MAT 562: Symplectic Geometry

Problem Set 5 Due by 11/06, in class

(if you have not passed the orals yet)

Two of the exercises from Sections 5.5 of the main book, Exercises IV.1-5 from Audin's book, and/or the following. You do not need to copy the statements of problems (just indicate clearly what problems you are doing).

Problem I (counts as two exercises)

(a) Let $q : \mathbb{C}^n - \{0\} \longrightarrow \mathbb{C}P^{n-1}$ be the quotient projection as in Problem A on PS1. Suppose $U \subset \mathbb{C}P^{n-1}$ is an open subset and $s : U \longrightarrow \mathbb{C}^n - \{0\}$ is a holomorphic section of q, i.e. $q \circ s = \mathrm{id}_U$. Show that the 2-form

$$\omega_{\mathrm{FS};n-1}\big|_U \equiv \frac{\mathfrak{i}}{2\pi} \partial \overline{\partial} \ln |s|^2,\tag{1}$$

where $|\cdot|$ is the standard (round) norm on \mathbb{C}^n , is independent of the choice of s.

(b) By (a), (1) determines a global 2-form $\omega_{FS;n-1}$ on $\mathbb{C}P^{n-1}$, called the Fubini-Study symplectic form. Show that this form is indeed symplectic and

$$\omega_{\mathrm{FS};n-1} = \frac{1}{\pi} \omega_{\mathbb{C}P^{n-1}},$$

where $\omega_{\mathbb{C}P^{n-1}}$ is the symplectic form on $\mathbb{C}P^{n-1}$ provided by Problem A on PS1.

(c) Show that the action of $S^1 \equiv \mathbb{R}/\mathbb{Z}$ on \mathbb{C}^n given by

$$e^{2\pi i t} \cdot (z_1, \dots, z_n) = (z_1, \dots, z_{k-1}, e^{2\pi i t} z_k, z_{k+1}, \dots, z_n)$$

is Hamiltonian with respect to the standard symplectic form $\omega_{\mathbb{C}^n}$ with a Hamiltonian

$$\widetilde{H}_k \colon \mathbb{C}^n \longrightarrow \mathbb{R}, \qquad \widetilde{H}_k(z_1, \dots, z_n) = \pi |z_k|^2.$$

(d) Show that the actions of $\mathbb{T}^n \equiv (S^1)^n$ and $\mathbb{T}^{n-1} \equiv (S^1)^{n-1}$ on $\mathbb{C}P^{n-1}$ given by

$$(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}) \cdot [z_1, \dots, z_n] = [e^{2\pi i t_1} z_1, \dots, e^{2\pi i t_n} z_n], (e^{2\pi i t_1}, \dots, e^{2\pi i t_{n-1}}) \cdot [z_1, \dots, z_n] = [e^{2\pi i t_1} z_1, \dots, e^{2\pi i t_{n-1}} z_{n-1}, z_n]$$

are Hamiltonian with respect to the symplectic form $\omega_{FS;n-1}$. Determine the moment polytopes for these actions; draw the moment polytopes in the n=3 case, labeling everything clearly.

Problem J (counts as one exercise)

Suppose ψ is an \mathbb{R}^k -action on a symplectic manifold (M, ω) with Hamiltonian $H : M \longrightarrow \mathbb{R}^k$ and A is a real $k \times m$ -matrix (determining a linear map from \mathbb{R}^m to \mathbb{R}^k). Show that $\psi \circ A$ is an \mathbb{R}^m -action on (M, ω) with Hamiltonian $A^{\mathrm{tr}} \circ H : M \longrightarrow \mathbb{R}^m$.

Problem K (counts as two exercises)

Let $e_j \in \mathbb{R}^k$ denote the *j*-th standard coordinate vector. An action ψ of \mathbb{R}^k on a smooth manifold M is called irreducible if the associated vector fields

$$\xi_j = \frac{\mathrm{d}}{\mathrm{d}t} \psi_{te_j} \bigg|_{t=0} \in \Gamma(M; TM)$$

are linearly independent over \mathbb{R} ; otherwise, ψ is called irreducible. An action of $\mathbb{T}^k \equiv \mathbb{R}^k / \mathbb{Z}^k$ is called irreducible (resp. reducible) if the composition of this action with the projection $\mathbb{R}^k \longrightarrow \mathbb{T}^k$ is irreducible (resp. reducible).

- (a) Suppose ψ is a nontrivial \mathbb{R}^k -action on a smooth manifold M. Show that there exists an irreducible \mathbb{R}^m -action ψ' on M and a full-rank real $m \times k$ -matrix A so that $\psi = \psi' \circ A$. If in addition ψ preserves some structure on M (e.g. a metric, symplectic form, almost complex structure), show that so does ψ' .
- (b) Suppose ψ is a nontrivial \mathbb{T}^k -action on a smooth manifold M. Show that there exists an irreducible \mathbb{T}^m -action ψ' on M and a full-rank integer $m \times k$ -matrix A so that $\psi = \psi' \circ A$.

Hint. Let G be a compact Lie group. For every $v \in T_1G$, the closure of the one-parameter subgroup $\{e^{tv} : t \in \mathbb{R}\}$ is a torus.

Problem L (counts as one exercise)

Suppose $\mathbb{T}^k \equiv (S^1)^k \equiv (\mathbb{R}/\mathbb{Z})^k$ acts smoothly on a compact complex manifold (M, J), i.e. preserving integrable J. Show that this action extends to an action of the complexified torus $\mathbb{T}^k_{\mathbb{C}} \equiv (\mathbb{C}^*)^k$ so that the associated map

$$\mathbb{T}^k_{\mathbb{C}} \times M \longrightarrow M, \qquad (g, x) \longrightarrow g \cdot x,$$

is holomorphic (with respect to J and the standard complex structure on $\mathbb{C}^* \subset \mathbb{C}$). *Hint:* see Problem E(b) on PS4 and its solution on the course website.