MAT 562: Symplectic Geometry

Partials Solutions to Problem Set 3

Notes Exercise 2.9

Suppose $u, v \in \mathbb{O}$ are purely imaginary and linearly independent over \mathbb{R} . Show that the subalgebra of \mathbb{O} generated by u and v is isomorphic to \mathbb{H} .

We can assume that u, v are of unit length and are orthogonal to each other. Thus,

$$\overline{x} = -x$$
, $\overline{y} = -y$, $x^2, y^2 = -1$, $xy = -x\overline{y} = y\overline{x} = -yx$, $(xy)y = xy^2 = -x$;

the last two equations use (2.17). Thus, the map $u \longrightarrow i$ and $v \longrightarrow j$ determines an isomorphism between the subalgebra of \mathbb{O} generated by u and v and \mathbb{H} .

Notes Exercise 2.10

Show that the Nijenhuis tensor of the almost complex manifold (X, J) of Example 2.8 is given by

$$A_J|_u(v_1, v_2) = \frac{1}{4} (v_1(v_2u) - (v_1v_2)u - v_2(v_1u) + (v_2v_1)u) \qquad \forall u \in X, v_1, v_2 \in T_u X.$$

Conclude that $A_J|_{u=\epsilon}(\mathfrak{i},\mathfrak{j})=(\mathfrak{j}\mathfrak{i})\epsilon$ if $\mathfrak{i},\mathfrak{j}\in\mathbb{H}$ are orthogonal purely imaginary quaternions.

By definition,

$$A_J|_u(v_1, v_2) = \frac{1}{4} \Big([\xi_1, \xi_2] + J[\xi_1, J\xi_2] + J[J\xi_1, \xi_2] - [J\xi_1, J\xi_2] \Big)_u$$

where $\xi_1, \xi_2 \in \Gamma(X; TX)$ are vector fields on X so that $\xi_i(u) = v_i$. It is straightforward to compute the Lie bracket of vector fields on $\mathbb{R}^8 \supset X$:

$$\left[\widetilde{\xi}_{1},\widetilde{\xi}_{2}\right] \equiv \left[\sum_{i=1}^{8} f_{i}\frac{\partial}{\partial x_{i}},\sum_{i=1}^{8} g_{j}\frac{\partial}{\partial x_{j}}\right] = \sum_{i,j=1}^{8} f_{i}\frac{\partial g_{j}}{\partial x_{i}}\frac{\partial}{\partial x_{j}} - \sum_{i,j=1}^{8} g_{j}\frac{\partial f_{i}}{\partial x_{j}}\frac{\partial}{\partial x_{i}} \equiv \langle\widetilde{\xi}_{1}\rangle(\widetilde{\xi}_{2}) - \langle\widetilde{\xi}_{2}\rangle(\widetilde{\xi}_{1}).$$

In particular, $\langle \tilde{\xi}_1 \rangle (\tilde{\xi}_2) = \tilde{\xi}_1$ if $\tilde{\xi}_2(x) = x$ for all $x \in \mathbb{R}^8$, i.e. $\tilde{\xi}_2$ is the canonical vector field, denoted simply by x below. Furthermore, if $\tilde{\xi}_1, \tilde{\xi}_2 \in \Gamma(\mathbb{R}^8; T\mathbb{R}^8)$ are vector fields on \mathbb{R}^8 such that $\tilde{\xi}_1|_X, \tilde{\xi}_2|_X \in \Gamma(X; TX)$, then

$$\left[\widetilde{\xi}_1,\widetilde{\xi}_2\right]\Big|_X = \left[\widetilde{\xi}_1|_X,\widetilde{\xi}_2|_X\right] \in \Gamma(X;TX);$$

see Proposition 1.55 in Warner's book.

