MAT 562: Symplectic Geometry

Solution to Problem A

The \mathbb{C}^* -action on \mathbb{C}^n by the coordinate multiplication restricts to a \mathbb{C}^* -action on $\mathbb{C}^n - \{0\}$ and S^1 -actions on \mathbb{C}^n and the unit sphere $S^{2n-1} \subset \mathbb{C}^n$. Show that

- (a) the quotient topologies on $\mathbb{C}P^{n-1}$ given by $(\mathbb{C}^n \{0\})/\mathbb{C}^*$ and S^{2n-1}/S^1 are the same (i.e. the map $S^{2n-1}/S^1 \longrightarrow (\mathbb{C}^n \{0\})/\mathbb{C}^*$ induced by inclusions is a homeomorphism);
- (b) $\mathbb{C}P^{n-1}$ is a compact topological 2(n-1)-manifold that admits a complex structure so that the quotient projections

 $q \colon \mathbb{C}^n - \{0\} \longrightarrow \mathbb{C}P^{n-1} = (\mathbb{C}^n - \{0\})/\mathbb{C}^* \quad and \quad p \colon S^{2n-1} \longrightarrow \mathbb{C}P^{n-1} = S^{2n-1}/S^1$

are a holomorphic submersion and a smooth submersion, respectively;

- (c) the S¹-action on \mathbb{C}^n preserves the standard symplectic form $\omega_{\mathbb{C}^n}$ on \mathbb{C}^n ;
- (d) the orbits of the restriction of this action to S^{2n-1} are compact connected one-dimensional submanifolds of S^{2n-1} ;
- (e) for each $z \in S^{2n-1}$ the $\omega_{\mathbb{C}^n}$ -symplectic complement of $T_z S^{2n-1}$,

$$(T_z S^{2n-1})^{\omega_{\mathbb{C}^n}} \equiv \{ v \in T_z \mathbb{C}^n \colon \omega_{\mathbb{C}^n}(v,w) = 0 \ \forall \, w \in T_z S^{2n-1} \},$$

is the tangent space to the S^1 -orbit at z;

(f) there is a unique 2-form $\omega_{\mathbb{C}P^{n-1}}$ on $\mathbb{C}P^{n-1}$ such that $p^*\omega_{\mathbb{C}P^{n-1}} = \omega_{\mathbb{C}^n}|_{TS^{2n-1}}$, and this form $\omega_{\mathbb{C}P^{n-1}}$ is symplectic.

(a) Let $\tilde{i}: S^{2n-1} \longrightarrow \mathbb{C}^{n-1} - 0$ and $\tilde{r}: \mathbb{C}^{n-1} - 0 \longrightarrow S^{2n-1}$ denote the inclusion and the natural retraction, i.e. $\tilde{r}(v) = v/|v|$. We show that these maps descend to continuous maps between the quotients, i and r below,

that are inverses of each other.

The map $q \circ \tilde{i}$ is constant on the fibers of p, since if $v, w \in S^{2n-1}$ and $w = g \cdot v$ for some $g \in S^1$, then $\tilde{i}(w) = g' \cdot \tilde{i}(v)$ for some $g' \in \mathbb{C}^*$ (in fact, g' = g). Thus, $q \circ \tilde{i}$ induces a map i from the quotient space S^{2n-1}/S^1 (so that the first diagram commutes); since the map $q \circ \tilde{i}$ is continuous, so is the induced map i. Similarly, the map $p \circ \tilde{r}$ is constant on the fibers of q, since if $v, w \in \mathbb{C}^{n-1} - 0$ and $w = g \cdot v$ for some $g \in \mathbb{C}^*$, then $\tilde{r}(w) = g' \cdot \tilde{r}(v)$ for some $g' \in S^1$ (in fact, g' = g/|g|). Thus, $p \circ \tilde{r}$ induces a map r from the quotient space $(\mathbb{C}^{n-1}-0)/\mathbb{C}^*$; since the map $p \circ \tilde{r}$ is continuous, so is the induced map r. Since $\tilde{r} \circ \tilde{i} = \mathrm{id}_{S^{2n-1}}, r \circ i = \mathrm{id}_{S^{2n-1}/S^1}$. Similarly, for all $v \in \mathbb{C}^{n-1}-0$,

$$\widetilde{i} \circ \widetilde{r}(v) = (1/|v|)v, \quad 1/|v| \in \mathbb{C}^* \quad \Longrightarrow \quad q\big(\widetilde{i} \circ \widetilde{r}(v)\big) = q(v) \quad \Longrightarrow \quad i \circ r = \mathrm{id}_{(\mathbb{C}^{n-1} - 0)/\mathbb{C}^*}.$$

