i, f; : Bq — R belongs to CT(Bg). We define the C*—norm of f(x) := (f'(x),...,f*(x)) by
Ifllcr (B4,Bx) = Sup sup sup |6°‘(<f,v))|xl.
lx|<TrvEBA XxEB4
Suppose F € C"(Bq), and x € By, we denote by J(F) the polynomial that is the v*" order Taylor approzi-

mation to F at x, and call it the “jet of F at x".

IfP = {Px}xecE is an n—Whitney field, and F € C"(Bg, B ), then we say that “F agrees with P " or “F is an
extending function for P ", provided Jx(F) = Py for each x € E. If ET D E, and (P{)xce+ is an i—Whitney
field on EY, we say that Pt “agrees with P on E" if for all x € E, P, = P{. We define a C"—norm on
n—Whitney fields as follows. If Pe WhI'(E), we define

—

(102) [IP|

cr(e) = f|[Fllergy,80))
where the infimum is taken over all F € C"(Bq4, Bs) such that F agrees with P.

We are interested in the set of all f € C"(Bg4,Bn) such that ||f|[cr(g,,B,) < 1. By results of Fefferman (see
page 19, [I3]) we have the following.

Theorem 19. Given € > 0, a positive integer v and a finite set E C RY, it is possible to construct in time
and space bounded by exp(C/e)|E| (where C is controlled by d and r), a set ET and a convez set K having the
following properties.
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e Here K is the intersection of m < exp(C/e)[E| sets {x|(xi(x))? < Bi}, where ai(x) is a real valued
linear function such that x(0) =0 and ;i > 0. Thus

K= {xlvi € [m], (oi(x))? < Bi} C Why (EF).
. Ifﬁ € Whl(E™) such that Hl_j| cr(e) < 1—¢, then there exists a Whitney field Pt €K, that agrees with

P on E.
o Conversely, if there exists a Whitney field Pt €K that agrees with P on E, then ||ﬁ||CT(E] <T+e.

For our purposes, it would suffice to set the above € to any controlled constant. To be specific, we set €
to 2. By Theorem 1 of [I2] we know the following.

Theorem 20. There exists a linear map T from C"(E) to C"(RY) and a controlled constant C such that
Tf|E =T and HTf”Cr(]Rd) S CHfHCf(E),

Definition 21. For{«;} asin Theorem letK C @?:1 Wh! (ET) be the set of all (x1,...,Xn) € @?:1 Wl (ET)
(where each xi € Wh!(E™)) such that for each i € [m]

D (&il(x)))* < Bi
j=1
Thus, K is an intersection of m convex sets, one for each linear constraint ;. We identify @11 Whl (ET)
with th(E"') via the natural isomorphism. Then, from Theorem and Theoremwe obtain the following.
Corollary 21. There is a controlled constant C depending on v and d such that
o [If P is a i— Whitney field on E such that ||ﬁ||cr(E,]Rﬁ) < C71, then there exists a — Whitney field
P+ € K, that agrees with P on E.
o Conversely, if there exists a n—Whitney field P* € K that agrees with P on E, then ||P||cr (g rn) < C.
13.2. Preprocessing. Let € > 0 be an error parameter.

Notation 2. Forn € N, we denote the set {1,...,n} by m]. Let {x1,...,xn} C R%.

Suppose X1,...,Xn is a set of data points in RY and yi,...,yn are corresponding values in R™. The
following procedure constructs a function p : [N] — [N] such that {x,)}iern) is an €—net of {x,...,xn}.
For 1 =1 to N, we sequentially define sets S;, and construct p.

Let Sy :={1} and p(1) := 1. For any i > 1,

(1) if{j :j € Si—q and |xj—xi| < €} # 0, set p(i) to be an arbitrary element of {j : j € Si_7 and |x; —xi| < €},
and set S; :=S;_1,
(2) and otherwise set p(i) :=1 and set S; := S;_7 U{i}.
Finally, set S := Sy, N = |S| and for each i, let

h(i):={j: p(j) =i}
For i € S, let p; := N~'|h(i)|, and let

o 1 .
(103) v (|hm> 2 v
jen(i)

It is clear from the construction that for each i € [N], [x, (i) —xi| < €. The construction of S ensures that
the distance between any two points in S is at least €. The motivation for sketching the data in this manner
was that now, the extension problem involving E = {x;|i € S} that we will have to deal with will be better
conditioned in a sense explained in the following subsection.