For $x \in \mathbb{R}^8 = \mathbb{O}$, define

$$\widetilde{J}_x: \mathbb{O} \longrightarrow \mathbb{O}, \quad \widetilde{J}_x(v) = vx, \qquad \widetilde{\xi}_1(x) = v_1 - \langle v_1, x \rangle x, \quad \widetilde{\xi}_2(x) = v_2 - \langle v_2, x \rangle x.$$

Thus, \widetilde{J} is an endomorphism of the real vector bundle $T\mathbb{R}^8$ over \mathbb{R}^8 such that $\widetilde{J}|_{TX} = J$, while $\widetilde{\xi}_1, \widetilde{\xi}_2 \in \Gamma(\mathbb{R}^8; T\mathbb{R}^8)$ are vector fields on \mathbb{R}^8 such that $\widetilde{\xi}_i|_X, (\widetilde{J}\widetilde{\xi}_i)|_X \in \Gamma(X; TX)$ and $\widetilde{\xi}_i(u) = v_i$. Viewing v_1, v_2 as constant vector fields on \mathbb{R}^8 , we obtain

$$\begin{split} \left[v_1, \langle v_2, x \rangle x\right] &= \langle v_2, \langle v_1 \rangle \langle x \rangle \rangle x + \langle v_2, x \rangle \langle v_1 \rangle \langle x \rangle = \langle v_2, v_1 \rangle x + \langle v_2, x \rangle v_1, \quad [\widetilde{\xi}_1, \widetilde{\xi}_2] = \langle v_1, x \rangle v_2 - \langle v_2, x \rangle v_1, \\ \left[\widetilde{\xi}_1, \widetilde{J}\widetilde{\xi}_2\right] &= v_2 v_1 - \langle v_2, v_1 \rangle x^2 - \langle v_2, x \rangle \left(v_1 x + x v_1\right) + \langle v_1, v_2 x \rangle x + 2 \langle v_1, x \rangle \langle v_2, x \rangle x^2 - \langle v_2, x \rangle \langle v_1, x^2 \rangle x, \\ \left[\widetilde{J}\widetilde{\xi}_1, \widetilde{J}\widetilde{\xi}_2\right] &= v_2 (v_1 x) - \langle v_2, v_1 x \rangle x^2 - \langle v_2, x \rangle \left((v_1 x) x + x(v_1 x)\right) - \langle v_1, x \rangle v_2 x^2 + \langle v_1, x \rangle \langle v_2, x^2 \rangle x^2, \\ &- v_1 (v_2 x) + \langle v_1, v_2 x \rangle x^2 + \langle v_1, x \rangle \left((v_2 x) x + x(v_2 x)\right) + \langle v_2, x \rangle v_1 x^2 - \langle v_2, x \rangle \langle v_1, x^2 \rangle x^2. \end{split}$$

Evaluating these expressions at x = u and using $\langle v_i, u \rangle$, $\langle v_i, 1 \rangle = 0$ and $u^2 = -1$, we obtain the claimed expression for $A_J|_u(v_1, v_2)$. If $\mathbf{i}, \mathbf{j} \in \mathbb{H}$, $\mathbf{i}(\mathbf{j}\epsilon) = (\mathbf{j}\mathbf{i})\epsilon$ by the definition of octonion multiplication. If in addition \mathbf{i}, \mathbf{j} are purely imaginary and orthogonal, $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i}$. This yields the last claim.

Problem D

- (a) Let Σ be a connected oriented closed surface (2-dimensional manifold). Show that a continuous map $f: \Sigma \longrightarrow S^2$ is null-homotopic if and only if it has degree 0.
- (b) Let Σ be a connected oriented closed genus g surface embedded in a standard way in \mathbb{R}^3 (you can choose what this means). Let $\nu: \Sigma \longrightarrow S^2$ be the Gauss map, i.e. $\nu(x)$ is the oriented unit normal vector to $T_x \Sigma \subset T_x \mathbb{R}^3$ for each $x \in \Sigma$. Show that the degree of ν is 1-g.

Let $n \in \mathbb{Z}$ with $n \geq 2$. Suppose the 2-torus \mathbb{T}^2 is embedded in the open unit ball

$$B_1^3 \subset \mathbb{R}^3 = \mathbb{R}^3 \times \{0\} \times \{0\} \subset \mathbb{R}^3 \times \mathbb{R} \times \mathbb{C}^{n-2} = \mathbb{C}^n$$

in a standard way. Let $z_j \equiv x_j + iy_j$ be the standard coordinates on \mathbb{C}^n .

