MAT 562: Symplectic Geometry

Partials Solutions to Problem Set 3
Notes Exercise 2.9
Suppose u,v € Q are purely imaginary and linearly independent over R. Show that the subalgebra
of O generated by u and v is isomorphic to H.
We can assume that u, v are of unit length and are orthogonal to each other. Thus,

T=-2, §=-y, 22y =-1, zy=-ay=yT=-yr, (zy)y=ay’ = —u;

the last two equations use (2.17). Thus, the map v — i and v — j determines an isomorphism
between the subalgebra of Q@ generated by u and v and H.

Notes Exercise 2.10

Show that the Nijenhuis tensor of the almost complex manifold (X, J) of Example 2.8 is given by
1
AJ}u(vl, v9) = 1 (vl(vgu)—(vwg)u—vg(vlu)—i—(vgvl)u) VueX, vi,voeT,X.

Conclude that Ajlu=c(i,))=(i)e if i,j €H are orthogonal purely imaginary quaternions.

By definition, .
Ajl, (v1,09) = Z([§1752]+J[§1,J§2]+J[J§1,§2]—[J§1,J§2]>u,

where £1,& € T'(X;TX) are vector fields on X so that &;(u) =v;. It is straightforward to compute
the Lie bracket of vector fields on R® > X:
8

61,525[212 zgjax} Zfzgiiax z]g"j; = (&)E) - @)

In particular, (£)(&) = & if &(z) = for all z € RY, ie. & is the canonical vector field, de-
noted simply by z below. Furthermore, if £1,&2 € ['(R®; TR®) are vector fields on R® such that
&ilx, &lx €T(X;TX), then

[€1, &) | = [&1]x, &lx] € T(X;TX);

see Proposition 1.55 in Warner’s book.

For z € R®=0), define
Jo:0—0, J(v)=vz, &(z) =01~ (v1,7)3, &) =03 — (02, 2)7.

Thus, J is an endomorphism of the real vector bundle TR® over R® such that J ’TX = J, while
&,6 EF(RS TR®) are vector fields on RS such that &|x, (J&)|x €T(X;TX) and &(u)=v;. Viewing
v1, vy as constant vector fields on R®, we obtain

[v1, (v2, x)a] = (va, (v1)(x))x+(va, ) (v1)(2) = (v, v1)z+(v2, T)v1, [€1,E&] = (v1,2)v2—(va, )v1,
[51, jgg] = V91 — (Va, U1>$2— (vg, x) (vlzv—l—xvl) + (v1, vox)x+2{v1, ) (V2, x>w2— (vg, x) (v, %),
[jZl, 552] =vg(v12) — (va, vlw)xQ— (vg, x) ((vlcc)a:—i-:v(le)) —(v1, x>v2x2+<vl, x) (v, x2>x2,

— v1 (v2x) + (v1, vax)2? + (V1 T) ((vom)z+x(v2)) 4 (v2, zyv1z? — (vg, ) (vy, 22) 22,



Evaluating these expressions at =w and using (v;, u), (v;, 1) =0 and u?=—1, we obtain the claimed
expression for Aj|,(v1,v2). If i,j€H, i(je) = (ji)e by the definition of octonion multiplication. If in
addition i,j are purely imaginary and orthogonal, ij=—ji. This yields the last claim.

Problem D

(a) Let X be a connected oriented closed surface (2-dimensional manifold). Show that a continuous
map f: X —S? is null-homotopic if and only if it has degree 0.

(b) Let X be a connected oriented closed genus g surface embedded in a standard way in R3 (you
can choose what this means). Let v: ¥ — 5% be the Gauss map, i.e. v(x) is the oriented unit
normal vector to T, CT,R? for each x€X. Show that the degree of v is 1—g.

Let n€7Z with n>2. Suppose the 2-torus T? is embedded in the open unit ball
B} c R} =R3x {0} x{0} C R3*xRxC" 2 =C"
in a standard way. Let zj=x;+iy; be the standard coordinates on C".

(c) Show that the Gauss map v: T? — S? for this T? CR? extends to a smooth null-homotopic map

v: (C",C"—B3") — (5%,(0,0,1)).

(d) Let Jcn be the standard complex structure on C™ and j be an almost complex structure on T?.
Show that there exists a continuous family (Ji).c(0,1) of almost complex structures on C™ so that

Ji(C"x (C?*x{0})) C C"x(C*x{0}), J(C"x({0}xC" %)) C C"x ({0} xC""?),
0

—_— J :Jn.
8y2’ 1 C

Jt‘(cn_Bgn = JC”‘C"—B%”’ JO‘TTQ :j7 JO;:
Let (M, J) be an almost complex manifold of dimension at least 4 and U C M be an nonempty open

subset.

(e) Let x € U. Show that there exists a continuous family (Jt)te[o,l] of almost complex structures
on M so that Jo = J, Ji\p—v = J|m—v for every t € [0,1], and Jy is integrable on some
neighborhood of x.

