MAT 562: Symplectic Geometry

Problem Set 7 Due by 12/09, in class (if you have not passed the orals yet)

Two of the exercises from Chapter 2 of Ana's *Seminar on Symplectic Toric Manifolds*, Exercises IV.12-14 from Audin's book, and/or the following. You do not need to copy the statements of problems (just indicate clearly what problems you are doing).

For $N \in \mathbb{Z}^+$, define $[N] = \{1, \ldots, N\}$ and

$$\widetilde{H}_{\mathbb{C}^N}:\mathbb{C}^N\longrightarrow\mathbb{R}^N, \quad \widetilde{H}_{\mathbb{C}^N}(z_1,\ldots,z_N)=\pi\big(|z_1|^2,\ldots,|z_N|^2\big), \qquad \widetilde{\mu}_{\mathbb{C}^N}=\sum_{j=1}^N\big(-y_j\mathrm{d} x_j+x_j\mathrm{d} y_j\big).$$

For a $n \times N$ \mathbb{Z} -matrix A, let

$$\iota_A \colon \mathbb{T}_A \equiv \ker \left(A \colon \mathbb{T}^N \equiv \mathbb{R}^N / \mathbb{Z}^N \longrightarrow \mathbb{T}^n \equiv \mathbb{R}^n / \mathbb{Z}^n \right) \longrightarrow \mathbb{T}^N$$

be the inclusion, $\iota_A^* \colon \mathbb{R}^N = T_1^* \mathbb{T}^N \longrightarrow T_1^* \mathbb{T}_A$ be the restriction homomorphism induced by ι_A , and

$$\widetilde{H}_A \equiv \iota_A^* \circ \widetilde{H}_{\mathbb{C}^N} \colon \mathbb{C}^N \longrightarrow T_1^* \mathbb{T}_A \tag{1}$$

be a moment map for the restriction of the standard coordinate-wise \mathbb{T}^N -action on \mathbb{C}^N to $\mathbb{T}_A \subset \mathbb{T}^N$. Let $(\mathbb{T}_A)_{\mathbb{C}} \subset \mathbb{T}^N_{\mathbb{C}}$ be the complexification of $\mathbb{T}_A \subset \mathbb{T}^N$ and $(\mathbb{T}_A)_{\mathfrak{i}} \subset (\mathbb{T}_A)_{\mathbb{C}}$ be the purely imaginary subgroup (it corresponds to a subgroup of $(\mathbb{R}^*)^N \subset (\mathbb{C}^*)^N$ via $e^{2\pi \mathfrak{i}}$). The group $\mathbb{T}^N_{\mathbb{C}} \approx (\mathbb{C}^*)^N$ acts on \mathbb{C}^N by the coordinate-wise multiplication in the usual way. If in addition $\alpha \in T_1^* \mathbb{T}_A$, let

$$P_{A}^{\alpha} = \{s \in (\mathbb{R}^{\geq 0})^{N} : \iota_{A}^{*}(s) = \alpha\}, \quad \widetilde{Z}_{A}^{\alpha} = \widetilde{H}_{A}^{-1}(\alpha) = \widetilde{H}_{\mathbb{C}^{N}}^{-1}(P_{A}^{\tau}) \subset \mathbb{C}^{N}, \tag{2}$$
$$\mathscr{V}_{A}^{\alpha} = \{J \subset [N] : |J| = n, P_{A}^{\tau} \cap (\mathbb{R}^{\geq 0})^{[N] - J} \neq \emptyset\}, \quad \widetilde{M}_{A}^{\alpha} = \mathbb{C}^{N} - \bigcup_{\substack{J \subset [N] \\ P_{A}^{\tau} \cap (\mathbb{R}^{\geq 0})^{J} = \emptyset}} \mathbb{C}^{J}, \quad M_{A}^{\alpha} \equiv \widetilde{M}_{A}^{\alpha} / (\mathbb{T}_{A})_{\mathbb{C}}.$$

For $J \subset [N]$, let A_J be the $n \times |J|$ submatrix of A consisting of the columns indexed by J.