(c) Show that the Gauss map $\nu: \mathbb{T}^2 \longrightarrow S^2$ for this $\mathbb{T}^2 \subset \mathbb{R}^3$ extends to a smooth null-homotopic map

$$\widetilde{\nu} \colon \left(\mathbb{C}^n, \mathbb{C}^n - B_2^{2n}\right) \longrightarrow \left(S^2, (0, 0, 1)\right).$$

(d) Let $J_{\mathbb{C}^n}$ be the standard complex structure on \mathbb{C}^n and \mathfrak{j} be an almost complex structure on \mathbb{T}^2 . Show that there exists a continuous family $(J_t)_{t\in[0,1]}$ of almost complex structures on \mathbb{C}^n so that

$$\begin{split} J_t \big(\mathbb{C}^n \times (\mathbb{C}^2 \times \{0\}) \big) &\subset \mathbb{C}^n \times (\mathbb{C}^2 \times \{0\}), \quad J_t \big(\mathbb{C}^n \times (\{0\} \times \mathbb{C}^{n-2}) \big) \subset \mathbb{C}^n \times (\{0\} \times \mathbb{C}^{n-2}), \\ J_t \big|_{\mathbb{C}^n - B_2^{2n}} &= J_{\mathbb{C}^n} \big|_{\mathbb{C}^n - B_2^{2n}}, \quad J_0 \big|_{T\mathbb{T}^2} = \mathfrak{j}, \quad J_0 \widetilde{\nu} = \frac{\partial}{\partial y_2}, \quad J_1 = J_{\mathbb{C}^n}. \end{split}$$

Let (M, J) be an almost complex manifold of dimension at least 4 and $U \subset M$ be an nonempty open subset.

- (e) Let $x \in U$. Show that there exists a continuous family $(J_t)_{t \in [0,1]}$ of almost complex structures on M so that $J_0 = J$, $J_t|_{M-U} = J|_{M-U}$ for every $t \in [0,1]$, and J_1 is integrable on some neighborhood of x.
- (f) Show that there exist an embedded null-homologous 2-torus $\mathbb{T}^2 \subset U$ and a continuous family $(J_t)_{t\in[0,1]}$ of almost complex structures on M so that $J_0=J$, $J_t|_{M-U}=J|_{M-U}$ for every $t\in[0,1]$, and \mathbb{T}^2 is J_1 -holomorphic (i.e. $J_1(T\mathbb{T}^2) \subset T\mathbb{T}^2$).

Note. This problem details the proof of Proposition 2.7 in math/2401.17381. Its implication is that every almost complex structure J on a manifold of dimension at least 4 can be homotoped within any nonempty open subset U of M to an almost complex structure J' not tamed by a symplectic form.

(a) Since homotopic maps induce the same maps in homology, a null-homotopic map $f: \Sigma \longrightarrow S^2$ induces the trivial map on the second homology and is thus of degree 0. The surface Σ can be written as a CW complex with a single 2-cell attached to the 1-skeleton, which is a union of circles joined at finitely many points. Since S^2 is simply connected, the restriction of any continuous map $f: \Sigma \longrightarrow S^2$ to the 1-skeleton of Σ can be homotoped to a constant map. Thus, any continuous map $f: \Sigma \longrightarrow S^2$ is a homotopic to a continuous map g which sends the entire 1-skeleton of Σ and thus the boundary of the 2-cell to a point. Such a map g is equivalent to a continuous map $S^2 \longrightarrow S^2$. Since the Hurewicz and degree homomorphisms

$$\pi_2(S^2) \longrightarrow H_2(S^2;\mathbb{Z}) \longrightarrow \mathbb{Z}$$

are isomorphisms, f and g are null-homotopic if and only if they have degree 0. Note: The statement of (a) is the m=2 of Theorem of Hopf on p51 in Milnor's Topology from the Differentiable Viewpoint. The proof for arbitrary m is the same.

