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Abstract of the Dissertation
Equivariant Lagrangian Floer Theory on Compact Toric Manifolds
by
Yao Xiao
Doctor of Philosophy
in
Mathematics
Stony Brook University
2024
We introduce an equivariant Lagrangian Floer theory on compact symplectic toric man-
ifolds for the subtorus actions. We prove that the set of Lagrangian torus fibers (with
weak bounding cochain data) with non-vanishing equivariant Lagrangian Floer cohomology
forms a rigid analytic space. We can apply tropical geometry to locate such Lagrangian
torus fibers in the moment polytope. In addition, we apply equivariant theory to show that
moment Lagrangian correspondences induced by symplectic reduction are unobstructed after

bulk deformation, assuming the existence of certain equivariant Kuranishi structures and

compatible equivariant CF-perturbations.
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Chapter 1

Introduction

The study of Hamiltonian group actions on symplectic manifolds traces back to classical
mechanics, predating the invention of the term “symplectic manifold” and remains a main
theme in symplectic geometry. Notably, Noether’s principle states that every symmetry
on a physical system corresponds to a conservation law. For instance, time translation
symmetry corresponds to the conservation of energy, and rotational symmetry corresponds
to the conservation of angular momentum. In fact, on general symplectic manifolds that
are equipped with Hamiltonian group actions, we can interpret this beautiful principle as a
correspondence between smooth functions that are invariant under the Hamiltonian action

and smooth functions whose flows preserve the moment maps.

Symplectic structures that arise through symplectic reduction with respect to Hamiltonian
group actions, a procedure that generalizes the reduction of dimension of a physical system
by exploiting symmetry, are prevalent. Such a construction, however, often results in rather
singular spaces. Besides leveraging the symmetry to study the symplectic manifolds with
group actions themselves, we are also interested in applying equivariant theories on such

manifolds to study their possibly singular symplectic quotients.

Lagrangian Floer cohomology was developed by Floer [16] and generalized by Fukaya,

Oh, Ohta, and Ono ([24], [25], [20], and other papers by the authors) to study the topology
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of intersection of Lagrangian submanifolds in symplectic manifolds. It is the building block
of the derived Fukaya category of a symplectic manifold, which is predicted by the celebrated
Homological Mirror Symmetry conjecture to be equivalent to the derived category of coherent
sheaves on some “mirror” complex algebraic variety dual to the symplectic manifold.

An equivariant version of Lagrangian Floer theory is expected to be useful for the study
of the intersection of Lagrangian submanifolds invariant under Hamiltonian group actions.
Various constructions of equivariant Lagrangian Floer theory have been made to suit different
scenarios. See [49], [33], [34], [10], [26], [36], [35], and [38] for example. By exploiting the
symmetry on a symplectic manifold, we expect to apply equivariant Lagrangian Floer theory
to investigate the homological mirror symmetry of symplectic manifolds that admit non-trivial
Hamiltonian group actions. In this thesis, we explore an equivariant Lagrangian Floer theory
on compact symplectic toric manifolds, which are examples of symplectic manifolds with
“maximal” symmetry.

The thesis is organized as follows. We prepare the background on equivariant de Rham
theory and compact symplectic toric manifolds in Chapter 2 and Chapter 3. In Chapter
4, assuming the existence of certain equivariant Kuranishi data, we prove that moment
Lagrangian correspondences are unobstructed after bulk deformation. We define an equivariant
Lagrangian Floer theory in Chapter 5 on compact symplectic toric manifolds. In Chapter
6, we prove that the set of Lagrangian torus fibers (with weak bounding cochain data)
with non-vanishing equivariant Lagrangian Floer cohomology forms a rigid analytic space,
where we also apply tropical geometry to locate such Lagrangian torus fibers in the moment
polytope. We also show in Chapter 6) that, in certain cases, that the dimension of such a
rigid analytic space is equal to that of the acting group. In Chapter 7, we show that the
equivariant Lagrangian Floer cohomology in this setup is Hamiltonian isotopy invariant.
Lastly, we discuss equivariant Kuranishi structures in Chapter 8. Section 4.3 is based on [52],

and Chapter 5-8 are based on [51].



Chapter 2

Equivariant de Rham theory

In this chapter, we review some properties of equivariant de Rham theory. The equivariant
de Rham theory is particularly useful for simplifying geometric problems involving smooth
manifolds with symmetry. For instance, when the fixed points are isolated, we can utilize
the localization formulas to reduce the integration of certain equivariant differential forms to

some local computations at the connected components of the fixed-point set.

An essential concept that underlies some of the most important applications of equivariant
cohomology is the notion of equivariant integration along the fiber. The construction of the
equivariant integration along the fiber map relies on the existence of equivariant Thom forms

on equivariant vector bundles.

After introducing some preliminary concepts in Section 2.1, we review the definition of
the equivariant de Rham cohomology in Section 2.2 and the Mathai-Quillen construction of
equivariant Thom forms in Section 2.4. Then we discuss the construction and properties of
equivariant integration along the fibers in Section 2.3. Much of the content of this chapter is
borrowed from [31], [50], [3], and [11]. The interested reader is referred to the aforementioned

works for more details.



2.1 Preliminary definitions

We recall the definition of fundamental vector fields associated to smooth Lie group actions.

Definition 2.1 (Fundamental vector fields). Consider a smooth Lie group action on a
smooth manifold M. Let g be the Lie algebra of GG. There is a Lie algebra homomorphism

o:g— I'(T'M), which assigns to every X € g its fundamental vector field X on M, as

follows.
d
o(X), =X(p) = pr (e7 . p) p € M. (2.1.1)
t=0
Equivalently, if we define j, : G — M by
Jl9)=9-p VgeEG, (2.1.2)

then
X(p) = (djp)e(_X)'

Here the negative signs are used to make o a Lie algebra homomorphism, rather than an

anti-homomorphism.

The smooth G-action on a smooth manifold M induces two g-actions on the de Rham

complex Q(M) such that, for all X € g and o € Q(M),
Lxa=Lxa and ixa=ixa, (2.1.3)

where Ly, tx are the usual Lie derivative and the usual interior product defined on differential
forms.
It is straightforward to see that if f : M — N is a G-equivariant map and X € g, then the

fundamental vector fields XM, X* associated to M, N are f-related in the following sense.

Definition 2.2 (f-related vector fields). Let f : M — N be a smooth map between manifolds.

Then two vector fields Y € I'(T'M), Z € I'(T'N) are f-related if df oY = Z o f.

We will encounter group actions which are free.
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Definition 2.3 (Locally free and free group actions). A continuous group action by a
topological group G on a topological space M is locally free if the isotropy group G, is

finite Vp € M, and it is free if G, is trivial Vp € M.
The quotient of a G-manifold by a free G-action is an example of a principal G-bundle.

Definition 2.4 (Principal G-bundles). Let G be a topological group. A topological principal
G-bundle is a fiber bundle 7 : P — B with fiber G and an open cover {(U, ¢y)} of B such

that the following holds.
1) G acts continuously and freely on the right of P.

2) For each U, the fiber-preserving homeomorphism ¢ : 771(U) — U x G is G-equivariant,

where G acts on U x G by (z,a) - g = (z,ag).

When we consider smooth G-actions, we can define a principal G-bundle in the smooth
category by requiring that G is a smooth Lie group acting smoothly on P, that 7 is smooth,

and that the ¢y are diffeomorphisms.

Definition 2.5 (Connection 1-form on a principal G-bundle). A connection 1-form on a

smooth principal G-bundle 7 : P — B is an element A € Q'(P) ® g such that

gA=Ad, 1A, 1xA=X VXeg.

