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Abstract

Ruan-Tian deformations of the Cauchy-Riemann operator enable a geometric definition of (stan-
dard) Gromov-Witten invariants of semi-positive symplectic manifolds in arbitrary genera. We
describe an analogue of these deformations compatible with our recent construction of real
Gromov-Witten invariants in arbitrary genera. Our approach avoids the need for an embedding
of the universal curve into a smooth manifold and systematizes the deformation-obstruction
setup behind constructions of Gromov-Witten invariants.
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1 Introduction

The introduction of J-holomorphic curves techniques into symplectic topology in [14] led to def-
initions of (complex) Gromov-Witten (or GW-) invariants of semi-positive symplectic manifolds in
genus 0 in [18] and in arbitrary genera in [23, 24] as actual counts of simple J-holomorphic maps.
Local versions of the inhomogeneous deformations of the 0 j-equation pioneered in [23, 24] were later
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used to endow the moduli space of (complex) J-holomorphic maps with a so-called virtual funda-
mental class (or VFC) in [16, 6] and thus to define GW-invariants for arbitrary symplectic manifolds.

A real symplectic manifold (X,w,¢) is a symplectic manifold (X,w) with a smooth involution
¢: X —> X such that ¢*w=—w. Invariant signed counts of genus 0 real curves, i.e. those pre-
served by ¢, were defined for semi-positive real symplectic 4- and 6-manifolds in [30, 31] in the
general spirit of [18]. The interpretation of these counts in [29] in the general spirit of [16] removed
the need for the semi-positive restriction and made them amendable to the standard computational
techniques of GW-theory; see [21], for example. Building on the perspectives in [17, 29], genus 0
real GW-invariants for many other real symplectic manifolds were later defined in [8, 5]. The recent
work [10, 11, 12] sets up the theory of real GW-invariants in arbitrary genera with conjugate pairs
of insertions and in genus 1 with arbitrary point insertions in the general spirit of [16]. Following
a referee’s suggestion, we now describe these invariants in the spirit of [23, 24]; this description is
more geometric and should lead more readily to a tropical perspective on these invariants that has
proved very powerful in studying the genus 0 real GW-invariants of [30, 31].

A conjugation on a complex vector bundle V' — X lifting an involution ¢ on X is a vector bundle
involution ¢: V—V covering ¢ such that the restriction of ¢ to each fiber is anti-complex linear.
A real bundle pair (V, ¢) — (X, ¢) consists of a complex vector bundle V' — X and a conjugation ¢
on V lifting ¢. For example,

(TX,d¢) — (X,¢)  and  (XxC" ¢xc) — (X, 9),

where ¢: C" — C" is the standard conjugation on C", are real bundle pairs. For any real bundle
pair (V,¢)— (X, ¢), we denote by

AP (V, ) = (ALPV, ALPy)

the top exterior power of V' over C with the induced conjugation. A real symplectic manifold

~.

(X, w, @) is real-orientable if there exists a rank 1 real bundle pair (L, ¢) over (X, ¢) such that

wa(TX?) = wy(L)? and  ARP(TX,ds) ~ (L,$)®2. (1.1)

Definition 1.1. A real orientation on a real-orientable symplectic manifold (X,w, ¢) consists of

~

(RO1) a rank 1 real bundle pair (L, ¢) over (X, ¢) satisfying (1.1),

(RO2) a homotopy class of isomorphisms of real bundle pairs in (1.1), and

(RO3) a spin structure on the real vector bundle T'X (‘S@Q(L”‘)‘;>l< over X? compatible with the
orientation induced by (RO2).

By [10, Theorem 1.3], a real orientation on (X,w,®) orients the moduli space M, (X, B; J)® of
genus g degree B real J-holomorphic maps with [ conjugate pairs of marked points whenever the
“complex” dimension of X is odd. By the proof of [10, Theorem 1.5], it also orients the moduli
space ﬁl,l;k(X , B; J)? of genus 1 maps with k real marked points outside of certain codimension 1
strata. In general, these moduli spaces are not smooth and the above orientability statements
should be viewed in the usual moduli-theoretic (or virtual) sense.



The description in [17] of versal families of deformations of symmetric Riemann surfaces provides
the necessary ingredient for adapting the interpretation of Gromov’s topology in [16] from the
complex to the real setting and eliminates the (virtual) boundary of My ;. (X, B; J)?. A Kuran-
ishi atlas for this moduli space is then obtained by carrying out the constructions of [16, 6] in
a ¢-invariant manner; see [29, Section 7] and [7, Appendix]. If oriented, this atlas determines a
VEC for ﬁg,l;k(X,B; J)? and thus gives rise to genus g real GW-invariants of (X,w, ¢); see [10,
Theorem 1.4]. If this atlas is oriented only on the complement of some codimension 1 strata, real
GW-invariants can still be obtained in some special cases by adapting the principle of [4, 29] to
show that the problematic strata are avoided by a generic path; [10, Theorem 1.5]. In some impor-
tant situations, the real genus ¢ GW-invariants arising from [10, Theorem 1.3] can be described as
actual counts of curves in the spirit of [23, 24].

For a manifold X, denote by
H5 (X5 Z) = {us[S?]: ueC(S% X))}  Ho(X;Z)

the subset of spherical classes. There are two topological types of anti-holomorphic involutions
on P!; they are represented by

m,n: Pl — P! zZ—> =, —
For a manifold X with an involution ¢, denote by
HY(X;7)° = {u*[SQ]: ueC (5% X), uoo = gou} for c=1,1,
HYS(X;2)? = HY (X;Z)? OHY(X;Z)? < {Be Hy(X;Z): ¢ B=—B}
the subsets of o-spherical classes and real spherical classes.

Definition 1.2. A symplectic 2n-manifold (X, w) is semi-positive if
{c1(X),By=0 Y BeH5(X;Z) s.t.{w,B)>0, {c1(X),B)=3—n.
A real symplectic 2n-manifold (X, w, ¢) is semi-positive if (X,w) is semi-positive and

(er(X), B)

bno VY BeHYS(X;Z)? st. (w,B)>0, {¢(X),B)>2—n,
(e1(X),B) =1

VY BeH}(X;Z)? st. {(w,B)>0, (¢|(X),B)>2-n,
where 6,9 =1 if n=2 and 0 otherwise.

The stronger middle bound in the n = 2 case above rules out the appearance of real degree B
J-holomorphic spheres with {¢1(X), B)=0 for a generic one-parameter family of real almost com-
plex structures on a real symplectic manifold (X, w, ¢) and provides for the second bound in (3.63).
The latter in turn ensures that the expected dimension of the moduli space of complex degree B
J-holomorphic spheres in such a family of almost complex structures is not smaller than the ex-
pected dimension of the moduli space of real degree B J-holomorphic spheres.



Monotone symplectic manifolds, including all projective spaces and Fano hypersurfaces, are semi-
positive. The maps

T PP — Pl (Z1,..., 2, — [Z1,...,Zy,],
Nom : P21 — P2l [Z1,Za, ..., Zom—1, Zom] —> | = Z2, Z1, ..., —Zom, Zam—1],

are anti-symplectic involutions with respect to the standard Fubini-Study symplectic forms w;,
on P! and wo,, on P>~ respectively. If

k=0, a=(ay,...,a) € (ZM)F,

and Xn;ac]P’"*1 is a complete intersection of multi-degree a preserved by 7, then 7,,.4 =7,| Xpia 18
an anti-symplectic involution on X, with respect to the symplectic form wy;a =wy|x,,.,. Similarly,
if Xom.a C P2~ is preserved by N2m, then nom:.a = Nom| Xomia 18 an anti-symplectic involution on
Xom;a with respect to the symplectic form wom;a = wam| Xoma- Lhe projective spaces (]P’Qm_l7 Tom—1)
and (P*™~1 ny,,_1), as well as many real complete intersections in these spaces, are real orientable;
see [10, Proposition 2.1].

We show in this paper that the semi-positive property of Definition 1.2 for (X, w, ) plays the
same role in the real GW-theory as the semi-positive property for (X,w) plays in “classical” GW-
theory. For each element (J,v) of the space (3.3), the moduli space M, ;.1 (X, B; J, v)? of stable
degree B genus g real (J,v)-maps with | conjugate pairs of marked points and k real points is
coarsely stratified by the subspaces 90, (J, )¢ of maps of the same combinatorial type; see (3.28).
By Proposition 3.6, the open subspace

Mz (J, v)? < M, (J,v)?

consisting of simple maps in the sense of Definition 3.2 is cut out transversely by the {0; —v}-
operator for a generic pair (J,v); thus, it is smooth and of the expected dimension. The image of

MP(T,v)? = My ()¢ — ME(J, v)?

under the product of the stabilization st and the evaluation map ev in (3.5) is covered by smooth
maps from finitely many spaces 97, (J, ')? of simple degree B’ genus ¢ real maps with w(B’) <w(B)
and ¢’ > g. By the proof of Proposition 3.10, the dimensions of the latter spaces are at least 2
less than the virtual dimension of 9, ;.1 (X, B; J,v)? if (J,v) is generic and (X, w, ¢) is semi-positive.

By Theorem 3.3(1), the restriction (3.7) of (3.5) is a pseudocycle for a generic pair (J,v) in the
space (3.3) whenever (X,w, ¢) is a semi-positive real symplectic manifold of odd “complex” dimen-
sion with a real orientation. Intersecting this pseudocycle with constraints in the Deligne-Mumford
moduli space Rﬂw of real curves and in X, we obtain an interpretation of the genus g real GW-
invariants provided by [10, Theorem 1.4] as counts of real (J,v)-curves in (X, w, ¢) which depend
only on the homology classes of the constraints. A similar conclusion applies to the genus 1 real
GW-invariants with real marked points provided by [10, Theorem 1.5]; see Remark 3.4.

For the purposes of Theorem 3.3(1), the 2—n inequalities in Definition 1.2 could be replaced by
3—n (which would weaken it). This would make its restrictions vacuous if n =2, i.e. dimp X =4.
The 2—n condition ensures that the conclusion of Proposition 3.10 remains valid for a generic



¢+Bt=—B~

/ <61(X)7Bi>:0
eBo B° e 0BT +By+9oB~ =B
oeZ*
{c1(X),By)=0, 0B,+Bo=B, 0=>2 a

Figure 1: Typical elements of subspaces of zmmc )? with codimension-one images under st x ev
for a generic one-parameter family « of real Ruan Tlan deformations (J,v) on a real symplectic
4-manifold (X,w,®). The degrees of the maps on the irreducible components of the domains are
shown next to the corresponding components. The double-headed arrows labeled by o indicate
the involutions on the entire domains of the maps. The smaller double-headed arrows indicate the
involutions on the real images of the corresponding irreducible components of the domain.

one-parameter family of elements (J, v) in the space (3.3) and that the homology class determined
by the pseudocycle (3.7) is independent of the choice of (J,v); see Proposition 3.11 and the first
statement of Theorem 3.3(2). For n =2, this condition excludes the appearance of stable maps
represented by the two diagrams of Figure 1 for a generic one-parameter family of (J,v). The
maps of the first type are not regular solutions of the (07 —v)-equation if ¢ >2. The maps of the
second type are not regular solutions of the (d;—v)-equation if the images of the top and bottom
irreducible components are the same (i.e. each of them is preserved by ¢) and peZ™. If maps of
either type exist, their images under st x ev form a subspace of real codimension 1 in the image
of (3.5).

Remark 1.3. Real symplectic 4-manifolds (X, w, ¢) with classes Be H3® (X ; Z)? such that (w, B) >0
and {c¢1(X), B)=0 are not excluded from the constructions of genus 0 real GW-invariants in [30, 29].
However, the geometric proofs of the invariance of the curve counts defined in these papers neglect
to consider stable maps as in Figure 1. The second Hirzebruch surface Fy — P! contains two
natural section classes, Cy and E, with normal bundles of degrees 2 and —2, respectively. Along
with the fiber class F', either of them generates Ha(Fg;7Z). There are algebraic families p: C— S
and m: X— 5, where S is a neighborhood of 0€C, such that

p10)=P' VP,  a7N0)=TFy,  pl(z) =P, 7l(2) =P'xP! V:zeS—{0}.

The projection 7 can be viewed as an algebraic family of algebraic structures on Fo. By [,
Proposition 3.2.1], a morphism f from p~1(0) of degree D=aCy+bF, with ae Z* and be 739,
to 771(0) that passes through 4a+2b—1 general points in F5 and extends to a morphism f: C— X%
restricts to an isomorphism from a component of p~1(0) to E. The end of the proof of [32,
Proposition 2.9] cites [1] as establishing this conclusion for a generic one-parameter family of real
almost complex structures J on blowups of (Fo, E') away from E. This is used to claim that multiply
covered disk bubbles of Maslov index 0 do not appear in a one-parameter family of almost complex
structures in the proof of [32, Theorem 0.1] and that maps as in the first diagram of Figure 1 do
not appear in the proof of [30, Theorem 0.1]; see [32, Remark 2.12]. The potential appearance of
maps as in the second diagram of Figure 1 is not even discussed in any geometric argument we are
aware of. On the other hand, these maps create no difficulties in the virtual class approach of [29,
Section 7].



Section 2 sets up the relevant notation for the moduli spaces of complex and real curves and for
their covers. Section 3.1 introduces a real version of the perturbations of [24] and concludes with
the main theorem. The strata D, (J,v)? splitting the moduli space My 1.6(X, B; J, v)? based on
the combinatorial type of the map are described in Section 3.2. As summarized in Section 3.3, the
subspaces S)ﬁﬁ(J, v)? of these strata consisting of simple maps are smooth manifolds. We use the
regularity statements of this section, Propositions 3.6 and 3.7, to establish the main theorem in
Section 3.5. The two propositions are proved in Sections 4.1 and 4.2. The first of these sections
introduces suitable deformation-obstruction settings and then shows that the deformations of real
Ruan-Tian pairs (J, v) suffice to cover the obstruction space in all relevant cases; see Lemmas 4.1
and 4.2. By Section 4.2, Lemmas 4.1 and 4.2 ensure the smoothness of the universal moduli space
of simple (J, v)-maps from a domain of each topological type; see Theorem 4.3. As is well-known,
the latter implies the smoothness of the corresponding stratum of the moduli space of simple (J, v/)-
maps for a generic pair (J,r) and thus concludes the proof of Proposition 3.6. In the process of
establishing Theorem 3.3, we systematize and streamline the constructions of GW-pseudocycles
in [19, 24].

The author would like to thank P. Georgieva and J. Starr for enlightening discussions on the
Deligne-Mumford moduli of curves.

