MAT 562: Symplectic Geometry

Problem Set 3 Due by 10/09, in class

(if you have not passed the orals yet)

Two of the exercises from Sections 4.3-4.5 of the main book, Sections 2.2,2.3 of the notes, or the following. You do not need to copy the statements of problems (just indicate clearly what problems you are doing).

Problem D (counts as two exercises)

- (a) Let Σ be a connected oriented closed surface (2-dimensional manifold). Show that a continuous map $f: \Sigma \longrightarrow S^2$ is null-homotopic if and only if it has degree 0.
- (b) Let Σ be a connected oriented closed genus g surface embedded in a standard way in \mathbb{R}^3 (you can choose what this means). Let $\nu: \Sigma \longrightarrow S^2$ be the Gauss map, i.e. $\nu(x)$ is the oriented unit normal vector to $T_x \Sigma \subset T_x \mathbb{R}^3$ for each $x \in \Sigma$. Show that the degree of ν is 1-g.

Let $n \in \mathbb{Z}$ with $n \ge 2$. Suppose the 2-torus \mathbb{T}^2 is embedded in the open unit ball

$$B_1^3 \subset \mathbb{R}^3 = \mathbb{R}^3 \times \{0\} \times \{0\} \subset \mathbb{R}^3 \times \mathbb{R} \times \mathbb{C}^{n-2} = \mathbb{C}^n$$

in a standard way. Let $z_j \equiv x_j + iy_j$ be the standard coordinates on \mathbb{C}^n .

(c) Show that the Gauss map $\nu: \mathbb{T}^2 \longrightarrow S^2$ for this $\mathbb{T}^2 \subset \mathbb{R}^3$ extends to a smooth null-homotopic map

$$\widetilde{\nu} \colon \left(\mathbb{C}^n, \mathbb{C}^n \!-\! B_2^{2n} \right) \longrightarrow \left(S^2, (0,0,1) \right) \!.$$

(d) Let $J_{\mathbb{C}^n}$ be the standard complex structure on \mathbb{C}^n and \mathfrak{j} be an almost complex structure on \mathbb{T}^2 . Show that there exists a continuous family $(J_t)_{t\in[0,1]}$ of almost complex structures on \mathbb{C}^n so that

$$\begin{split} I_t \big(\mathbb{C}^n \times (\mathbb{C}^2 \times \{0\}) \big) &\subset \mathbb{C}^n \times (\mathbb{C}^2 \times \{0\}), \quad J_t \big(\mathbb{C}^n \times (\{0\} \times \mathbb{C}^{n-2}) \big) \subset \mathbb{C}^n \times (\{0\} \times \mathbb{C}^{n-2}), \\ J_t \big|_{\mathbb{C}^n - B_2^{2n}} &= J_{\mathbb{C}^n} \big|_{\mathbb{C}^n - B_2^{2n}}, \quad J_0 \big|_{T\mathbb{T}^2} = \mathfrak{j}, \quad J_0 \widetilde{\nu} = \frac{\partial}{\partial y_2}, \quad J_1 = J_{\mathbb{C}^n}. \end{split}$$

Let (M, J) be an almost complex manifold of dimension at least 4 and $U \subset M$ be an nonempty open subset.

- (e) Let $x \in U$. Show that there exists a continuous family $(J_t)_{t \in [0,1]}$ of almost complex structures on M so that $J_0 = J$, $J_t|_{M-U} = J|_{M-U}$ for every $t \in [0,1]$, and J_1 is integrable on some neighborhood of x.
- (f) Show that there exist an embedded null-homologous 2-torus $\mathbb{T}^2 \subset U$ and a continuous family $(J_t)_{t\in[0,1]}$ of almost complex structures on M so that $J_0 = J$, $J_t|_{M-U} = J|_{M-U}$ for every $t \in [0,1]$, and \mathbb{T}^2 is J_1 -holomorphic (i.e. $J_1(T\mathbb{T}^2) \subset T\mathbb{T}^2$).

Note. This problem details the proof of Proposition 2.7 in math/2401.17381. Its implication is that every almost complex structure J on a manifold of dimension at least 4 can be homotoped within any nonempty open subset U of M to an almost complex structure J' not tamed by a symplectic form.