
MAT 562: Symplectic Geometry

Solution to Problem A

The C
∗-action on C

n by the coordinate multiplication restricts to a C
∗-action on C

n−{0} and
S1-actions on C

n and the unit sphere S2n−1⊂C
n. Show that

(a) the quotient topologies on CPn−1 given by (Cn−{0})/C∗ and S2n−1/S1 are the same (i.e.
the map S2n−1/S1−→(Cn−{0})/C∗ induced by inclusions is a homeomorphism);

(b) CPn−1 is a compact topological 2(n−1)-manifold that admits a complex structure so that the
quotient projections

q : Cn−{0} −→ CPn−1=(Cn−{0})/C∗ and p : S2n−1 −→ CPn−1=S2n−1/S1

are a holomorphic submersion and a smooth submersion, respectively;

(c) the S1-action on C
n preserves the standard symplectic form ωCn on C

n;

(d) the orbits of the restriction of this action to S2n−1 are compact connected one-dimensional
submanifolds of S2n−1;

(e) for each z∈S2n−1 the ωCn-symplectic complement of TzS
2n−1,

(
TzS

2n−1
)ωCn ≡

{
v∈TzC

n : ωCn(v, w)=0 ∀w∈TzS
2n−1

}
,

is the tangent space to the S1-orbit at z;

(f) there is a unique 2-form ωCPn−1 on CPn−1 such that p∗ωCPn−1 = ωCn |TS2n−1, and this
form ωCPn−1 is symplectic.

(a) Let ĩ : S2n−1 −→ C
n−1−0 and r̃ : Cn−1−0 −→ S2n−1 denote the inclusion and the natural

retraction, i.e. r̃(v)= v/|v|. We show that these maps descend to continuous maps between the
quotients, i and r below,
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that are inverses of each other.

The map q ◦ ĩ is constant on the fibers of p, since if v, w ∈S2n−1 and w= g · v for some g ∈S1,
then ĩ(w)=g′ · ĩ(v) for some g′∈C

∗ (in fact, g′=g). Thus, q ◦ ĩ induces a map i from the quotient
space S2n−1/S1 (so that the first diagram commutes); since the map q ◦ ĩ is continuous, so is the
induced map i. Similarly, the map p ◦ r̃ is constant on the fibers of q, since if v, w∈C

n−1−0 and
w= g · v for some g ∈C

∗, then r̃(w) = g′ · r̃(v) for some g′ ∈S1 (in fact, g′ = g/|g|). Thus, p ◦ r̃



induces a map r from the quotient space (Cn−1−0)/C∗; since the map p ◦ r̃ is continuous, so is
the induced map r. Since r̃ ◦ ĩ = idS2n−1 , r ◦ i = idS2n−1/S1 . Similarly, for all v∈C

n−1−0,

ĩ ◦ r̃(v) = (1/|v|)v, 1/|v| ∈ C
∗ =⇒ q

(̃
i ◦ r̃(v)

)
= q(v) =⇒ i ◦ r = id(Cn−1−0)/C∗ .

(b-i) Since S2n−1 is compact, so is the quotient space CPn−1=S2n−1/S1 (being the image of S2n−1

under the continuous map p). For any A⊂S2n−1,

p−1
(
p(A)

)
= S1 ·A ≡

{
g ·v : v∈A, g∈S1

}
=

⋃

g∈S1

g−1(A).

Thus, p−1(p(A)) is the image of the subset S1×A in S2n−1 under the continuous multiplication
map

S1×S2n−1 −→ S2n−1, (g, v) −→ g ·v,

and is the union over g∈S1 of the preimages g−1(A) of A under the continuous map

g : S2n−1 −→ S2n−1, v −→ g ·v.