13.3. Convex program. Let the indices in [N] be permuted so that S = N]. For any f such that ||f||c2 <
C~'c, and |x —y| < €&, we have [f(x) — f(y)| < €&, (and so the grouping and averaging described in the
previous section do not affect the quality of our solution), therefore we see that in order to find a é—optimal
interpolant, it suffices to minimize the objective function

R
= Z Wil — P, (x0)1%,
iz
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over all P € K C Wh(E™), to within an additive error of €, and to find the corresponding point in K. We
note that C is a convex function over K.

Lemma 22. Suppose that the distance between any two points in E is at least €. Suppose Pe Whl(E*) has
the property that for each x € E, every coefficient of Py is bounded above by c'€2. Then, if ¢’ is less than
some controlled constant depending on d,

”ﬁHCZ(E) <L
Proof. Let
B 10(x — z)
f(x) = ZEZEe ( = ) P, (x).

By the properties of 0 listed above, we see that f agrees with P and that ||f]c- ra) < 1if ¢’ is bounded above
by a sufficiently small controlled constant. O

Let zopt € K be any point such that
C(Zopt) = inf ((z )

z’eK
Observation 6. By Lemma we see that the set K contains a Euclidean ball of radius c'€? centered at the
origin, where ¢’ is a controlled constant depending on d.
It follows that K contains a Euclidean ball of the same radius c'€% centered at the origin. Due to the fact
that the the magnitudes of the first m derivatives at any point in E* are bounded by C, every point in K is
at a Euclidean distance of at most cN from the origin. We can bound N from above as follows:

C
Ngé—d.

=2

Thanks to Observation [6] and facts from Computer Science, we will see in a few paragraphs that the
relevant optimization problems are tractable.

13.4. Complexity. Since we have an explicit description of K as in intersection of cylinders, we can construct
a “separation oracle", which, when fed with z, does the following.

o Ifz € Kithen the separation oracle outputs “Yes."
e If z ¢ K then the separation oracle outputs “No" and in addition outputs a real affine function
a:Wh™(E") — R such that a(z) < 0 and vz’ € K a(z’) > 0.

To implement this separation oracle for K, we need to do the following. Suppose we are presented with a
point x = (x1,...,xu) € Wh(E"), where each x; € Wh](E*').
(1) If, for each i € [m],

n
Z‘Xlxj SBI

j=1

holds, then declare that x € K.
(2) Else, let there be some iy € [m] such that

(o (%)% < Bio-

M

1

j
Output the following separating half-space :

{(y1,..-»y Z(xlo X] “10 j Xj) <0}

The complexity Ag of answering the above query is the complexity of evaluating o (x;) for each i € [m]
and each j € [n]. Thus

(104) Ao < fim(dim(K)) < CnR2.
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Claim 5. For some a € K,
B(a,27") C {z € K[((2) — C[zopt) < €} C B(0,2"),
where L can be chosen so that L < C(1 + |log(€)l).

Proof. By Observation @ we see that the diameter of K is at most Cé~¢ and K contains a ball By of radius
2-T. Let the convex hull of By and the point Zopt be Ky. Then,

{z € Knlg(2) — C(zopt) < €} C {z € K[¢(2) — L(2opt) < €}

because K is convex. Let the set of all P € Wh™ (E™) at which

C _Zulhjl_ Xi X1)| =0

be the affine subspace H. Let f: Whl'(E*) — R given by
f(X) = d(X, Z0‘pt) = |X - Zopt|>

where | - | denotes the Euclidean norm. We see that the magnitude of the gradient of ¢ is bounded above by
CN at Zopt, and the Hessian of ¢ is bounded above by the Identity. Therefore,

{z € Knlt(z) — U(zopt) < €} 2 {z € Kn|2CN(f(2)) < &}
We note that

€
€ Kn|2CN(f(2)) < €} =Kn NB ( zopt, —= | ,
{z € Ky €} =Kn (z pt 2CN>

where the right hand side denotes the intersection of K}, with a Euclidean ball of radius %ﬁ and center zopt.

