MAT 562: Symplectic Geometry

Problem Set 6 Due by 11/20, in class (if you have not passed the orals yet)

Two of the exercises from Sections 5.4 of the main book and/or the following. You do not need to copy the statements of problems (just indicate clearly what problems you are doing).

Problem M (counts as two exercises)

Let $n \in \mathbb{Z}^+$ and $\omega_{\mathbb{C}^n} \equiv \sum_{i=1}^n \mathrm{d} x_j \wedge \mathrm{d} y_j$ be the standard symplectic form on \mathbb{C}^n . For $a_1, \ldots, a_n \in \mathbb{Z}$, the

smooth function

$$H_{a_1\dots a_n}: \mathbb{C}^n \longrightarrow \mathbb{R}^n, \qquad H_{a_1\dots a_n}(z_1,\dots,z_n) = \pi \big(a_1 |z_1|^2,\dots,a_k |z_n|^2\big),$$

is a Hamiltonian for the action of $\mathbb{T}^n \equiv (S^1)^n$ on $(\mathbb{C}^n, \omega_{\mathbb{C}^n})$ given by

$$(u_1, \dots, u_n) \cdot (z_1, \dots, z_n) = (u_1^{a_1} z_1, \dots, u^{a_n} z_n).$$
 (1)

- (a) Suppose $a_1, \ldots, a_n \in \mathbb{Z} \{0\}$ and $U \subset \mathbb{C}^n$ is a \mathbb{T}^n -invariant open subset. Show that $\omega_{\mathbb{C}^n}|_U$ is the unique symplectic form ω on U so that $H_{a_1...a_n}|_U$ is a Hamiltonian for the restriction of the action (1) to U with respect to ω (you do not need to verify that $H_{a_1...a_n}$ is a Hamiltonian for the action (1) with respect to $\omega_{\mathbb{C}^n}$; this was pretty much done in Problem I).
- (b) Suppose ψ is an irreducible linear \mathbb{T}^n -action on $(\mathbb{C}^n, \omega_{\mathbb{C}^n})$ preserving the standard complex structure on \mathbb{C}^n , $H: \mathbb{C}^n \longrightarrow \mathbb{R}^n$ is a Hamiltonian for ψ with respect to $\omega_{\mathbb{C}^n}$, and $U \subset \mathbb{C}^n$ is a \mathbb{T}^n -invariant open subset. Show that $\omega_{\mathbb{C}^n}|_U$ is the unique symplectic form ω on U so that $H|_U$ is a Hamiltonian for the restriction of the action ψ to U with respect to ω .
- (c) Suppose ψ is an irreducible \mathbb{T}^n -action on a smooth manifold M of dimension 2n preserving symplectic forms ω_1 and ω_2 and H is a Hamiltonian for ψ with respect to ω_1 and ω_2 . Show that every $x \in M^{\psi}$ has a \mathbb{T}^n -invariant neighborhood U_x such that $\omega_1|_{U_x} = \omega_2|_{U_x}$.
- (d) Suppose $(M_1, \omega_1, \psi_1, H_1)$ and $(M_2, \omega_2, \psi_2, H_2)$ are symplectic manifolds of dimension 2n with effective \mathbb{T}^n -actions ψ_i and Hamiltonians H_i for ψ_i so that $H_1(M_1) = H_2(M_2)$. Show that for every $x_1 \in M_1^{\psi_1}$ there exist $x_2 \in M_2^{\psi_2}$, \mathbb{T}^n -invariant neighborhoods $U_{x_1} \subset M_1$ of x_1 and $U_{x_2} \subset M_2$ of x_2 , and \mathbb{T}^n -equivariant symplectomorphism $f: U_{x_1} \longrightarrow U_{x_2}$ such that $H_1|_{U_1} = H_2 \circ f$.

Note. This problem is intended to provide a local motivation for the uniqueness part of Delzant's theorem.

Problem N (counts as one exercise)

Suppose $\widetilde{\psi}$ is a smooth action of $\mathbb{T}^{k_1} \times \mathbb{T}^{k_2}$ on a symplectic manifold $(\widetilde{M}, \widetilde{\omega})$ with Hamiltonian

$$\widetilde{H} \equiv (\widetilde{H}_1, \widetilde{H}_2) \colon \widetilde{M} \longrightarrow \mathbb{R}^{k_1} \times \mathbb{R}^{k_2},$$

 $c_1 \in \mathbb{R}^{k_1}$ is a regular value of \widetilde{H}_1 , and \mathbb{T}^{k_1} acts freely on $\widetilde{H}_1^{-1}(c_1)$. Let $(M, \omega) \equiv (\widetilde{H}_1^{-1}(c_1), \widetilde{\omega})/\mathbb{T}^{k_1}$ be the associated symplectic quotient.

- (a) Show that $\widetilde{\psi}|_{\mathbb{T}^{k_2}}$ descends to a smooth \mathbb{T}^{k_2} -action ψ_2 on (M,ω) , \widetilde{H}_2 descends to a smooth map $H_2: M \longrightarrow \mathbb{R}^{k_2}$, and H_2 is a moment map for ψ_2 .
- (b) Suppose M is compact and connected, and thus so is M. How are the moment polytopes for \widetilde{H} and H_2 related?

Problem O (counts as one exercise)

The fixed locus of the S^1 -action on $\mathbb{C}P^2$ given by

$$S^1 \times \mathbb{C}P^2 \longrightarrow \mathbb{C}P^2, \qquad u \cdot [z_0, z_1, z_2] = [z_0, u^2 z_1, u^3 z_2],$$

consists of three points. This action also preserves the complex projective lines $\overline{P_iP_j}$ through any pair of these points. The same applies to the complexification of this action, which is given by the above formula with S^1 replaced by \mathbb{C}^* . Show that

- (a) the above S^1 -action on $\mathbb{C}P^2$ is effective and Hamiltonian with respect to ω_{FS} (*hint:* use PS5).
- (b) show that the closure $\overline{\mathcal{O}_x}$ of the \mathbb{C}^* -orbit \mathcal{O}_x is a rational cubic curve for any $x \in \mathbb{C}P^2 \bigcup_{i,j} \overline{P_i P_j}$

and thus is not a smooth submanifold of $\mathbb{C}P^2.$