MAT 562: Symplectic Geometry

Problem Set 1

Due by 09/11, in class

(if you have not passed the orals yet)

Two of the exercises from Sections 3.1 and 3.2 of the main book or the following.

Problem A (counts as 2 exercises)

The \mathbb{C}^* -action on \mathbb{C}^n by the coordinate multiplication restricts to an \mathbb{C}^* -action on $\mathbb{C}^n - \{0\}$ and S^1 -actions on \mathbb{C}^n and the unit sphere $S^{2n-1} \subset \mathbb{C}^n$. Show that

- (a) the quotient topologies on $\mathbb{C}P^{n-1}$ given by $(\mathbb{C}^n \{0\})/\mathbb{C}^*$ and S^{2n-1}/S^1 are the same (i.e. the map $S^{2n-1}/S^1 \longrightarrow (\mathbb{C}^n \{0\})/\mathbb{C}^*$ induced by inclusions is a homeomorphism);
- (b) $\mathbb{C}P^{n-1}$ is a compact topological 2(n-1)-manifold that admits a complex structure so that the projection

$$\mathbb{C}^n - \{0\} \longrightarrow \mathbb{C}P^{n-1} = (\mathbb{C}^n - \{0\})/\mathbb{C}^*$$

is a holomorphic submersion;

- (c) the S¹-action on \mathbb{C}^n preserves the standard symplectic form $\omega_{\mathbb{C}^n}$ on \mathbb{C}^n ;
- (d) the orbits of the restriction of this action to S^{2n-1} are compact connected one-dimensional submanifolds of S^{2n-1} ;
- (e) for each $z \in S^{2n-1}$ the $\omega_{\mathbb{C}^n}$ -symplectic complement of $T_z S^{n-1}$,

$$(T_z S^{n-1})^{\omega_{\mathbb{C}^n}} \equiv \{ v \in T_z \mathbb{C}^n \colon \omega_{\mathbb{C}^n}(v, w) = 0 \ \forall \, w \in T_z S^{n-1} \},\$$

is the tangent space to the S^1 -orbit at z;

(f) there is a unique 2-form $\omega_{\mathbb{C}P^{n-1}}$ on $\mathbb{C}P^{n-1}$ such that $q^*\omega_{\mathbb{C}P^{n-1}}=om_{\mathbb{C}^n}$, where

$$q: S^{2n-1} \longrightarrow \mathbb{C}P^{n-1} = S^{2n-1}/S^1$$

is the quotient projection, and this form $\omega_{\mathbb{C}P^{n-1}}$ is symplectic.