
MAT 562: Symplectic Geometry

Partials Solutions to Problem Set 3

Notes Exercise 2.9

Suppose u, v ∈O are purely imaginary and linearly independent over R. Show that the subalgebra
of O generated by u and v is isomorphic to H.

We can assume that u, v are of unit length and are orthogonal to each other. Thus,

x = −x, y = −y, x2, y2 = −1, xy = −xy = yx = −yx, (xy)y = xy2 = −x;

the last two equations use (2.17). Thus, the map u −→ i and v −→ j determines an isomorphism
between the subalgebra of O generated by u and v and H.

Notes Exercise 2.10

Show that the Nijenhuis tensor of the almost complex manifold (X, J) of Example 2.8 is given by

AJ

∣∣
u
(v1, v2) =

1

4

(
v1(v2u)−(v1v2)u−v2(v1u)+(v2v1)u

)
∀u∈X, v1, v2∈TuX.

Conclude that AJ |u=ǫ(i, j)=(ji)ǫ if i, j∈H are orthogonal purely imaginary quaternions.

By definition,

AJ

∣∣
u
(v1, v2) =

1

4

(
[ξ1, ξ2]+J [ξ1, Jξ2]+J [Jξ1, ξ2]−[Jξ1, Jξ2]

)

u
,

where ξ1, ξ2 ∈ Γ(X;TX) are vector fields on X so that ξi(u)= vi. It is straightforward to compute
the Lie bracket of vector fields on R

8⊃X:

[
ξ̃1, ξ̃2

]
≡

[ 8∑

i=1

fi
∂

∂xi
,

8∑

i=1

gj
∂

∂xj

]
=

8∑

i,j=1

fi
∂gj
∂xi

∂

∂xj
−

8∑

i,j=1

gj
∂fi
∂xj

∂

∂xi
≡ 〈ξ̃1〉(ξ̃2)− 〈ξ̃2〉(ξ̃1) .

In particular, 〈ξ̃1〉(ξ̃2) = ξ̃1 if ξ̃2(x) = x for all x ∈ R
8, i.e. ξ̃2 is the canonical vector field, de-

noted simply by x below. Furthermore, if ξ̃1, ξ̃2 ∈ Γ(R8;TR8) are vector fields on R
8 such that

ξ̃1|X , ξ̃2|X ∈Γ(X;TX), then

[ξ̃1, ξ̃2]
∣∣
X

=
[
ξ̃1|X , ξ̃2|X

]
∈ Γ(X;TX);

see Proposition 1.55 in Warner’s book.

For x∈R
8=O, define

J̃x : O −→ O, J̃x(v) = vx, ξ̃1(x) = v1 − 〈v1, x〉x, ξ̃2(x) = v2 − 〈v2, x〉x.

Thus, J̃ is an endomorphism of the real vector bundle TR8 over R
8 such that J̃ |TX = J , while

ξ̃1, ξ̃2∈Γ(R8;TR8) are vector fields on R
8 such that ξ̃i|X , (J̃ ξ̃i)|X ∈Γ(X;TX) and ξ̃i(u)=vi. Viewing

v1, v2 as constant vector fields on R
8, we obtain

[
v1, 〈v2, x〉x

]
= 〈v2, 〈v1〉(x)〉x+〈v2, x〉〈v1〉(x) = 〈v2, v1〉x+〈v2, x〉v1, [ξ̃1, ξ̃2] = 〈v1, x〉v2−〈v2, x〉v1,

[ξ̃1, J̃ ξ̃2] = v2v1−〈v2, v1〉x
2−〈v2, x〉

(
v1x+xv1

)
+〈v1, v2x〉x+2〈v1, x〉〈v2, x〉x

2−〈v2, x〉〈v1, x
2〉x,

[J̃ ξ̃1, J̃ ξ̃2] =v2(v1x)−〈v2, v1x〉x
2−〈v2, x〉

(
(v1x)x+x(v1x)

)
−〈v1, x〉v2x

2+〈v1, x〉〈v2, x
2〉x2,

− v1(v2x)+〈v1, v2x〉x
2+〈v1, x〉

(
(v2x)x+x(v2x)

)
+〈v2, x〉v1x

2−〈v2, x〉〈v1, x
2〉x2.



Evaluating these expressions at x=u and using 〈vi, u〉, 〈vi, 1〉=0 and u2=−1, we obtain the claimed
expression for AJ |u(v1, v2). If i, j∈H, i(jǫ)= (ji)ǫ by the definition of octonion multiplication. If in
addition i, j are purely imaginary and orthogonal, ij=−ji. This yields the last claim.