2 Terminology and notation

Ruan-Tian’s deformations v are obtained by passing to a regular cover of the Deligne-Mumford
space M, of stable genus g complex curves with [ marked points. After recalling such covers in
Section 2.1, we describe their analogues suitable for real GW-theory.

2.1 Moduli spaces of complex curves
For 1€ Z”Y, let
(] ={ieZ":i<l}.

For g € Z%°, we denote by D, the group of diffeomorphisms of a smooth compact connected
orientable genus g surface X and by J, the space of complex structures on Y. If in addition [ 7?0
and 2g+1>3, let

Mg,l c Mg,l

be the open subspace of smooth curves in the Deligne-Mumford moduli space of genus g complex
curves with [ marked points and define

Toi ={0G,21, .., ) €Ty Tl zi#2; Vi# 5}
The group D, acts on Jg; by
h- (j, 21y, zl) = (h*j, h(z1),... ,h_l(zl)) )
Denote by .7, ; the Teichmiiller space of ¥ with [ punctures and by ¥, ; the corresponding mapping

class group. Thus,

My =Tg1/Dy = Fg1 /%y - (2.1)



Let - -

be the forgetful morphism dropping the last marked point; it determines the universal family
over M.

For a tuple 2 = (g1,51; g2, S2) consisting of g1,ge € Z=° with g=g1+g2 and S, S> < [I] with
[[]=S11S2, denote by -
M_@ C Mg,l

the closure of the subspace of marked curves with two irreducible components Y1 and Yo of genera ¢;
and go, respectively, and carrying the marked points indexed by S; and S2, respectively. Let

Ly Mgy [si141% Mg, 11 — Mg,

be the natural node-identifying immersion with image Mg (it sends the first |S;| marked points of
the i-th factor to the marked points indexed by S; in the order-preserving fashion). We denote by
Divy; the set of tuples & above.

For each involution o on the set [I], define

N . o(i), ifiell];
+1] — [I+1 =

7:[1+1] [1=1]; 7(0) {z if i=1+1;
0g: Tg1 — Tg1, Ug(j,zl,...,zl) = (—j,zg(l),...,za(l)).

Since the last involution commutes with the action of Dy, it descends to an involution on the
quotient (2.1). The latter extends to an involution

0g: Mg — My, St. 0y0fg = 4100, (2.3)

A genus g complex curve C is cut out by polynomial equations in some PV~! (N can be taken to
be the same for all elements of Mg,l). The standard involution 7 on PY~! sends C to another
genus g curve C. If C is smooth, 7y identifies C and C as smooth surfaces reversing the complex
structure. The conjugation 7y thus induces the involution (2.3).

Since 7, is simply connected, the involution o, on ﬂ%l lifts to a ¥, ;-equivariant involution
0g: g1 — gl (2.4)

Such a lift can be described as follows. Let ¥,; be a smooth compact connected oriented genus g
surface X with [ distinct marked points z1, ...,z and Dy ; =D, be the subgroup of diffeomorphisms
of 3, isotopic to the identity (and preserving the marked points). Choose an orientation-reversing
involution o4 ; on 3, ; that restricts to o on the marked points. An element of .7, ; is the Dy ;-orbit [j]
of an element je J,; compatible with the orientation of ¥ ;. A lift as in (2.4) can be obtained by
defining

09t Tgp — Tgu, [l — [ —ogii]-

This description is standard in the analytic perspective on the moduli spaces of curves; see [26,
Section 2], for example.



Definition 2.1. Let ¢, Z>? with 2g+1>3 and

~

p: Mgy — Mgy, (2.5)
be a finite branched cover in the orbifold category. A universal curve over ./\m/l/gvl is a tuple
(77: Uy —> Mg 1,51, .. ,sl),

where Lng,l is a projective variety and 7 is a projective morphism with disjoint sections s, ..., s,
such that for each C € M, the tuple (771(C),s1(C),...,s/(C)) is a stable genus g curve with
[ marked points whose equivalence class is p(C).

Definition 2.2. Let g,1€Z>° with 2g+1>3. A cover (2.5) is regular if
e it admits a universal curve,
e each topological component of pil(./\/lg’l) is the quotient of .7;; by a subgroup of 4, ;, and

e for every element 2= (g1, S1; g2, S2) of Divy,

~

(May 151141 % Moy 155111) X (1gpp) Mg = My, 53111 X Mg, 155]41

for some covers M, \g,14+1 of My, |s;41-

The moduli space My is smooth and the universal family over it satisfies the requirement of Defi-
nition 2.1. For g =2, [2, Theorems 2.2,3.9] provide covers (2.5) satisfying the last two requirements
of Definition 2.2 so that the orbifold fiber product

~

T Uy, EMgvl%g,lﬁg,l — My, (2.6)
satisfies the requirement of Definition 2.1; see also [22, Section 2.2]. The same reasoning applies in
the g=1 case if [>1.

Lemma 2.3. If (2.5) satisfies the second condition in Definition 2.2 and o is an involution on [l],
then the involutions o, on My and 64 on Uy, lift to involutions

~

og: My —> My, 5g: Uy — Uy, s.t. ogom = 77059. (2.7)

Proof. 1f (2.5) satisfies the second condition in Definition 2.2, then the involution (2.4) descends to
an involution on p~'(M,;). Since every point [C]€ M, has an arbitrary small neighborhood Uc
such that Ucn M, is connected and dense in Ug, the last involution extends to an involution o,
as in (2.7). By the identity in (2.3), the involution &, on Uy, lifts to an involution &, as in (2.7)
over the projection Z;{g’l —U,,; so that the identity in (2.7) holds. O



2.2 Moduli spaces of real curves

A symmetric surface (X, 0) is a nodal compact connected orientable surface ¥ (manifold of real di-

mension 2 with distinct pairs of points identified) with an orientation-reversing involution o. If 3 is

3g+4
2

logical types of orientation-reversing involutions ¢ on a smooth surface ¥; see [20, Corollary 1.1].
We denote the set of these types by ..

smooth, then the fixed locus X7 of ¢ is a disjoint union of circles. There are [ J different topo-

For an orientation-reversing involution ¢ on a smooth compact connected orientable genus g sur-
face X, let
Dy = {heDy: hoo=coh}, J; = {ieJy: o*i=—i}.

If in addition I, ke Z=0, define
T = {0, (27 Viep)s (2)iepr)) € Tgzien 1€ TS, (28 ) =27 Vie[l], o(z) =2 Vie[k]}.

An element of J ;K 1S a smooth real curve of genus g with [ conjugate pairs of marked points and
k real marked points.

The action of Dy on Jy 2,4 restricts to an action of D‘g’ on gol'k:' Let
g — (o a
Mg,l;k = jg,l;k/Dg :

If 2(g+1)+k =3, the Deligne-Mumford moduli space Rﬂg’l;k of real genus g curves with [ conjugate
pairs of marked points and k real marked points is a compactification of

RMg i = |_| Mo,l;k

oESy

with strata of equivalence classes of stable nodal real curves of genus g with [ conjugate pairs of
marked points and k real marked points. This moduli space is topologized via versal deformations
of real curves as described in [17, Section 3.2].

Fix ¢,1€Z*° and define

i+1, ifi<2l, i¢2Z;
o [20+k] — [20+k],  o(i)=<i-1, ifi<2l,ie2Z;
i if i>21.

There is a natural morphism
RMg,l;k - Mg,2l+k . (28)

A genus g symmetric surface (X, ox) is cut out by real polynomial equations in some PV ~! so that
ox=7n|n. The morphism (2.8) sends the equivalence class of (3, ox) to the equivalence class of X.
The image of (2.8) is coitained in the fixed locus M;%Hk of the involution o,. For g :j’ (2.8)
is an isomorphism onto M ; 514k In general, (2.8) is neither injective nor surjective onto M ; Sk
see [25, Section 6.2].



Let p be as in (2.5) with [ replaced by 2]+k. Define

pr: RMg e =RMg e x5xq . Mook — RMg ik, (2.9)

R RUg e =RMg 1 X/\Affg,mkuﬂ”k — RM 1.1 (2.10)
be the orbifold fiber products of the morphisms (2.8) and p and of the projection to the second
component in (2.9) and (2.6), respectively. Suppose in addition that (2.5) satisfies the second
condition in Definition 2.2. Since the image of (2.8) is contained in M ; S14+k» an involution &, on

~

Ug 2141 provided by Lemma 2.3 then lifts to an involution

~

Fr: RU, 1 — RU, 1 (2.11)

which preserves the fibers of 7.

3 Real Ruan-Tian pseudocycles

Building on the approach in [8, Section 2.1] from the g =0 real setting case, we introduce a real
analogue of the geometric perturbations of [24] in Section 3.1. Theorem 3.3 provides an interpre-
tation of the arbitrary-genus real GW-invariants of [10, Theorem 1.4] for semi-positive targets in
the style of [24]. A similar interpretation of the genus 1 real GW-invariants of [10, Theorem 1.5] is
obtained by combining its proof with the portions of the proof of Theorem 3.3 not specific to the
k=0 case; see Remark 3.4.

The covers (2.5) of the Deligne-Mumford moduli spaces of curves provided by [2] are branched
over the boundaries of the moduli spaces. The total spaces of the universal curves (2.6) over these
covers thus have singularities around the nodal points of the fibers of the from

{(t,:n,y)e (C3:$y=tm}—>C, (t,z,y) — t;

see the proof of [2, Proposition 1.4]. The approach of [24, Section 2] to deal with these singularities
is to embed the universal curve (2.6) into some PV, Standard, though delicate, algebro-geometric
arguments provide an embedding of the real universal curve (2.10) into PV suitable for carrying
out the approach of [24] in the relevant real settings. Following [16], we bypass such an embedding
by using perturbations supported away from the nodes.

For a symplectic manifold (X,w), we denote by J, the space of w-compatible almost complex
structures on X. If (X, w, ¢) is a real symplectic manifold, let

TS ={Jeds: ¢*T=—J}. (3.1)

For an almost complex structure J on a smooth manifold X, a complex structure j on a nodal
surface X, and a smooth map u: X— X, let

~ 1
dyju = 5(olu + J oduoj): (TS, —j) — u*(TX,J).

Such a map is called J-holomorphic if ému =(. If ¥ is a smooth connected orientable surface, a
Cl-map u: ¥ — X is

10



e somewhere injective if there exists ze ¥ such that v~ (u(z2))={z} and d,u#0,

o multiply covered if u = u'oh for some smooth connected orientable surface ¥/, branched cover
h:¥X—%' of degree different from +1, and a smooth map u': ¥'— X,

e simple if it is not multiply covered.

By [19, Proposition 2.5.1], a somewhere injective J-holomorphic map is simple. For an involution ¢
on X and an involution ¢ on ¥, a real map

u: (3,0) — (X, ¢)
is a map u: ¥ —> X such that uoo = ¢ou.

The pseudocycle constructions in [19, 24] are based on showing that

1) the open subspace M*(J) of each stratum 9 (J) of the moduli space of J-holomorphic maps
7y ¥
to X consisting of simple maps in the sense of Definition 3.2 is smooth for a generic choice of
JeJ, (of a compatible pair (J,v) in [24]),

(2) the image of 9, (J)—M%(J) under the natural evaluation map ev (and the stabilization map st
in [24]) is covered by smooth maps ev (and st/ ) from some other smooth spaces Z7, _(.J) of
dimension at least 2 less than the dimension of the top stratum of the moduli space.

Our proof of Theorem 3.3 provides a systematic perspective on the reasoning in [19, 24]. We specify
all spaces and maps relevant to (2) above. The regularity of these spaces, which include the spaces
in (1) as special cases, is the subject of Propositions 3.6 and 3.7; they are proved in Section 4.

3.1 Main statement

Let g,1, ke ZZ° with 2(g+l)+k >3 and (2.5) be a regular cover. This implies that the fibers of (2.10)
are stable genus g real curves with [ conjugate pairs of marked points and k real marked points.
We denote by

~

the complement of the nodes of the fibers of 7g and by
e
E,l;k = kerd(ﬂﬂﬂm;:l;k) e Rug’l;k

the vertical tangent bundle. The latter is a complex line bundle; let j;; denote its complex structure.
The action of the differential of (2.11) reverses jy.

Let (X, J,¢) be an almost complex manifold with an involution ¢ reversing the almost complex
structure J. Denote by
T, TQ: Ru;:l;k xX —> Ru;jl;k, X

the projection maps. Let

FS:ll;k(X; J) = {vel (RUS . x X 7F (Toue, —iu)*®cms (T X, J)): supp(v) < RU 1 x X},

11



where supp(v) is the closure of the set
{(z,2) ERLNI;:l;k x X:v(z,z)#0}
in Rag,l;k x X. Define

00 (X30)? = {veT) (X;0): dgov =voddp}, (3.2)
HEP(X) = {(Jv): Je T2, vel (X;J)%}. (3.3)

Definition 3.1. Suppose g,1, ke Z>? with 2(g+1)+k=>3, (X, J, ¢) is an almost complex manifold
with an involution ¢ reversing J, v € Fg’ll,k(X; J)?, and Be Hy(X;Z). A degree B genus g real
(I, k)-marked (J,v)-map is a tuple

u= (UM: E%Rag,l;ka u: E—)Xv (Z;r7 Z;)ie[l]v (xl)le[k]a avj)a (34)

where (E, (2, 2; )iell] (wi)ie[k],a,j) is a nodal real genus g curve with [ conjugate pairs of points
and k real points, uprq is a (or,o)-real (jy,j)-holomorphic map onto a fiber of mr preserving the
marked points, and u is a (¢, o)-real map such that

Os5u], = v(um(2),u(z))odsupg € (123, =) " ®c (Ty) X, J) V2eS, uy[S] = Be Hy(X;Z).

Definition 3.2. Suppose g,1,k, (X, J,¢), v, and B are as in Definition 3.1. A (J,v)-map u as
in (3.4) is simple if the restriction of u to each irreducible component ¥’ of ¥ contracted by wuaq
is simple whenever u|ys is not constant and the images of any two such components ¥’ under u
are distinct.

Following the standard terminology, we call the irreducible components contracted by u 4 the con-
tracted components of (3.4). Every such component Y’ is smooth and of genus 0; the restriction
of u to ¥ is J-holomorphic. The last condition in Definition 3.2 implies that the image curve
u(X')< X is not real if u is a simple map, u|yy is not constant, and ¥’ ¥ is not a real component.
In particular, the maps represented by the second diagram in Figure 1 are not simple.

A (J,v)-map u as in (3.4) is equivalent to another (J,v)-map

u= (upg: X —RUy v X — X, (27, 207 )ieq)s (2 ier)» 05 7)

if there exists a biholomorphic map h: (3,j)— (¥’,j’) such that

hoo =c'oh, h(z}) =2 Vie[l], h(z;) =] Vie[k], (um,u)= (Wroh,u'oh).