(f) Show that there exist an embedded null-homologous 2-torus T2 C U and a continuous family
(Jt)tepo,1) of almost complex structures on M so that Jo=J, Ji|p—v=J|m—v for every t€[0,1],
and T? is Ji-holomorphic (i.e. Ji(TT?)CTT?).

Note. This problem details the proof of Proposition 2.7 in math/2401.17381. Its implication is that
every almost complex structure J on a manifold of dimension at least 4 can be homotoped within
any nonempty open subset U of M to an almost complex structure J’ not tamed by a symplectic
form.



(a) Since homotopic maps induce the same maps in homology, a null-homotopic map f: ¥ — S?
induces the trivial map on the second homology and is thus of degree 0. The surface 3 can be
written as a CW complex with a single 2-cell attached to the 1-skeleton, which is a union of circles
joined at finitely many points. Since S? is simply connected, the restriction of any continuous map
f: ¥ — 52 to the 1-skeleton of ¥ can be homotoped to a constant map. Thus, any continuous map
f: ¥ —5? is a homotopic to a continuous map g which sends the entire 1-skeleton of ¥ and thus
the boundary of the 2-cell to a point. Such a map g is equivalent to a continuous map S? — S2.
Since the Hurewicz and degree homomorphisms

m9(S?) — Ho(S%Z) — 7

are isomorphisms, f and g are null-homotopic if and only if they have degree 0.
Note: The statement of (a) is the m =2 of Theorem of Hopf on p51 in Milnor’s Topology from the
Differentiable Viewpoint. The proof for arbitrary m is the same.

(b) Let z,y, z be the usual coordinates on R3. Embed ¥ into R? so that it is “lying horizontally” and
centered around the z-axis, as indicated in the picture below. Its intersection with the xy-plane then
consists of a large ellipse and g ellipses inside of it, all symmetric about the z-axis. The preimage of
e1=(1,0,0) under the Gauss map v consists of 14+¢g points of ¥ lying in the zy-plane: the rightmost
point g of ¥ (and of the large ellipse) and the leftmost points qi,. .., g, of the g inside ellipses. We
can choose local oriented coordinates (s,t) centered at e1,p,qi,...,qy (using the exponential map,
for example) so that the s-axis stays in the zy-plane with 3'(s) >0 and the t-axis stays in the zz-
plane with 2/(¢) >0. The Gauss map v sends the t-axis at p, qi,. .., gy to the t-axis at e; preserving
the direction. It sends the s-axis at p,q1,...,qq to the s-axis at eq, preserving the direction at p and
reversing the direction at g1, ..., qy. Thus, v is orientation-preserving at p and orientation-reversing
at q1,...,qq.- Therefore, the degree of v is 1—g. The advantage of this approach over those in Notes 2
and 3 below is that it is not based on other nontrivial results (that the signed number of zeros of a
vector field on a closed oriented manifold is its Euler characteristic in Note 2 or the Gauss-Bonnet
Theorem in Note 3).
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Note 1. The degree of the Gauss map v is in fact independent of the embedding of 3. Let Y C R3
be the bounded region cut out by ¥ C R3; it is a compact 3-manifold with boundary 3. Take a
vector field ¢ that equals some constant v € S? outside of a tubular neighborhood U of ¥, v on X,
and connect the two by a straight line homotopy along the fibers of U — 3. The zeros of £ then
lie in fibers of U over the points z € ¥ with v(z) = —v. The signed number of these zeros is the
signed cardinality of v~!(—v), i.e. the degree of v if v is chosen generically; this is the m =3 case
of Lemma 6.3 in Milnor’s Topology from the Differentiable Viewpoint. If Y1 and Ys are the bounded
regions for two different embeddings of ¥ in R3, we can glue them together along with ¥ to obtain a
closed manifold Y with an orientation that agrees with that of Y7 and with the opposite of that of Y5.
We can also glue the vector field &1 on Y7 above with the vector field —&» on Y5 to obtain a vector
field €. The signed number of zeros of ¢ is the signed number of zeros of £; minus the signed number
of zeros on & because the multiplication by —1 is orientation-reversing on the 3-dimensional fibers
of TY, —Ys. This signed number is also the Euler characteristic x(Y) of Y, which is 0 because Y’
is an odd-dimensional manifold. Thus, the degree of the Gauss map v for the first embedding of X
(which is the signed number of zeros of &;) is the same as the degree of the Gauss map v for the



second embedding of ¥ (which is the signed number of zeros of £3).

Note 2. Let € € T'(S?%;,TS?) be a vector field with transverse zeros that are regular values of the
Gauss map v: ¥ — 52, The signed number of zeros of ¢ is x(S%)=2. Since Ty(m)SQZTIE for every
xeX, (=£&ov is a vector field on Y. The zeros of ¢ are the preimages of the zeros of ¢ under v. The
sign of x€¢71(0) as a zero of ¢ is the sign of v(x) €£71(0) as a zero of & times the sign of d,v. Thus,
the signed number of zeros of € is the signed number of zeros of £ times the degree of v, i.e. 2(degv).
On the other hand, this number is also x(X)=2(1 — ¢g). This argument extends to 2n-dimensional
closed manifolds embedded in R?"*! (the degree of the Gauss map is half the Euler characteristic of
the manifold).