If A is closed in S2n−1, then S1×A is closed in the compact space S1×S2n−1 and thus compact. It
then follows from the first statement above that p−1(p(A)) is a compact subset of the Hausdorff
space S2n−1 and thus closed. We conclude that p(A)⊂S2n−1/S1 is closed for all closed subsets
A⊂ S2n−1, i.e. the quotient map p is a closed map. Since S2n−1 is normal, by Lemma 73.3 in
Munkres’s Topology the quotient space CPn−1 is normal as well (and in particular, Hausdorff). If
A is open in S2n−1, then g−1(A) is also open in S2n−1. It then follows from the second statement
above that p−1(p(A)) is open in S2n−1 as well. We conclude that p(A)⊂S2n−1/S1 is open for all
open subsets A⊂S2n−1, i.e. the quotient map p is an open map. Since S2n−1 is second countable,
the quotient space CPn−1 is therefore also second countable.

(b-ii) We now construct a collection of charts {(Ui, ϕi)}i=1,...,n on CPn−1 that covers CPn−1.
Given a point (X1, . . . , Xn)∈C

n−0, we denote its equivalence class in

CPn−1 = (Cn−0)/C∗

by [X1, . . . , Xn]. For i=1, . . . , n, let

Ui =
{
[X1, . . . , Xn]∈CPn−1 : Xi 6=0

}
.

Since
q−1(Ui) =

{
(X1, . . . , Xn)∈C

n−0: Xi 6=0
}
≡ Ũi

is an open subset of Cn−0, Ui is an open subset of CPn−1. Define

ϕ̃i : Ũi −→ C
n−1=R

2(n−1) by

ϕ̃i(X1, . . . , Xn) =
(
X1/Xi, X2/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi

)
.

Since ϕ̃i(c · v) = ϕ̃i(v), the map ϕ̃i induces a map ϕi from the quotient space Ui of Ũi:
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Since ϕ̃i is continuous, so is ϕi. Define

ψi : C
n−1 −→ Ui by ψi(z1, . . . , zn) =

[
z1, . . . , zi−1, Xi=1, zi, . . . , zn−1].

Since ψi is a composition of two continuous maps, ψi is continuous. Since ψi ◦ϕi = idUi
and

ϕi◦ψi=idCn−1 , the map
ϕi : Ui −→ C

n−1

is a homeomorphism. For every p ≡ [X1, . . . , Xn] ∈ CPn−1, there exists i = 1, . . . , n such that
Xi 6=0, i.e. p∈Ui. Thus, {(Ui, ϕi)}i=1,...,n is a collection of charts on CPn that covers CPn−1. In
particular, CPn−1 is locally Euclidean of dimension 2n. Since this collection of charts is countable
(actually, finite), it follows that CPn−1 is second countable (since each open subset Ui is second
countable).

(b-iii) We now determine the overlap maps

ϕi ◦ ϕ
−1
j = ϕi ◦ ψj : ϕj(Ui∩Uj) −→ ϕi(Ui∩Uj).

Assume that j<i. Then,

Ui∩Uj =
{
[X1, . . . , Xn]∈CPn−1 : Xi, Xj 6=0

}
=⇒

ϕj(Ui∩Uj) =
{
(z1, . . . , zn−1)∈C

n−1 : zi−1 6=0
}
≡ C

n−1
i−1 ,

ϕi(Ui∩Uj) =
{
(z1, . . . , zn−1)∈C

n−1 : zj 6=0
}
≡ C

n−1
j ;

the assumption j<i is used on the last two lines. By (b-ii), the map

ϕi ◦ ϕ
−1
j : Cn

i−1 −→ C
n
j

is given by

ϕi ◦ ϕ
−1
j (z1, . . . , zn−1) = ϕi ◦ ψj(z1, . . . , zn−1) = ϕi

(
[z1, . . . , zj−1, Xj=1, zj , . . . , zn−1]

)

=
(
z1/zi, . . . , zj−1/zi, 1/zi, zj/zi, . . . , zi−1/zi, zi+1/zi, . . . , zn−1/zi

)
.

Thus, the overlap map ϕi◦ϕ
−1
j is holomorphic on its domain, as is its inverse, ϕj ◦ϕ

−1
i ; both maps

are given by rational functions on C
n−1. We conclude that the collection F0 = {(Ui, ϕi)}i=1,...,n

determines a complex structure on CPn−1.