(b-i) Since S^{2n-1} is compact, so is the quotient space $\mathbb{C}P^{n-1} = S^{2n-1}/S^1$ (being the image of S^{2n-1} under the continuous map p). For any $A \subset S^{2n-1}$,

$$p^{-1}(p(A)) = S^1 \cdot A \equiv \left\{ g \cdot v \colon v \in A, \ g \in S^1 \right\} = \bigcup_{g \in S^1} g^{-1}(A).$$

Thus, $p^{-1}(p(A))$ is the image of the subset $S^1 \times A$ in S^{2n-1} under the continuous multiplication map

$$S^1 \times S^{2n-1} \longrightarrow S^{2n-1}, \qquad (g, v) \longrightarrow g \cdot v,$$

and is the union over $g \in S^1$ of the preimages $g^{-1}(A)$ of A under the continuous map

$$g \colon S^{2n-1} \longrightarrow S^{2n-1}, \qquad v \longrightarrow g \cdot v.$$

If A is closed in S^{2n-1} , then $S^1 \times A$ is closed in the compact space $S^1 \times S^{2n-1}$ and thus compact. It then follows from the first statement above that $p^{-1}(p(A))$ is a compact subset of the Hausdorff space S^{2n-1} and thus closed. We conclude that $p(A) \subset S^{2n-1}/S^1$ is closed for all closed subsets $A \subset S^{2n-1}$, i.e. the quotient map p is a closed map. Since S^{2n-1} is normal, by Lemma 73.3 in Munkres's *Topology* the quotient space $\mathbb{C}P^{n-1}$ is normal as well (and in particular, Hausdorff). If A is open in S^{2n-1} , then $g^{-1}(A)$ is also open in S^{2n-1} . It then follows from the second statement above that $p^{-1}(p(A))$ is open in S^{2n-1} as well. We conclude that $p(A) \subset S^{2n-1}/S^1$ is open for all open subsets $A \subset S^{2n-1}$, i.e. the quotient map p is an open map. Since S^{2n-1} is second countable, the quotient space $\mathbb{C}P^{n-1}$ is therefore also second countable.

(b-ii) We now construct a collection of charts $\{(\mathcal{U}_i, \varphi_i)\}_{i=1,\dots,n}$ on $\mathbb{C}P^{n-1}$ that covers $\mathbb{C}P^{n-1}$. Given a point $(X_1, \dots, X_n) \in \mathbb{C}^n - 0$, we denote its equivalence class in

$$\mathbb{C}P^{n-1} = (\mathbb{C}^n - 0)/\mathbb{C}^*$$

by $[X_1, ..., X_n]$. For i = 1, ..., n, let

$$\mathcal{U}_i = \{ [X_1, \ldots, X_n] \in \mathbb{C}P^{n-1} \colon X_i \neq 0 \}.$$

Since

$$q^{-1}(\mathcal{U}_i) = \left\{ (X_1, \dots, X_n) \in \mathbb{C}^n - 0 \colon X_i \neq 0 \right\} \equiv \widetilde{\mathcal{U}}_i$$

is an open subset of $\mathbb{C}^n - 0$, \mathcal{U}_i is an open subset of $\mathbb{C}P^{n-1}$. Define

$$\widetilde{\varphi}_i \colon \widetilde{\mathcal{U}}_i \longrightarrow \mathbb{C}^{n-1} = \mathbb{R}^{2(n-1)} \quad \text{by}$$
$$\widetilde{\varphi}_i(X_1, \dots, X_n) = (X_1/X_i, X_2/X_i, \dots, X_{i-1}/X_i, X_{i+1}/X_i, \dots, X_n/X_i).$$

Since $\widetilde{\varphi}_i(c \cdot v) = \widetilde{\varphi}_i(v)$, the map $\widetilde{\varphi}_i$ induces a map φ_i from the quotient space \mathcal{U}_i of $\widetilde{\mathcal{U}}_i$:

Since $\tilde{\varphi}_i$ is continuous, so is φ_i . Define

$$\psi_i : \mathbb{C}^{n-1} \longrightarrow \mathcal{U}_i$$
 by $\psi_i(z_1, \dots, z_n) = [z_1, \dots, z_{i-1}, X_i = 1, z_i, \dots, z_{n-1}].$

Since ψ_i is a composition of two continuous maps, ψ_i is continuous. Since $\psi_i \circ \varphi_i = \mathrm{id}_{\mathcal{U}_i}$ and $\varphi_i \circ \psi_i = \mathrm{id}_{\mathbb{C}^{n-1}}$, the map

$$\varphi_i : \mathcal{U}_i \longrightarrow \mathbb{C}^{n-1}$$

is a homeomorphism. For every $p \equiv [X_1, \ldots, X_n] \in \mathbb{C}P^{n-1}$, there exists $i = 1, \ldots, n$ such that $X_i \neq 0$, i.e. $p \in \mathcal{U}_i$. Thus, $\{(\mathcal{U}_i, \varphi_i)\}_{i=1,\ldots,n}$ is a collection of charts on $\mathbb{C}P^n$ that covers $\mathbb{C}P^{n-1}$. In particular, $\mathbb{C}P^{n-1}$ is locally Euclidean of dimension 2n. Since this collection of charts is countable (actually, finite), it follows that $\mathbb{C}P^{n-1}$ is second countable (since each open subset \mathcal{U}_i is second countable).