By the definition of Ky, Ky N B (zopt, zciﬂ) contains a ball of radius 272", This proves the claim. a

K))

Given a separation oracle for K € R™Mdim(K)) and the guarantee that for some a € K,

(105) B(a,27") C{z € K|¢(z) — C(zopt) < €} C B(0,2"),
if € > €+ {(zopt), Vaidya’s algorithm (see [36]) finds a point in KN {z|{(z) < €} using
O(dim(K)AoL’ + dim(K)3-38L")

arithmetic steps, where L’ < C(L + |log(€))|). Here A is the number of arithmetic operations required to
answer a query to the separation oracle.
Let €, denote the smallest real number such that

(1)
€yq > €.
(2) For any € > €,q, Vaidya’s algorithm finds a point in K N{z|¢(z) < €} using
O(dim(K)AoL’ + dim(K)3-38L")

arithmetic steps, where L’ < C(1 + |log(€))]).

A consequence of (105) is that e, € [275,25F1]. Tt is therefore clear that €,, can be computed to within
an additive error of € using binary search and C(L + |In €]) calls to Vaidya’s algorithm.

The total number of arithmetic operations is therefore O(dim(K)AyL? + dim(K)3-3312) where L < C(1 +
| log(€)1).
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FIGURE 7. Patching local sections together: base manifold in blue, final manifold in red

14. PATCHING LOCAL SECTIONS TOGETHER

For any i € [N], recall the cylinders cyl; and Euclidean motions o; from Section
Let base(cyl;) := 0i(cyl NRY) and stalk(cyl;) := 0i(cyl NR™4). Let fi : B4 — Bn_q be an arbitrary
C? function such that
. 2T
(106) Ifilles < =
Let fi : base(cyl) — stalk(cyl) be given by
(107) fi(x) = Tf (%) .

Now, fix an i € [N]. Without loss of generality, we will drop the subscript i (having fixed this i), and
assume that o; := id, by changing the frame of reference using a proper rigid body motion. Recall that Fo
was defined by , ie.

5 Fe(Tw
Fo(w) = (fz ),
(now 0 and o; = id play the role that z and © played in ) Let N(z) be the linear subspace spanned by
the top n — d eigenvectors of the Hessian of £ at a variable point z. Let the intersection of

Bd(o) 1) X Bn—d(o)])

with
{Z|(VF®|,,v) = Ofor allv € T (2)(R™)}

be locally expressed as the graph of a function g;, where

(108) gi :Ba(0,1) - R™ 4,
For this fixed i, we drop the subscript and let g : B4(0,1) — R™~¢ be given by
(109) g:=gi.

As in , we see that
I = {w|TThi(W)OF°(w) = 0}

lies in Ra, and the manifold M obtained by patching up all such manifolds for i € [N] is, as a consequence
of Proposition [I| and Lemma [15| a submanifold, whose reach is at least ct. Let

D2 — Mo

be the bundle over M defined by .
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Let s; be the local section of D™ := D™ defined by
(110) 2+ si(2)lz € Ui} = 01 (B + i} xepasa(en) ) »

where U := Ui € My is an open set fixed by (110). The choice of £ in (106)) is small enough to ensure
that there is a unique open set U and a unique s; such that (110)) holds (by Observations and . We

define Uj for any j € [N] analogously. Next, we construct a partition of unity on Mpy¢. For each j € [N], let
05 : Mpur — [0, 1] be an element of a partition of unity defined as follows. For x € cyly,

_ ﬂd(oflx) . .
8;(x) = 0 (T ) y, ifx €cyly;
otherwise.
where 0 is defined by . Let
éj (z)

2 jrem 950 (2)

We use the local sections {s;lj € [N]}, defined separately for each j by (110) and the partition of unity
{Bi}icn, to obtain a global section s of DE™ defined as follows for x € U;.