Note 3. Another way to obtain (b) for any embedding ¥ C R3 is via the Gauss-Bonnet Theorem
(Corollary 2 on p276 in do Carmo’s Differential Geometry of Curves and Surfaces). For x € ¥, the
Gaussian curvature Ks of X at x is the determinant of the differential

dov: T8 — T,y S* =T, %

of v at . Let wy and wg2 be the volume forms on ¥ and S?, respectively, determined by the
Riemannian metric on R3. Thus,

4m(degr) = (degl/)/ wgz = /I/*ws2 = /(det dv)wy = /ngg =2mx(X) =4n(1—g);
52 by b b))
the penultimate equality above is the Gauss-Bonnet Theorem.

(c) Since the normal bundle of ¥ in B} C R3 is trivial, there are an open subset U C B} and a
diffeomorphism
U: (-1,1)x¥X — U st. ¥(0,z) =z VzxeXl.

We define an open subset W C C* =R3 xR?"~3 and a compact subset K CW by

W= {(¥(s,2),w): (s,2)€(~1,1) xS, weR* 3 |s|+|w| <1},
K ={(¥(s,2),w): (s,2) €(=1,1)x %, we R¥ 3, |s|+|w| <3/4}.

By (b), the degree of v is 0. By (a), there thus exists a smooth map
H:[0,1]x% — S?CR?® st. H(t,z)=v(z), H(1—t,z) = (0,0,1) Yt€[0,1/4], z€X.
The map v: C* — S? given by

5(2) H(|s|+|wl|,x), if z=(¥(s,x),w)eW;
vz =
(0,0,1), if z7eCP—K;

is then a well-defined smooth extension of v with v(C"—B3")={(0,0,1)}. The map

H(t+1=t)(|s|+|w]), x), if z=(¥(s,x),w)eW;

H,:[0,1]xC" — §%, H,(t,z) = :
(0,0,1), it zeC"—K;

is a well-defined smooth homotopy from 7 to a constant map such that ﬁy(t, z) =(0,0,1) for all
te[0,1] and z€C"— B3,



(d) Since C" is a vector space, TC™ is canonically isomorphic to C"xC" as real vector bundles over C".
The latter bundle is the direct sum of the subbundles C"x (C2x{0}"~2) and C"x ({0}?xC"~2) with
trivializing frames

9 9 9 9 92 9 9 9
8x1’8y1’8x2’8y2 8:c3’8y3""’6xn’8yn’

respectively. With H,, as in the proof of (c), let 7= H(t,-): C* —s S2 for each t€[0,1]. We define
the almost complex structure J; on the span of v, 6%2’ and the second summand above by

0 - 0 0 0 0

_—=— s J7:77 —_— = ——
t@yg 147 t t@yj 8xj

Vji=3,...,n.
8.:(;] ayj ] Y )n

0
J 7, = —
tVt 8y2 >

Let ggs be the standard metric on the real vector bundle C" x R? over C" and grs.T2 be a metric
on TR3|s =TYX@®Rv so that the metric grs.72|Tx is compatible with the almost complex structure j
on ¥ and T3 is ggs.e-orthogonal to Ry. Since the space of metrics is convex and X C B?" is a
neighborhood deformation retract, there exists a continuous family of metrics (g¢);c[o,1] on the real
vector bundle C" xR? over C" such that

Gtlen_pge = 9grs: G|y =greme,  g1=gpe.

Let m; C C" xR? be the g-orthogonal complement of Rz;. The standard orientation of R? and 7
determine an orientation on m;. Along with the latter, the metric ¢¢|r, determines a compatible
complex structure J; on 7.

Since go restricts to ggs.g2 over 3, the restriction of Jy to mo|s, =TS agrees with j (because j is the
complex structure on TS compatible with the metric ggs.p2|7rs and the orientation of T'X). Since gy
and vy restrict to grs and 8%2, respectively, over C"— B3, the restriction of J; to

Ml = (7B x (Cx {0} )
agrees with Jcn. By the same reasoning, J; =Jcn.

(e) We can assume that M = B3" U :B%”, x=0, Jy agrees with the standard complex structure Jcn
at 0 € C", and Jp is tamed by the standard symplectic form wen on B3". Let n: R — [0,1] be a
smooth function such that
1, ifr<1/4;
n(r) = {

0, ifr>1.
With ® as in Exercise 2.4 of the Notes, the map
Jo: [0,1]xB3" — GLoyR,  Ji(z) = Jen @ ((1—tn(|2]) @ (Jan J (2))),

is then a smooth family of almost complex structures on B3" with the required properties.

(f) By (e), we can take M =B3", U=B3", and J=Jcr». The claim now follows from (d).