Definition 2.6 (Universal G-bundles). Let G be a topological group. A universal G-bundle

is a principal G-bundle 7 : EG — BG satisfying the following.

1) Every topological principal G-bundle P — B is isomorphic to the pullback bundle

f*EG via a continuous map f : X — BG.

2) If the pullback bundles f*EG, ¢g*EG are isomorphic for some continuous maps f, g :

X — BG, then f, g are homotopic.

The base space BG of the universal G-bundle is called a classifying space for G.
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The following fact is well-known (see for example [31] Section 1.2).

Proposition 2.1 (Existence of universal bundle). For any compact Lie group G, there exists

a universal G-bundle EG — BG such that EG is contractible.

A compact Lie group G can be embedded in the orthogonal group O(k) for some k € N.
Let

EG(m) = Vu(R™ 1) ¥m e N (2.1.4)

be the Stiefel manifold of all orthonormal k-frames on R™ 1. Then the quotient of the free
G-action on

EG = ligEG(m)

is a universal G-bundle

EG — BG = EG/G. (2.1.5)

For the rest of the chapter, we will consider the smooth action by a compact connected

Lie group G on a smooth manifold M unless otherwise stated.

Definition 2.7 (Derivations). A function D : A — A on a graded k-algebra A = P A, is a
jEN
derivation of degree m if

o D:Aj = Aji,, is k-linear for all j € N; and
e D(uv) = (Du)v + (—1)™deuy Dy for all u,v € A.

The derivations tx, Lx, and d on the de Rham complex of a G-manifold M make Q(M)

into a g-differential graded algebra, whose definition is given below.

Definition 2.8 (g-differential graded algebras). A graded commutative algebra A = @@ A;
jEN
is a g-differential graded algebra if there are derivations d, Lx,tx of degrees 1,0, —1,

respectively, such that the following relations hold:

[d, d] = 0, [Ex,d] = 0, [Lx,d] = ,CX, (216)
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[LX7LY} = 07 [£X7£Y] = ﬁ[X,Y]E” [EXaLY] = L[X,Y]ga (2]—7>
where

e the brackets |-, -] on the left sides of the relations denote the graded commutators on
derivations defined by
[D1, D3] = D1 Dy — (—1)* Dy Dy

if Dy, Dy are derivations of degree a, b.
e the brackets [, ], on the right denote the Lie brackets on the Lie algebra g.
We will write “g-differential graded algebra” as “g-dga” for short.

Definition 2.9 (Morphisms of g-dgas). A map ¢ : A — A between two g-dgas is a

morphism of g-dgas if it commutes with d, Lx, and tx for all X € g.

We can generalize the definition of a connection on a principal G-bundle to one on a

g-dga.

Definition 2.10 (Locally free g-dga). A G-connection on a g-dga A = @ A, is a linear
jEN
map A : g* — A; such that, for all X € g and all a € g*, the following holds.

1) Lx(A(a)) = —A(adi (a).
2) 1x(A(a)) = a(X).
The curvature associated to a connection A is a linear map F4 : g* — A, given by
FA=dA+ %[A, Al (2.1.8)
A g-dga which admits a connection form is said to be locally free.

In [31], a locally free g-dga is called a W*-module and the existence of a connection is

called condition (C).



Lemma 2.1 (G-action is locally free if and only if g-action is free). A smooth action on a

smooth manifold M by a compact connected Lie group G is locally free if and only if
g, ={Xeg|X(p)=0t={0} VpeM.
Proof. Consider a smooth G-action on a smooth manifold M. It suffices to show that

Lie(Gp) = g Vp e M.

P

Let exp : g — G be the exponential map on g. Then exp(h) C H if H C G and h = Lie(H).
Let X € Lie(G,) be an element of the Lie algebra of the isotropy group of p for some p € M.

Then exp(—tX) € G, implies that the integral curve fixes p:
exp(—tX)-p=p  VteR. (2.1.9)

Thus,

showing Lie(G,) C g, for all p € M.
Conversely, if X (p) = 0, then by uniqueness of the integral curve, (2.1.9) holds. Thus,
X € Lie(G)). O

Proposition 2.2. A smooth action on a smooth manifold M by a compact connected Lie

group G is locally free if and only if Q(M) is a locally free g-dga.

Proof. We reproduce the proof in [31] §2.3.4. If a G-action is locally free, by Lemma 2.1, for

each p € M, there is an injective homomorphism
g— T,M, X — X(p). (2.1.10)

Fix a basis Xi,..., X, for g, a dual basis 64, ..., 60, for g*, and a G-invariant metric g on M
such that, for all p € M, the vectors X(p), ..., X,(p) are orthonormal. Then we can define
A: gt — QY (M) by

A(0;) = g(X;,—) V1<i<r (2.1.11)



Then the one-forms ©; = A(6;), 1 < i < r, span the vertical subbundle V' of T*M. Let

H = V+ be the horizontal subbundle.
Then
vx, (A(0)) = 9(Xi, X;) = bij = (03, X;) Vi, j.

We now show the G-equivariance

LxA(£) = Aladx ().

Let k,i€ {1...,r}. Forany j € {1...,7}, vx,(A(6;)) is constant. Thus,

0= Lx,tx,(A(0;))
= [Lxp 1x,] (A(6:) + 1x, L, (A(0))

= L[X,, ]}(A(Gl)) + L&L&(A(el))

(2.1.12)

(2.1.13)

Here [E&, Lﬁ} is the commutator Lx,tx; — tx;Lx,. Let the ¢i; be the structure constants

defined by

Xk, chj

By (2.1.13), we have
EXk ch]@ +Oékl,

for some horizontal ay;. Since the metric is invariant, and both Lx, (A(6;)) and —>7"_, ¢},0;

are vertical, we have a; = 0. On the other hand, for any j, we have

(ad, (6:), X;) = (6;, —[Xi, X;]) = —cl

G

This implies that ady, (6;) = —>_"_, ¢;;X;. Thus,

7=1

A(aka ch’] - ch] ﬁXk (9 ))

Therefore, A is a G-connection on Q(M).

Conversely, if there exists a G-connection A on Q(M), then g, = {0} for all p € M and

thus the G-action is locally free by Lemma 2.1.

9
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2.2 Equivariant cohomology

A good definition of equivariant cohomology is expected to recover the cohomology of the
quotient manifold when the group action is free. Moreover, the equivariant cohomology

should be a contravariant functor from the category of G-manifolds to the category of rings.

2.2.1 Homotopy quotients and equivariant cohomology

In fact, there is a nice homotopy-theoretic quotient whose cohomology would satisfy these
properties. We review the construction and some basic properties of homotopy quotients in
§2.2.1. For more details about homotopy quotients, we refer the reader to [31] Chapter 1 and
[50] Part .

Definition 2.11 (Homotopy quotient and equivariant cohomology). Let G be a topological
group which acts continuously on a topological space M. Let EG — BG be the universal
G-bundle of the group G. The homotopy quotient M of the G-space M is obtained by

Cartan’s mixing construction (also called the Borel construction):
MG = FEG XgMZ: EG x M/ ~, (221)

where

(p.x) ~ (pg,g~'z) VpeEG, VxeM, Vged.
The G-equivariant cohomology for the topological G-space M over a ring R is defined by
HE(M,R) := H* (Mg, R), (2.2.2)
where the right hand side is the singular cohomology of Mg.

Given the principal G-bundle EG — BG and a G-manifold M, we obtain the mixing
diagram

EG+——FEGXxM—M . (2.2.3)

N

BG(—UIEG XG’MTM/G

10



The map o, : Mg — BG is a fiber bundle with fiber M. And the fiber of the map
o9 : Mg — M/G at Gz is given by

{lp,g9z] | p € EG,g9 € G} ={[pg,z| | p € EG,g € G} = EG/G,,

where G, denotes the isotropy group of x € M. If G acts on M freely, then M — M/G is a

principal G-bundle and o5 becomes a fiber bundle with fiber EG.

