
MAT 562: Symplectic Geometry

Solution to Problem E

(a) Suppose a compact Lie group G acts smoothly on a symplectic manifold (M,ω). Show that there
exists an ω-compatible almost complex structure J on M preserved by G, i.e.

dg◦J = J ◦dg : TM −→ g∗TM ∀ g∈G .

(b) Suppose S1 acts smoothly on a compact almost complex manifold (M,J), i.e. preserving J . Let
ξ∈Γ(M ;TM) be the vector field generating this action, i.e.

ξ(x) =
d

dt

(
e2πit ·x

)∣∣∣∣
t=0

∈ TxM ∀x∈M.

Show that the flow of −Jξ extends this action to a well-defined smooth action of C∗⊃S1 on M ,

ψ : C∗
×M −→M, ψ

(
e2πit, x

)
= e2πit ·x,

d

ds
ψ
(
e2π(s+it), x

)
= −Jξ

(
ψ(e2π(s+it), x)

)
,

and ux ≡ ψ(·, x) : C
∗ −→ M is a J-holomorphic map for every x ∈ M . If in addition J is

integrable, show that this C
∗-action is J-holomorphic.

(c) Suppose S1 acts smoothly on a compact symplectic manifold (M,ω) with an associated Hamil-
tonian H : M −→ R, i.e. ιξω = −dH, where ξ∈Γ(M ;TM) is the vector field generating the
S1-action, and x∈M . Let J be an S1-invariant ω-tamed almost complex structure on M and
ux be as in (b). Show that there exist S1-fixed points x−, x+∈M such that

lim
s−→±∞

ux
(
e2π(s+it)

)
= x± and Egω

J
(ux) =

∫

C∗

u∗xω = H(x+)−H(x−) ,

where gωJ is the metric on M determined by ω and J .

Note. This corrects and sharpens Exercise 5.1.5 in the main book. By (c), ux extends to a contin-
uous map ũx : CP

1−→M with bounded energy on C
∗. By (b), the restriction of this map to C

∗ is
J-holomorphic. The Removal of Singularity Theorem (Proposition 4.8 in the notes) then implies that
the extension ũx is J-holomorphic as well. Thus, a compact connected symplectic manifold (M,ω)
with a non-trivial Hamiltonian S1-action contains a non-constant J-holomorphic sphere through
every point x∈M and for every ω-tamed almost complex structure J . This provides the motivation
for MR2484280, one of the rare established connections between Gromov-Witten invariants and ge-
ometric properties of the symplectic manifold.

(a) By the solution to Problem C on HW2, there exists a Riemannian metric g on M preserved
by G. The almost complex structure Jg,ω ∈ Jcm(ω) constructed in the proof of Proposition 2.3 in
the Notes is then also preserved by G.

(b) Since M is compact, the flow of the vector field −Jξ on M ,

ψs :M −→M, ψ0 = idM ,
d

ds
ψs = −Jξ◦ψs ,

is defined for every s∈R. Thus, the map

ψ : C∗
×M −→M, ψ

(
e2π(s+it), x

)
= ψs

(
e2πit ·x

)
,



is also well-defined and smooth. The resulting R-action on M commutes with the original S1-action
if and only if the Lie bracket of the vector fields generating the two actions vanishes. Since the S1

preserves J , ψ∗
t J=J , and thus LξJ=0. It follows that

[ξ,−Jξ] = −Lξ(Jξ) = −(LξJ)ξ − J(Lξξ) = 0− J [ξ, ξ] = 0.

Thus, the R- and S1-actions indeed commute and thus correspond to an action of C∗≈R×S1.

Let x∈M . Since the S1- and R-actions above are the flows of the vector fields ξ and−Jξ, respectively,

∂

∂s
ux

(
e2π(s+it)

)
= −Jξ

(
ux

(
e2π(s+it)

))
,

∂

∂t
ux

(
e2π(s+it)

)
= ξ

(
ux

(
e2π(s+it)

))
= J

∂

∂s
ux

(
e2π(s+it)

)
. (1)

Since JC
∂
∂s
e2π(s+it)= ∂

∂t
e2π(s+it), where JC is the standard (almost) complex structure on C, it follows

that the map ux is J-holomorphic, i.e.

dux◦JC = J ◦dux : TC
∗
−→ u∗xTM.

Suppose J is integrable. Exercise 2.2 in the Notes then gives

L−ξJJ = −J(LξJ) = 0 ,

i.e. the flow of −ξJ preserves J and so does the R-action. Thus, the entire C
∗-action defined above

preserves J , i.e. this action is J-holomorphic.

(c) Since the R-action is generated by the vector field −Jξ,

∂

∂s
H
(
ux(e

2π(s+it))
)
= dux(e2π(s+it))H

(
−Jξ

(
ux(e

2π(s+it))
))

= ω
(
ξ, Jξ)

∣∣
ux(e2π(s+it))

= gωJ (ξ, ξ)
∣∣
ux(e2π(s+it))

.
(2)

Since M is compact, H is bounded above and below. Thus, the right-hand side above approaches 0
as s−→±∞ and for each e2πit∈S1 there exists x±(e

2πit)∈M such that

lim
s−→±∞

ux
(
e2π(s+it)

)
= x±

(
e2πit

)
.

Since ξ
(
ux(e

2π(s+it)) −→ 0 as s −→ ±∞ and the S1-action is generated by the vector field ξ, the

length of diameter of the set ux(e
2π(s+it)) with s∈R fixed and t varying approaches 0 as s−→±∞.

Thus, the above limits must be independent of e2πit. This establishes the first claim.

The first equality in the second equation holds by (2.13) in the Notes. By (1) and (2),

u∗xω = ω(−Jξ, ξ)
∣∣
ux(e2π(s+it))

ds∧dt =
∂

∂s
H
(
ux(e

2π(s+it))
)
ds∧dt .

Thus,

Egω
J
(ux) =

∫

C∗

u∗xω =

∫ 1

0

(∫
∞

−∞

∂

∂s
H
(
ux(e

2π(s+it))
)
ds

)
dt =

∫ 1

0

(
H(x+)−H(x−)

)
dt

= H(x+)−H(x−) .
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