7

A (J,v)-map u is stable if its group of automorphisms is finite. This is the case if and only if the
degree of the restriction of u to every contracted component ¥/ of ¥ containing only one or two
special (nodal or marked) points is not zero.

For (J,v) e?—[;”ﬁk(X), we denote by M, ;.,(X, B; J,v)? the moduli space of equivalences classes of
stable degree B genus g real (I, k)-marked (J,v)-maps. It is topologized as in [16, Section 3] using
maps from families of real curves described in [17, Section 3]. The map

stxev: My .1 (X, B; J,v)? — RM, 1 x (X x (X9)F),

[t s (= 2 Ve (@2)icpigs 4] — (r(rr(mund), (e e, @)
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is continuous with respect to this topology. Let
;,l;k(X7B;J7 V>¢ < ﬁg»hk(X?B; J? V)d) (36)
be the subspace of simple maps from domains with at most one node.

Theorem 3.3. Suppose n¢ 27, (X,w, @) is a compact semi-positive real symplectic 2n-manifold
endowed with a real orientation, g,1€ ZZ° with g+1>2, and Be Hy(X;7Z).

ere exists a Baire subset H cH of second category such that the restriction
1) Th sts a Baire subset 1 (X) < M2 (X) of second h that th
stxev: M7 .o(X, B; J, v)? — RM,, x X! (3.7)
1 a pseudocycle of dimension
dimg M} 1.0(X, B; J,v)? = {c1(TX), By+(n—3)(1—g)+21 (3.8)
for every (J, V)E?’-A[;’ld)(X).

(2) The homology class on Rﬂg’l x X! determined by this pseudocycle is independent of the choice
of (J,v) in 7-A[;J7’Z¢(X). The class

Tour [st xev: MM 0(X, B; J,0)? —> RM,, x Xl] € H, (Rﬂg,l x X Q) (3.9)

is also independent of the choice of a regular cover (2.5).

The same conclusions apply with the Rﬂg,l factor dropped everywhere. Identical notions of pseu-
docycle with target in a manifold M appear in [33, Section 1.1] and in [19, Definition 6.5.1]. They
readily extend to orbifold targets M and include the more elaborate and less convenient notion
of pseudo-manifold of [24, Definition 4.1]. By [33, Theorem 1.1], the group of pseudocycles into a
manifold M modulo equivalence is naturally isomorphic to Hy(M;Z). The same reasoning applies
to orbifold targets.

The proof of Theorem 3.3 in the rest of the paper follows the same general principles as the
proofs of [19, Theorem 6.6.1] and [24, Propositions 2.3,2.5]. However, their implementation in
the real case requires more care. For example, the proof of the crucial transversality statements
Propositions 3.6 and 3.7 requires classifying the irreducible components of the domains of the
elements of each stratum of the moduli space into five types, instead of one in [19] and two in [24],
based on whether they are contracted or not and whether they are real or not.

Remark 3.4. The only steps in the proof of Theorem 3.3 dependent on the k = 0 assumption
are Corollaries 3.8 and 3.9. A geometric interpretation of the genus 1 real GW-invariants of
[10, Theorem 1.5] is obtained by combining its proof with the remaining steps in the proof of
Theorem 3.3.
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3.2 Strata of stable real maps

The moduli spaces of real curves and maps are stratified based on the topological type of the
domain and the distribution of the map degree between its irreducible components in the latter
case. These data correspond to certain decorated graphs. Because of the contraction operations
on these graphs that are central to our proof of Theorem 3.3, we define such graphs based on the
perspective in [3, Section 2.1.1].

For [, keZ>Y, define

. i, f=iF, e l];
g Spp=1{i" i ceelllfuficielk]; — Sik, o =
Lkt Sk =A{ [}u{iiel]}ufi: ielk]} ik ok (f) {f, it Felh,
An (I, k)-marked graph is a tuple
7= (9:Ver— 27" 2: Sy uFl— Ver, 9: FI—FL 5: VeruFl— VeruFl), (3.10)

where Ver and FI are finite sets (of vertices and flags, respectively) and ¥ and & are involutions
such that

J(v) #v YveFl, Goolym =8, eo{owkudlg} = 0lygos, Joo|m = olFod.

For fe Sy, let o(f)=o0y,(f). We denote by Aut(¥) the group of automorphisms of 7, i.e. pairs of
automorphisms of the sets Ver and FI commuting with the maps g, &, and 7. Define

Vr() = {veVer: o(v)=v}, Ve (@) = {veVer: a(v) #v}. (3.11)

The set of edges of 7 as in (3.10) is
= {e={f0(f)}: feFl1}.

The involution 7| induces an involution on E(¥), which we also denote by . The graph 7 is
connected if for all v,v'€ Ver distinct there exist

meZ®, fi fi o fs [hEFL st
g(ff):U’ g(ﬁi)zvl» g(f;r) :g(fi:-].) vie[m—1] {fz ’f+}€E ) Vie[m].
Define
Ec(®) = {eeE* :o(e)#e}, Erc(y) = {e={fJ(
and Egrg(¥ {6—{f19 }: feFl a(f)=1,

For each ve Ver, let

(@) ={fee  (W):a(f)=r},  Suc() ={fez (v):T(N)# [} (3.13)

If ve Vgr(7), the involution & restricts to an involution @, on S,r(¥) and S,.c(¥). If ve Ve (7),
Syr(¥) = and the involution 7 restricts to an involution 7, =z, on Sy,c(7) U Szw):c(7)-
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Let 7 be as in (3.10). A vertex ve Ver of 7 is trivalent if
2g(v)+[g "' (v)| = 3. (3.14)

The graph 7 is trivalent if all its vertices are trivalent. For ge Z>Y we denote the (finite) set of
(equivalence classes of) connected trivalent graphs 7 as in (3.10) such that

L+[E®)| = Ver|+ Ya(v) = ¢ (3.15)

veVer

by Ag.i:k-

Suppose g,1, ke ZZY with 2(g+1)+k>3, 7 is a connected graph as in (3.10) satisfying (3.15), and
ve Ver is a vertex not satisfying (3.14). The vertices v and &(v) can then be contracted to obtain
another (I, k)-marked graph

5y = (ﬁ’:@'—%?o,g’: Stk uﬁ’%ﬂ’,ﬁ’: ﬁ’—>ﬁ’,5’: @,uﬁ/%@/uﬁ/)
satisfying (3.15) and
Ver' = Ver—{v,5(v)}, @ =8k, FI c Flne ' (Var), a(FT)=FT, & = ol g
g =% on (Sppnz '(Ver)UFI, 0 =9 on {feFl:2(d(f))#v,(v)}

as follows. We take

— {Flms_l(\/er/), if [Flne~1(v)| =2;
{feFlnz1(Ver ) : 2(0(f)) #v,a(v)}, if [Flng " (v)]=1.

In the case |FInz1(v)| =2, we extend ¥ from its specification above by
T (f1) = fo if f1, 2€FL, fi# fo, €(0(f1)) =2(9(f2)) € {v,7(v)}.
In the case |S.NE 1 (v)|=1, we extend & from its specification above by
g(f1) =(9(f2)) if freSpk, f2eFT, 2(f1)=2(f2) € {v,7(v)}.
By the assumption that v does not satisfy (3.14), these extensions are well-defined.
Let g,1, ke ZZ" with 2(g+1)+k>3. For each € A, .1, denote by
RM5 < Rﬂg,l;k

the subspace parametrizing marked real curves

C=(%,(z" 2 )ieny (i)ie[)> 0+1)

with dual graph 7. Thus, the irreducible components 3, and the nodes z. of ¥ are indexed by the
elements of Ver and E(%), respectively. The node z. corresponding to e={f,J(f)} is obtained by
identifying a point zy € Yz(s) with a point Zg( f)eEg(g( - The marked point z; corresponding to
f € Sp is carried by the irreducible component ¥z ). The involution o sends X, to ¥5(,) and z

15



to zg(). The two sets in (3.11) correspond to the real components of 3, i.e. those fixed by the
involution, and the conjugate components of X, i.e. those interchanged by the involution. The three
sets in (3.12) correspond to the C, E, and H-nodes of ¥; see [13, Section 3] for the terminology.
Let N N

RM5=pp' (RM5) = RM, . (3.16)

The stratification of ]R/Cl/g’l;k by the subspaces in (3.16) is analogous to the stratification [24, (3.2)]
in the complex case.

For ve Vg (%), let RM5., denote the moduli space of smooth real genus g(v) connected curves with
the real and conjugate marked points indexed by S,.r(¥) and S,.c (%), respectively. For ve V¢ (%),
let M%;U denote the moduli space of smooth real curves with two genus g(v) topological components,
¥, and Yz(,)), interchanged by the involution and carrying the marked points indexed by S,.c (%),
and Sz(y),c(7), respectively; we call such curves real doublets. The image of the immersion

[ [RMz x ] [M2, — RM (3.17)
veVr() fva)}eVe®)

identifying the marked point 2z with Zg(h) for each feFlis RM=. This immersion descends to an
isomorphism from the quotient of its domain by the natural Aut(y) action to RMj.

By the last requirement in Definition 2.2, there exist covers
RMJ?U - RMT’”’ UeVR(W)? and M%;v - M%;fuv {U,E(U)} - VC(W)?
with universal curves
RZ/N{W;U - RMW;’U? 'UGV]R(W)v and ﬁ%;v - M%;m {’U,E(U)} - VC(V):
and an immersion
i RMy= [[RMyy x [ [ M3, — RMgu (3.18)
veVr(7) {v,o(v)}=Ve®)

lifting (3.17).
Let Be Hy(X;Z). An (I, k)-marked degree B graph is a tuple

y= ((g,a) Ver —> Z2O® Hy (X Z), ¢+ Syp LF1—> Ver, 9: F1— F,

(3.19)
o: Verl_:Fl—>Ver|_|Fl>
such that the tuple
Ym = (9:Ver—Z7°, &1 Sy uF1— Ver, ¥: FI—Fl, o VeruFl— VeruFl)
is an (I, k)-marked graph and
000 = —¢,00, Zb(v) = B, {w,0(v)) =0 V veVer. (3.20)

veVer
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Denote by Aut(vy) the group of automorphisms of «, i.e. the subgroup of automorphisms of v
preserving 0. Let

Ve(7) = VR(im),  Ve(r) = Velvm),  Sur(y) = Ser(im), Suc(v) = Suc(ym) VveVer,
E(7) =E(vm), Ec(?) = Ec(vm), Erc(y) = Erc(vm), Err(v) = Err(ym), |7l = [E()).
We call v connected if v is connected and a vertex v e Ver trivalent if it satisfies (3.14) with the

overlines dropped.

Let g,1, ke Z7° with 2(g+1)+ k>3 and Be Hy(X;Z). We denote the set of (equivalence classes of)
connected graphs v as in (3.19) such that (3.15) with the overlines dropped holds and

2(v) =0, 2g(v)+]e " (v)] =3 V veVer s.t. (w,d(v))=0

by .Ag)’l;k(B). As described below, the moduli space on the left-hand side of (3.5) is stratified by

the subspaces M., (J,v) that are indexed by ’YEAZ)J; +(B) and consist of maps from domains of the
same topological type yas.

Let 'yeA;S,l;k(B) be as in (3.19). The stabilization 7€ Ay .1, of v is the trivalent graph as in (3.10)
obtained by contracting the non-trivalent vertices of ~ until all vertices become trivalent. The
set Ver thus consists of trivalent vertices of . It contains all vertices ve Ver with g(v) >0, but may
be missing some vertices v with g(v)=0 and |e~!(v)|=3. Let

N(y) = Ver—Ver, Ng(y) = {veN(*y): a(v):v}, and N¢(y) = {veN(fy): a(v):v}

denote the set of vertices contracted by the stabilization, its subset fixed by the involution on the
graph, and the complement of this subset.

Define
RZ’N{'Y;U ERZ’N{W) - Rﬂv;v ERMW;U if ve Vr(%),
U, =Us, — M= M,  ifveVe(d).
If veRg(y) with [e7(v)] >3, we take RM.., = RM.., with RM.., defined as before and
Ry —> RMozy

to be the universal curve. If veRe(y) with |e~1(v)| =3, we take M%;v = M?

S0 With MY, defined
as before and

Uy — M
to be the universal curve. For veRg(y) with [e7!(v)| <2 and veR¢(y) with [¢71(v)| <2, denote by
RM.;, and M3, the one-point spaces. Let

R.//\\/l/»y = HRM’Y;U X H'/,\\/i.;v :
veVR(7Y) {v,0(v)}cVe(y)

Denote by

Doy RM7 — RJK/IVW,, veVR(7), Pt RM7 — ./\7;;” veVe(7),
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the projection maps.

Let Aut(PP!) be the group of holomorphic automorphisms of P!. For veR¢(7y) with [e71(v)| <2, let
Z/N{,;;v = Yyuds() = PPt

be the genus 0 real doublet with the involution 7 : ¥, — 35 (,) and the marked points indexed by
e Y(w)ue~t(o(v)) so that the marked points on ¥, are given by

e _ ook, i e (o) =1
{2p: fee ' (v)} = {{00,0}, i 1) =2 (3.21)

Define

i
8

o — {he Aut(P): h(w0) , if =1 (v)|=1;
" {he Aut(PY): h(o0) =00, h(0)=0}, if [~ (v)|=2.

For p=r,n, let Aut,(P') be the subgroup of Aut(P') consisting of the automorphisms that commute
with p. Denote by Inv(y) the set of maps

p: {’UENR( ): ]5 ]<2} — {T, n} st. p(v) =71 if Syr(y) # .
For pelnv(y) and veRg(y) such that |e71(v)][ <2, let
Rﬁ%p;v =%, =P
be the genus 0 real curve with the involution p(v) and the marked points

{1}, if [e7(v)|=1;

|
(o fee™ )} = 4 {1, -1}, i [Symly)| =2 (3.22)
{o0,0}, if |Sv§((:(7)|:2'
Define
{he Aut,(PY): h(1)=1}, if |e7(v)|=1;
Gpw = { {heAut (PY): h(1)=1,h(-1)=—1}, if |Sur(y)|=2;
{heAut, () (P): h(0) =0, h(0) =0}, if [Suc(y)|=2.
For each veV¢(7), we have thus constructed a fibration
T = Ty U Ty () - ﬁ;;vzﬁwuﬁw(m — M.;v (3.23)

by smooth genus g(v) real marked doublets. For peInv(y) and ve Vr(7y), we have constructed a
fibration N N
Tyspsw Ru’y'p'v - RMv'v (3.24)

by smooth genus g(v) real marked curves (described above without the p subscript except for
veNR(7y) with [e71(v)]<2). Define

( |_|p»y7 yiow X |_|pwj v >/~ with

veEVR(y {v,o(v)}c=Ve(y)

((Cv)vevR(w(Cv){v,ow)}cvc(v); 27) ~ ((Co)vevat)s (Cowicver)i zon)) V¥ fEFL
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i.e. we identify marked points in a fiber of

up;;vmv;p;v X |_| p;;ﬂ;a;;v — RMV
veVR(v) {v,o(v)}=Ve(y)

if they correspond to flags interchanged by the involution ¥ on Fl. The natural projection
Tyip: ]RZ/NLW — ]R./Cl/,y (3.25)

is a fibration whose fibers are nodal marked real curves with dual graph ~v; the irreducible com-
ponents ¥, of these fibers are indexed by the set Ver. Let RUY., = RU,;, be the complement of the
nodes of the fibers of ...