Theorem 2.1 (Properties of equivariant cohomology, [50] Proposition 9.2 and [50] Theorem

9.5). The G-equivariant cohomology of a G-manifold M satisfy the following properties.

1) (Functoriality of homotopy quotients) Every continuous G-equivariant map f: M — N

between G-spaces induces a continuous map

fa: Mg — Ng, [p,z] = [p, f()]

between homotopy quotients. This defines a covariant functor from the category of

G-spaces to the category of topological spaces.

2) (Functoriality of equivariant cohomology) Every continuous G-equivariant map f :

M — N between G-spaces induces a pullback map
f& - HG(N) = Hg (M),
which is a contravariant functor from the category of G-spaces to the category of rings.

3) (Free action) If G acts on M freely, then Mg and M /G are weakly homotopy equivalent.
In particular, H (M) = H*(M/G).

Since M — {pt} is a G-equivariant map for every G-manifold M, the induced pullback
map on cohomology endows the equivariant cohomology H(.(M) a module structure over the
ring

Hi.(pt,R) = H*(BG, R). (2.2.4)
Corollary 2.1. If M is a G-manifold, then H},(M) is a module over the ring H*(BG).

11



2.2.2 The Weil model

Since we are working mainly with smooth G-manifolds, we are interested in a model reminiscent
of de Rham theory. Our goal now is to extract an algebraic model by looking at the de Rham
complex on the homotopy quotient, whose cohomology agrees with equivariant cohomology by
the de Rham theorem, more carefully. We refer the reader to [31] Chapter 3-4, [50] Chapter
19-20, and [3] for more details regarding the Weil model.

For the rest of the paper, we consider smooth actions by compact connected Lie groups.
Since G acts on EG x M freely, the quotient 7 : EG x M — EG xg M is a principal
G-bundle. We observe that, for any principal G-bundle, the pullback map identifies the de

Rham forms on the base with the “basic” forms on the total space.

Theorem 2.2 (Basic forms are invariant and horizontal, [50] Theorem 12.5). Let 7 : P — B
be a principal G-bundle. Then a € 7*(2(B)) if and only if « satisfies the following. For all

X ey,
1) (invariant) Lx a = 0, and
2) (horizontal) txa = 0.

The following lemma is well-known in equivariant de Rham theory. See [29] Chapter IV

§2 Proposition III or [50] Theorem 12.5 for instance. We will use it for proving Theorem 5.4.

Lemma 2.2 (Basic forms on principal bundles are pullbacks). Let G be a compact connected
Lie group. Let 7 : P — B be a smooth principal G-bundle. Then 7* : Q(B) — Qpus(P) is an

isomorphism.

Proof. Since 7 is a surjective submersion, 7* is injective. We now show 7*Q(B) = Qpes(P).

Suppose n = 7* 3 for some § € Q(B). Then, for any g € G and its induced diffeomorphism
g o P — P, we have pyn = oy = (mopy)*B =n. Since G is connected, this is equivalent
to L¢n = 0 for all ¢ € g, showing that 1 is G-invariant. Moreover, dr o ¢ = 0 for all ¢ € g.
Hence, t¢(7*3) = 0 for all ¢ € g. This shows that 7*Q(B) C Qps(P).

12



Suppose n € Q(P) is G-horizontal and G-invariant. Let {Ua x G 2 7T_1(Ua)} be a

trivialization of 7. Since ¢, commutes with L and ¢ for all ¢ € g, the form vi(n }rl (U‘)) is

also horizontal and invariant. Thus, there exists a unique g, € Q(U,) such that 5, ® 1 =
Ya(n ‘ﬂ_l(U )). Then (Ba)z = (B )z if © € UyNU,, and we can define 8 € Q(B) by B, = (Ba)z

for x € U,. Hence, we have 7*3 = . O

Definition 2.12 (Basic subcomplexes). For any g-dga A, we define its basic subcomplex
Abas by
Aps ={a € A| Lxa=0and ixa =0 VX € g}.

Corollary 2.2. If G acts on M freely, then there is an isomorphism
™ (UM/G),d) = (Qpas(M), d),

from the de Rham complex of M /G to the basic subcomplex of the de Rham complex of M.

Therefore, we have isomorphisms
Hg(M) = H*(M/G) = H*(Qas (M), d).
Applying the above to the principal G-bundle EG x M — Mg, we have
H*(Mg,R) = H*(Qpas(EG x M), d).

This inspires an algebraic model, called the Weil model, for equivariant de Rham coho-

mology.
We first define a g-dga (W (g), D) which resembles (Q2(EG), d) in the sense that

1) W (g) is acyclic. This means that H°(W(g), D) = R and H'(W(g), D) = 0 for all i # 0.
2) W(g) is a locally free g-dga in the sense of Definition 2.10.

Definition 2.13 (Weil algebra). Let g* be the dual of the Lie algebra g of G. The Weil

algebra W (g) of g is defined by the following:

W(g) = A(g") ® S(g"), (2.2.5)



where A(g*), S(g*) denote the exterior algebra and symmetric algebra on g*, respectively.

Let r = dim G. Let X,..., X, be a basis for g and o', ..., a" be a basis for g*. Denote
;=a'®1 and uw;=1®d Vi<i<r.

Then we identify W(g) = A(64,...,0,) @ Rluy, ..., u,].
The Weil algebra is graded by requiring deg§; = 1 and degu; = 2 for all 7.
Let the cfj be the structure constants in the sense that

(X0, Xj] =) i Xe VI<ij<r (2.2.6)
k=1

Thus, if G is abelian, the ij are 0. Then we define a differential D : W (g) — W (g) by, for

all 1 <k <,
1 k
DOy = up — 5 > ko, (2.2.7)
12
Duy, = Z cfjuﬁj. (2.2.8)
2%
Moreover, we define
tx0, = Oék(X), txug =0 VX e g, (229)
and
Lx =Dix +1txD VX e g. (2210)

The derivations D, tx, Lx make the Weil algebra W (g) into a g-dga. These definitions are
independent of the chosen basis. (See [50] §19.3.)

Let A = @ A; be a g-dga with a G-connection A : g* — A;. Note that we can identify
A with a mai)eljl* : Af — g and its curvature F4 with (F4)* : A5 — g. We can define a map
ka : W(g) — A, sometimes called the Weil map, as follows. Let spg) : A(g*) = A be

given by

Kag)(BL A ABr) = (Bio A ) A=+ (Bro A")  YBi,.... B €9, (2.2.11)

14



where 3; 0 A* = (A} A, g LN R). And let rg(g : S(g*) — A be given by

Ksy () = (o (EN)Y A Ao (BN Yy, € g7, (2.2.12)

A\ *x X
where ; 0o F4 = (A} IR g 25 R). Then we define sy : W (g) — A by

ka(Y® B) = kn@ (1) A ks (B) Yy € Algh), VB € S(g). (2.2.13)
The map k4 and the map it induces on S(g*)¢ are sometimes also called Chern-Weil
homomorphisms.

One may find (2.2.7) and (2.2.8) resonant of Cartan’s second structural equation and the
Bianchi identity. In fact, the g-dga structure on W (g) is designed such that the Chern-Weil
homomorphism is a morphism of locally free g-dgas, and Q(P) for a principal G-bundle P is
a primitive example of a locally free g-dga. It turns out that the Weil algebra is an universal
object among all locally free g-dgas. By [31] Theorem 3.3.1, W(g) is characterized by the
following. For any g-dga A with a connection 6, there exists a unique map k4 : W(g) — A,

up to chain homotopy, such that the diagram

W(g) —— A (2.2.14)

GW(E’)T /

g*
commutes, where Oy () : g* — W (g) is defined by a — a® 1.

