1. SOME ANSWERS TO PROBLEMS FROM §3.1

3) The equilibrium position of a string is clearly that when the string is at rest and its
vertical displacement is trivial, that is u(z,t) = 0. This is just common sense. That is
reflected in the answer to this problem.

For if v(z) is a solution of the wave equation with homogeneous boundary conditions,
then we must have

viz) = 0, 0<z<a,
v(0) = 0,
v(ia) = =0.

The general solution to the ode is given by v(x) = ¢1x + ¢o, for arbitrary constants ¢y,
co. If we search for the solution that vanishes at 0 and a, we must have 0 = ¢; - 0 + ¢
and 0 = cja + . Thus, ¢; = ¢ = 0, and v(z) = 0 is the equilibrium solution (as
common sense indicates).

2. SOME ANSWERS TO PROBLEMS FROM §3.2

2) The general solution with arbitrary initial conditions f and g is given in the textbook

as
u(@,t) =Y _sin (Anz)(an cos (Anct) + by sin (Anct))
n=1
where
2 a
Uy = —/ f(z)sin (A\,z) dz
aJo
and
2 a
by = —/ g(x) sin (\,z) dz .
a Jo

Here )\, = nr/a.

In the specific case we are asked to analyze, g(z) = 0. Therefore, the integral above for
by A, is zero for all n, and so b, = 0. On the other hand, f(z) = sin (7z/a) = sin (A1)
and we have

ap, = — / sin (A1) sin (\,x) dz .
a.Jo

We have seen that sin (A;z) and sin (\,x) are orthogonal to each other for n > 1.
Therefore, for all n > 1 we have a,, = 0, and so, only the a; survives in the series above.

Since
2 [ 2 [*1— 2\
a1:—/ sin()\lx)sin()\lx):—/ Mdmzl,
aJo aJo 2

we obtain that

u(z,t) = sin (%) cos (%) - %sin (@) + % sin (@) ,

the sum of two waves, one moving to the right and the other moving to the left.
5a) We begin b writing the solution as

p(z,t) = po(lx) +p(z,t),



where py(z) also satisfies the wave equation and has boundary conditions py at both,
z =0 and z = a. This implies that py(z) = py, a constant, and we have

p(.??, t) = Do +ﬁ($, t) .

Since p(z, t) is assumed to be a solution to the wave equation with boundary condition
Po at both ends, the function p(z,t) must satisfy the equation

Fp_10%p
or2 2o’

and its boundary conditions are

p(0,t) =0, pla,t)=0.

We apply the method of separation of variables in order to find the associated eigen-
value problem, and the corresponding eigenvalues and eigenfunctions, that is what the
question is asking for.

Hence, suppose p(z,t) = ¢(z)T(t) is a solution of the problem above. Therefore,

B)T(H) = el (0),

and separating the variables x and ¢, we obtain that

B@) __a_ T

o)~ " T T
for some constant A. Since we want ¢(x)7T(t) to vanish at x = 0 and x = a, this leads
to the eigenvalue problem

g+ Np = 0,
p(0) = 0,
pla) = 0,
while T'(t) must be a solution of the equation
T+ M3T=0.

The most general solution of the differential equation in (1) is
©(x) = ¢1 cos (Az) + cosin (Az) .
Since ¢(0) = 0, this forces ¢; to be zero. Hence, we must only consider solutions of the
form ¢(z) = cosin (Az). Now, since p(a) = ¢y sin (Aa) must be zero, we obtain that
sin (Aa) =0,
and therefore, Aa is forced to be a non-trivial multiple of 7: Thus, the eigenvalues of
our problem are
A=—, n=123,...
The corresponding eigenfunctions, the solutions to (1) associated with )\, is given by

nrx

#(2) = ga(z) = sin (“20 ).

a



3. SOME ANSWERS TO PROBLEMS FROM §3.3

12) We have a function u(z,t) defined by

0%u

o

u(z,t) = Y(x + ct) + ¢(z — ct) ,

where 1(s) and ¢(s) are two functions of one real variable, each one of which has at
least two derivatives.
By the chain rule, we have that

ou - oxr+ct - oxr—ct . .
B U(z + ct) B + ¢(z — ct) e U(z + ct) + p(x — ct),
and
ou - or+ct Ox — ct . -
5= Y(x + ct) TR d(x — ct) T cp(x + ct) — cp(xz —ct) .

We apply the chain rule once again to compute the second partial derivatives of u. For
example, we have that

= a((cw(ac—f—ct)—cgb(x—ct)) =c(cp(z+ct)— (=c)p(z—ct)) = AW (z+ct)+p(x—ct)).
Similarly,
O — Bt ct) + Bl — et
52— Ylete x—ct).
Comparing these last two results, we conclude that
Pu_ 10
ox? 2o’

as desired.
Notice that for these computations to make sense, the functions ¢ and ¢ have to be
differentiable twice. That is how the hypothesis on these functions is used.