(b-iii) We now determine the overlap maps

$$\varphi_i \circ \varphi_j^{-1} = \varphi_i \circ \psi_j \colon \varphi_j(\mathcal{U}_i \cap \mathcal{U}_j) \longrightarrow \varphi_i(\mathcal{U}_i \cap \mathcal{U}_j).$$

Assume that j < i. Then,

$$\mathcal{U}_{i} \cap \mathcal{U}_{j} = \left\{ [X_{1}, \dots, X_{n}] \in \mathbb{C}P^{n-1} \colon X_{i}, X_{j} \neq 0 \right\} \implies \varphi_{j}(\mathcal{U}_{i} \cap \mathcal{U}_{j}) = \left\{ (z_{1}, \dots, z_{n-1}) \in \mathbb{C}^{n-1} \colon z_{i-1} \neq 0 \right\} \equiv \mathbb{C}_{i-1}^{n-1}, \\ \varphi_{i}(\mathcal{U}_{i} \cap \mathcal{U}_{j}) = \left\{ (z_{1}, \dots, z_{n-1}) \in \mathbb{C}^{n-1} \colon z_{j} \neq 0 \right\} \equiv \mathbb{C}_{j}^{n-1};$$

the assumption j < i is used on the last two lines. By (b-ii), the map

$$\varphi_i \circ \varphi_j^{-1} \colon \mathbb{C}_{i-1}^n \longrightarrow \mathbb{C}_j^n$$

is given by

$$\varphi_i \circ \varphi_j^{-1}(z_1, \dots, z_{n-1}) = \varphi_i \circ \psi_j(z_1, \dots, z_{n-1}) = \varphi_i ([z_1, \dots, z_{j-1}, X_j = 1, z_j, \dots, z_{n-1}])$$
$$= (z_1/z_i, \dots, z_{j-1}/z_i, 1/z_i, z_j/z_i, \dots, z_{i-1}/z_i, z_{i+1}/z_i, \dots, z_{n-1}/z_i)$$

Thus, the overlap map $\varphi_i \circ \varphi_j^{-1}$ is holomorphic on its domain, as is its inverse, $\varphi_j \circ \varphi_i^{-1}$; both maps are given by rational functions on \mathbb{C}^{n-1} . We conclude that the collection $\mathcal{F}_0 = \{(\mathcal{U}_i, \varphi_i)\}_{i=1,...,n}$ determines a complex structure on $\mathbb{C}P^{n-1}$.

(b-iv) For each i = 1, ..., n, the composition $\varphi_i \circ q|_{\widetilde{\mathcal{U}}_i} = \widetilde{\varphi}_i$ is a holomorphic submersion (even when restricted to the slices with X_i fixed). Thus, $q|_{\widetilde{\mathcal{U}}_i}$ is a holomorphic submersion. Since the open subsets $\mathcal{U}_1, \ldots, \mathcal{U}_n$ cover $\mathbb{C}^n - \{0\}$, it follows that the entire projection q is a submersion. Since $p = q \circ \widetilde{i}$, the projection p is also smooth. Since $q = p \circ \widetilde{r}$, p is a submersion as well.

(c) For $u \in S^1$,

$$\begin{split} u^* \omega_{\mathbb{C}^n} &= u^* \left(\frac{\mathbf{i}}{2} \sum_{j=1}^n \mathrm{d} z_j \wedge \mathrm{d} \overline{z_j} \right) = \frac{\mathbf{i}}{2} \sum_{j=1}^n \mathrm{d} (u^* z_j) \wedge \mathrm{d} (u^* \overline{z_j}) = \frac{\mathbf{i}}{2} \sum_{j=1}^n \mathrm{d} (u z_j) \wedge \mathrm{d} (\overline{u z_j}) \\ &= \frac{\mathbf{i}}{2} \sum_{j=1}^n u \overline{u} \, \mathrm{d} z_j \wedge \mathrm{d} \overline{z_j} = \frac{\mathbf{i}}{2} \sum_{j=1}^n \mathrm{d} z_j \wedge \mathrm{d} \overline{z_j} = \omega_{\mathbb{C}^n}. \end{split}$$

(d) The orbit through $z \in \mathbb{C}^n$ is the image of the map

$$S^1 \longrightarrow \mathbb{C}^n, \qquad e^{\mathrm{i}t} \longrightarrow e^{\mathrm{i}t}z.$$

This is an embedding (it is smooth, injective, with everywhere injective differential) if $z \neq 0$. Thus, the orbits of the restriction of this S^1 -action to S^{2n-1} are embedded circles.