We are now ready to introduce the Weil model, an algebraic model for equivariant de

Rham theory.

Definition 2.14 (Weil Model and equivariant de Rham cohomology, v1). The Weil model
for a G-manifold M is given by the following differential complex
(W(g) @ QM))pas (2.2.15)

with differential dy = D ® 1 +1® d. Here D is the differential on the Weil algebra as in
(2.2.7)-(2.2.8) and d is the de Rham differential on (M). We define the equivariant de

Rham cohomology by
HEH (M) = H* (W () @ QUM ) )oas, dw)- (2.2.16)
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If we take M to be a point, for example, then
HE (pt) = H*(S(g"), dw),

where S(g*)¢ consists of elements of S(g*) that are invariant under the coadjoint action of g
on g*. If G is compact and connected, then H (pt) = S(g*)“.

As expected, the two definitions of equivariant cohomology agree.

Theorem 2.3 (Equivariant de Rham theorem, [31] Theorem 2.5.1). For a compact connected

Lie group GG and a smooth G-manifold M, there is an isomorphism
He(M,R) = H gp(M)

between the equivariant cohomology (2.2.2) defined via homotopy quotients and the equivari-

ant de Rham cohomology (2.2.16) defined via the Weil model.

2.2.3 The Cartan model

The Weil model provides a nice model for equivariant de Rham cohomology, but is in general
hard to compute. It turns out that there is a simplified model, the Cartan model, which is
more computable.

Consider an endomorphism v : W(g) ® Q(M) — W(g) @ Q(M) by

dim g

Y= Z 9j & //Xj-
j=1
Since 05! = 0, 4" = 0 as well. Thus, the map ¢ : W(g) @ Q(M) — W (g) @ Q(M) given by
1 1
¢:exp7:Id+7+5707+§(70707)+--~ (2.2.17)

is a finite sum. This map ¢, called the Mathai-Quillen isomorphism, transits the Weil

model to a more computable model, called the Cartan model.
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Theorem 2.4 (Mathai-Quillen isomorphism, [31] Theorem 4.2.1, see also [50] Theorem 21.1).
The automorphism

¢ Wi(g) © QM) — W(g) ® UM)

given by (2.2.17) restricts an isomorphism of algebras

(W(g) @ QM ))nor = W(g)nor @ QM) = S(g") ® QM), (2.2.18)
at+ > O a, (2.2.19)
[I]>1
with inverse ﬁ (1 —6ix,) a < a. (2.2.20)

=1

It further restricts an isomorphism of algebras
(W () @ QUM))pas — (S(g") © QM))“,
where the latter consists of G-invariant elements of S(g*) ® Q(M).

The Mathai-Quillen isomorphism carries the differential dy to

de=1®d - u;®1Lx,. (2.2.21)

=1

This motivates the definition of the Cartan model.

Definition 2.15 (Cartan model and equivariant de Rham cohomology, v2). The Cartan

complex for a smooth G-manifold M is given by
Qa(M) = (M) @ S(g7)

We may identify every element in Qg (M) as a polynomial map « : g — Q(M) that is
G-equivariant:

a(Ad,-1 X) = g"o(X) VX eg, Vged.

Define the equivariant de Rham differential dg : Q5 (M) — Q5™ (M) by

(dea)(X) = d(a(X)) — ix(a(X))  ¥X €g, VaeQs(M).
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An element of Qg (M) is called a G-equivariant differential form. The grading is given by

Qa(M) == @D (M), where  QL(M) = P (Qj_2’(M)®S’(g*)>G.

jEN 0<2i<dim M

By Theorem 2.4, we can equivalently define the equivariant de Rham cohomology by
HE g (M) := H*(Qa(M), dg). (2.2.22)
Proposition 2.3 (Properties of the Cartan complex).
1) dg is zero on S(g*)“.

2) (Functoriality of Cartan models) Every G-equivariant map f : M — N between

G-manifolds induces a pullback map
J& 1 Qa(N) = Qa(M)
on G-equivariant differential forms
(fea)(X) = ff((X)) VX eg, (2.2.23)

which is a contravariant functor from the category of G-manifolds to the category of

rings.

For a free smooth G-action on M, it is straightforward to see that H ;,(M) = Hjp(M/G)
via the equivariant and non-equivariant de Rham theorems. There is, however, an alternative

proof which is evocative of the Chern-Weil theory.

Theorem 2.5 (Cartan operator is homotopic to identity, [31] §5). Consider a locally free
action of a compact connected Lie group G on a smooth manifold M. Then we can equip

Q(M) with a G-connection
A=) AeX eQ'(M)®g. (2.2.24)
i=1
Let Car® be the composition

Car® : (M) @ S(g*)° 225 (4 (M) @ S(g")) 7 222 0y, (M), (2.2.25)

hor
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where Hor is the projection to (Q4, (M) ® S(g*))G, and Kg(g+) is defined in (2.2.12). Then

hor
Car : (Qa(M), dg) — (Qpas(M), d)
is a chain map which is chain homotopic to the identity.

From now on, we will omit the subscript “dR” in and reserve the notation H}, (M) for

equivariant de Rham cohomology.

2.3 Equivariant integration along the fiber

The equivariant integration along the fiber on manifolds is closely related to Section 8.3. We
refer the reader to [28] §VII and [31] §10 for details on integration along the fiber.

We first recall the definition of integration along the fiber via a submersion.

Theorem 2.6 (Integration along the fiber). Let f : M — N be a submersion between
smooth manifolds such that dimM — dim N = d. Let Q.(M),Q.(N) be the sets of G-
equivariant differential forms on M, N with compact support, respectively. Then there exists
amap fi: Q(M) — Q:74(N), called the integration along the fiber, where Va € Q*(M),
fic € QF74(N) is uniquely determined by, VX € g,

/ a(X)NA frp= / fia(X) A B VB € Q(N). (2.3.1)

M N

Moreover, it satisfies the following properties:

1) (Adjoint property) fi(aw A f*8) = (fia) A B for all « € Q (M) and all g € Q(N).

2) tzfia = fuya for all a € Qf(M), whenever Y € I'(TM),Z € T(TN), and Y, Z are
f-related.

3) dfia = fida for all o € QF(M).

4) Ly fia = filya for all a € Q5 (M), whenever Y € I'(TM),Z e I'(TN), and Y, Z are
f-related.
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5) (Thom isomorphism) If f is a vector bundle over a compact manifold, then f; induces

an isomorphism f; : H*(M) — H*~%(N) on cohomology.

Theorem 2.7 (Equivariant integration along the fiber). Let f : M — N be a G-equivariant
submersion between smooth manifolds such that dim M — dim N = d. Let Q¢ (M), Qg (V)
be the sets of G-equivariant differential forms with compact support. Then there exists a map
far : Q5 (M) — ngcd(N ), called equivariant integration along the fiber, where Voo € Q¢ (M),
we define fgiav: g — Q.(N) by

(fa)(X) = fa(a(X)) VX eg. (2.32)
It satisfies the following properties.
1) far(a A fE8) = (faa) A B for all a € QF, (M) and all B € QF(N).

2) (Equivariant Thom isomorphism) If f is a G-equivariant vector bundle over a compact
manifold, then f; induces an isomorphism f; : H¢, (M) — H(N) on equivariant
cohomology, whose inverse is the map on cohomology induced by wedging with a

G-equivariant Thom form:

Q5 UN) = Q5 (M), BT A fEB.