Problem D

(a) Let Σ be a connected oriented closed surface (2-dimensional manifold). Show that a continuous
map f : Σ−→S2 is null-homotopic if and only if it has degree 0.

(b) Let Σ be a connected oriented closed genus g surface embedded in a standard way in R
3 (you

can choose what this means). Let ν : Σ−→S2 be the Gauss map, i.e. ν(x) is the oriented unit
normal vector to TxΣ⊂TxR

3 for each x∈Σ. Show that the degree of ν is 1−g.

Let n∈Z with n≥2. Suppose the 2-torus T
2 is embedded in the open unit ball

B3
1 ⊂ R

3 = R
3×{0}×{0} ⊂ R

3×R×C
n−2 = C

n

in a standard way. Let zj≡xj+iyj be the standard coordinates on C
n.

(c) Show that the Gauss map ν : T2−→S2 for this T2⊂R
3 extends to a smooth null-homotopic map

ν̃ :
(
C
n,Cn−B2n

2

)
−→

(
S2, (0, 0, 1)

)
.

(d) Let JCn be the standard complex structure on C
n and j be an almost complex structure on T

2.
Show that there exists a continuous family (Jt)t∈[0,1] of almost complex structures on C

n so that

Jt
(
C
n×(C2×{0})

)
⊂ C

n×(C2×{0}), Jt
(
C
n×({0}×C

n−2)
)
⊂ C

n×({0}×C
n−2),

Jt
∣∣
Cn−B2n

2

= JCn

∣∣
Cn−B2n

2

, J0
∣∣
TT2 = j, J0ν̃ =

∂

∂y2
, J1 = JCn .

Let (M,J) be an almost complex manifold of dimension at least 4 and U⊂M be an nonempty open
subset.

(e) Let x ∈ U . Show that there exists a continuous family (Jt)t∈[0,1] of almost complex structures
on M so that J0 = J , Jt|M−U = J |M−U for every t ∈ [0, 1], and J1 is integrable on some
neighborhood of x.

(f) Show that there exist an embedded null-homologous 2-torus T
2 ⊂ U and a continuous family

(Jt)t∈[0,1] of almost complex structures on M so that J0=J , Jt|M−U =J |M−U for every t∈ [0, 1],
and T

2 is J1-holomorphic (i.e. J1(TT
2)⊂TT2).

Note. This problem details the proof of Proposition 2.7 in math/2401.17381. Its implication is that
every almost complex structure J on a manifold of dimension at least 4 can be homotoped within
any nonempty open subset U of M to an almost complex structure J ′ not tamed by a symplectic
form.
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(a) Since homotopic maps induce the same maps in homology, a null-homotopic map f : Σ−→S2

induces the trivial map on the second homology and is thus of degree 0. The surface Σ can be
written as a CW complex with a single 2-cell attached to the 1-skeleton, which is a union of circles
joined at finitely many points. Since S2 is simply connected, the restriction of any continuous map
f : Σ−→S2 to the 1-skeleton of Σ can be homotoped to a constant map. Thus, any continuous map
f : Σ−→S2 is a homotopic to a continuous map g which sends the entire 1-skeleton of Σ and thus
the boundary of the 2-cell to a point. Such a map g is equivalent to a continuous map S2 −→S2.
Since the Hurewicz and degree homomorphisms

π2(S
2) −→ H2(S

2;Z) −→ Z

are isomorphisms, f and g are null-homotopic if and only if they have degree 0.
Note: The statement of (a) is the m=2 of Theorem of Hopf on p51 in Milnor’s Topology from the
Differentiable Viewpoint. The proof for arbitrary m is the same.

(b) Let x, y, z be the usual coordinates on R
3. Embed Σ into R

3 so that it is “lying horizontally” and
centered around the x-axis, as indicated in the picture below. Its intersection with the xy-plane then
consists of a large ellipse and g ellipses inside of it, all symmetric about the x-axis. The preimage of
e1≡(1, 0, 0) under the Gauss map ν consists of 1+g points of Σ lying in the xy-plane: the rightmost
point q of Σ (and of the large ellipse) and the leftmost points q1, . . . , qg of the g inside ellipses. We
can choose local oriented coordinates (s, t) centered at e1, p, q1, . . . , qg (using the exponential map,
for example) so that the s-axis stays in the xy-plane with y′(s)> 0 and the t-axis stays in the xz-
plane with z′(t)>0. The Gauss map ν sends the t-axis at p, q1, . . . , qg to the t-axis at e1 preserving
the direction. It sends the s-axis at p, q1, . . . , qg to the s-axis at e1, preserving the direction at p and
reversing the direction at q1, . . . , qg. Thus, ν is orientation-preserving at p and orientation-reversing
at q1, . . . , qg. Therefore, the degree of ν is 1−g. The advantage of this approach over those in Notes 2
and 3 below is that it is not based on other nontrivial results (that the signed number of zeros of a
vector field on a closed oriented manifold is its Euler characteristic in Note 2 or the Gauss-Bonnet
Theorem in Note 3).