(b-iv) For each i=1, . . . , n, the composition ϕi◦q|Ũi

= ϕ̃i is a holomorphic submersion (even when
restricted to the slices with Xi fixed). Thus, q|

Ũi

is a holomorphic submersion. Since the open
subsets U1, . . . ,Un cover C

n−{0}, it follows that the entire projection q is a submersion. Since
p=q◦ ĩ, the projection p is also smooth. Since q=p◦r̃, p is a submersion as well.
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(c) For u∈S1,

u∗ωCn = u∗
(
i

2

n∑

j=1

dzj∧dzj

)
=

i

2

n∑

j=1

d(u∗zj)∧d(u
∗zj) =

i

2

n∑

j=1

d(uzj)∧d(uzj)

=
i

2

n∑

j=1

uudzj∧dzj =
i

2

n∑

j=1

dzj∧dzj = ωCn .

(d) The orbit through z∈C
n is the image of the map

S1 −→ C
n, eit −→ eitz.

This is an embedding (it is smooth, injective, with everywhere injective differential) if z 6= 0.
Thus, the orbits of the restriction of this S1-action to S2n−1 are embedded circles.

(e) Define H : Cn−→R by H(z)= |z|2/2. For each z∈C
n, the composition of the map in (d) with

the projection
R −→ S1, t −→ eit,

determines the time t flow φt : C
n −→ C

n for the Hamiltonian vector field ζH . For each
z∈S2n−1=H−1(2), the tangent space to the S1-orbit at z is thus RζH(z). If in addition w∈TzS

2n−1,
then

ω
(
ζH(z), w

)
= −dzH(w) = 0.

Thus, the tangent space to the S1-orbit at z is contained in (TzS
2n−1)ωCn . Since

dimTzS
2n−1 + dim

(
TzS

2n−1
)ωCn = dimTzC

n,

it follows that (TzS
2n−1)ωCn is the tangent space to the S1-orbit at z.

(f) Since p is a smooth submersion, the homomorphisms

p∗ : Λ∗
(
T ∗(CPn−1)

)
−→ Λ∗

(
T ∗S2n−1

)
and p∗ : Ω∗

(
CPn−1

)
−→ Ω∗

(
S2n−1

)

are injective. Thus, there is at most one 2-form ωCPn−1 on CPn−1 with p∗ωCPn−1 =ωCn |TS2n−1 .
Furthermore, if such a form ωCPn−1 does exist, it must be smooth and satisfy

p∗dωCPn−1 = d
(
p∗ωCPn−1

)
= d

(
ωCn |TS2n−1

)
=

(
dωCn

)∣∣
TS2n−1

= 0.

Since p∗ is injective, ωCPn−1 must also be closed.

We define a 2-form ωCPn−1 on CPn−1 by the condition p∗ωCPn−1 =ωCn |TS2n−1 , i.e.

ωCPn−1

∣∣
p(z)

(
dzp(v), dzp(w)

)
= ωCn

∣∣
z
(v, w) ∀ v, w∈TzS

2n−1, z∈S2n−1 .

Since ker dzp=RζH(z) is the tangent space to the S1-orbit at z and is contained in (TzS
2n−1)ωCn

by (e), the right-hand side above depends only on z, dzp(v), and dzp(w). Since the S
1-action on C

n

preserves ωCn , the right-hand side depends only on dzp(v) and dzp(w), i.e. the 2-form ωCPn−1 is
well-defined by the above. If z∈S2n−1, v∈TzS

2n−1, and dzp(v) 6=0, then v is not tangent to the
S1-orbit at z, i.e.

v ∈ TzS
2n−1−RζH(z) ⊂ TzS

2n−1−
(
TzS

2n−1
)ωCn

by (e). Thus, there exists w ∈ TzS
2n−1 such that ωCn(v, w) 6= 0. We conclude that ωCPn−1 is

nondegenerate.
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