2.4 Equivariant Thom forms

The equivariant integration along the fiber construction, which is essential in the proof of the

localization theorem, relies on the existence of equivariant Thom forms.

Definition 2.16 (Equivariant vector bundles). A vector bundle 7 : E — M is a G-
equivariant vector bundle if G acts on it by vector bundle automorphisms. In other words,

the following holds.
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1) The action by each g € G defines diffeomorphisms of £ and M such that the following
diagram commutes.

g
o

E E
M M

2) The action of g on E restricts to a linear isomorphism E, — E,, on the fiber over z

g

for all x € M.
We follow [11] for the definition of equivariant Thom forms.

Definition 2.17 (Equivariant Thom forms). Let f : E — B be a G-equivariant oriented
real vector bundle of rank d. A G-equivariant differential form 7 € Q4(F) is an equivariant

Thom form if the following holds.
1) 7 is equivariantly closed: dgT = 0.
2) [p, 7=1forallz € B, where E, = ().
3) There exists a G-invariant open neighborhood O of the zero section such that

a) suppt C O,
b) O N E, is convex for all z € B, and

c) ON E|k is precompact for any compact subset K C B.

Theorem 2.8 (Mathai-Quillen’s universal equivariant Thom forms). There exists an SO(d)-
equivariant Thom form Thgo(qg) RY) € Qso(a) (R%), called the universal Thom form, on the

SO(d)-equivariant vector bundle R* — pt.

We refer the reader to [31] §7.2 for the detailed construction. On any oriented G-equivariant
vector bundle of rank k, one can construct a G-equivariant Thom form from the universal

equivariant Thom form Thgo (g (RY).
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Theorem 2.9 (Universal equivariant Thom form on an equivariant vector bundle, [31] §10).
Let E — M be an oriented G-equivariant real vector bundle of rank d with a G-invariant
metric. Let P — M be the associated orthonormal frame bundle. Then the image 7 € Q& (E)

of the universal equivariant Thom form Thgo(q) (R%) under the map
PTE K
Qo xR = Uowyxa(P x RY) 5 QL(E) (2.4.1)
G-equivariant Thom form of the bundle £ — M.

Here pr3 is the pullback map induced by the projection P x R? — R%. We briefly explain

the map . Since the actions of SO(d) and G on P x R? commute, we can identify

NNe: 1\ S0(d)
QSO(d)XG(P X Rd) = ((Q(P X Rd) &® S(g )) &® S(ﬁO(d) ))
Then, since SO(d) acts freely on P x RY, there exists an SO(d)-connection on Q(P x R?),
which allows us to define the map in the same way as (2.2.12).

We will refer the interested reader to [11] for the proof of the following theorem.

Theorem 2.10 (Existence of basic Thom forms [11] Theorem 3.8 and Remark 5.2). Let
7 € QL(F) be an equivariant Thom form on the G-equivariant oriented real vector bundle
E — B of rank d. Suppose the G-actions on F and B are locally free. Then there exists a
G-connection A : g* — Q'(E) such the Cartan operator Car® as in (2.2.25) carries 7 to a

G-basic Thom form 74, which also satisfies Definition 2.17.

We can generalize Theorem 2.10 to show the existence of equivariant Thom forms on

equivariant orbifold vector bundles.
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Chapter 3

Compact symplectic toric manifolds

In this chapter, we review some basic definitions and constructions related to compact

symplectic toric manifolds.

3.1 Hamiltonian group actions
Every symplectic toric manifold is an example of a Hamiltonian G-manifold.

Definition 3.1 (Moment maps and Hamiltonian group actions). Let G be a Lie group that
acts smoothly on a symplectic manifold (M, w). Denote the diffeomorphism induced by the

action of g € G by ¢,. Let g be the Lie algebra of G and g* be its dual.

1) We say the G-action is symplectic if the action preserves the symplectic structure:

pyw =w forall g € G.
2) A symplectic G-action is said to be Hamiltonian if there exists a map
w: M —g*
such that the following holds.

a) p is G-equivariant.
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b) For each X € g, its fundamental vector field X is Hamiltonian:

d(p*(X)) = 1xw,

with Hamiltonian function p*(X) = (u(—), X) : M — R.

We call 1 a moment map of the Hamiltonian G-action and (M, w, G, 1) a Hamiltonian
G-manifold. For a connected symplectic manifold, the moment map is unique up to a

constant in (g*)¢.

In fact, the concept of moment maps appears naturally in equivariant de Rham theory.
By degree reasons, every G-equivariant 2-form on a GG-manifold takes the form w + p* such
that w € Q2(M)% and p* : g — Q°(M) = C°(M). For any equivariant 2-form w + u* to be

equivariantly closed, we need
0=dg(w+ p")(X)=dw—1xw(X)+d(p(X)).

This is equivalent to

dw =20

d(p*(X)) = txw VX eg.
Hence, every Hamiltonian G-manifold carries a natural equivariantly closed 2-form, which is
an equivariantly closed extension of the symplectic form.
Recall that, if the smooth G-action on a manifold is free and proper, the quotient space
will be a nice smooth manifold. A symplectic analog of this is the symplectic reduction

construction.

Theorem 3.1 (Marsden-Weinstein, Meyer [31] Theorem 9.6.1, [9] Theorem 23.1). Let G be
a compact Lie group, and let (M,w, G, 1) be a Hamiltonian G-manifold. Suppose G acts
freely on p=*(0). Then the quotient space of 7 : p=(0) — p~1(0)/G is a smooth manifold.

There is a natural symplectic structure w,.q on the quotient space

M ) G:=p~(0)/G,
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which is compatible with the symplectic structure on M:

T Wped = W
p=1(0)

The construction is called symplectic reduction and the space M // G is called a symplectic

quotient.
A more general version of Theorem 3.1 is the following.

Theorem 3.2 (Symplectic reduction of orbifolds at a regular level, [40] Lemma 3.9). Let G
be a compact Lie group, and let (M,w, G, u) be a Hamiltonian G-orbifold. Suppose ¢ € g* is
a regular value of u and G preserves u~'(c) (i.e. ¢ is a fixed point of the coadjoint action on

g*). Then p!(c)/G is a symplectic orbifold.

Definition 3.2 (Compact symplectic toric manifold). Let 7™ be an n-dimensional torus.
We say a Hamiltonian T"-manifold (M,w,T™, u) is toric if the T"-action on the compact

connected 2n-dimensional symplectic manifold (M,w) is effective and Hamiltonian.

The image of a moment map of a Hamiltonian torus action has particularly nice properties.

We will see in Theorem 3.1 that they can be used to classify compact symplectic toric manifolds.

Theorem 3.3 (Atiyah, Guillemin-Sternberg, Convexity theorem, [9] Theorem 27.1). Suppose

that (M,w,T", i) is a Hamiltonian 7T"-manifold for an r-torus. Then the following holds.
1) The level sets of p are connected.
2) The image of i is a convex polytope.
3) p(M) is the convex hull of the fixed-point set.

We call p(M) the moment polytope of the Hamiltonian 7"-manifold.

In the case of a Hamiltonian action by a non-abelian compact Lie group, Theorem 3.3
has been generalized to the non-abelian convexity theorem (see [37] and [39]), where, instead
of the full moment map image, a similar result holds for the intersection of a closed Weyl

chamber with the moment map image.
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Theorem 3.4 (Arnold-Liouville, Action-angle coordinates, [9] Theorem 18.12). Suppose the
smooth functions f; : M — R, 1 <i < n, on a 2n-dimensional symplectic manifold (M, w)
satisfy

0={fi, i} = w(Xy, Xy) V1 <i, j<n. (3.1.1)

Here X denotes the Hamiltonian vector field for f. Let F' = (fi,..., f,). Suppose ¢ € R" is
a regular value of F' and L is a compact connected component of F~!(c). Then the following

holds.
1) L is a Lagrangian torus.