(111) s(x) =) 05(x)s;(x).
]

jelN

Sj (Z) =

We also define f:V; — B4 by

(112) {z+s(z)lz € Ui} :={x + Tf(x/ T} ey, -
The above equation fixes an open set V; in RY. The graph of s, i.e.
(113) {(x+ s(x))‘x € Mput} =t Myin

is the output manifold. We see that (113)) defines a manifold My, by checking this locally. We will obtain
a lower bound on the reach of Myi, in Section [T5}

15. THE REACH OF THE OUTPUT MANIFOLD

Recall that F° was defined by , i.e.

FO(Ttw)
T2

(now 0 and o; = id play the role that z and © played in ) We place ourselves in the context of

Observation 4 By construction, F° : B,, — R satisfies the conditions of Lemma therefore there exists a
map

Fo(w) ==

b

D : Bn(o»éﬂ) - Bd(03610) X Bn_ga <O) (:120) )

satisfying the following condition.
(114) @(z) = (x,MTn—qv),
where

z=x+g(x) +v,
and

v e N(x+g(x)).

Also, x and v are C"—smooth functions of z € B, (0,Cy71). with derivatives of order up to r bounded above
by C. Let

(115) d : B, (0,E11%) — Bal0,E10T) X Bn_a (o, C‘z‘”)

be given by
D(x) = TD(x/7).
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Let Dy be the disc bundle over the graph of g, whose fiber at x + g(x) is the disc

B (900, 53 ) (Vx4 gl

By Lemma [23] below, we can ensure, by setting €12 < ¢ for a sufficiently small controlled constant ¢, that
the derivatives of ® — id of order less or equal to r = k — 2 are bounded above by a prescribed controlled
constant c.

Lemma 23. For any controlled constant c, there is a controlled constant ¢ such that if €12 < ¢, then for
each i € [N], and each |«| < 2 the functions @ and g, respectively defined in and satisfy

[0*(® —id)| <c.

[0%gl <c.

Proof of Lemma[23 We would like to apply Lemma [TF] here, but its conclusion would not directly help us,
since it would give a bound of the form

[0*®| < C,

where C is some controlled constant. To remedy this, we are going to use a simple scaling argument. We
first provide an outline of the argument. We change scale by "zooming out", then apply Lemmal[I5] and thus
obtain a bound of the the desired form

[0*(® —1id)| <c.

We replace each cylinder cyl; = o; (cyl) by cle]. = 05(T(Ba % (CBn_q))). Since the guarantees provided by
Lemma |15/ have an unspecified dependence on d (which appears in ), we require an upper bound on the
"effective dimension" that depends only on d and is independent of C. If we were only to "zoom out", this
unspecified dependence on d renders the bound useless. To mitigate this, we need to modify the cylinders
that are far away from the point of interest. More precisely, we consider a point x € c{;li and replace each
cyl; that does not contribute to ®(x) by c")vrlj, a suitable translation of

T(Ba x (CBn—qa))-
This ensures that the dimension of

{Z 7\]‘\))"}\)' S R,V]‘ [S 6]' (Rd)}
j

is bounded above by a controlled constant depending only on d. We then apply Lemma [15] to the function
FO(w) defined in (117). This concludes the outline; we now proceed with the details.

Recall that we have fixed our attention to cyl;. Let
C§71 = T(Bg x (Cand)) = Cyli)

where C is an appropriate (large) controlled constant, whose value will be specified later.
Let

cyl? :=2%(Bq x (CBy_q)) = cyl2.
Given a Packet 0 :={01,...,0x}, define a collection of cylinders
fey3,lj € NI}
in the following manner. Let
S:={j € Nl|lo;(0)] < 6T} .
Let
Ti={j € INI[IMa(0;(0))] < Cand|o; (0)] < 4v2C7},
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and assume without loss of generality that T = [N] for some integer [N]. Here 4+/2C is a constant chosen to

ensure that for any j € [N]\ [N, cyvlzj N c3;12 ={. Forv e R", let Tr,, : R® — R™ denote the map that takes

x to x +v. For any j € T\S, let
Vj = ]—[dOj (0)
Next, for any j € T, let

- 0j, if S;
05 = S\ X
j Try,, ifjeS\T;