(e) Define $H: \mathbb{C}^n \longrightarrow \mathbb{R}$ by $H(z) = |z|^2/2$. For each $z \in \mathbb{C}^n$, the composition of the map in (d) with the projection

$$\mathbb{R} \longrightarrow S^1, \qquad t \longrightarrow e^{\mathrm{i}t},$$

determines the time t flow $\phi_t : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ for the Hamiltonian vector field ζ_H . For each $z \in S^{2n-1} = H^{-1}(2)$, the tangent space to the S^1 -orbit at z is thus $\mathbb{R}\zeta_H(z)$. If in addition $w \in T_z S^{2n-1}$, then

$$\omega(\zeta_H(z), w) = -\mathrm{d}_z H(w) = 0.$$

Thus, the tangent space to the S¹-orbit at z is contained in $(T_z S^{2n-1})^{\omega_{\mathbb{C}^n}}$. Since

$$\dim T_z S^{2n-1} + \dim \left(T_z S^{2n-1}\right)^{\omega_{\mathbb{C}^n}} = \dim T_z \mathbb{C}^n,$$

it follows that $(T_z S^{2n-1})^{\omega_{\mathbb{C}^n}}$ is the tangent space to the S^1 -orbit at z.

(f) Since p is a smooth submersion, the homomorphisms

$$p^* \colon \Lambda^* \left(T^* (\mathbb{C}P^{n-1}) \right) \longrightarrow \Lambda^* \left(T^* S^{2n-1} \right) \quad \text{and} \quad p^* \colon \Omega^* \left(\mathbb{C}P^{n-1} \right) \longrightarrow \Omega^* \left(S^{2n-1} \right)$$

are injective. Thus, there is at most one 2-form $\omega_{\mathbb{C}P^{n-1}}$ on $\mathbb{C}P^{n-1}$ with $p^*\omega_{\mathbb{C}P^{n-1}} = \omega_{\mathbb{C}^n}|_{TS^{2n-1}}$. Furthermore, if such a form $\omega_{\mathbb{C}P^{n-1}}$ does exist, it must be smooth and satisfy

$$p^* \mathrm{d}\omega_{\mathbb{C}P^{n-1}} = \mathrm{d}(p^*\omega_{\mathbb{C}P^{n-1}}) = \mathrm{d}(\omega_{\mathbb{C}^n}|_{TS^{2n-1}}) = (\mathrm{d}\omega_{\mathbb{C}^n})|_{TS^{2n-1}} = 0$$

Since p^* is injective, $\omega_{\mathbb{C}P^{n-1}}$ must also be closed.

We define a 2-form $\omega_{\mathbb{C}P^{n-1}}$ on $\mathbb{C}P^{n-1}$ by the condition $p^*\omega_{\mathbb{C}P^{n-1}} = \omega_{\mathbb{C}^n}|_{TS^{2n-1}}$, i.e.

$$\omega_{\mathbb{C}P^{n-1}}\big|_{p(z)} \big(\mathrm{d}_z p(v), \mathrm{d}_z p(w)\big) = \omega_{\mathbb{C}^n}\big|_z(v, w) \qquad \forall v, w \in T_z S^{2n-1}, z \in S^{2n-1}.$$

Since ker $d_z p = \mathbb{R}\zeta_H(z)$ is the tangent space to the S^1 -orbit at z and is contained in $(T_z S^{2n-1})^{\omega_{\mathbb{C}^n}}$ by (e), the right-hand side above depends only on z, $d_z p(v)$, and $d_z p(w)$. Since the S^1 -action on \mathbb{C}^n preserves $\omega_{\mathbb{C}^n}$, the right-hand side depends only on $d_z p(v)$ and $d_z p(w)$, i.e. the 2-form $\omega_{\mathbb{C}P^{n-1}}$ is well-defined by the above. If $z \in S^{2n-1}$, $v \in T_z S^{2n-1}$, and $d_z p(v) \neq 0$, then v is not tangent to the S^1 -orbit at z, i.e.

$$v \in T_z S^{2n-1} - \mathbb{R}\zeta_H(z) \subset T_z S^{2n-1} - \left(T_z S^{2n-1}\right)^{\omega_{\mathbb{C}^n}}$$

by (e). Thus, there exists $w \in T_z S^{2n-1}$ such that $\omega_{\mathbb{C}^n}(v, w) \neq 0$. We conclude that $\omega_{\mathbb{C}P^{n-1}}$ is nondegenerate.