2) There exists an open neighborhood U of L in M and a neighborhood W =V x T™
of the zero section of T*T™ such that ¥ : U — V x T™ is a symplectomorphism, and
U(p) = (p1(p), -, on(p), t1(p), ..., ta(p)). The p; are called the action coordinates,

and the t; are called the angle coordinates.

On a symplectic toric manifold (M, w,T™, i), the moment map x induces such “commuting

functions” as follows. Pick a basis X;,..., X,, € Lie(T™). Then the maps of the form

satisfy
{fi, [;} = (=), [ X3, Xj])
which vanishes because the Lie bracket is trivial on the abelian Lie group T™.

The regular values of the moment map of a toric manifold corresponds to the interior

points of the moment polytope. In fact, more is true.

Proposition 3.1 (Non-regular toric moment map fibers, [4] Proposition 1V.4.16). Let
(M?",w,T™ 1) be a compact symplectic toric manifold. Let A = u(A) be the moment
polytope and F be a k-dimensional face of P and F be its relative interior. Then pH(F)
is a symplectic manifold of dimension 2k and p L) /fl(]% ) — Fisa Lagrangian torus
fibration with fibers diffeomorphic to T*.
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3.2 Constructions of toric manifolds from Delzant
polytopes

Definition 3.3 (Delzant polytopes). Let Ng = R" be an n-dimensional real vector space.
Let I' 2 Z" be a lattice in R". Let Nj, ' be the duals of Ng, T, respectively. Let 7= R" /T.

A convex polytope A C Ny is a Delzant polytope if the following holds.
1) (Simplicity) Exactly n edges meet at every vertex.

2) (Rationality) For any vertex p of A, the edges that meet at p are rays of the form

p + tw;(p), where t > 0 and w;(p) e I'™*, 1 <i < n.
3) (Smoothness) For any vertex p, {wi(p), ..., w,(p)} form a Z-basis of I'*.

By the description, any Delzant polytope A with m facets can be described as the

intersection

A= ﬁ{u € Ny | (u,v;) — A\ > 0} (3.2.1)

i=1

of half-spaces for some vectors v; € I' C Ni and constants \; € R.
In fact, in [13], Delzant has classified all compact symplectic toric manifolds by their

moment polytopes.

Theorem 3.5 (Delzant’s Theorem). There is a one-to-one correspondence between the set

of compact symplectic toric manifolds and the set of Delzant polytopes in R".

Delzant’s construction

We briefly recall Delzant’s construction of a compact symplectic toric manifold from a Delzant
polytope of the form (3.2.1).

Let {e1,...,en} be the standard basis of R™. Define a linear transformation

ﬂlRm%Nﬁ, e; — v;.
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This induces a surjective map 7 : R™ / Z™ — Ng/T' =2 T". The standard effective Hamiltonian
T™-action on ((Cm, —i Y dz N d§i> is given by, for all (64,...,0,,) € R™/Z™ and all
i=1

(z1,...,2m) € C™,
O1,...,00) (21, 2m) = (62’”9121, o ,e2ﬂ9mzm) .

A moment map for this action is

m

1 *
M(Zl, S Zm) = 5 Z ’Zi‘2ei'

i=1
Note that K = ker7m = T™™" is also a torus. Then the moment map of the restriction of the
T™-action to K is given by

MK:L*OM(le"aZm)

where ¢ : ker @ — R™ / Z™ is the inclusion map. Since the action of K on pj'(0) is free, we
can apply symplectic reduction (Theorem 3.1) to get a symplectic manifold (ux'(0)/K, wyea)-
Since the Hamiltonian 7™-action on C™ can be regarded as the action by K x Ng/I', by
the general theory of reduction in stages (see for example [9] §24.3), there is an effective

Hamiltonian Ng/T-action on (uj' (0)/K,wyeq), making it toric manifold.
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Chapter 4

Ordinary Lagrangian Floer theory on

compact toric manifolds

A renowned problem in symplectic topology is the Arnold’s conjecture, a version of which
predicts a lower bound of number of intersection points of two Hamiltonian isotopic Lagrangian
submanifolds in a compact symplectic manifold, provided that they intersect transversely.
To tackle the problem, Floer [16] considered a Morse-type cohomology, nowadays called
Lagrangian Floer cohomology, by considering an action functional, an analog of a Morse
function, on certain infinite-dimensional path spaces and solved the Arnold’s conjecture
under the assumption that the second homotopy group of the symplectic manifold relative
to the Lagrangian submanifolds are trivial. It turns out that, when the assumption is
removed, Floer’s boundary operator may not define a differential on Floer’s complex, due
to the bubbling phenomenon that appears in the compactification of the moduli spaces of
pseudoholomorphic strips. Indeed, in many cases, the appearance of disc bubbles cannot be
ruled out and is the source of the obstruction of defining Lagrangian Floer “cohomology”.
Therefore, A, structures were introduced to encode the information carried by the moduli
space of pseudoholomorphic curves. This is explained in detail in the books [24], [25], and

[20] by Fukaya, Oh, Ohta, and Ono.
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4.1 The A, algebra associated to a Lagrangian
submanifold

The study of moduli spaces of pseudoholomorphic curves is crucial in Lagrangian Floer
theory. Let (X,w) be a compact symplectic manifold and J be a compatible almost complex
structure. Let L be a compact Lagrangian submanifold of X with a relatively spin structure.

For each € m(X, L), we denote its symplectic area by w(f) and its Maslov index by I,,(3).

Definition 4.1 (Moduli space of pseudoholomorphic discs). Let k,1 € N and € my(X, L).
The moduli space My11,(L, J,3) is defined by

( 3\
Y is a genus 0 nodal Riemann surface with

connected boundary and complex structure jy;
w: (3,0%8) — (X, L) is smooth;
duojs = Jodu; [u] = B € m(X, L);

(3, Js, Z, W, u) is stable;  E(u) < oo /

(%, js, 2,0, u) (4.1.1)

Z=(20,21,.-.,2) € (OX)F"! where the z; are
distinct non-nodal boundary marked points and the
enumeration is in counterclockwise order along 0%;

@ = (wy,...,w) € () are distinct non-nodal

interior marked points
\ 7

where (%, js, 27,9, u) ~ (X', jsy, 2, , o) if and only if there exists a biholomorphism ¢ :
(2,75) — (¥, jsr) such that v’ o ¢ = u, p(z;) = z; for all 0 <4 <k, and p(w;) = w] for all

1<j<l
We denote the evaluation map at the i-th boundary marked point by

Vi (k+1,1,8) - Mk+17l(L7 J, B) — L, [Z,jz, 5, u7, U,] — U(ZZ) V0 <1< k’,
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and we denote the evaluation map at the j-th interior marked point by
eV{k+17l”3) : Mk—i—l,l(La ‘]7 6) — L7 [27j27 Z) 117, U] = u(wj) V1 S j S L.
To define the A, algebra associated to the Lagrangian submanifold L, we consider moduli

spaces of the form M1 0(L, J, 3) and the evaluation maps of the form ev; (111,0,5)

Definition 4.2 (The A, algebra associated to a Lagrangian submanifold). The A, algebra

(Q(L7 AO,nov) ) {mk}keN)

associated to L is given by the following data.