The involutions o and p induce an involution .., on Ri4,.,. Let
— N ) 7%
Tyip = ker d(”v;p|Ru;ﬁp) — R,

be the vertical tangent bundle. Denote by j,., the complex structure on this complex line bundle.

The group
Goyp = HGP;” % HG”
veERR(y) {v,0(v)}cRe(y)
le=1(v)|<2 le=1(v)|<2

acts on RZ/NLW by reparametrizing the irreducible components ¥, of the fibers with |e~!(v)|<2. Let

Gy RlUy;p — Rugl;k‘m“/g (3.26)

be the surjection covering the composition of the projection RMV —>]RJW7 with (3.18) and con-
tracting the irreducible components of the fibers of ., indexed by X(v). Denote by G, the group
of holomorphic automorphisms of ¢,., that commute with .., and preserve the marked points.
The identity component of G, is G35, ; the group G,,/G7., is naturally isomorphic to Aut(y).

Yip?
For J ejf , define
o0 (X;J)? = {VEF(RZ/{;“;[, X X375 (Tysps —iysp) *®@c s (TX, J)) : supp(v) c RU , x X,
dgbouzyod&v;p}.
For yng’;})(X; J)?, let 97@;,)(17, v) be the space of tuples
u= (UI Z—)X7 (Zf)fESl;}wo—aj)? (327)

where (X, (27) esy,» 0,1) is a fiber of 7., and u is a (¢, o)-real map such that

5J7ju’2 = V(z,u(z)) € (TZE, —j)*®@(Tu(Z)X, J) VzeX,
ux[Xy] = 0(v) € Ho(X;Z) VwveVer.

For Je J¢ and Vefg’ll,k(X; J)?, let
Vryip = {qw;pXidX}*V € F%(X; D7, Myip (1) = Mysp (S, vysp) -
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The group G.;, acts on ﬁy;p(g], v) by reparametrizing the domains of maps as usual. Define
m,(J,v) = |_| 977%/)“7 v)/Grip © Mg (X, Bs J, v)?. (3.28)
pEnv(7)

The stratification by the subspaces (3.28) is analogous to the stratification by the subspaces in
[19, (5.1.5)] and on the right-hand side of [24, (3.25)]. The number of nodes of the domains in the
stratum (3.28) is |y|. The dual graph of the element st(u) of RM, ., for any ue M, (J,v) is 5. By
[19, Proposition 4.1.5], the set

AG 1 (Bs Jv) = {7e AS 1 (B): I, (,v) # 2}
is finite for each pair (J,v).

3.3 Strata of simple real maps: definitions

Let v be as in (3.19). For each subset ¥ c Ver, let

Yo(v) = {ve ¥ :0o(v) =0}, &) = {{f1, fo}€E(): e(f),e(f2) eV},
Fo (V) = {feFLe(f), () eV}, FXV) = {feFle(f)e?, «(0(f)¢V}.

The tuple

(3.29)

vy = (9:¥ —Z7% et (Sppne {(P)LFy (V) — V0 Fo(V) — Ty (V)

is then an Sj.; ne™!(¥)-marked graph (without an involution & as in (3.10)). Let mo(7, #) be the
set of connected components of v4 and

Uy, ) = &N+ |mo(y, 7))

be the number of loops in 7y, i.e. the sum of the genera of its connected components.

For ¥ < Ver as above, let
FV) < Flne ! (Ver—7)

be the collection of the flags f such that the edge e = {f,¥(f)} disconnects a connected compo-
nent vy of vy from the rest of y. Denote by

FN) < Z)

the subcollection of the flags f such that Spne™1(¥”) = for the subset ¥’ =¥ of the vertices
separated from the remainder of v by the edge {f,?(f)} . In particular,

[E(7)—&,(#) =&, (Ver=7)| + |ZI)| + |Spene™ (7))

; (3.30)
> |E(y)—&(¥) =& (Ver—=9)| + | Z5(¥)| = 2|mo(v, V)|

For pelnv(y), let

0,1 . — 0,1 . . _
FAM);'V(X’ J> N {VGP,W)(X, J)d)' V‘(Pivmv:p;vﬁmﬁﬁp)XX =0 V’UGVR(")/)(W"V,

=0 vvevc(y)m/}.

v

(p:,fiRZ;;;vr\RIlﬁp) X
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Let S(v) denote the collections of subsets ¥ < Ver such that
N(y) < ¥, a(V)="7, g(v)=0 Yove? .
For each 7 €S5(v), define

RMyy = HRM%MH X H M-

VEYONVR(7) {v,o0(v)}=¥onVe(y)
By (3.30) with ¥ replaced by %p,

(dimpRM o+ ZU0)]) + & (%)| + |mo(v, )| = 307, %). (3.31)

Let 7€ Ay 1. be as in (3.10). Denote by A(%) the collection of pairs (v, w), where ’yeAﬁ, 11 (B) is
as in (3.19) such that

Ver < Ver, N(3,9)=Ver—Vere S(7),  ZXR(3,7)0) € 7, (R(,7)). (3.32)
7, (Var) c Flc &, (Ver) u.2* (Ver), o(F) = I,
0= Flsyner@mnar = e @ Vs = Vs 7= ol

and @: Spxne T (R(v,7)) — Ty (Ver)—Flis a (o, 07.5)-equivariant injective map such that
Elspne-1(n(19)) = €0 Sprne ! (R(7,7)) — Ver,

Thus, 7 is obtained from ~ by

e dropping every vertex veXN(y,7),

e attaching each marked point fe Sy, carried by a vertex in X(v,7) to the vertex e(ww(f))€ Ver,

e identifying some pairs of the flags in 7 (Ver) into the edges of 7 that are not contained in &, (Ver).
Define
R(7)o = R(7)o(7), R(7)e = R(7)=R(7)o, R(7)5 = Ver—R(y)o,
N(V?W)O = N(’%V)O(V)a N(’%i)' = N(’Y’W)_N(’Yvﬁ)()a N(’y,i)s = VGF—N(’Y,V)O .

If 7 is the stabilization of v, then ¢’ = g, RX(v,7) =X(v), and (v, w,) € A(¥) for a unique injective map
@yt Stk m—:_l(N(y)) — F¥(Ver)—FI. (3.33)
A more elaborate example is depicted in Figure 2.

Let (7, w)e€.A(¥) and pelnv(y). The reduction of v to 7 described above determines a smooth map

St w1 RM., —> RMy < RM, . - (3.34)
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7 ¥ Y

Figure 2: A graph 7 as in (3.10) and graphs ~,7 as in (3.19) such that (vy,w,) and (7/,@’) are
elements of A(%) for some w’. All vertices, edges, and marked points are taken to be real (i.e. o
acts trivially). The value of g on the vertices with the number 1 next to them is 1; its value on the
remaining vertices is 0. The value of 9’ on each of the unshaded vertices is 0; the values of 0 on all
vertices in the middle diagram and of 9’ on the shaded vertices in the last diagram are not 0. The
graph 7 is the stabilization of v, but not of 7.

This map lifts to smooth maps

Qv+ p';/k'uRa’Y v T Rﬁg,l;lﬁ ’UGVR(W),
@t DIERUS,, — RUy e, {v,0(v)} < Ve ().

Each map ¢y ;. restricts to a degree one map from a fiber of
¥ 1
pj;vRuww‘st;;(c) — sty (C) < RM,

onto a real irreducible component of a fiber of (2.10) over R/\A/l%. Each map ¢S ., restricts to a
degree one map from a connected component of a fiber

pyoR Z/{' vlsst o) stvw(C) c RM

onto a conjugate irreducible component of a fiber of (2.10) over R./Cl%. In both cases, the marked
and nodal points of the domain are preserved. However, in general these maps do not induce a
continuous map even over a fiber of (3.25).

For Je J$ and vel') ., (X;.J)?, define vy o, T X;J)? by

V3 pyN(v 7)(

)

. * . —
| {qy, 0 ><1dX} v, ifveVr(®H
Yy, (2 Ry i ARLEE, ) x X

@)
0, if ve Vr(7) "R(7,7%);
(@ m xidx } v, if vEVC();
U wip|, e e ) = .
PER PSR NRUp) x X 0, if veVe(y) NR(7,75).

Let

M 50, v) = E)f\ﬁv;p(Jv Vywip)s My (J,v) |_|9:R’Ywﬂ (J,v)/G5,p

pelnv(y)

The maps (3.34) with pelnv(y) and the evaluation morphism ev determine a continuous map

Sty xev: My o (J,v) —> RM g x (X% (X2)). (3.35)
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For uei)fJVT%w;p(J, v) asin (3.27) and veX(y, 7)o, the restriction u, of u to the irreducible component
3, © X corresponding to v is constant. Thus,

My, i (S, V) & RM g7y X 2L (o) (3.36)

v,
for some space g&w; p(J,v) of tuples (uy)yen(y7)s of £~ (v)-marked maps with matching conditions
at the points indexed by F1—.72(X(v,7%)o). By the last assumption in (3.32),

e(f) ¢ Ver, d(e(v)) #0 ¥V feFI(R(7,9)o).
Dropping the marked points z; with f eﬁJ(N('y,i)g), we thus obtain a fiber bundle

Zfly,w;p(‘]ﬂ V) - Z’Yﬂ”;ﬂ(‘]’ V) (337)

e of maps

with marked points indexed by 6_1(0)—9’%2‘1(7, )o) and with the same matching conditions as be-
fore.

with \Q}T(N(’y,ﬁ)o)l—dimensional fibers for some space gy,w;p(J, v) of tuples (uy)yen(y7)

The G, ,-action on the left-hand side of (3.36) corresponds to an action on the last factor on the
right-hand side. The latter in turn descends to an action on the right-hand side of (3.37). Let

2 )= | |2 6,(J)/G, and  Zo(Jv)= | |Zwmn(lv)/G,.
pelnv(y) pelnv(y)
Thus,
My (S, V) ~ RM n(45) X Z:hw(J, v) (3.38)
and the fibers of the projection
Z;vw(J, V) — Zy o (J,v) (3.39)

are |.ZI(R(v,7)o)|-dimensional. The map (3.35) factors through the projection from the left-hand
side of (3.38) to the right-hand side in (3.39) and a continuous map

Sty xev: 2y o(J,v) — RMg . x (X% (X?)F). (3.40)
Denote by N N
E)ﬁi‘;’w(J, v)c My o (J,v) and Emiw;p(J, V) € My op(J, V) (3.41)

the subspaces consisting of maps as in (3.27) such that w, is simple for every veX(y,7). and
U(Zvl) # U(E”U2) v V1, V2 € N(V?i)'a V1 # V2.

Denote by

zr (Jv)yc zZ (Jv) and  Z¥ _(J,v) c 2y o(Jv)
the image of M (J,v) under the projection to the last component in (3.38) and the image of
2 (J,v) under (3.39). The splitting (3.38) and the fibration (3.40) restrict to a splitting

mj;7w(t]’ I/) 53 RM’Y;N(%W) X Z;ﬂ:w(t], l/)

and fibration
Z;":w(J, V) =Z;7W(J, V)|Zf,",w(J,V) — Z;W(J, V)

with ]ﬁJ(N(V, 7)o)|-dimensional fibers. The elements of the base of this fibration are real analogues
of reduced GU-maps of [24, Definition 3.10].
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3.4 Strata of simple real maps: properties

Let ’yeAZ)l.k(B) be as in (3.19) and ¥ be the stabilization of 7. Denote by A(vy) <. A(¥) the subset
of pairs (7', w) with

v = ((g/,D/) :Ver' — Z7°® Hy(X; Z),€": S, uFl — Ver', ¢’ : FI' —F1,

(3.42)
o' Ver’uFl’—>Ver/\_:Fl'> eA ,lk( )
such that
Vg =er 9RO F)e] = g+ R(7)], (3.43)
and there are maps
K:R(Y)e — R(Y, 7)o and 0:N(y)e — Z* (3.44)
so that & is surjective and (¢’, o)-equivariant, ¢ is o-invariant, and
0(v)?' (k(v)) = d(v) VoeR(Y)s . (3.45)

In particular,

(R T)) <g g B =B— Y ( S o(v) —)a'w’). (3.46)

V'ER(Y' 7)o S vERT (V)

For example, (v, @wy)€ A(vy). The map & is the identity in this case, while g is the constant function
with value 1. For suitable choices of the values of d and 9’ on the shaded vertices in the middle
and last diagrams in Figure 2, (7, @) e A(y).

Lemma 3.5. Suppose (X,w,®) is a real symplectic manifold, g,1,keZ>" with 2(g+l)+k:>3
BeHy(X;Z), and v € Ail;k(B). Let 7 € Agrr be the stabilization of v and (J, V)EHglk( )

For every element u of M, 1.1(X, B; J,v)?, there eist

(v, w)eA(v), u'ezZl _(J,v) s.t. {evxst}(u) = {evxsty o }(u'). (3.47)

Let 7, 7, and u be as in (3.19), (3.10), and (3.27), respectively. We construct (7', ), with ' as
n (3.42),

u' = (U/Z E,—>X7 (z})fesl;kvo-/aj/) = (U; E;—)Xa (Z})fes’_l(v)a 0;’j/)v€Ver’ € mi’,w(‘]v V)7

and associated maps (3.44) explicitly below. The image of this element u’ of fm* - (J,v) under
the projection to the first component in (3.38) and (3.39) is a desired element of Z 4 -(J,v). The
map u’ keeps the irreducible components w, of u with their marked and nodal pomts that either
correspond to the domains ¥, preserved by the stabilization (3.26) or are constant maps to X.
These components are indexed by the vertices v in Ver iX(7)o; the remaining irreducible compo-
nents of u are indexed by the vertices v in R(7),.
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We replace each u, with v€R(vy), by simple map u, with the same image and every set of such
maps that have the same image in X by a single simple map u],. The collection of maps u], ob-
tained in this way is indexed by the vertices v’ in the set X(7/,7%)s below, which is thus a quotient
of R(7y)s. This two-step replacement may send distinct marked and nodal points z; of possibly
different components u, of u into the same point of the domain 3,y ~ P! of ui},. We resolve such an
accumulation by adding an extra contracted bubble 3,» ~P!. The collection of the extra bubbles
is indexed by the set % below.