For each j € T, let cyl; := 65(cyl). Define FO : Ujet cyl; — R by
o 2 Ma(6; ' (2))
L [Malo 20 (M%)

cyﬁ.ziaz
Ma (65" (2))
£ o)

cyizjaz

(116) FO(z) =

Taking €12 to be a sufficiently small controlled constant depending on C, we see that
o Fo(Caw)

restricted to B, satisfies the requirements of Lemma Choosing C to be sufficiently large, for each
|| € [2,K], the function @ defined in (114) satisfies

(118) %] < c,
and
for each || € [0,k — 2], the function g defined in satisfies
(119) [0%gl < c.
Observe that we can choose j € [N]\ [N] such that |6;(0)] < 10T, and for this j, cle]. Ncyl = 0 and so
(120) ac1>|ﬁ,1 o, (0) = -

The Lemma follows from Taylor’s Theorem, in conjunction with (118)), (119 and (120).

Observation 7. By choosing C > 2/¢11 we find that the domains of both ® and ®~' may be extended to
contain the cylinder (%) Bg X Bn_q, while satisfying (M)

O

Since [9%(® — Id)(x)| < ¢ for || < r and x € (%) B4 X Br_q, we have 0%(®~ " —Id)(w)| < c for |a| < 7

and w € Bq X B;,_gq. For the remainder of this section, we will assume a scale where T = 1.
For u € U;, we have the following equality which we restate from (111]) for convenience.

s(w) = ) 0j(ws;(w).
jeN]
Let TTpsewa (for "pseudonormal bundle") be the map from a point x in cyl to the basepoint belonging to
Myt of the corresponding fiber. The following relation exists between TT,seq and @:
Mpsewa = O ' ®.
We define the C¥~2 norm of a local section sj over U C U5 NU; by
Isillcr—2quy = llsj © @ lcx2 g (uy)-
Suppose for a specific x and t,

x + f5(x) =t +s5(t),
where t belongs to U; N'U;. Applying TTysewa to both sides,

Mpseuwal(x +fj(x)) =t.
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Let
Mpseua(x + fj(x)) = d;(x).
Substituting back, we have
(121) x4+ fj(x) = d;(x) + s5(d;(x)).
By deﬁnition we have the bound ||f; ||Ck*2(c|>].*‘ (uinu;)) < ¢ We have
Mpsewa(x +f5(x)) = (Mpsewa — Ma) (x + f5(x)) +x,
which gives the bound
5 —Tdflcrz 1 (unuy ) < ©

Therefore, from (121)),

(122) Is5 © djllcr2pt (uinuy)) < ¢
Also,
(123) ;" o @ —Td||cr 2y Uiy ) < €

From the preceding two equations, it follows that

(124) lIsillex—2(uinu;) < e
The cutoff functions 0; satisfy

(125) 18l cx—2 (u;nu;) < C.

Therefore, by ,

(126) sl cx—2(uinu;) < Cey

which we rewrite as

(127) Isllck—2(unu;) < -
We will now show that
[fllcx—2(vyy < c.
By (112) in view of T =1, for u € U, there is an x € V; such that
u—+s(u) =x+ f(x).
This gives us
Ma(u+s(u) =x.
Substituting back, we have
Ma(w+s(u)) + (Mg (uw+s(u))) =u+s(u).
Let
Y(u) :=Ma(u+ s(u)).
This gives us

(128) fp(w) = (u—1(w) + s(w).
By (127) and the fact that [0%(® — Id)(x)| < ¢ for |&| < T, we see that
(129) W —1Id[|cx—2(u,) <c.

By (128),(129) and (127)), we have |[f o b[|cr—2(y,) < c.