o Q(L,Aopow) = Q(L)@RAOMU, where Q(L) denotes the de Rham complex of L, Ag 00
denotes the universal Novikov ring defined by (5.1.3), and ® denotes completion of the
tensor product with respect to the T-adic topology. We specify that Q(L, Ag e, )*° =
Ao 0w, and the elements of Q(L, Ag nep)[1] are the elements of (L, Ag n0n) with degree

shifted down by 1.

e For each k£ € N, the A, operator

1,,(B)
mp= Y mes TP 1 (AL, Aomon) 1) — QL Agnow) 1]
pem2(Y,L)

is defined by the following. Let x1,...,x, € Q(L, Agpney). For =0,

(

mo,gzo(l) =0
my 5—o(x1) = dxy, where d is the de Rham differential
(4.1.2)
mz,ﬁzo(l'l & IEQ) = (_1)dega:1x1 N To
\mkﬁzo =0 A5 Z 3.
For 8 # 0, define
mo (1) = (evop)i(1) (4.1.3)
and, for k >1,
1+i j(degz;+1) . .
mk,ﬁ(xl®' . ®Q}k> = (—1) Jj=1 (eVO,(k+l,O,B))! (eVl,(kJrl’O’/B) xTq VAR er7(k+170”B) iCk) .
(4.1.4)
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We note that the signs in the definition of the my, follow that in [20] Chapter 22. The key
observation is that the data in Definition 4.2 satisfies nice algebraic properties, as noted in

Theorem 4.1.

Theorem 4.1 ([24] Theorem 3.5.11). Let (2(L, Ao nov), {mk }ren, S) be the data defined in

Definition 4.2 and (5.3.7). It is an S-gapped curved filtered A, algebra.
We recall the notions showing up in the theorem below.

Definition 4.3 (Discrete submonoid). Consider the monoid (R>o x2Z, +, (0,0)) and the
projection maps £ : R>g X2Z — Rxq, I, : R>g — 27Z. A subset S C R>o x2Z is a discrete

submonoid if the following holds.
i) (S,+,(0,0)) is a monoid.
i) F(S) is discrete.
iii) For each Ey € Rsq, SN EY([0, Ey) is a finite set.

In the setup of this section, the set

S = {(w(B). 1(8)) | B € m(X, L)}. (4.1.5)

is a discrete submonoid.

Definition 4.4 (S-gapped curved filtered A, algebra). An S-gapped curved' filtered

A, algebra is a tuple (C, {mg}ren, S) consisting of
o a Ago-module C)|
e a family of operators my, : (C[1])®* — C[1], and
e a discrete submonoid S C R>y x2Z

such that the following holds.

IThe word “curved” means an mg : Ao.nov — C[1] is included, in contrast to the classical A, algebra.
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i) (S-gapped) Vk € N, there is a decomposition

n
E mk()\n 62.

(An)es
ii) (Energy filtered) There is an energy filtration on C' such that, Vp € N, the following
holds.
e The filtration on CP is decreasing: FAC? C FNC? if X > ).

e V)X >0, we have TV - FACP ¢ FAMN (P,

C? is complete with respect to the T-adic topology induced by the filtration.

CP has a basis whose elements are in FOC? \ Us=o FACP.

my(1) € FAC[1] for some A > 0.
Moreover, for each k € N, my, is filtration-preserving:

mk(icm R ® FAkapk) C FArt AR opt et pe—k42
for all (Ay,...,A\x) € RY, and all (py,...,p;) € N*.

iii) (Ay relations) The family {my}ren satisfy the following Ao relations: For any k €
N\{0}, s € S,

Z Z Z My (21 @ Q@ 2®

S1, s2€S8 k?1 koeN =0
51+s2=s k1+k2:k+1

My 6o (Rig1 @+ @ Tighy) @ Tighy1 ® -+ @ 11) = 0, (4.1.6)

7

where * Z (degz; +1).

4.2 Bulk deformations

Consider the Ag ,4,-module homomorphisms of the form

ik - (Q(X> AO,nov)[Q])®l ® (Q(Lv AO,nov)[l])®k - Q(Lv AO,nov)[”?
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I(B)
Gk = Z ql,k,ﬂTw(6)64“2 ,

ﬁEWQ(X,L)
where ;5.5 © QX Ao non)® @ QL, Ao now) ™" — QL, Ao ov) is defined by, for all zy,...,x; €

Q(L, Ao now) and all yy, ...,y € QX, Ao o),
( Qoi (1 @ - @xp) =My (2 @ -+ @ xp)

q1,0,8=0(Y1) = (=D)'*y;,  where ¢+ : L < X is the inclusion map

dros(y1) =0 i B#0

QUrs(N @ QUL ® - Qap) = (4.2.1)

1 * *
(‘Uiﬁ(e"o,(kﬂ,l,ﬁ))! ((eV%kH,l,ﬁ)) (AREENAN (eVl(k+1,z,ﬁ)) (A

OV (k10,8 TLA N CVE (h41,19) xk)

if | #0,k#0, and (I, k) # (1,0).
Here 1 is an integer depending on the degree of the differential form y, and I is an integer
depending on the degrees of the differential forms yy,...,y;, 1, ..., Tg.

Let b € Q(X, Agnow) and b € Q°%(L, Ag o). The bulk-deformed A, operators are
defined by

mo (21 @ - ® 1)

1u(8)
- Z Z Z Qirotoiry k3BT QYR @V @+ @y @ 0T P ™2
Bema(Y,L) 1>0 ro,...,rx >0
In particular, for any b € Q" (X, Aonov) and b € Q(L, Agnov),
1.(8)
mg(1) = Z Qi 5 (8 @OFF) TP (4.2.2)
LkeN
Bems(X,L)

We say L is unobstructed after bulk deformation by b, b if
mi(1) = 0.

Since the bulk-deformed A, operators mZ’b still satisfy the A, relations, there will be no

obstruction in defining the Floer cohomology of L by
HF(L,L,Ag) == H* (L, Ag o), m3") .
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We refer the readers to [24], [25], [22], and [21] for more details on bulk deformation theory.

4.3 Moment Lagrangian correspondences are
unobstructed after bulk deformation

In this section, we prove that the moment Lagrangian correspondences induced by the
symplectic reduction of level sets with respect to free actions are unobstructed after bulk
deformations, under Assumption 1. We refer the reader to Chapter 8 for the notions related
to Kuranishi structures.

Let (Y,wy, G, 1) be a Hamiltonian G-manifold consisting of the following data.
e (Y,wy) is a compact symplectic manifold.

e (G is a compact connected Lie group acting on (Y, wy) in a Hamiltonian fashion. Let g

be the Lie algebra of G.
e 1 :Y — g*is a moment map of the G-action.

Suppose G acts on p~1(0) freely. Then by Theorem 3.1, there exist a symplectic reduction
map 7 : u (0) = p1(0)/G =:Y J G and an induced symplectic form w,.q on Y // G.

Following Abouzaid-Bottman [1], we will call the Lagrangian submanifold

L={(p,p) €Y xY JG|pep(0),x(p) = [p]} (4.3.1)

of (Y~ XY /|G, —wy ® wyeq) the moment Lagrangian correspondence induced by this

symplectic reduction. Denote the inclusion map by
1:L—-Y xY JG. (4.3.2)

Let G act on Y~ x Y // G such that it acts trivially on the second factor Y / G and acts on

the first factor Y~ by the original Hamiltonian action.
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We denote Y~ XY /G by X and —wy @ wyeq by w. Let J be a G-invariant w-compatible
almost complex structure on Y. And we equip L with a relatively spin structure.

The main theorem of this section is the following.