The description above identifies the flags F1 of v with the subset of the flags FI' not forming the edges
e={v',v"} as in the previous paragraph. We identify these flags into nodes of u’ in the same way
as for u. This procedure preserves the evaluation maps at the marked points. Since the irreducible
components u, and u!, with their marked points are the same whenever ve Ver, u’ remembers st(u).

An analogue of this procedure in the complex case without the resolution step is sketched after
[24, Definition 3.10]. A similar procedure with ¢ =0 and v =0 is described in the proof of [19,
Proposition 6.1.2]. The tuple of maps produced by our two-step replacement procedure is in fact
a real analogue of reduced GU-map of [24, Definition 3.10] and is a desired element of Z¥, _(.J,v).
The resolution step demonstrates that this tuple is indeed an element of Z:’,w(‘]’ v) by producing
an associated stable map in M, _(J,v).

Proof of Lemma 3.5. By definition,
Ver = Ver U X(7)e U R(7)o, Ver’ = Ver u R(v,%)e U R, 7)o,
(0 ) = (@0)er @i, =00 (@,0)]ym), = 0,0), o'l = ol
We produce ' so that
R, ¥)o = R(Mou¥, FI'=FluF, |Fo|l=2(%], V|rn=17, o pour = 0lxe)ur
/ _ 1( —1 y—
s —ermmn) = lsom-cimma €T RODLT) SR )0,
for some finite (possibly empty) sets % of additional degree 0 vertices and %, of additional flags.
Along with the surjectivity of , the condition |.%y|=2|%y| implies the second property in (3.43).
For each ve Ver uX(v)o, define
Up=1Uy: Xy — X, 2y =2y Ve tw)=c"1(v). (3.48)
Thus, the components u, and u, of u and u’, respectively, corresponding to each element v of

Ver iR (7)o are the same and carry the same marked and nodal points.

For each v e X(7)., there exist a branched cover h, : P! — P! and a simple .J-holomorphic map
ul : P! — X such that u, = u/oh,; see [19, Proposition 2.5.1]. If u” is another simple J-holomorphic
map such that v/ (P)=u! (P!), then u” =u/ oh for some he Aut(P!). Let

RIR()e — RO e =R(/~r 01 ~ 02 gy (PY) =11y (P,
be the quotient map. Define
0:R(V)e — Z7, o(v) = deg hy,
ViR, F)e — Ha(X;Z),  '(0) = {u),},[P] if w(v) =0,
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!/

', and ver 1(v'), and

These two maps are well-defined, i.e. independent of the choices of h,, u
satisfy (3.45). The condition

¢ (uo, (P1)) = e, (P) Vurer V), vaer™ (o' (v))), v ER(Y,F).

determines an involution o’ on R(7/,7)s.

For each v'eX(v',7)., we pick vex~!(v') and first set

/..ol
Uy = Uy P7—> X

For each v' € X(7/,%),, the map ¢oul, o7 is simple and J-holomorphic and has the same image
as u;,(v,). If o' (v") #v', we can thus assume that

u! )=¢ou;,o7'1: P! — X. (3.49)

o (v

If o/(v') = v/, the involution ¢ on u/,(P') determines a anti-holomorphic involution ¢/, on P!
such that
poul, =ul, 00, . (3.50)

By replacing u/, with u/,oh for some he Aut(P'), we can assume that o/, € {r,n}. We set o/, =7
if o' (V') #0'.
For all v/ eR(v/,%)s and ver~H(v'), ul,(P1) =u,(P!). For every fes !(v), there thus exists z’:}ePl
such that u;, (2}) =uy(zy). Since

Uf;/(v/)(éff(f)) = Uo () (Zo(r)) = P(un(27)) = B(u (27)) = “/a'(vf)(gvg'(é}))a

these points z‘} can be chosen so that

2y =ow(Z) Y feem (v), ver (W), v ERK, .. (3.51)

For each v eR(v/,7)., let

e (k) = |_| Fw

we%;v’

be the decomposition so that

2y =2y, i f1, fo€ Py, wEV o,

2}1 752}2 if fleﬁ"wl, f2€fw2, wl,wge“//ow/, w1 #Wa.
By (3.51), there is an involution ¢’

oW = Ll{we”//o;v/: |ﬁw|>2}—>”//o
VER(YT)e

such that o(f)€ Fy(y) for all feF, and we¥.
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Define

o' Fo= | {fu fi} — Fo. o (FE) = oy

wEeYH

it we N, f=Ffo T, | Fw| =1;
¢': Foue  (R(7)a) — Ver', a(f):{“’ HweTou, /= fu o FETu, |l

w, fwe,y, f=Ffi or feFy, | Fuw|=2.
This completes the specification of 7/. We take
w=wy: Sppne (R, 7)) =Spene T (R(y)) — T (Ver) —Fl= .77 (Ver) - F1

to be the injective map corresponding to the contraction of v to 7. This defines (7, w)€ A(y).

Let v'eX(v/,7)s and we #.,y. If F, ={f} consists of a single element, we take
Z} = 2} € Eal(f) = Ev/ = ]P)l .

If | %, =2 and fe.%,, we take

y _ 1 _ 1
z;ﬁ;:zfeEa,(ﬁ;):Ev/:P, z/leeZa,(m):szP,
Uyt By — X, uy,(2) = upy (2)) YV 2€Xy,
o

O =T: Sy — By if o'(w)=w, op,=71:%y — Yy if o'(w)#w.

These definitions are independent of the choice of fe€.%,,. In this case, we also choose distinct points
2y € By —{1} € Toy(p), feF,.

They can be chosen so that
U{U(zf) zzg(f) V feFy, weY,.

The maps u, : P! — X with v/ € X(7/,7). such that [¢/~1(v')] < 2 can be reparametrized to
achieve (3.21) and (3.22) with zy,~, e replaced by z}, +', &', while preserving the conditions (3.49)
and (3.50). This completes the specification of a map u’ with dual graph +/ that satisfies (3.21)
and (3.22). Since

g gy (25) = ey (25) = vy (2o0r)) = weror () (Zorp) ¥ FEFL

u',(z};) = u:vu(z};;) Y weY,

v

this map is continuous at the nodes. Furthermore,

Wo(p)(25) = ey (zp) Y fESLk- (3.52)

Let p’ € A(v') be given by p/(v') =0/, whenever v/ eR(Y,7¥)a, 0/ (v/) =0, and [¢'7(v/)| <2. By (3.48)
and the choice of w,
Uy o0 = Gy w0t Lo — Rﬁgyl;k v veVe(y),

& ! (3.53)
1Yy — Ry VveVe(®).

. _ e
q’}/lvw;v - q’Y:w’Y;’U
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Thus,
V%W’;p/\zv = VymiplSus aJJ“HZ = af,j“v|z = Uy (%, U0(2)) = Vayr i (2,1 (2)) ¥ 2E 35,
for all ve Ver’. By the construction, u), is a simple map for every v'eR(v/,7). and
Uy (P) # gy (BY) V07, 0H€R(Y, ), 0] # 05
Thus, u eimj; = (Jiv). By (3.52) and (3.53), [u] satisfies the condition in (3.47). O
Let I=[0,1]. For (J,v) and (J',') in H;u”l?k(X), define
P(Jv; J V) ={a:[0,1] —>Hglk( ): a(0)=(J,v), a(1)=(J",V)}
to be the space of paths from (J,v) and (J,7'). For any such path «, let
ﬁgl.k(B'a)d) = {(t,[u]): tel, [u]e My (X, B; a(t))?
M 1 (Bs ) = { (¢, [u]): tel, [u] M, (X, B a(t)’

}
J-

If in addition ye Ay ., and (v, w)e A(7), let

0) = { (1. [u]): £<T, [ule 25 . (a(0)}.
These spaces are again topologized as in [16, Section 3] so that the maps

stxev: M . (B; a)? — RMg . x (Xl X (X¢)k), (3.54)
sty xev: Z¥ (o) — RMg . x (X' x (X9)F), (3.55)

induced by (3.5) and (3.40) are continuous.
For g,1,keZ>" and Be Hy(X;7Z), let
dimg ;. (B) = (c1(TX), B)+(n—3)(1—g)+2l+k. (3.56)
For 7€ Ay ., and (v, w) € A(¥) with ’yEAﬁ,’l;k(B’), let
dimy o = dimg 1(B') = |9 + n£(7,R(7,7)0) — (AmeRM. 5y 5+ ZIR(,7)0)]). (357

Propositions 3.6 and 3.7 below are analogous to [19, Theorem 6.2.6] and [24, Theorem 3.16]; they
are established in Section 4.

Proposition 3.6. Let (X, w, ¢) be a real symplectic 2n-manifold. For all g,1, ke ZZ° with 2(g+1)+k>=3
and Be Hy(X;7Z), there exists a Baire subset

HEP(X) € HEP(X) (3.58)
of second category such that for every (J, V)EHg i k:( )

(1) M (X, Bs v)? is a smooth manifold of dimension (3.56) and the restriction of (3.5) to
M (X, B v)? is a smooth map,
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(2) 25 (J,v) is a smooth manifold of dimension (3.57) and the restriction of (3.40) to Z5 _(J,v)
is a smooth map for all (v, w)e A7) satisfying Y€ Ag 1.k, ’yeAz;, (B, B e Hy(X;Z), and
w(B')<w(B).

Proposition 3.7. Let (X,w, ¢), g,1,k, B, and ﬁ:fk(X) be as in Proposition 3.6. For all elements

(J,v) and (J',V') of H;J’l(?k(X), there exists a Baire subset

—~

P(Jv; I V)P (J,v; T V) (3.59)

—~

of second category such that for every ae Z(J,v; J V')

(1) DJT;J;k_(a)@b is a smooth manifold with boundary of dimension dimg ;. (B)+1 and (3.54) is a
smooth map,

(2) Z5 (a) is a smooth manifold with boundary of dimension dim, »+1 and (5.55) is a smooth
map for all (v, w)e A7) satisfying Y€ Ag .k ’ye.AZ;, (B, B'e Hy(X;Z), and w(B")<w(B).

Corollary 3.8. Let n¢ 27 and (X,w, ) be a compact real symplectic 2n-manifold endowed with
a real orientation. For all g,l€ ZZ° with g+1>2 and B e Hy(X;7Z), there exists a Baire subset

ﬁ;’l(p(X)CH;’l?O(X) of second category such that M, (X, B; J, v)?® is an oriented manifold of
dimension (5.8).

Proof. By Proposition 3.6(1), my 1o(X, B3 J, v)? is a smooth manifold of the expected dimension.
By [10, Theorem 1.3], a real orientation (X,w,¢) determines an orientation on this space. O

Corollary 3.9. Let n, (X,w,¢), g,l, B, and ﬁ;fs(X) be in Corollary 3.8. For all elements
(J,v) and (J',V') of 7/-2;”[¢(X), there exists a Baire subset of second category as in (3.59) such that
M 1.0(B; a)? is an oriented manifold with boundary

GSJT;J;O(B;a)d’: ;71;0(X,B;J’,1/)¢’— ;Z;O(X,B;J,Z/)‘z’ (3.60)

o~

for every ae P(J,v; J' V).

Proof. By Proposition 3.7(1), my 10(B; «)? is a smooth manifold with boundary; its boundary is
as specified by (3.60). By the proof of [10, Theorem 1.3], a real orientation (X,w,¢) determines
an orientation on M7, (B; a)®. O

3.5 Proof of Theorem 3.3

We deduce Proposition 3.10 below from Proposition 3.6 primarily through dimension counting.
Proposition 3.11 is obtained similarly from Proposition 3.7. We then combine these propositions
with Corollaries 3.8 and 3.9 to establish Theorem 3.3.

Proposition 3.10. Let (X,w,¢) be a compact semi-positive real symplectic manifold. For all
9,1, keZ?° with 2(g+1)+k>=3 and Be Hy(X;7Z), there exists a Baire subset of second category as
in (3.58) such that

dim {st x ev} (Mg .1 (X, B; J,v)? - ok (X, B3 J, v)?) < dimg . (B)—2 (3.61)

for every (J,v)e ﬁ;’fk (X).
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Proposition 3.11. Let (X,w, ¢) g,l,k, B, and H;’fk(X) be as in Proposition 3.10. For all

elements (J,v) and (J',v") ofH (X)), there exists a Baire subset of second category as in (5.59)
such that
dim {st x ev} (Mg 1.1 (B; a)? =N 1.1 (B; a)d)) < dimg(B)—1

for every ae ﬁ(J, v; J' V).
As with the definitions of pseudocycle in [33, 19], (3.61) means that
{stxev} (M 14(X, B; J,v) 0% (X, B J,v))? € RM . x (X! x (X))

is contained in the image of a smooth map from a manifold of dimension equal to the right-hand
side of this inequality. Thus, the restriction

stxev: MY 4 (X, By J,v)? — RMg . x (X! x (X)F)
is a pseudocycle whenever (J, v) eHY: i k,(X ) and the domain of this map is an oriented manifold.

Let Be Hy(X;7Z)—{0}. For JeJ$ and o =7, 7, we denote by
ME(X,B;J) < My(X,B;J)  and  MI(X,B;J)7? < My(X, B; J)7?

the moduli spaces of equivalences classes of simple degree B J-holomorphic maps from P! to X
and of simple real degree B J-holomorphic maps from (P!, o) to (X, ¢), respectively. Let

MG (X, B; J)? = MG (X, B; )T LG (X, B; J)*" < Mo(X, B; J)*
be the space of all simple real degree B J-holomorphic maps from P! to (X, #). We note that

MH(X,B;J) =@ if w(B)<0,
MG (X, B; J)? = & if B¢ Hy(X;2)%,  MG(X,B;J)*" =& if B¢H3(X;7)°.