Problem P (counts as 2 exercises)

Let $P \equiv \{r \in \mathbb{R}^n : v_k \cdot r \ge c_k \forall k \in [N]\}$ be a Delzant polytope with the inward normals v_1, \ldots, v_N to the facets (codimension 1 faces) meeting at each vertex of P forming a \mathbb{Z} -basis for \mathbb{Z}^N . Define

$$A = (v_1 \dots v_N) \colon (\mathbb{R}^N, \mathbb{Z}^N) \longrightarrow (\mathbb{R}^n, \mathbb{Z}^n), \quad c = (c_1, \dots, c_N) \in \mathbb{R}^N, \quad \alpha = -\iota_A^*(c) \in T_1^* \mathbb{T}_A.$$

Thus, $\widetilde{Z}_A^{\alpha} \subset \mathbb{C}^N$ is the preimage of the regular value $\alpha \in T_1 \mathbb{T}^*$ of \widetilde{H}_A , \mathbb{T}_A acts freely on \widetilde{Z}_A^{α} , and

$$(M_P, \omega_P) \equiv \left(\widetilde{Z}^{\alpha}_A, \omega_{\mathbb{C}^N}|_{T\widetilde{Z}^{\alpha}_A}\right) / \mathbb{T}_A$$

is the compact connected symplectic manifold obtained from P via the Delzant construction in class. Show that

- (a) the open subspace $\widetilde{M}^{\alpha}_{A} \subset \mathbb{C}^{N}$ contains $\widetilde{Z}^{\alpha}_{A}$ and is path-connected, simply connected, preserved by the $\mathbb{T}^{N}_{\mathbb{C}}$ -action, and acted on freely by $(\mathbb{T}_{A})_{\mathbb{C}} \subset \mathbb{T}^{N}_{\mathbb{C}}$;
- (b) the smooth map $(\mathbb{T}_A)_i \times \widetilde{Z}^{\alpha}_A \longrightarrow \mathbb{C}^N$, $(g, z) \longrightarrow g \cdot z$, is a diffeomorphism onto \widetilde{M}^{α}_A ;
- (c) the inclusions $\widetilde{Z}^{\alpha}_{A} \longrightarrow \widetilde{M}^{\alpha}_{A}$ and $\mathbb{T}_{A} \longrightarrow (\mathbb{T}_{A})_{\mathbb{C}}$ induce a homeomorphism

$$M_A^{\alpha} \equiv \widetilde{M}_A^{\alpha} / (\mathbb{T}_A)_{\mathbb{C}} \longrightarrow \widetilde{Z}_A^{\alpha} / \mathbb{T}_A \equiv M_P$$

with respect to the quotient topologies;

(d) the smooth manifold $M_A^{\alpha} = M_P$ is simply connected and admits a complex manifold structure, compatible with the smooth and symplectic structures, so that the quotient projection $q: \widetilde{M}_A^{\alpha} \longrightarrow M_A^{\alpha}$ is a holomorphic submersion and $(\mathbb{T}_A)_{\mathbb{C}}$ acts on M_A^{α} by biholomorphisms.

Problem Q (counts as 2 exercises)

Let A be a $n \times N$ Z-matrix, $\mathcal{R}_A \subset T_1^* \mathbb{T}_A$ be the subset of regular values of the map \widetilde{H}_A defined in (1), and $\alpha \in T_1^* \mathbb{T}_A$. Show that

- (a) the subset $P_A^{\alpha} \subset \mathbb{C}^N$ defined in (2) is bounded if and only if $P_A^0 = \{0\}$;
- (b) $\alpha \in \mathcal{R}_A$ if and only if $\alpha \notin \iota_A^*((\mathbb{R}^{\geq 0})^J)$ for any $J \subset [N]$ with |J| < N n;
- (c) the subset $\mathcal{R}_A \subset T_1^* \mathbb{T}_A$ of regular values of \widetilde{H}_A is open.