(b) Let x, y, z be the usual coordinates on \mathbb{R}^3 . Embed Σ into \mathbb{R}^3 so that it is "lying horizontally" and centered around the x-axis, as indicated in the picture below. Its intersection with the xy-plane then consists of a large ellipse and g ellipses inside of it, all symmetric about the x-axis. The preimage of $e_1 \equiv (1,0,0)$ under the Gauss map ν consists of 1+g points of Σ lying in the xy-plane: the rightmost point q of Σ (and of the large ellipse) and the leftmost points q_1, \ldots, q_g of the g inside ellipses. We can choose local oriented coordinates (s,t) centered at e_1, p, q_1, \ldots, q_g (using the exponential map, for example) so that the s-axis stays in the xy-plane with y'(s) > 0 and the t-axis stays in the xzplane with z'(t) > 0. The Gauss map ν sends the t-axis at p, q_1, \ldots, q_g to the t-axis at e_1 preserving the direction. It sends the s-axis at p, q_1, \ldots, q_g to the s-axis at e_1 , preserving the direction at q_1, \ldots, q_g . Thus, ν is orientation-preserving at p and orientation-reversing at q_1, \ldots, q_g . Therefore, the degree of ν is 1-g. The advantage of this approach over those in Notes 2 and 3 below is that it is not based on other nontrivial results (that the signed number of zeros of a vector field on a closed oriented manifold is its Euler characteristic in Note 2 or the Gauss-Bonnet Theorem in Note 3).

Note 1. The degree of the Gauss map ν is in fact independent of the embedding of Σ . Let $Y \subset \mathbb{R}^3$ be the bounded region cut out by $\Sigma \subset \mathbb{R}^3$; it is a compact 3-manifold with boundary Σ . Take a vector field ξ that equals some constant $v \in S^2$ outside of a tubular neighborhood U of Σ , ν on Σ , and connect the two by a straight line homotopy along the fibers of $U \longrightarrow \Sigma$. The zeros of ξ then lie in fibers of U over the points $x \in \Sigma$ with $\nu(x) = -v$. The signed number of these zeros is the signed cardinality of $\nu^{-1}(-v)$, i.e. the degree of ν if v is chosen generically; this is the m = 3 case of Lemma 6.3 in Milnor's Topology from the Differentiable Viewpoint. If Y_1 and Y_2 are the bounded regions for two different embeddings of Σ in \mathbb{R}^3 , we can glue them together along with Σ to obtain a closed manifold Y with an orientation that agrees with that of Y_1 and with the opposite of that of Y_2 . We can also glue the vector field ξ_1 on Y_1 above with the vector field $-\xi_2$ on Y_2 to obtain a vector field ξ . The signed number of zeros of ξ is the signed number of zeros of ξ_1 minus the signed number of zeros on ξ_2 because the multiplication by -1 is orientation-reversing on the 3-dimensional fibers of $TY_2 \longrightarrow Y_2$. This signed number is also the Euler characteristic $\chi(Y)$ of Y, which is 0 because Y is an odd-dimensional manifold. Thus, the degree of the Gauss map ν for the first embedding of Σ (which is the signed number of zeros of ξ_1) is the same as the degree of the Gauss map ν for the

second embedding of Σ (which is the signed number of zeros of ξ_2).

Note 2. Let $\xi \in \Gamma(S^2; TS^2)$ be a vector field with transverse zeros that are regular values of the Gauss map $\nu: \Sigma \longrightarrow S^2$. The signed number of zeros of ξ is $\chi(S^2) = 2$. Since $T_{\nu(x)}S^2 = T_x\Sigma$ for every $x \in \Sigma$, $\zeta \equiv \xi \circ \nu$ is a vector field on Σ . The zeros of ζ are the preimages of the zeros of ξ under ν . The sign of $x \in \zeta^{-1}(0)$ as a zero of ζ is the sign of $\nu(x) \in \xi^{-1}(0)$ as a zero of ξ times the sign of $d_x \nu$. Thus, the signed number of zeros of ζ is the signed number of zeros of ξ times the degree of ν , i.e. $2(\deg \nu)$. On the other hand, this number is also $\chi(\Sigma) = 2(1 - g)$. This argument extends to 2n-dimensional closed manifolds embedded in \mathbb{R}^{2n+1} (the degree of the Gauss map is half the Euler characteristic of the manifold).