ν

pq1q2

νe1

Note 1. The degree of the Gauss map ν is in fact independent of the embedding of Σ. Let Y ⊂R
3

be the bounded region cut out by Σ⊂ R
3; it is a compact 3-manifold with boundary Σ. Take a

vector field ξ that equals some constant v ∈S2 outside of a tubular neighborhood U of Σ, ν on Σ,
and connect the two by a straight line homotopy along the fibers of U −→Σ. The zeros of ξ then
lie in fibers of U over the points x ∈ Σ with ν(x) = −v. The signed number of these zeros is the
signed cardinality of ν−1(−v), i.e. the degree of ν if v is chosen generically; this is the m= 3 case
of Lemma 6.3 in Milnor’s Topology from the Differentiable Viewpoint. If Y1 and Y2 are the bounded
regions for two different embeddings of Σ in R

3, we can glue them together along with Σ to obtain a
closed manifold Y with an orientation that agrees with that of Y1 and with the opposite of that of Y2.
We can also glue the vector field ξ1 on Y1 above with the vector field −ξ2 on Y2 to obtain a vector
field ξ. The signed number of zeros of ξ is the signed number of zeros of ξ1 minus the signed number
of zeros on ξ2 because the multiplication by −1 is orientation-reversing on the 3-dimensional fibers
of TY2−→Y2. This signed number is also the Euler characteristic χ(Y ) of Y , which is 0 because Y
is an odd-dimensional manifold. Thus, the degree of the Gauss map ν for the first embedding of Σ
(which is the signed number of zeros of ξ1) is the same as the degree of the Gauss map ν for the
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second embedding of Σ (which is the signed number of zeros of ξ2).

Note 2. Let ξ ∈ Γ(S2;TS2) be a vector field with transverse zeros that are regular values of the
Gauss map ν : Σ−→S2. The signed number of zeros of ξ is χ(S2)=2. Since Tν(x)S

2=TxΣ for every
x∈Σ, ζ≡ξ◦ν is a vector field on Σ. The zeros of ζ are the preimages of the zeros of ξ under ν. The
sign of x∈ζ−1(0) as a zero of ζ is the sign of ν(x)∈ξ−1(0) as a zero of ξ times the sign of dxν. Thus,
the signed number of zeros of ζ is the signed number of zeros of ξ times the degree of ν, i.e. 2(deg ν).
On the other hand, this number is also χ(Σ)=2(1 − g). This argument extends to 2n-dimensional
closed manifolds embedded in R

2n+1 (the degree of the Gauss map is half the Euler characteristic of
the manifold).

Note 3. Another way to obtain (b) for any embedding Σ⊂ R
3 is via the Gauss-Bonnet Theorem

(Corollary 2 on p276 in do Carmo’s Differential Geometry of Curves and Surfaces). For x∈Σ, the
Gaussian curvature KΣ of Σ at x is the determinant of the differential

dxν : TxΣ −→ Tν(x)S
2=TxΣ

of ν at x. Let ωΣ and ωS2 be the volume forms on Σ and S2, respectively, determined by the
Riemannian metric on R

3. Thus,

4π(deg ν) = (deg ν)

∫

S2

ωS2 ≡

∫

Σ
ν∗ωS2 =

∫

Σ
(det dν)ωΣ =

∫

Σ
KΣωΣ = 2πχ(Σ) = 4π(1−g);

the penultimate equality above is the Gauss-Bonnet Theorem.

(c) Since the normal bundle of Σ in B3
1 ⊂ R

3 is trivial, there are an open subset U ⊂ B3
1 and a

diffeomorphism
Ψ: (−1, 1)×Σ −→ U s.t. Ψ(0, x) = x ∀x∈Σ.