Suppose in addition $\alpha \in T_{\mathbb{I}}^* \mathbb{T}_A$ is regular value of \widetilde{H}_A . Let $\mathcal{R}_A^{\alpha} \subset \mathcal{R}_A$ be the connected component containing α . Show that

- (d) $\mathcal{R}^{\alpha}_{A} \subset T^{*}_{\mathbb{1}} \mathbb{T}_{A}$ is preserved by the multiplication by \mathbb{R}^{+} ;
- (e) \mathbb{T}_A acts freely on \widetilde{Z}_A^{α} if and only if det $A_J \in \{\pm 1\}$ for every $J \in \mathscr{V}_A^{\alpha}$;
- (f) $(\mathbb{T}_A)_{\mathbb{C}}$ acts freely on \widetilde{M}^{α}_A if and only if det $A_J \in \{\pm 1\}$ for every $J \in \mathscr{V}^{\alpha}_A$;
- (g) $\mathscr{V}_{A}^{\alpha'} = \mathscr{V}_{A}^{\alpha}$ and $\widetilde{M}_{A}^{\alpha'} = \widetilde{M}_{A}^{\alpha}$ if $\alpha' \in \mathcal{R}_{A}^{\alpha}$;
- (h) $(\mathbb{T}_A)_{\mathbb{C}}$ acts freely on $\widetilde{M}_A^{\alpha'}$ and $M_A^{\alpha'} = M_A^{\alpha}$ as complex manifolds if $\alpha' \in \mathcal{R}_A^{\alpha}$ and $(\mathbb{T}_A)_{\mathbb{C}}$ acts freely on \widetilde{M}_A^{α} .

Problem R (counts as 2 exercises)

Let M be a smooth manifold. A connection in a (smooth) complex line bundle $L \longrightarrow M$ is a \mathbb{C} -linear map

$$\nabla \colon \Gamma(M;L) \longrightarrow \Gamma\big(M;T^*M \otimes L\big) \quad \text{s.t.} \quad \nabla(fs) = \mathrm{d} f \otimes s + f \nabla s \,\,\forall \, s \in \Gamma(M;L), \, f \in C^\infty(M;\mathbb{C}).$$

Such a map extends to L-valued p-forms by

$$\nabla \colon \Gamma \big(M; \Lambda^p(T^*M) \otimes L \big) \longrightarrow \Gamma \big(M; \Lambda^{p+1}(T^*M) \otimes L \big), \quad \nabla (\eta \otimes s) = (\mathrm{d}\eta) \otimes s + (-1)^p \eta \otimes (\nabla s).$$

A connection ∇ in L is compatible with a Hermitian inner-product $\langle \cdot, \cdot \rangle$ on L if

$$w(\langle s_1, s_2 \rangle) = \langle \nabla_w s_1, s_2 \rangle + \langle s_1, \nabla_w s_2 \rangle \quad \forall \ s_1, s_2 \in \Gamma(M; L), \ w \in TM.$$

A connection 1-form on a (smooth) principal S^1 -bundle $S \longrightarrow M$ is an S^1 -invariant 1-form μ on (the total space of) S such that

$$\mu(\zeta_S) = 2\pi, \quad \text{where} \quad \zeta_S \in \Gamma(S; TS), \ \zeta_S(\widetilde{x}) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{2\pi \mathrm{i}t} \cdot \widetilde{x} \right) \Big|_{t=0} \ \forall \, \widetilde{x} \in S.$$

(a) Suppose ∇ is a connection in a complex line bundle $L \longrightarrow M$. Show that there exists a \mathbb{C} -valued 2-form κ_{∇} on M so that

$$\nabla(\nabla \widetilde{\eta}) = \kappa_{\nabla} \wedge \widetilde{\eta} \quad \forall \ \widetilde{\eta} \in \Gamma(M; \Lambda^p(T^*M) \otimes L), \ p \in \mathbb{Z}^{\geq 0}.$$

- (b) Show that the S^1 -invariance condition on a connection 1-form μ in a principal S^1 -bundle $\pi_S \colon S \longrightarrow M$ can be equivalently replaced by the condition $\iota_{\zeta_S} d\mu = 0$. Furthermore, for any such μ , there exists an \mathbb{R} -valued 2-form κ_{μ} on M so that $d\mu = \pi_S^* \kappa_{\mu}$.
- (c) Show that a complex line bundle $L \longrightarrow M$ with a Hermitian inner-product $\langle \cdot, \cdot \rangle$ corresponds to a principal S^1 -bundle $S \longrightarrow M$ (and vice versa), while a connection ∇ in L compatible with $\langle \cdot, \cdot \rangle$ corresponds to a connection 1-form μ in the associated principal S^1 -bundle S so that $\kappa_{\nabla} = i\kappa_{\mu}$.