The natural morphism
Mo (X, B; J)? — My(X, B; J)

restricts to an embedding
MG (X, B; J)? — MG(X, B; J);

we view & (X, B; J)? as a subspace of (X, B; J).
For J, J’ejf, define
P(J;J) ={a: [0,1]—J2¢: a(0)=J, a(l)=J'}
to be the space of paths from J and J'. For any such path o and each Be Hy(X;Z)—{0}, let

Sma‘(B'oz) = {(t, [u]) ctel, [u]eim(’)k(X,B;oz(t))},
M3 (B; a)? = {(t,[u]): tel, [u]eME (X, B; a(t)’},
M3 (B; )™ = {(t, [u]): tel, [u]eME(X, B; a(t)) "7}
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Lemma 3.12. Let (X,w, gb) be a compact real symplectic 2n-manifold. For every Be Hy(X; Z)

there exists a Baire subset Jw Cjw of second category with the following property. If J, J’ejw,
there exists a Baire subset .
P(J; I e P (J; T (3.62)

of second category such that for every aeﬁ(J; J")

ME(B';a) = ME(B;a)®  if BeHy(X;Z),

<w(B)<w(B), (1(TX), B < 3-n,
M (B'50)? = if B'eHy(X;Z), <

0
0<w(B')<w(B), {c1(TX),B" < 2—n.

Proof. By Section 4, there exists a Baire subset jtff’ CJU? of second category with the following
property. If J, J’ eJs , there exists a Baire subset of second category as in (3.62) such that for all

ae P(J;J) and BeHy(X;Z) with 0<w(B')<w(B)
the moduli spaces 9 (B’; a) —IME(B'; a)? and ME(B’; a)? are smooth manifolds of dimensions

dimp (G (B'; o) =G (B';0)?) = 2(¢er(TX), By +n—3) +
dlmRimo(B’ ) =(c1(TX),BY+n—3+ 1.

This implies the claim. O

Corollary 3.13. Let (X,w,¢) be a compact semi-positive real symplectic 2n-manifold. For every
Be Hy(X;Z), there exists a Baire subset Jecge of second category with the following property. If
J, J'€J2, there exists a Baire subset of second category as in (3.62) such that for every ae P (J; J')

(1(TX),B"Yy>0,3—n if B'eHy(X;Z), 0<w(B")<w(B), M§(B';a)# 7, (3.63)
(c1(TX),B") = bpo if B'e Hy(X;7Z), 0<w(B')<w(B), Mi(B'; )+ 7, (3.64)
(1(TX),BY>1 if B'eHy(X;7Z), 0<w(B')<w(B), Mi(B';0)*™ # 7. (3.65)

Proof. The first inequality in (3.63), (3.64), and (3.65) follow immediately from Lemma 3.12 and
Definition 1.2. If
M (B';a) # & and (1(TX),B"y < 3—n,

then the first statement of Lemma 3.12 gives
MG (B'; ) = MG (B';0) # &
By the second statements of Lemma 3.12 and of the present corollary, this implies that
2—n = <01(TX), B,> = dno

Thus, n=1 and X =P! (X can be assumed to be connected). However, {(c;(TX), B') is even for
every homology class B’ on X =P!. O

Suppose g, 1, ke ZZ% with 2(g+1)+k>3, Be Hy(X;Z), and fyeAf;l.k(B). For (v, w)e A'(7), let

[[7/7 ’ZD]] = |7/| - |éo’y/ (N(’Y,a 7)0) | - |7TO (’7,7 N('ylv 7)0) | .
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Since v/ is connected,
[V, @] = [R(Y, 7)e] - (3.66)
By the second condition in (3.43),

[V, @l +£(v', RO, 7o) = ¢ +R(Y,7)e > [R(7).]. (3.67)
We denote A’(y) < A() the subset of pairs (7', @) such that
loly = Do) -1 =1 (3.68)

ver—L(v')
for some v'eR(v',7),, where k and ¢ are the maps (3.44) corresponding to (v, @).

Corollary 3.14. Let (X,w, @) be a compact semi-positive real symplectic 2n-manifold. For all
9,1, keZ?° with 2(g+1)+k>=3 and Be Hy(X;7Z), there exists a Baire subset of second category as
in (3.58) with the following property. For all elements (J,v) and (J',V') of this subset, there exists
a Baire subset of second category as in (3.59) such that

(e1(TX),B=B') + (n=3)(¢'—g—L(v',R(y,7)o)) + [, =] = 2
for every aeﬁ(J, v; J' V), yeAg),l;k,(B), and (v, w)e A'(y) with WIEA?,;;;C(B/) and Z%, _(a)# .
Proof. Take the Baire subsets to be the preimages of the subsets
Joc gl  and P J)cP(J;T)

of Corollary 3.13 under the natural projections

HeO(X) — T8 and  P(Jv T V) — P(1T). (3.69)
Suppose a € ﬁ(J, v; J' V), veAil;k(B), and (7, w)e A'(y) with 7 as in (3.42) and M7, _(a) # .
Let a7 be the image of o under the second projection in (3.69) and x and g be the maps (3.44)
corresponding to (7', w).

We first note that

>, lolder(TX), o)) + [, w] > (3.70)
U’GN(/ )e

2 (o) =1){er(TX), 0 (")) + [V, @] +£(v, R(Y, F)o) = 2. (3.71)
v'eR(y

")ever (v )

By the first inequality in (3.63),
{e1(TX), o (V))=0 Vo' eR(Y, 7). . (3.72)

If the inequality in (3.66) is an equality and |[R(y/,7)s| = 1, then there is a unique flag f € FI'
such that

o v'=¢'(f) is the unique element of R(y',7%), and
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e the removal of the edge e={f,¥'(f)} separates v’ from all vertices Ver < Ver’.

The unique flag f is then preserved by the involution ¢’ on /. It thus corresponds to a real point
of the irreducible component ¥,/ of the domain of any element of M, _(«). It follows that the

moduli space M (' (v'); a7)?7 is not empty. The inequality (3.70) thus follows from (3.65), (3.66),
and (3.72) in all cases. If p(v) =2 for some veR(y)., (3.71) also follows from (3.65), (3.66), and
(3.72). Otherwise, |N(7y)s| =2 and (3.71) follows from (3.67) and (3.72).

By the last statement in (3.46),
(ea(TX),B=B) = > ol

U’EN( "A)e

_— (o) =1){er(TX), 0" (v)) = (n=3) (IN()e| = IR(7', 7)) (3.73)

v'eER(Y 7)ever1(v )

+ Z (|/€71(U )(<01 TX), >+n 3)

UlEN(’Y“W)'

<01 (TX), D'(v')>

For n>3, the claim follows from the first equality above, the first statement in (3.46), and (3.70).
For n <3, the second equality in (3.73), the second statement in (3.43), and the second inequality
n (3.63) give

(el(TX),B—B") + n—3)(g’—g—€(7/ R(v,7)o))

> ), D (e()=1)er(TX), ' (v)) + £(' . R(Y, 7))

v'eR(y ) ever—1 (v )
The claim now follows from (3.71). O
Proof of Proposition 3.10. For each 'ye.AZ;l,k(B), let
M (J,v) € My (J,v) and IMP(J,v) =M, (J,v) =I5 (J,v) € M, (J,v)

denote the subspace of simple maps in the sense of Definition 3.2 and the subspace of multiply
covered maps, respectively. In particular,

Mgk (X, B; Jv)? =03 10 (X, Bs Jv)? = | [o3(Jv) w | |m0e(,v).
veA? . (B) veA? . (B)
v1>2 ()£ D

Since the map (3.5) is continuous and
[{ve AL L (B): M, (J,v) = T}| < o,
it is thus sufficient to show that

dimp M (J, v) < dimg g (B)—
dim {st xev} (DJT;”C(J, v)) < dimg,(B)—

v 'VE-A;),[;/C(B)’ =2, (3.74)

2
2 Voyed],(B), R()#D. (3.75)
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Let 'yeA?l;k(B), 7€ Ag 1. be the contraction of v, and w,=w be as in (3.33). Then,
W (J,v) =M . (J, v)/Aut(y) = (RM.x(y.5) X zr (J, v))/Aut(y).

For a generic choice of (J,v), the images of the irreducible components ¥, of the domain 3 of any
element u of Z7 (J,v) are distinct. Since R(v,7)=N(7) contains no loops, the Aut(y)-action on
I (J,v) is thus free and £(y,R(7,7)o) =0. Thus, (3.74) follows from Proposition 3.6(2).

Suppose VEAZ),l;k(B) and N(y) # . By Lemma 3.5,
{stxev}(M]°(J,v)) c |_| {sty.mxev} (22, (J,v)).
(v, w)eA ()

For the purposes of establishing (3.75), it thus suffices to show that

dimg 27 (J,v) < dimg ;(B)—2 V(Y ,w)eA (). (3.76)

Let (7, w)eA'(y) with 7’6A§,7l;k(3’) and ||, for each v €RX(v/,7)s be as in (3.68). By Proposi-
tion 3.6(2) and (3.57),

dimg 2% (J,v) = dimg(B) — ({(c1(TX),B—B") + (n=3)(¢'—9))
— 1+l R(7)o) — (dimRM«/;N(ym+|3ZJ/(N(7/’7)0)|) :
Along with (3.31) with ¥ =X(+/,7%), this implies that
dimg 2%, (J,v) < dimgx(B) — ({(c1(TX), B—B') + (n—=3)(g'—9))
+(n=3)(y,R(v', 7o) — [/, =] -
The inequality (3.76) now follows from Corollary 3.14. O

Corollary 3.8 and Proposition 3.10 establish Theorem 3.3(1). Corollary 3.9 and Proposition 3.11
establish the first claim of Theorem 3.3(2).

It remains to establish the second claim of Theorem 3.3(2). Let

~

p: ﬂg,l — My, and  p': My, — My,

be regular covers. Then the cover

o~ ~

N B o~ _
D Mg =My, XMg,zMg,l — My,
is also regular and is the composition of p and p’ with covers

_ ~ .~ ~,
q: Mg —> Mg, and q: Mg — MgJ ,

respectively. It is thus sufficient to compare the class (3.9) with its p-analogue.
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We denote by fg:ll;k(X; J)? the analogue of the space (3.2) for p. The projection g lifts to a cover
q: RUy,ip — RUg 11

between the real universal curves (2.10) determined by p and p. This lift commutes with the
involutions and is biholomorphic on each fiber of (2.10). Thus,

D= {gxidx} v eIy (X;0)°  Ywely (X;J)°.
The composition of upq in (3.4) with ¢ determines a projection
G M 1.0(X, By J,0)? — M 10(X, B J,v)? (3.77)
of degree equal to the degree of q.
If (J,v)eH:(X), then
stxev: M2 (X, B; J,0)? — RMy x X'

is a pseudocycle representing the class (3.9) determined by p. It equals to the composition of the
pseudocycle o
stxev: M2 (X, B;J,v)? — RMy x X'

with (3.77). Thus,
[st xev: M o(X, B; J,0)° — RM,, xxl]
= (degq) [stxev: 0y 1.0(X, B; J, v)? — RM,, xXl].

Since the degree of p is the product of the degrees of p and ¢, this establishes the second claim of
Theorem 3.3(2).

4 Transversality

Proposition 3.6(2) comes down to the smoothness of the second subspace in (3.41) for a generic
pair (J,v). It holds for fundamentally the same reasons as [19, Theorem 6.2.6] and [24, Theo-
rem 3.16]. However, we present these reasons more systematically. In Section 4.1, we describe
a deformation-obstruction setup for each of the four types of irreducible components ¥, of the
domain of maps in this subspace for a typical element (v,w)€e.A(7). By Lemmas 4.1 and 4.2, the
deformations of (J,v) in (3.3) supported in an open set W intersecting the image of 3, cover the
obstruction spaces in all four cases. In Section 4.2, we show that this lemma implies the smoothness
of the universal moduli space (4.25). As usual, the latter in turn implies that the second subspace
in (3.41) is smooth for a generic element (J, ) of H;J”l?k(X ). As explained in the next paragraph,
Proposition 3.6(2) implies Proposition 3.6(1). The proof of Proposition 3.7 is similar.

Let ’yge.A?’l;k(B) denote the unique element with |y9|=0. For each ’yeAjl;k(B), let

M>(J,v) = My (J,v)
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denote the subspace of simple maps in the sense of Definition 3.2. The subspace in (3.6) is stratified
by the subspaces 9% (.J, v) with ’76«431;,6(3_) such that |y|<1. For a generic pair (J, ), each of the
latter subspaces is cut transversely by the (0 ;—v)-operator. Any standard gluing construction, such
as in [16, Section 3] or [19, Chapter 10], restricts to the real setting and provides a continuous map

Dy N — ME(J, v) UMy, (J,v) © MY 1 (X, B; J,v)? © Mg (X, B J,v)?

from a neighborhood N of the zero section 901%(J,v) in the (real) rank |y| bundle of smoothing
parameters. It restricts to the identity on fmj(,], v) and to a diffeomorphism from its complement
to an open subspace of M., (J,v). Thus, the maps ®, with fyeAjl;k(B) such that |y| =1 extend
the canonical smooth structure on M., (J, ) to a smooth structure on the entire subspace in (3.6).

For the remainder of this paper, fix (X,w,¢), B, and g,l,k as in Proposition 3.6, 7 € Ay, as
in (3.10), (v, w)eA(¥) with VEAj',l;k(B,) as in (3.19), and pe A(y). With Vg(y) and V¢(y) as
defined in (3.11), let

)

(Mo Vr(),
(v, 7)o Ve(y)-

NR(’Y?W)' = N(VaW)OQVR(V)a NR(’Y?W)O = N(V?W)OQVR(7)7 NR(’Y?W (C) N
NC(W?W)' = N(V?W)OQVC(’Y)? N(C(Waﬁ)(] = N(V?W)OQV(C(’Y)? N(C(/Yaﬁ (c) N

For each ve Ver, let
SU;C(V)vsv;R('Y) - 571(7)) - Sl;k\—’Fl

be as in (3.13) with 7 replaced by ~.

4.1 Spaces of deformations and obstructions

Let ¥ be a nodal surface. Its irreducible components Y, the nodes z., and the preimages zy of
the nodes in the normalization % of ¥ are indexed by the sets Ver of vertices, E(v) of edges, and
F1 of flags, respectively, of the dual graph ~v. We call a continuous map u: X —> X smooth if the
restriction u, of u to each irreducible component ¥, is smooth.

If u,: ¥y —> X is a smooth map, let
L(uy) =T(Ep;upTX).
For a complex structure j on ¥, and an almost complex structure J on X, define
T3 () = T (03 (TS, =) *®cui(TX, J)).
For a real map u, from (3,,0) to (X, ¢), define
T'(uy)?” = {£€T(uy): dpol=Eoo}.