Note 3. Another way to obtain (b) for any embedding $\Sigma \subset \mathbb{R}^3$ is via the Gauss-Bonnet Theorem (Corollary 2 on p276 in do Carmo's Differential Geometry of Curves and Surfaces). For $x \in \Sigma$, the Gaussian curvature K_{Σ} of Σ at x is the determinant of the differential

$$d_x \nu : T_x \Sigma \longrightarrow T_{\nu(x)} S^2 = T_x \Sigma$$

of ν at x. Let ω_{Σ} and ω_{S^2} be the volume forms on Σ and S^2 , respectively, determined by the Riemannian metric on \mathbb{R}^3 . Thus,

$$4\pi(\deg\nu) = (\deg\nu)\int_{S^2}\omega_{S^2} \equiv \int_{\Sigma}\nu^*\omega_{S^2} = \int_{\Sigma}(\det d\nu)\omega_{\Sigma} = \int_{\Sigma}K_{\Sigma}\omega_{\Sigma} = 2\pi\chi(\Sigma) = 4\pi(1-g);$$

the penultimate equality above is the Gauss-Bonnet Theorem.

(c) Since the normal bundle of Σ in $B_1^3 \subset \mathbb{R}^3$ is trivial, there are an open subset $U \subset B_1^3$ and a diffeomorphism

$$\Psi\colon (-1,1)\!\times\!\Sigma \longrightarrow U \qquad \text{s.t.} \quad \Psi(0,x)=x \;\;\forall\,x\!\in\!\Sigma.$$

We define an open subset $W \subset \mathbb{C}^n = \mathbb{R}^3 \times \mathbb{R}^{2n-3}$ and a compact subset $K \subset W$ by

$$W = \left\{ \left(\Psi(s, x), w \right) \colon (s, x) \in (-1, 1) \times \Sigma, \ w \in \mathbb{R}^{2n-3}, \ |s|+|w| < 1 \right\}, \\ K = \left\{ \left(\Psi(s, x), w \right) \colon (s, x) \in (-1, 1) \times \Sigma, \ w \in \mathbb{R}^{2n-3}, \ |s|+|w| \le 3/4 \right\}.$$

By (b), the degree of ν is 0. By (a), there thus exists a smooth map

$$H: [0,1] \times \Sigma \longrightarrow S^2 \subset \mathbb{R}^3 \quad \text{s.t.} \quad H(t,x) = \nu(x), \ H(1-t,x) = (0,0,1) \quad \forall t \in [0,1/4], \ x \in \Sigma.$$

The map $\widetilde{\nu} : \mathbb{C}^n \longrightarrow S^2$ given by

$$\widetilde{\nu}(z) = \begin{cases} H(|s|+|w|, x), & \text{if } z = (\Psi(s, x), w) \in W; \\ (0, 0, 1), & \text{if } z \in \mathbb{C}^n - K; \end{cases}$$

is then a well-defined smooth extension of ν with $\nu(\mathbb{C}^n - B_2^{2n}) = \{(0, 0, 1)\}$. The map

$$\widetilde{H}_{\nu} \colon [0,1] \times \mathbb{C}^n \longrightarrow S^2, \quad \widetilde{H}_{\nu}(t,z) = \begin{cases} H(t+(1-t)(|s|+|w|), x), & \text{if } z = (\Psi(s,x), w) \in W; \\ (0,0,1), & \text{if } z \in \mathbb{C}^n - K; \end{cases}$$

is a well-defined smooth homotopy from $\tilde{\nu}$ to a constant map such that $\tilde{H}_{\nu}(t,z) = (0,0,1)$ for all $t \in [0,1]$ and $z \in \mathbb{C}^n - B_2^{2n}$.

(d) Since \mathbb{C}^n is a vector space, $T\mathbb{C}^n$ is canonically isomorphic to $\mathbb{C}^n \times \mathbb{C}^n$ as real vector bundles over \mathbb{C}^n . The latter bundle is the direct sum of the subbundles $\mathbb{C}^n \times (\mathbb{C}^2 \times \{0\}^{n-2})$ and $\mathbb{C}^n \times (\{0\}^2 \times \mathbb{C}^{n-2})$ with trivializing frames

$$\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2}$$
 and $\frac{\partial}{\partial x_3}, \frac{\partial}{\partial y_3}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_n}$

respectively. With \widetilde{H}_{ν} as in the proof of (c), let $\widetilde{\nu}_t = H(t, \cdot) : \mathbb{C}^n \longrightarrow S^2$ for each $t \in [0, 1]$. We define the almost complex structure J_t on the span of $\widetilde{\nu}_t$, $\frac{\partial}{\partial u_2}$, and the second summand above by

$$J_t \tilde{\nu}_t = \frac{\partial}{\partial y_2}, \quad J_t \frac{\partial}{\partial y_2} = -\tilde{\nu}_t, \qquad J_t \frac{\partial}{\partial x_j} = \frac{\partial}{\partial y_j}, \quad J_t \frac{\partial}{\partial y_j} = -\frac{\partial}{\partial x_j} \quad \forall \ j = 3, \dots, n.$$