By (129)), we have
=" —Tdllcx—2(v,) <c
Therefore
(130) [fllcx—2(v) <c.

For any point u € My, there is by Lemma for some j € [N], a U; such that My NB(u,1/10) C U;
(recall that T = 1). Therefore, suppose a,b are two points on My such that |[a — b] < 1/20, then
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Mpsewala) = Mpsena(b)l < 1/10, and so both Tysevala) and Tysewa(b) belong to Uj for some j. Without
loss of generality, let this j be i. This implies that a,b are points on the graph of f over Vi. Then, by (130)
and Proposition [1, Myi,, is a manifold whose reach is at least ct.

16. THE MEAN-SQUARED DISTANCE OF THE OUTPUT MANIFOLD FROM A RANDOM DATA POINT
Let Mypt be an approximately optimal manifold in that
reach(Mgpe) > Cr,
and
vol(Mopt) < V/C,
and

Epd(x, Mopt)? < inf  Epd(x, M)? +e.
Meg(d,Cr,cV)

Suppose that 6 is the packet from the previous section and that the corresponding function F° belongs to
asdf(Mopt). We need to show that the Myi,, constructed using 0 serves the purpose it was designed for;
namely that the following Lemma holds.

Lemma 24.
Ex%Pd(x)Mﬁn)z <G (Ex%Pd(X)Mopt)z + 6) .

Proof. Let us examine the manifold M. Recall that My, was constructed from a collection of local

sections {si}icr, one for each i such that o; € 6. These local sections were obtained from functions fj :

base(cyl;) — stalk(cyl;). The s; were patched together using a partition of unity supported on M.
Let Pin be the measure obtained by restricting P to U;¢yjcyl;. Let Poutr be the measure obtained by

restricting P to (Ujeqnjcyl;) . Thus,
P = Pout + Pin.
For any M € G,
(131) Epd(x, M)> = Ep,  d(x, M)?+Ep,_ d(x, M)

We will separately analyze the two terms on the right when M is M. We begin with Ep
We make two observations:

(1) By (106), the function f;, satisfies

d(X» Mfin)2~

out

§ T
[fillLee < =
T

(2) By Lemma the fibers of the disc bundle D*™ over My N cyl; are nearly orthogonal to
base(cyl;).
Therefore, no point outside the union of the cyl; is at a distance less than T(1 — %) to Mgin.
Since F° belongs to asdf(Mpt), we see that no point outside the union of the cyl; is at a distance less
than T(1 — Cc2) to Mope. Here C is a controlled constant.
For any given controlled constant c, by choosing €17 (i.e. T) and c12 appropriately, we can arrange for

(132) Ep,..[d(x, Mtin)?] < (14 ¢)Ep,, [d(x, Mopt)?]

to hold.

Consider terms involving P;, now. We assume without loss of generality that P possesses a density, since
we can always find an arbitrarily small perturbation of P (in the {?—Wasserstein metric) that is supported
in a ball and also possesses a density. Let

Mout : Uieneyly = Mput

be the projection which maps a point in U;cxcyl; to the unique nearest point on Mpy¢. Let ppy denote
the d—dimensional volume measure on M.

Let {PZ }zem,... denote the natural measure induced on the fiber of the normal disc bundle of radius 27T
over z.
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Then,

(133) Ep,, [d(x, Min)?] = J B [d(x, Miin)ldppu (2).
Mput

Using the partition of unity {0;}j¢x) supported in My, we split the right hand side of 1)

(134) J E"p{-ﬂ [d(X,Mﬁn)z]duput(Z) = Z J ei(Z)E”P{'n [d(xnyin)z]deut(Z)-
Moput ieN Moput

For x € cyl;, let Ny denote the unique fiber of D**™® that x belongs to. Observe that M¢in NNy consists
of a single point. Define d(x, Myin) to be the distance of x to this point, i.e.

d(x, Mfin) = d(x, Mgin N Ny).
We proceed to examine the right hand side in (134).