If in addition j is a complex structure on ¥, reversed by ¢ and J is an almost complex structure
on X reversed by ¢, let

Fg:jl(uv)(b’a — {ner?f,jl(u”): d¢077:770d0'} .
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Denote by o, for ve Vg(7y) and ve V() the involutions on (3.24) and (3.23), respectively. Let
Ty = kerdmy,py — RZ/N{WW,, veVR(y), T, =kerdns,, — Z/Nl,;;v, veVe(y),

be the vertical tangent line bundles with complex structures j, and jj, respectively. For Je J? ,

define
oY (x; . )¢ = {ueF(RZ/N{U x X7 (To, —i0)*®cm3 (TX, J)): dpov=vodo,}, veVr(7),
T90(X; ) = {vel (U x X; 7f (T, —i8)*®@cms (TX, J)) : dpov=vodo,}, veVe(y).

v

Let ve Vg(7y). Denote by 9B, the space of tuples
u, = (up: By — X, (Zf)ferl(v)aff,j) (4.1)
so that (X, (2f) fec—1(v)> 0,1) is a fiber of (3.24) and u, is
e a smooth (¢, o)-real degree d(v) map if v€VR(F) URR(Y,7)e,
e is a constant (¢, o)-real map if veNg(7y,7)o.
In the first case, let
P(w,) = T(w)??, T (w,) =I5 (u,)?,

(4.2)
To(u,) = {€eT(uy): £(2p) =0V fee(v)}.

In the second case, we take I'(u,) to be the space of constant real sections of u*TX and Fg’l(uv)
and I'g(u,) to be the zero vector spaces. For fee!(v), let

X7 lffESU,(C(fY)v
X2, if feSyr(Y);

Ter(uv)Xa if feS’U;(C(’Y);
Ter(uU)X¢7 if fGSU;R("}/);

be the evaluation maps at the marked point z; corresponding to f.

er:%v—>{ Lf3r(uv)—’{

For Je 7% and yef‘g’l(X; J)?, let ﬁU(J, v)c B, be the subspace of tuples (4.1) such that
Opjun|, = v(z,uu(2))  Vzed,. (4.3)

Denote by N N
B < B, and DU (J,v) < My (J,v) (4.4)

v
e the subspaces of simple maps if veRg(7y,7).,
e the entire spaces if v€ VR(7) URR(7,7)o-
For uUESfJVTv(J, v), let
Djyiw,: T(uy) —> T (wy)  and DY, To(u,) — I (uy)
be the linearization of d;—v at u, and its restriction. If veXg(7y,7) and W < X, define

Jviuy

I (y) =Im DY, + {Aodu,oj: AeT; 72, supp(A)c W},

37



IfveVR(T), ty: Xy —>Rag,l; % is a normalization of a real irreducible component of a fiber of (2.10),
and W cRU, ;.x., define

ngw(uv) ImDJl,u {{vauv}*l/: V’€F27l1,k(X;J)¢, Supp(V/)CWXX}.

Let ve V(7). Denote by B! the space of tuples

U = (UyUtlp(y) : Do Loy — X, (27) fec—1 () ne-1 (0(v))> 0+ ) (4.5)
so that (3,0 %q (), (27) fee1(v)ue—1(0(v)), 0»1) 18 a fiber of (3.23), ug(y) = pouyo0, and u, is
e a smooth degree d(v) map if ve Ve (F) URc (7, 7)e,
e a constant map if veR¢ (7, 7)o.
In the first case, let

L(u}) = {(&,€) el (u) BT (ty(y)) : & =dgoort},

Ty (ug) = {(n,n)eTy;( uv)(—BFJ] (tp(w)): 11 =dponodo}, (4.6)
o(u ) {(€,€)el(u}): &(2)=0V fec™ (v)}.

In the second case, we take I'(ug) to be the space of pairs (§,&’) as above so that £y, is constant
and I‘g’l(u') and Tp(u?) to be the zero vector spaces. For fee™(v)ue t(o(v)), define

VBt o) = Jt(z) i feeT (w);
evy: B, X, 2vy(us) = {Ua(v)(zf)a if fee (o (v));

g(zf)v iffee_l(v);
& (zy), if fee (o).

Lf: F(“ ) - Ter( )Xa Lf(€7§/> = {

For Je J¢ and l/efg’;l(X; J)?, let 97?;(J, v) < B? be the subspace of tuples (4.5) satisfying (4.3).
Denote by N N
B* < By and MY (J,v) < M (J,v) (4.7)

e the subspaces of simple maps such that u,(Xy) # Ug(v) (Xg(w)) if vERC(Y,7)s,
e the entire spaces if ve Ve (7) uRc (7, 7)o-
For u;eimv(J, v), let
D s D)L () — T ()T (ttgry)  amd - DY, To(ul) — T%' ()
be the linearization of 0;—v at u$ and its restriction. If veXc(7y,7) and W< X, define
L) () =Im DY, + {(Aodu, o, Aoduy(,)oj) : A€T;JS, supp(A)c W}

If veVe®), tg: Bpulpn) — Rug,l;k is a normalization of a conjugate pair of irreducible
components of a fiber of (2.10), and WC]RZ/N[QJ;]C, let

F?],ljw( 0) = IrnDJ,,;uq.J + {{L;x (uvuug(v))}*l/: V’el“gzll;k(X; J)?, supp(y’)chX}.
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Lemma 4.1. Suppose v € R¢(7,7)e U Ve(7), J € TS, I/EF?,Z{(X;J)QS, and uSeMy*(J,v) is as
in (4.5). If veRe(7,7)e, let W X be a ¢p-invariant open subset intersecting u,(X,). If ve Ve (7),
let

Ly YpUZsw) — RlUy ik and W < Rl .,

be a normalization of a conjugate pair of irreducible components of a fiber of (2.10) and a og-
invariant open subset intersecting v5(3,), respectively. Then ng w(ud)=T%(ug).

Proof. Denote by
DJ,V;UU : F(uv) - F?]ijl(uv)a DJl/ uy FO(UU)E{ger(uv)Z E(Zf) =0 erg_l(’u)} - ngll(uv)

the restrictions of DS and DY respectively. If veX¢(7,7), define

Jviuay Jyu»

F?,lllw(uy) ImDJVu + {Aoduvoj: AETJJf, supp(A)cW}.

If veVe (%), define

Fgll/ w(uy) = ImDJVuv {{L;|Eu xuv}*l/': VlEFS:ll;k(X; J)?, supp(u’)cW}.

The projections
To(u}) — To(w,)  and  TY(u}) — I ()

. and DO

I‘gllj w(uy). Thus, the claim of the lemma is equivalent to FJVAW(uv) =T01(u,).

are isomorphisms intertwining D9 . The second projection maps ' Tu: W( uy) onto

Jvius, Jviuay

Denote by
I0u,) =T (w,) @ T(S,—e 7 (v); (TS0, 1)* ®cul(TX, J)*)

the subspace of smooth sections 7 with at most simple poles at the points of e~!(v). In other
words, for every zg€ e~ (v) there exists a holomorphic coordinate w on a neighborhood U of zg
in X, such that

w(zg) =0 and  w-nly € T(U; (TS, i)*Qcu*(TX, J)*).

By [27, Lemma 2.4.1] and [15, Lemma 2.3.2], the cokernel of DY is isomorphic to the kernel of

J,viu,
the formal adjoint Dj; of Dj,.,, on I'0(u,) via the standard pairing of (0,1)- and (1,0)-forms
on Y,; see also [34, Sections 2.1,2.2].

Let neker D —{0}. The only property of D} relevant for our purposes is

(P1) n does not vanish on any non-empty open subset of X,,.

As with [19, Proposition 3.2.1] and [24, Proposition 3.2], the proof comes down to showing that n
pairs non-trivially with some element of 772 if veRe(v,7)s and of T? ’l (X5 J)? if veVe(7).

Suppose vE V¢ (7,7)s. Since u, is simple and ¢(uy,(3,)) # uy(2y), we can assume that there exist
non-empty open subsets U X, and W’ c X such that u,|y is an embedding,

W =W uopW', Uy (X)) n W' =, (U), uy(By) n (W) = . (4.8)
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The proof of [19, Proposition 3.2.1] provides A’€T;J,, such that

supp(A") ¢ W’ and f (A'oduyoj) Am #0. (4.9)

v

We define AeT;J2 by
Al = A, Algowry = —¢* A, Alx_w =0. (4.10)
By the last assumption in (4.8), A pairs non-trivially with 7.

Let ve Ve (¥). Since ¢ is injective outside of finitely many points, we can assume that there exist
non-empty open subsets U X, and W’ < RU,g 1,1 such that

W =W usg(W’), w(Z)nW =u3(U), 3(2,) nor(W')=g. (4.11)

v
The reasoning in the proof of [19, Proposition 3.2.1] applied in the setting of [24, Proposition 3.2]
provides v’ ng’ll. (X5 J) such that

supp(v") €« W' x X and J ({esls, xup}* V") Am # 0. (4.12)

We define V’efgzll;k(X; J)? by

/
|

v (]lelg,l;k7W)><X = 0 : (413)

Viwx =0, Vggwyxx = {Frx ¢}V,
By the last assumption in (4.11), v/ pairs non-trivially with 7. O

Lemma 4.2. Suppose veRg(7,7)eUVr(Y), J€ Je, Vefg’l(X; J)?, and uveﬁ;‘j(J, v) isasin (4.1).
If veRR(Y,7)e, let W X be a ¢-invariant open subset intersecting u,(X,). If ve VRr(¥), let

Ly iy — Rag,l;k and W c RLNIgJ;k

be a normalization of a real irreducible component of a fiber of (2.10) and a ogr-invariant open

subset intersecting 1,(X,), respectively. Then fg:llj;w(uv) =% (u,).

Proof. With T’ },’0 (uy) as in the proof of Lemma 4.1, define
I'0u,) = {nel}’(u,): dpon= —nodo}.
Since the involution o on ¥, is orientation-reversing, the pairing of (0, 1)- and (1, 0)-forms on %, of

Lemma 4.1 restricts to a pairing between the invariant subspaces F?,’l (u,) and I'*%(u,) and induces
an isomorphism between the cokernel of DY v, and the kernel of DJj ~on I'0(u,) as before.

Let neker D —{0}. The only properties of D}, relevant for our purposes are (P1) and
(P2) dgon=—nodo.
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We show that n pairs non-trivially with some element of T L JL i vERR(Y,7)s and of I’g:ll; W (X5 J )@
if veVp (7)

Suppose vERR(7,7)s; thus, ¢pou, =u,00. Since u, is simple, we can assume there exist non-empty
open subsets U3, and W’ < X satisfying the condition before (4.8) and the first two conditions
n (4.8). Let A'eT;7, be as in (4.9) and define AT, 7% by (4.10). By (P2),

((Aoduyoj) An)| ) U*(((Aoduvoj)/\n)’U>. (4.14)

We conclude that
f (AOduUOj) AN = j (AOduvoj) AN+ J (Aoduvoj) AN = QJ (A’oduvoj) An#0, (4.15)
v U o(U) U
i.e. A pairs non-trivially with 7.

Let ve Vg(¥). We can assume that there exist non-empty open subsets U c ¥, and W’ C]Rag’l;k
satisfying the first two conditions in (4.11) with ¢§ replaced by ¢,.. Let " €T (X;.J) be as in (4.12)

and def;ne,y'el“gzll;k(X; J)? by (4.13). By (P2), (4.14) and (4.15) hold with Aodu,oj replaced by
{ty xuy v/, O

4.2 Universal moduli spaces

Let Ec(7), Erc(7), Err(7) ©E(7) be as defined in Section 3.2. Choose E (v) cEc(y) so that

Ec(y) =E+(7) ua(E+(7)). (4.16)

For each e€Egc(y), choose a flag f.€e.
For eeE;(y) and eeERr(7), let
Ay C X,Y;eEl_[X and A¢ c qu —HX¢
fee fee
be the respective diagonals. Define
= [[aex [][Xx?x HA cXy= [[Xpex [[Xx []x%. (4.17)
ecE4 (v) e€Erc(7) e€Erg (v) e€E4 (v) e€Erc(v)  ecErr(7)
The evaluation maps evy induce a map
ev, = H Hevf X Here X H Hevf: H%: X H’B;* — X, (4.18)
e€E (v) fee eeEprc(7) ecEgg(7) fee veVR(y)  {v,0(v)}cVe(y)

Define

B wip ={ue H%* H%.* evy(u)eA,},

veVR(Y)  {v,o(v)}cVe(y) (4.19)
%f’;wp {ue%va Uy (B ) # Uy (By) Vvl,vgeN(’y,ﬁ).,vl;ﬁvg}.
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An element of B ., corresponds to a tuple

u= (UZ Y—X, (Zf)fESl;mO'aj) = ((u’U)’UEVR(’Y)? (u;){v,a(v)}cvc('y)) = (u”)ve\/er’ (420)
where (¥, (27) esy,,5 0,7) is a fiber of (3.25) and v is a smooth (¢, o)-real map such that
ux[2y] = 0(v) € Hy(X;Z) VweVer, uly, = const  YveR(y,¥)o.

For a tuple u as above, let

Lo(u) = @Plo(u)®  PTLo(up). (4.21)

veVg(7) {v,0(v)}cVe(v)
If in addition Je J2, let
%= Prywe Pry‘w). (4.22)
veVR(Y) {v,0(v)}cVe(y)

Denote by
F— HO(X)xBE (4.23)
the bundle with fibers §(,.u) =F3’1(u). We define a section of this bundle
0: H;’ld:k(X) xBX L —F by O(Jvu)|, = 0d5ul, — vy wmp(zu(z) Vzel. (4.24)
The zero set of this section
umz () = {(J,v; u)e?—l;’fk(X) x B2 ., 0(J,v;u)=0} (4.25)

is the universal moduli space. The preimage of a pair (J,v) in H;’7’l‘f)k(X) under the projection

TN (T v) — HEG(X) (4.26)

is the second subspace in (3.41).

For the purposes of applying the Sard-Smale Theorem [28, (1.3)], we complete

e the map components of the spaces B, and B and the spaces (4.21) in the L Sobolev norm for
some p>2 (fixed),

e the parameter space (3.3) in the C™ Hélder norm for some m =2 (to be chosen later), and

e the spaces (4.22) in the L} Sobolev norm.

We denote the completed spaces and the induced spaces in (4.4), (4.7), (4.19)-(4.23), and (4.25) as
before.