We define an open subset W ⊂C
n=R

3×R
2n−3 and a compact subset K⊂W by

W =
{(
Ψ(s, x), w

)
: (s, x)∈(−1, 1)×Σ, w∈R

2n−3, |s|+|w|<1
}
,

K =
{(
Ψ(s, x), w

)
: (s, x)∈(−1, 1)×Σ, w∈R

2n−3, |s|+|w|≤3/4
}
.

By (b), the degree of ν is 0. By (a), there thus exists a smooth map

H : [0, 1]×Σ −→ S2⊂R
3 s.t. H(t, x) = ν(x), H(1−t, x) = (0, 0, 1) ∀ t∈ [0, 1/4], x∈Σ.

The map ν̃ : Cn−→S2 given by

ν̃(z) =

{
H(|s|+|w|, x), if z=(Ψ(s, x), w)∈W ;

(0, 0, 1), if z∈C
n−K;

is then a well-defined smooth extension of ν with ν(Cn−B2n
2 )={(0, 0, 1)}. The map

H̃ν : [0, 1]×C
n −→ S2, H̃ν(t, z) =

{
H(t+(1−t)(|s|+|w|), x), if z=(Ψ(s, x), w)∈W ;

(0, 0, 1), if z∈C
n−K;

is a well-defined smooth homotopy from ν̃ to a constant map such that H̃ν(t, z) = (0, 0, 1) for all
t∈ [0, 1] and z∈C

n−B2n
2 .

4



(d) Since Cn is a vector space, TCn is canonically isomorphic to Cn×Cn as real vector bundles over Cn.
The latter bundle is the direct sum of the subbundles Cn×(C2×{0}n−2) and C

n×({0}2×C
n−2) with

trivializing frames

∂

∂x1
,

∂

∂y1
,

∂

∂x2
,

∂

∂y2
and

∂

∂x3
,

∂

∂y3
, . . . ,

∂

∂xn
,

∂

∂yn
,

respectively. With H̃ν as in the proof of (c), let ν̃t=H(t, ·) : Cn−→S2 for each t∈ [0, 1]. We define
the almost complex structure Jt on the span of ν̃t,

∂
∂y2

, and the second summand above by

Jtν̃t =
∂

∂y2
, Jt

∂

∂y2
= −ν̃t, Jt

∂

∂xj
=

∂

∂yj
, Jt

∂

∂yj
= −

∂

∂xj
∀ j = 3, . . . , n.

Let gR3 be the standard metric on the real vector bundle C
n×R

3 over C
n and gR3;T2 be a metric

on TR3|Σ=TΣ⊕Rν so that the metric gR3;T2 |TΣ is compatible with the almost complex structure j

on Σ and TΣ is gR3;T2-orthogonal to Rν. Since the space of metrics is convex and Σ ⊂ B2n
1 is a

neighborhood deformation retract, there exists a continuous family of metrics (gt)t∈[0,1] on the real
vector bundle C

n×R
3 over Cn such that

gt
∣∣
Cn−B2n

2

= gR3 , g0
∣∣
Σ
= gR3;T2 , g1 = gR3 .

Let πt ⊂C
n×R

3 be the gt-orthogonal complement of Rν̃t. The standard orientation of R3 and ν̃t
determine an orientation on πt. Along with the latter, the metric gt|πt

determines a compatible
complex structure Jt on πt.

Since g0 restricts to gR3;T2 over Σ, the restriction of J0 to π0|Σ0
=TΣ agrees with j (because j is the

complex structure on TΣ compatible with the metric gR3;T2 |TΣ and the orientation of TΣ). Since gt
and νt restrict to gR3 and ∂

∂x2
, respectively, over Cn−B2n

2 , the restriction of Jt to

πt
∣∣
Cn−B2n

2

=
(
C
n−B2n

2

)
×
(
C×{0}n−1

)

agrees with JCn . By the same reasoning, J1=JCn .

(e) We can assume that M=B2n
2 , U=B2n

1 , x=0, J0 agrees with the standard complex structure JCn

at 0∈C
n, and J0 is tamed by the standard symplectic form ωCn on B2n

2 . Let η : R−→ [0, 1] be a
smooth function such that

η(r) =

{
1, if r<1/4;

0, if r>1.

With Φ as in Exercise 2.4 of the Notes, the map

J• : [0, 1]×B2n
2 −→ GL2nR, Jt(x) = JCnΦ

(
(1−tη(|x|))Φ(J−1

Cn J(x))
)
,

is then a smooth family of almost complex structures on B2n
2 with the required properties.

(f) By (e), we can take M=B2n
3 , U=B2n

2 , and J=JCn . The claim now follows from (d).
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