Note. The 2-forms κ_{∇} and κ_{μ} above are called the curvature forms of ∇ and α , respectively. By a Čech cohomology computation (p141 in Griffthis&Harris) and (c),

$$c_1(L) = \frac{\mathbf{i}}{2\pi} \big[\kappa_{\nabla} \big] = -\frac{1}{2\pi} \big[\kappa_{\mu} \big] \in H^2_{\text{deR}}(M),$$

if ∇ is a connection in a complex line bundle $L \longrightarrow M$ and α is a connection 1-form in an associated principal S^1 -bundle.

Problem S (counts as 2 exercises)

Let A be a $n \times N$ Z-matrix, $c \equiv (c_1, \ldots, c_N) \in \mathbb{Z}^N$, $\alpha = -\iota_A^*(c) \in T_1^* \mathbb{T}_A$, and

$$\zeta_{\mathbb{C}} = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} \in \Gamma(\mathbb{C}; T\mathbb{C}).$$

For $r \equiv (r_1, \ldots, r_N) \in \mathbb{R}^N$, let $\zeta_r \in \Gamma(\mathbb{C}^N; T\mathbb{C}^N)$ be the vector field given by

$$\zeta_r(z) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{2\pi \mathrm{i} r_1 t} z_1, \dots, \mathrm{e}^{2\pi \mathrm{i} r_N t} z_N \right) \right|_{t=0} \qquad \forall \ z \equiv (z_1, \dots, z_N) \in \mathbb{C}^n$$

(a) Show that the 1-form $\tilde{\mu} \equiv (-\tilde{\mu}_{\mathbb{C}^N}) \oplus \tilde{\mu}_{\mathbb{C}}$ on $\mathbb{C}^N \times \mathbb{C}$ is invariant under the \mathbb{T}^N -action on \mathbb{C}^N given by

$$\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_N}\right) \cdot (z, z') = \left(\left(e^{-2\pi i t_1} z_1, \dots, e^{-2\pi i t_N} z_N\right), e^{2\pi i (c \cdot t)} z'\right)$$
(3)

and
$$\widetilde{\mu}(\zeta_r, 2\pi a \zeta_{\mathbb{C}}) = -2r \cdot \widetilde{H}_{\mathbb{C}^N} + 2a \widetilde{H}_{\mathbb{C}}$$
 for every $a \in \mathbb{R}$

Suppose in addition \mathbb{T}_A acts freely on \widetilde{Z}_A^{α} . Show that

- (b) the quotient $\widetilde{Z}^{\alpha}_A \times_{\mathbb{T}_A} S^1$ of $\widetilde{Z}^{\alpha}_A \times S^1$ by the restriction of the action of (3) to \mathbb{T}_A is a principal S^1 -bundle over $\widetilde{Z}^{\alpha}_A/\mathbb{T}_A$;
- (c) $\widetilde{\mu}$ descends to a connection 1-form μ_{α} on the above principal S^1 -bundle with $p^* \kappa_{\mu_{\alpha}} = -2\omega_{\mathbb{C}^N}|_{\widetilde{Z}^{\alpha}_A}$, where $p: \widetilde{Z}^{\alpha}_A \longrightarrow \widetilde{Z}^{\alpha}_A/\mathbb{T}_A$ is the quotient projection;
- (d) the quotient $L_{-\alpha}$ of $\widetilde{M}^{\alpha}_A \times \mathbb{C}$ by the restriction of the complexification of the action of (3) to $(\mathbb{T}_A)_{\mathbb{C}}$ is a holomorphic line bundle over M^{α}_A with

$$c_1(L_{-\alpha}) = \frac{1}{\pi} [\omega_A^{\alpha}] \in H^2_{\text{deR}}(\widetilde{M}_A^{\alpha}),$$

where ω_A^{α} is the symplectic form on $\widetilde{Z}_A^{\alpha}/\mathbb{T}_A = M_A^{\alpha}$ determined by $p^*\omega_A^{\alpha} = \omega_{\mathbb{C}^N}|_{\widetilde{Z}_A^{\alpha}}$.

(e) Let $P \subset \mathbb{C}^N$, A, and $\alpha \in T_1^* \mathbb{T}_A$ be as in Problem P. Show that the complex manifold M_A^{α} is projective.