
MAT 566: Characteristic Classes

Problem Set 2

Due by Tuesday, 2/25, in class
(if you have not passed the orals yet)

Do 7-C plus any one of the following problems: 5-B,5-E,6-B,7-A,7-B, (ii), or (iii) below.

Problem (ii): LetX be a paracompact locally contractible topological space. Thus, qH1pX;Z2q
is naturally isomorphic to H1pX;Z2q; see Chapter 5 in Warner. An equivalence class rLs
of real line bundles corresponds to some element qw1pLq P qH1pX;Z2q. Show that qw1pLq
corresponds to w1pLqPH1pX;Z2q under the natural isomorphism.
Hint: there is a very short solution via naturality.
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Show that Va is a rank 2 real vector bundle, is not orientable for every aPZ, and does not
split as a sum of line bundles if a‰0. Furthermore, Va and V
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Remark 1: Problem 7-C is an example of the Splitting Principle: if a natural formula in-
volving characteristic classes holds for split vector bundles (i.e. direct sums of line bundles),
then it holds for all vector bundles.

Remark 2: Problem (ii) implies that the real line bundles over a paracompact topological
space are classified by their w1. Problem (iii) implies that the real vector bundles of rank 2
(and higher) are generally not distinguished by their total Stiefel-Whitney classes w, because
H2pRP2;Z2q contains only 2 elements in total.