By the assumption p > 2 and the Sobolev Embedding Theorem [19, Theorem B.1.12], the map
component of any element of the completed spaces B, and B! is a C'-map. By the reasoning at
the top of [19, p47], these completions are smooth separable Banach manifolds. By the reasoning at
the bottom of [19, p49], the (completed) parameter space H;’ﬁk(X ) is a smooth separable Banach
manifold. By the reasoning at the bottom of [19, p50], (4.24) is the restriction of a C™~2 section
of C™~2 Banach bundle (4.23) over the product of the spaces B, and B?.
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Proposition 4.3. Let p and m be as above. Then

’U’gﬁ:wp(‘]? V) glk H% x H%; (4'27)
veVR(Y)  {v,o(v)}cVe(y)

is a separable C™~2 Banach submanifold and the projection (4.26) is a C™ 2 Fredholm map of index
indr7 = dimg 1,5 (B') — [y| + n€(7, R(7,7)0) + dimrG-,, . (4.28)

Lemma 4.4. Let p and m be as in Proposition 4.5. Then

B ., C H% X H%;

veVe(7)  {vo(v)}cVe(y)
1 a separable Banach submanifold of codimension
codimp B ., = n(|’y]—€('y, N(fyﬁ)o)) . (4.29)
Proof. With &,(7') as defined in (3.29), let

EL(7,7) = E+(M) =& R(,9)0), Erc(v,7) = Erc(v) =& (R(7,7)0),
Er(7,7) = Er(7)—& (R(7,7)o)-

Define
Ay my= HAWB X 1_[X‘f> X HA‘ZS;B c X 5= HX.Y;E X HX X H Se s
e€EL (7,7) e€Erc(7,Y)  e€Err(7,7) e€E4 (7v,7) e€Brc(7,7)  e€Err(7,7Y)
evy 5= H Her X l_lev]ce 1_[ Her' HEB* H‘B;* — Xy 5.
ecE+ (v,7) fee e€Erc(7,7) ecErr(7,7) fee veEVR (Y {v,o(v)}c=Ve(y)
For each element ue®’ ., let
Lizu= @ DLre DLp.e D DLy
e€B4 (7,7) fee e€Brc(v,y)  e€Err(v,7) fee
C—D uU)C—B @F(u”)@ @Po(u;)e} @P evWA/( )Xvﬁ-
veERR (7,Y veRR (7,7)§ {v,o(@)}cRe(v, 7)o {v,0(v)}Re(, 7)

For veRgr(7y,7)o, the map component w, of every u, € B¥ is constant. For veRN¢(v,7)o, the map
components u, and u,(,) of every uleBy " are constant. Thus,

B, = {u e [[Bix [[Bo*: eve(usp) =evypr(uep) V1{f, f'}eéaw(N(%W)o)}

vERR(7, 7)o {v,0(v)}Re(v,¥)o

c H‘B: X H%;’*

veRg(Y,7)0  {v,o(v)}Re(v,7)o

is a smooth submanifold of dimension n|my(~, R(7y,7)o)| and thus of codimension
codimR%gw = n(’& (R(v,%)0)|—£(7, N('y,ﬁ)o)) . (4.30)
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By definition,

B oy = {ue Bl ox [ ]B7 % [ evys(w)edy 5} (4.31)
UENR(’%W)S {”,U(U)}CNR(’Yﬁ)ﬁ

For each ve Vg (), B¥ is an open subset of B,. For each ve V¢(y), By™ is an open subset of B?,.

Since B is an open subset of B* it is sufficient to show that

¥,@;0 e=H

B wip © H%* H%;*
veVr(Y)  {v,0(v)}cVe(y)

is a Banach submanifold of codimension (4.29). We show below that

T 7(u)X'yﬁ = Im L’Yvﬁ?“ =+ Tev,yﬁ(u)A’yﬁ (432)

&Vy 5
for every ue®’ . ,. Thus, the smooth map
evy 51 BY _x H%;i x H%;v* — X, 5
veRp(1,7)§  {v,o(v)}cRr(v,7)§
is transverse to the submanifold A, 5. Along with (4.31), the Implicit Function for Banach mani-

folds, and (4.30), this implies the lemma.

For each edge e in Egrc(7,7), fe¢R(v,7)o. For each edge e in E¢(v,7) UERr(7,7), there exists a
flag feee such that fe¢N(v,7)o. For each ve Ver, let

Fl* = Eil('v)m{fe: €€E+(')/,7)UER(C('Y,W)UERR(’Y,W)},
FlvR - Fl:msv;]R<7)7 Flv C — FI:QSU;C(PY)'

If veVe(y), FI g = and FIj - =FI;. By (4.16),

U(FI:) N Fl:—( ) — Flv iR {fe: BEEJr(/yaW)UERC(W?W)UERR(’}/’W)} = UFL:X; : (433)
veER(Y,7)§
Let ue®? _., and
Ty 7t Tev, m(w) Xy 7 — ) Tevs, (ue(r) X @ @Tewe (uere) X D S Tevy, (US(fe))X¢
eeE 4 (v,7) e€Erc(7,7) e€Err(7,7)

be the projection on the components indexed by the flags of the form f.. By the first statement
n (4.33), the homomorphisms

PLro @Lp:T(w)=T(w)”” — PT,nX & DT, )X’

feFl;";(C feFl:‘)‘;R JeFL® ne JeFL* o R

with veRg(y,7)§ and the homomorphisms

DLy () =T (w0t — DT X

JeFL¥ feF1*

with veXe(v,7)§ are surjective. Thus, the restriction of 7, 5 to the first subspace on the right-hand
side of (4.32) is surjective as well. This in turn implies (4.32). O
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Proof of Proposition 4.3. Let

Sv —>’Hglk( ) xB,, veXNr(y,7)§, and Fy _’Hglk( ) xB7, veRe(y,7)o, (4.34)

be the bundles with fibers FOJ’l(uv) and FOJ’l(u;), respectively. Denote by

Ty glk x| [Bo x H%Z—’%;ﬁk(x)X%w vERR(Y,7)5s
veVR(Y)  {v,0(v)}cVe(y)
m i HOD(X)x [ [Box [ By — HE(X)xB), veRe(v,7)s,

UEVJR('Y) {v.o(v)}=Ve ()

the projection maps. Define sections 0, and 0% of (4.34) by (4.24) with (u, X) replaced by (u,,3,)
and (W, U, (), Ly Eg () ), Tespectively.

The section ¢ in (4.24) is the restriction of the section

o= @@ @ryroy:

VERR (7, W)C {v,0(v)}Rc(1,7)§ (4 35)
UGVR(’Y) {vo(v)}cVe(y)  vERR(1)G {v,0(v)}Re(v,7)§

to the base of the bundle (4.23). By Lemma 4.4, the latter is a separable Banach submanifold of
the base of (4.35). We show that the bundle section (4.24) is transverse to the zero set. Fix an
element (J,v;u) of its zero set (4.25) with u as in (4.20).

For each veXNg(v,7%)§, let
D, 0 T(JI/)H (X )@FO(UU) — T (),
DY, 0(A V5 €) = Juw,p,uvf + §A0duvoi —{ @y, XU}V,
with the last term above defined to be 0 if veRg(7,7).. We note that

Aoduyo)j =0 if uy(X,)nsupp(A) = &,

4.36
{q%w;v Xuv}*l/ =0 if (q%w;v(zv) XX) msupp(l/) = . ( )
For each veXc¢(v,7)§, let
Dg,u;u;g: T(JV)Hglk( )@FO( ) - F{Oj’l(u;)a
D(}’V;uzé(A, V€)= ngl,;u.f + = (Aoduvo),Aodu (v)o]) {q;’w%w;pw X (uvuua(v))}*l/
with the last term above defined to be 0 if veRc(7y,7).. We note that
Aoduy,0j, Aodu,(,y0j) =0 if  uy(2y)nsupp(4) = &,
( j ()°]) (Xy) nsupp(4) = & (437)

(@ X}V =0 if (g 4., (30) x X) nsupp(v') = &.
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The homomorphisms DY T, 0 and D0 8 are the restrictions of the linearizations of 0, at (J, v; u,)

and of J3 at (J,v;ul) to

T H;J,’l?k (X)@To(uy) < Tigpu,) (H;ﬁk (X) xBy) and

(J,v)

T(J,V)H;ﬁk(X)@FO (uy) Tijvus) (H;ﬁk (X)xB7),

respectively. Since I'g(u) € Ty B* it is sufficient to show that the homomorphism

v,@;p
C_Bﬂ-*‘DJuuvac—B C_BW.*DJVu
vERR (V,7)§ {v,o(v)}=Rc(v,7)§
0,1 0.1 () (4.38)
T(J,I/)Hg I: k( )®lo(u) — @FJ (u,) ® @F u,
veRR (7,7)§ {v,0(v)}Re(v,7)§

is surjective.

Since ue B’ ., the subsets u,(3,) = X with veR(y,7)s are distinct. There thus exist ¢-invariant
open subsets W, c X with veX(v,7)s such that

Uy () "Wy # I VoeR(y,7)., (4.39)
Uy (By)) "Wy =, Wy, n Wy, = YV u1,v2€R(7Y,7)e, v1 #v2,0(v2). (4.40)

For veVe(¥), let ¢y =63 |, The subsets ¢y, v (2y) CRZJQ’Z;}C with ve V(%) are also distinct.
There thus exist og-invariant open subsets WUCRZ/{gJ;k with ve V(¥) such that

Qy,w0(B0) "Wy # I VoeV(7), (4.41)
Qvy, w01 (Zvl) M Wvg = @a Wvl N W’Uz = @ Vvl, UQGV(V), U1 751}27(7(1)2). (4'42)
Define
T, H = {AeT;J2: supp(A) =W, } VoeR(Y,7)e,

TH = {V el (X D)% supp(v) e Wy x X} Vue V(7).

By Lemmas 4.1 and 4.2, (4.39), and (4.41),

D}y, O(ToH®To(w,)) = T (wy) ¥ veRe(7,7)5, 25)
DJV u’a(T HC—BPO( )) = F?]’l(uv) v UENC(’}/?’}/)S
By definition,
Dg,y;uvlé(FO(u /)) Jl/ uvlé( ( )) Dgl/'u. é(Fo(u’vl)) Dgl/'u. é(Fo(u.’ )) = {0}7 (4 44)
v U17U1€NR( )0a UQaUQENC('y 7)07 U1 7E’U17 V2 7év27 ( é)
By (4.36), (4.37), and the first statements in (4.40) and (4.42),
0 3 0 B _
D Jﬁy;uvla(TU’H),D J,,,;UZQa(TvH) = {0} (4.45)

V u1€Re(7,7)5: v2€Re(7,7)5, vER(Y,7)gs v#v1,v2,0(v2), (vi,0) & V() XR(7,7)e.
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By the last statements in (4.40) and (4.42),

P (TyH®To(uy)) ® P (T HSTo(u})) T(J,V)Hglk( )@®Lo(u). (4.46)

UGNR(V’W)(C) {U’U(v)}CNC(')’vW)S
By (4.43)-(4.46), the homomorphism (4.38) is surjective. This establishes the first claim of the

proposition.

Let G, for ve V(y) with |7 (v)| <2 and G, for ve Vg(7y) with [e71(v)| <2 be as in Section 3.2.
Denote by G, for ve V() with [e7(v)] =3 and G,y for ve Vr(y) with [e71(v)| = 3 the trivial
groups. Thus,

dimgRM.;, = 3(g(v)—1) + e 71 ()] + dimpG,,  YveVr(y),
dimpM?,, = 6(g(v)—1) + 2/ (v)| + dimpG,  VoveVe(y).

Since g(o(v))=g(v) and |e~!(a(v))| =|e~1(v)], it follows that

DdimgRMo + Y dimp M3, = Y (3(a(0)=1) + [T w)]) + dime Gy
veNR (Y75 (o)) veVer (4.47)

=3(¢'—1)+2l+k—|v|+dimrG.,;
the second equality above follows from (3.15) with 7 replaced by ’yeAﬁ, wu(B)-

Let veXg(y,7)§. By the proof of [9, Proposition 3.6], the restriction
Dy, : T(wy) — T (uy)
of Dj,.u, is a Fredholm operator of index
indgD sy, = <C1 TX), >+ n(l g(v ))

Thus, the restriction
~ 0,1
DJJ,;HU : Tuv%v — FJ:j (uv)

of the linearization of @, at (.J, Uy o:p; Wy) 1s a Fredholm operator of index
indgD o, = {c1(TX),0(v)) +n(1-g(v)) + dimgRM., . (4.48)

This formula is also valid for veRg (7, 7)o if 0, is replaced by the section of the rank 0 bundle.

Let ve Ne(y,7)5. By the reasoning at the beginning of the proof of Lemma 4.1 and [19, Theo-
rem C.1.10], the restriction
DSy T(u3) — T% (u3)

Jviuy

of D¢

T, 15 @ Fredholm operator of index

indgDY,.,, = 2{c1(TX),0(v)) + 2n(1—g(v)).

Thus, the restriction
~ . 0,1/ e
DJ,V;U,; : Tu;%v — FJ,j (uv)
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of the linearization of 0% at (J, Vy,m:p; Uy) is a Fredholm operator of index
indgD 7 = 2{c1(TX),0(v)) + 2n(1—g(v)) + dimp M., . (4.49)
This formula is also valid for veR¢ (v, 7)o if 02 is replaced by the section of the rank 0 bundle.

By (4.47)-(4.49), (3.15) with 7 replaced v € Aj, 1x(B'), and (3.20) with B replaced by B’, the
restriction N
Djv: DTu,B®  DTuyB) — Ijj(w)
veRR(7,7)§ {v,o(v)}Re(v7)§

of the linearization of ¢ at (J,v;u) is a Fredholm operator of index

indgD o = (e1(TX),B )+ (n—3)(1—¢')+2l+k+ (n—1)]7]|+dimr G+,
= dimg/J;k(B/) + (’I’L—l)|’7| + dimRG’y;p .

Along with Lemma 4.4, this implies that the restriction

' 0,1
{],V;u: Tu%jl;,w;p - I\J,j (u) (450)

of the linearization of (4.24) at (J,v;u) is a Fredholm operator of index (4.28). The last claim of
the proposition follows from this conclusion by the reasoning at the beginning of the proof of [19,
Theorem 3.1.6(ii)]. O

By the reasoning in the proof of [19, Theorem 3.1.6(ii)], (J,v) is a regular value of 7 if and only if
the operator (4.50) is surjective for every element u of the preimage

M ., (J,v) =77 (J,v) < U . (J,v) (4.51)
of (J,v). Suppose m—2 >indg7. By the Sard-Smale Theorem, the set H™ of regular values of 7

is then a Baire subset of second category in (the C™-completion of) H;J’ﬁk (X) in the C™-topology.
Along with Taubes’ argument in the proof of [19, Theorem 3.1.6(ii)], this implies that the subset

Horfh () © My (X)

of smooth pairs (J,v) so that the operator (4.50) is surjective for every element u of ﬁtf/’w;p(J, v)
is Baire of second category in the space of all smooth pairs (J,v) in the C*-topology. For every
pair (J,v) in this subset, the left-hand side in (4.51) is a smooth submanifold of the right-hand
side of (4.27) of dimension (4.28). The group Gg; ,» acts smoothly and freely on this submanifold.

The smooth structure on the quotient descends to a smooth structure on 25 _(J,v).
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