By (136)
5 j 81 (2)Ep:, [d(x, Miin)lditpe(z) < 3 J 8:(2)Ep:. [d(x, Miin)?)ditpuue (2).

i Mput i Mput
For each i € [N], let Mfm denote manifold with boundary corresponding to the graph of fi, i.e.let
(135) fl‘I’L = {X + f ( )}xebase(cyl) .

Since the quadratic function is convex, the average squared "distance" (where "distance" refers to El) to
M¢in is less or equal to the average of the squared "distances" to the local sections in the following sense.

) IEAE N (WVINE ETRWEIESD il BN C Y G ETE)

i i
Mput Mput

Next, we will look at the summands of the right hand side. Lemma[23]tells us that Ny is almost orthogonal
to 0i(R%). By Lemma and the fact that each f; satisfies (130)), we see that

(136) d(x, ML) < d(x, M) < (1+co)d(x, Mi,).

Therefore,

> J 0:(2)Ep:, [d(x, M) dipui(z) < (1+c0) ) J 0:(2)Epz [d(x, M) ldppue (2).
i Mpul i Mpul

We now fix 1 € [N]. Let P! be the measure which is obtained, by the translation via 0;1 of the restriction
of P to cyl,. In particular, P* is supported on cyl.
Let pt .. be the push-forward of P' onto base(cyl) under My. For any x € cyl;, let v(x) € ML be the
unique point such that x —v(x) lies in o;(R™~¢). In particular,
V(X) =TTax + f; (ﬁdx).

By Lemma 23] we see that

J 0:(2)Ep: [d(x, M) ldiput (z) < CoEpslx — v(x)[%.
Mput
Recall that M, is the graph of a function f; : base(cyl) — stalk(cyl). In Section we have shown

how to construct f; so that it satisfies (106) and (137), where € = $§, for some sufficiently small controlled
constant c.

(137) Epi[fi(TTax) — Mn_ax|* < €+ inf  Epi|f(TTax) — Tn_ax|?.
2| ]| or <cT—2
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Let ffpt : base(cyl) — stalk(cyl) denote the function (which exists because of the bound on the reach
of Mopt) with the property that

Mopt Ncyl; = o0y ({X> f?pt(x)}xebase(cyl)> .
By , we see that
(138) Epilfi(TTax) — Thy_ax|?> < & +Epi[f0P (TTax) — Ty _ax|.
Lemma [23| and the fact that each f; satisfies , and show that
(139) Ep,, [d(x, Mtin)?] < CoEp,, [d(x, Mopt)?] + Col.
The proof follows from , and . O

17. NUMBER OF ARITHMETIC OPERATIONS
After the dimension reduction of Section |§|, the ambient dimension is reduced to
4 (N 1
Np I (%) +log s

n:=0
e2

where
Ny, =V (’Fd + (er)%d) .

The number of times that local sections are computed is bounded above by the product of the maximum
number of cylinders in a cylinder packet, (i.e.N, which is less or equal to %) and the total number of
cylinder packets contained inside By, N (c12T) ' Zn. The latter number is bounded above by (ci27) " ™N. Each
optimization for computing a local section requires only a polynomial number of computations as discussed

in Subsection Therefore, the total number of arithmetic operations required is bounded above by

exp (C (;{1) nln'r]> .

18. CONCLUSION

We developed an algorithm for testing if data drawn from a distribution supported in a separable Hilbert
space has an expected squared distance of O(e) to a submanifold (of the unit ball) of dimension d, volume
at most V and reach at least T. The number of data points required is of the order of

Npn* (%2) +ms!

n:=
e2

where

1 1
Np ::V<’['d+"td/2€d/2>)

and the number of arithmetic operations and calls to the black-box that evaluates inner products in the

ambient Hilbert space is
\%
exp <C (Td> nln"c_1> .
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APPENDIX A. PROOF OF LEMMA

Definition 22 (Rademacher Complexity). Given a class F of functions f: X — R a measure u supported
on X, and a natural number n € N, and an n—tuple of points (x1,...xn), where each xi € X we define the
empirical Rademacher complexity Ry (F,x) as follows. Let ¢ = (01,...,0n) be a vector of n independent
Rademacher (i. e. unbiased {—1, 1}—valued) random variables. Then,

