MAT 562: Symplectic Geometry

Solution to Problem C

Let M be a smooth manifold and G be a compact Lie group acting smoothly on M, i.e. there is a group homomorphism $\rho: G \longrightarrow \text{Diff}(M)$ such that the map

$$G \times M \longrightarrow M, \qquad (g, x) \longrightarrow \{\rho(g)\}(x),$$

is smooth.

- (a) Suppose $x \in M$ is a fixed point of this action, i.e. $\{\rho(g)\}(x) = x$ for every $g \in G$. Show that the G-action on M induces a linear G-action on T_xM and there are a neighborhood U of $0 \in T_xM$, a neighborhood W of $x \in M$, and a G-equivariant diffeomorphism $h: U \longrightarrow W$ with h(0) = x.
- (b) Show that every connected component of the G-fixed locus,

$$M^G \equiv \left\{ x \in M : \{ \rho(g) \} (x) = x \,\forall g \in G \right\},$$

is a smooth submanifold of M.

(c) Suppose in addition ω is a symplectic form on M such that $\{\rho(g)\}^* \omega = \omega$ for every $g \in G$. Show that every connected component of M^G is an ω -symplectic submanifold of M.

The compactness of the Lie group G is needed only to guarantee the existence of a G-invariant Riemannian metric on M, i.e. a positive-definite symmetric inner-product $\langle \cdot, \cdot \rangle$ on the fibers of TM so that

$$\langle \{ \mathbf{d}_x \rho(g) \}(v), \{ \mathbf{d}_x \rho(g) \}(w) \rangle = \langle v, w \rangle \qquad \forall \ x \in M, \ v, w \in T_x M.$$

Let μ be the (left-invariant) Haar measure of volume 1 on G, i.e. $\mu(G) = 1$ and $\mu(gS) = \mu(S)$ for every measurable subset $S \subset G$ and $g \in G$. Let $\langle \cdot, \cdot \rangle'$ be any Riemannian metric on M. We then define a G-invariant Riemannian metric on M by

$$\langle v, w \rangle = \int_G \left\langle \{ \mathrm{d}_x \rho(g^{-1}) \}(v), \{ \mathrm{d}_x \rho(g^{-1}) \}(w) \right\rangle' \mathrm{d}\mu \qquad \forall x \in M, \ v, w \in T_x M.$$

If $v \in TM$, $\gamma_v: (a, b) \longrightarrow M$ with a < 0 < b is the geodesic with respect to the Levi-Civita connection ∇ of a *G*-invariant metric $\langle \cdot, \cdot \rangle$ on *M* with $\gamma'_v(0) = v$, and $g \in G$, then

$$g \cdot \gamma_v \colon (a, b) \longrightarrow M, \qquad \{g \cdot \gamma_v\}(t) = \{\rho(g)\}(\gamma_v(t)) \quad \forall t \in (a, b),$$

is the geodesic with respect to ∇ with $(g \cdot \gamma_v)'(0) = \{ d_{\gamma_v(0)}\rho(g) \}(v)$, i.e. $g \cdot \gamma_v = \gamma_{\{ d_{\gamma_v(0)}\rho(g) \}(v)}$. Thus, the exponential map

$$\exp: \mathcal{U} \longrightarrow M, \qquad \exp(v) = \gamma_v(1) \quad \forall v \in \mathcal{U} \subset TM, \tag{1}$$

with respect to ∇ satisfies

$$\{\mathrm{d}\rho(g)\}(\mathcal{U}) = \mathcal{U} \quad \text{and} \quad \exp\left(\{\mathrm{d}\rho(g)\}(v)\right) = g \cdot \exp(v) \qquad \forall \ g \in G, \ v \in \mathcal{U}, \tag{2}$$

i.e. it is G-equivariant with respect to the G-action on TM given by

$$d\rho: G \longrightarrow \text{Diff}(TM), \qquad g \longrightarrow d\rho(g),$$
(3)

and the original G-action on M. By the Chain Rule, the above map $d\rho$ is indeed a (left) group action.

(a) Since $\{\rho(g)\}(x) = x$ for every $g \in G$, $\{d\rho(g)\}(T_xM) \subset T_xM$ for every $g \in G$. Thus, the $d\rho$ action of G on M in (3) restricts to a G-action on T_xM by the linear automorphisms $\{d_x\rho(g)\}$. By (2), the restriction

$$\exp_x \equiv \exp|_{T_x M \cap \mathcal{U}} \colon T_x M \cap \mathcal{U} \longrightarrow M$$

of the exponential map (1) with respect to a *G*-invariant metric on *M* is *G*-equivariant. Since the differential of this map at $0 \in T_x M$ is the identity on $T_x M$, the Inverse Function Theorem implies that there exists a neighborhood U' of 0 in $T_x M \cap \mathcal{U}$ so that $\exp_x |_{U'}$ is a diffeomorphism on an open subset of *M*. Since *G* is compact,

$$U \equiv \bigcap_{g \in G} \{ \mathrm{d}_x \rho(g) \} (U') \subset T_x M \cap \mathcal{U}$$

is a neighborhood of 0 preserved by the G-action. The restriction

$$h \equiv \exp_x |_U : U \longrightarrow W \equiv \exp_x(U)$$

a G-equivariant diffeomorphism onto a neighborhood of x in M such that h(0) = x.

(b) Let $x \in M^G$ and $h: U \longrightarrow W$ be as in part (a). Since h is G-equivariant,

$$h: U^G \equiv \left\{ v \in U: \left\{ \mathbf{d}_x \rho(g) \right\}(v) = v \,\,\forall \, g \in G \right\} \longrightarrow W^G = M^G \cap W$$

is a homeomorphism. Since G acts linearly on T_xM , U^G is an open neighborhood of 0 in the linear subspace

$$(T_x M)^G \equiv \left\{ v \in T_x M \colon \{ \mathrm{d}_x \rho(g) \} (v) = v \,\,\forall \, g \in G \right\} \subset T_x M$$

and is thus a submanifold of U in the subspace topology. We conclude that every point $x \in M^G$ has a neighborhood $W_x \subset M$ so that $M^G \cap W_x$ is a submanifold of M in the subspace topology. This implies that every connected component of M^G is a smooth submanifold of M; see 1.33(b) in Warner's textbook.

(c) Let $x \in M^G$. By part (b), $T_x(M^G) = (T_x M)^G$. With $\langle \cdot, \cdot \rangle$ denoting a G-invariant metric on M, define

$$A_x: T_x M \longrightarrow T_x M$$
 by $\langle A_x(v), w \rangle = \omega(v, w) \quad \forall v, w \in T_x M.$

Since $\langle \cdot, \cdot \rangle$ and ω are *G*-invariant, so is A_x , i.e.

$$A_x(\{\mathrm{d}_x\rho(g)\}(v)) = \{\mathrm{d}_x\rho(g)\}(A_x(v)) \qquad \forall \ g \in G, \ v \in T_x M.$$

Thus, $A_x((T_xM)^G) \subset (T_xM)^G$. Since ω is nondegenerate on T_xM , A_x is invertible,

$$A_x^{-1}((T_xM)^G) \subset (T_xM)^G, \quad \text{and} \quad \omega(A_x^{-1}(v), v) = \langle v, v \rangle > 0 \quad \forall v \in T_xM - \{0\}.$$

Thus, the restriction of ω to $T_x(M^G) = (T_x M)^G$ is nondegenerate as well. This establishes the claim.