Let $g_{\mathbb{R}^3}$ be the standard metric on the real vector bundle $\mathbb{C}^n \times \mathbb{R}^3$ over \mathbb{C}^n and $g_{\mathbb{R}^3;\mathbb{T}^2}$ be a metric on $T\mathbb{R}^3|_{\Sigma} = T\Sigma \oplus \mathbb{R}\nu$ so that the metric $g_{\mathbb{R}^3;\mathbb{T}^2}|_{T\Sigma}$ is compatible with the almost complex structure j on Σ and $T\Sigma$ is $g_{\mathbb{R}^3;\mathbb{T}^2}$ -orthogonal to $\mathbb{R}\nu$. Since the space of metrics is convex and $\Sigma \subset B_1^{2n}$ is a neighborhood deformation retract, there exists a continuous family of metrics $(g_t)_{t\in[0,1]}$ on the real vector bundle $\mathbb{C}^n \times \mathbb{R}^3$ over \mathbb{C}^n such that

$$g_t|_{\mathbb{C}^n - B_2^{2n}} = g_{\mathbb{R}^3}, \qquad g_0|_{\Sigma} = g_{\mathbb{R}^3;\mathbb{T}^2}, \qquad g_1 = g_{\mathbb{R}^3}.$$

Let $\pi_t \subset \mathbb{C}^n \times \mathbb{R}^3$ be the g_t -orthogonal complement of $\mathbb{R}\widetilde{\nu}_t$. The standard orientation of \mathbb{R}^3 and $\widetilde{\nu}_t$ determine an orientation on π_t . Along with the latter, the metric $g_t|_{\pi_t}$ determines a compatible complex structure J_t on π_t .

Since g_0 restricts to $g_{\mathbb{R}^3;\mathbb{T}^2}$ over Σ , the restriction of J_0 to $\pi_0|_{\Sigma_0} = T\Sigma$ agrees with \mathfrak{j} (because \mathfrak{j} is the complex structure on $T\Sigma$ compatible with the metric $g_{\mathbb{R}^3;\mathbb{T}^2}|_{T\Sigma}$ and the orientation of $T\Sigma$). Since g_t and ν_t restrict to $g_{\mathbb{R}^3}$ and $\frac{\partial}{\partial x_2}$, respectively, over $\mathbb{C}^n - B_2^{2n}$, the restriction of J_t to

$$\pi_t \big|_{\mathbb{C}^n - B_2^{2n}} = \left(\mathbb{C}^n - B_2^{2n}\right) \times \left(\mathbb{C} \times \{0\}^{n-1}\right)$$

agrees with $J_{\mathbb{C}^n}$. By the same reasoning, $J_1 = J_{\mathbb{C}^n}$.

(e) We can assume that $M = B_2^{2n}$, $U = B_1^{2n}$, x = 0, J_0 agrees with the standard complex structure $J_{\mathbb{C}^n}$ at $0 \in \mathbb{C}^n$, and J_0 is tamed by the standard symplectic form $\omega_{\mathbb{C}^n}$ on B_2^{2n} . Let $\eta : \mathbb{R} \longrightarrow [0, 1]$ be a smooth function such that

$$\eta(r) = \begin{cases} 1, & \text{if } r < 1/4 \\ 0, & \text{if } r > 1. \end{cases}$$

With Φ as in Exercise 2.4 of the *Notes*, the map

$$J_{\bullet} \colon [0,1] \times B_2^{2n} \longrightarrow \mathrm{GL}_{2n} \mathbb{R}, \qquad J_t(x) = J_{\mathbb{C}^n} \Phi\left((1 - t\eta(|x|)) \Phi(J_{\mathbb{C}^n}^{-1} J(x)) \right),$$

is then a smooth family of almost complex structures on B_2^{2n} with the required properties.

(f) By (e), we can take $M = B_3^{2n}$, $U = B_2^{2n}$, and $J = J_{\mathbb{C}^n}$. The claim now follows from (d).