Rn(F,x) := ]E(,l [sup ( GJ(XQ)] .
n | freF \i5

Proof. We will use Rademacher complexities to bound the sample complexity from above. We know (see
Theorem 3.2, [2]) that for all 6 > 0,

2log(2/8
(140) i [sup Euf—Eusf‘ < 2R((F,x) + Og(”} >1-5.
feF s
Using a “chaining argument" the following Claim is proved below.
Claim 6.
* /InN L
(141) Rs(}',x)§6+12J \/n (T"fs’ 21s)) g

T

When e is taken to equal 0, the above is known as Dudley’s entropy integral [10].

A result of Rudelson and Vershynin (Theorem 6.1, page 35 [3]) tells us that the integral in can be
bounded from above using an integral involving the square root of the fat-shattering dimension (or in their
terminology, combinatorial dimension.) The precise relation that they prove is

o0

(142) ro N, F, L2 () )dn < cj Faten (F)dn,

€

for universal constants ¢ and C.

From Equations (140)), (141) and (142), we see that if

00 2
s> :Cz ((J faty(]-")dy) —l—log1/8> ,

CeE

then,
P [sup ‘Epsf(xi) —E.f| > e} <1-06.
feF
]
APPENDIX B. PROOF OF CLAIM
We begin by stating the finite class lemma of Massart (|22], Lemma 5.2).
Lemma 25. Let X be a finite subset of B(0,7) C R™ and let 01,...,0n be i.i.d unbiased {—1,1} random

variables. Then, we have

1 « /2In|X
Es sup—ZO‘ixi §T7n||.
XGXni:1 n

We now move on to prove Claim[6] This claim is closely related to Dudley’s integral formula, but appears
to have been stated for the first time by Sridharan-Srebro [33]. We have furnished a proof following Sridharan-

Srebro [33]. For a function class 7 C RY and points x1,...,xs € X
> /InN
(143) RS(F,X)§6+12J \/n (n,]';,ﬁz(us))dn_

7
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Proof. Without loss of generality, we assume that 0 € F; if not, we choose some function f € F and translate
F by —f. Let M = sup;c# [|f|lL,(p,), which we assume is finite. For i > 1, choose oty = M2~" and let T;
be a oy-net of F with respect to the metric derived from L;(us). Here ps is the probability measure that is
uniformly distributed on the s points x1,...,xs. For each f € F, and i, pick an f; € T; such that f; is an
oii—approximation of f, i.e. [|f — fi[[r,(.,) < «i. We use chaining to write

N
(144) =f—fn+ D (F
j=1
where fy = 0. Now, choose N such that B < M27N <,
[ 1 s N
(145) R(F) = E fuggzﬁi flxi) — Fn(x4) +Z(fj(xi) —fj—1(xi))
€5 %4 j=1
B s s
(146) < E|sup-—- oy (f(xi) —fn(x)) | +E |sup - Gl(f] (xi) — f)—l (xi))
feF S 1 fer S5
- N s
147 < E f—f E - (Fix) —Fis
(147) < EEJQ(G, N>L2(p5)):| +,-Z1 Sup o 2101( j(xi) — 1(X1))]

We use Cauchy-Schwartz on the first term to give

(148) B sup(o~ Faage)| < B fsup ol IF = il u)
feF feF

(149) < e

Note that
(150) 15 =l e < IG5 == For =Dl < o+
(151) < 3.

We use Massart’s Lemma to bound the second term,
(152) E |sup — Zcf1 ﬁ (x1) —f] 1(x1))1 = E [sup(cr, (1? 1? 1)L (o)

fer S feEF
60+/In([T;)

(154) < —

Now, from equations (|147)), (149) and (154,

(155) R(F) < e+6io¢j\/lnN(°‘i»f)]—2(u))

=
(156) < €+1ZZ _OCH])\/IHN(OCJ-,.:,LZ(;LS))
(157) < e+12J - N 7 Lol g
(158) < e+1zj \/nN o0 F La(us))
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