Theorem 4.2. The Lagrangian submanifold L C (Y~ XY J G, —wy @ wyeq) defined by

(4.3.1) is unobstructed after bulk deformation under Assumption 1.
Assumption 1. For each k,l € N and € my(X, L), we assume that the following holds.

i) Myi14(L, J,B) has a G-equivariant Kuranishi structure, and G acts freely on each

Kuranishi chart.

ii) The evaluation map at every (interior or boundary) marked point is strongly smooth

and is G-equivariant on each chart.

iii) There is a compatible G-equivariant system of CF-perturbations S such that the Thom

forms in the CF-perturbation data (8.2.1) are G-basic.

iv) Moreover, the equivariant Kuranishi structures and equivariant CF-purturbations are

compatible with
O Myt1(L, J, B) =

ko
U U U Mk1+1,l1 (L7 J? Bl)evo,(k1+1,zl,ﬁl) Xer,(k2+l,l2,B2) Mkz-i-l,lz (L7 Ja ﬁ2)

k1,ka2,l1,12>0 By,B€m(X,L) j=1
kithomktl Byt Ba—p

1+l2=

v) The evaluation map evo (k11,8 : Mis1,4(L, J, 8) = L at the zero-th boundary marked

point is strongly submersive with respect to S.

The notions that appear in Assumption 1 involving equivariant Kuranishi structures will

be defined in Chapter 8. The key lemma in proving Theorem 5.4 is the following.
Lemma 4.1 (Key lemma). Suppose Assumption 1 holds. For any [,k € N, the map

ql,k,ﬁ : Q(X, AO,nov)®l X Q(L, AO,nov)®k — Q(L, AO,nov)
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defined in (4.2.1) maps an element of Qpus(X, Ao now)® @ Qpas(L, Ao noy)F to an element of
Qbas(Lu AO,nov)~

Proof of Lemma 4.1. Consider a G-equivariant Kuranishi structure on My1,(L, J, ) and a

compatible G-equivariant CF-perturbations which satisfy Assumption 1.

Recall that pullback maps defined via strongly smooth maps of the form M — L, from
a Kuranishi space to a smooth manifold L, are defined to be chart-wise pullback, and the
integration along the fiber maps defined via strongly smooth maps of the form M — L,
which are strongly submersive with respect to a CF-perturbation, are defined by taking
integration along the fiber maps on suborbifolds that cover the Kuranishi charts and gluing
by partitions of unity. Therefore, it suffices to show that the pullback maps of the form
€V} (ht118) (ev{,C T ﬁ))*, *, preserve GG-basicness on the G-equivariant Kuranishi charts, and
that the integration along the fiber maps of the form evg 41,4) preserve G-basicness on

G-invariant open subsets of the G-equivariant Kuranishi charts.

Since ¢ is a G-equivariant map of smooth manifolds, «* commutes with L¢, ¢ for all ¢ € g,
showing that ¢* preserves G-basicness. Similarly, if My1,(L, J, §) satisfies Assumption 1,
then pulling back by the equivariant maps of the form ev; 141:43), ev{k +1L8) also preserve

G-basicness.

LetU = (U, €, 1, s) be a G-equivariant Kuranishi chart of the moduli space My1,(L, J, ).

Let

S, = {85 =W, N U, Te, 57) | € € (0,1]}

be a CF-perturbation representative on a nonempty G-invariant open subset U. C U. Let
fu. denote the restriction of evg (441,6) to U;. By assumption, it is a G-equivariant strongly
smooth map which is strongly submersive. By Asssumption 1 and Theorem 2.10, we may

assume that the equivariant Thom form 7, is G-basic.

We want to show that (fy, )1 commutes with (¢ and L, for all ¢ € g.
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Then for all p € Q(L) and all ¢ € g we have

/ fUc Lgh 86

v Lgh/\ (fu.ove)*p AT
)~1(0)

\m\¢

Ly, WA (fu.ov) p AT
)~H0)

s | et ony oAt
(55)~1(0) -

denertt [ A (o) A
(s8)71(0) a

=(—1)degh+1 / VWA (fu. ove)uep AT since 7, is basic
(s5)~1(0) B

(-1 [ () A gy
L

= [ et A
L

Thus,

Similarly,

/ (Fuh(dh: S A p = / vrdh A (fu 0 V) p AT
L (s£)~1(0)
—/ Avih A (fu, o ve) p A T
(s£)~1(0)
— (s / Vih A d(fu, 0 v p AT
(s£)~1(0)
— (q)esh / Vb A (fo 0 ) dp A
(s£)~1(0)
= (0t [ (S0 A dp
L
/ A fu (R 8

Hence,

(fUr)!(dh;SE) = d(fUc) (h SE)
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Moreover, we have

(fu(Leh; S7) = (fohi(eedh + dich; S) = (eed + die) (fu )i (h; S¢) = Le(fo)(h; S;)

by Cartan’s magic formula. Thus, if & is a basic form on U,, then (fy,)i(h; Sf) is a basic form

on L. O

The proof of Theorem 5.4 will be based on an induction on the monoid

= {(w(ﬁ), @) Roo % Z ’ B e m(X,L), M(L, J, ) # @} . (4.3.3)

Consider the lexicographic order on T" given by the following. Let (A, n), (N, n’) € T.
1) (A,n)=(N,n)if and only if A = N, n =n/.
2) (A,n) < (N,n) if one of the following holds.

a) A< N

b) A= XN, n<n'
We may renumber the elements of I' as follows.
D= {(\,nij) €ERsgxZ|i=0,1,...,0<j <1I;}
so that \; < Ajq; for all 2 > 0 and n; ; < mn; 4 forall 1 <j <[;_y.

Proof of Theorem 5.4. We want to construct

1 li’ 7 li’

b)) — Z Z by T "' bl — Z Z by TN e (4.3.4)

i'=0 j'=1 i'=0 j'=1
: . (i) p(i
such that the by j/, by j» are G-basic forms on X, L, respectively, and the terms of mg g )(1)

with valuation less than or equal to A\; vanish in the sense that

mg(i)’b(i)(l) =0 mod TYMAJ

0,nov>

(4.3.5)
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by induction on 1.

Let

Then

(AONAC) _ _
L (1) = g1 p—0,5-0(1) =0 mod Aj,

0,nov*

Assume that we have constructed
iy i Ay
b(z) _ § : § :bi’,j’ T)\i/ enilyj/’ b(z) — E E bz”,j’T)\i/ e 5!
i'=0 j'=1 i'=0 j'=1

such that the by j/, by ;; are G-basic forms and

mg(i)’b(i)(l) =0 mod TYMAJ

0,nov*

(4.3.6)

We want to construct

i+l Ly i+1 g
b(erl) _ § 2 bi/,j’ T)\i/ eni’,j’, b(erl) — § E bi’,j’T)\i/ eni"j”
i'=0 j'=1 i'=0 j'=1

such that (4.3.6) holds with 4 replaced by ¢ + 1. We note that if g, 5 TB)e s

e cither takes a tensor product of more than one term with positive valuation, at least

one of which takes the form b; ;, THit1ehitie or bi+1,.T)‘i+1e"i+11'
e or has 3 # 0 and takes exactly one element of the form b, . and b;;1 .,

then since the operators g, 5 are filtration-preserving, the resulting term will have valuation

strictly higher than );;; and thus be 0 mod T+ Af

omov- Lherefore, the contributions of

(i+1) p(i+1)

b — b and b6+ — p to m? (1) mod T+ A§,,, are of the form
010,5—0(Bir1,e)TH1E" 00 gy 5 o(Bige) T,

The other contributions must come from b and 5@. Since we know their contributions to

plitD) p(i+1)

the terms of my (1) with valuation less than or equal to A; vanish, their contributions
. (i+1) p(i+1) .
to the terms in m} TR (1) mod TY+1Af,,, have to be exactly of valuation T+,
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(@) (i)

Let 0;11, be the coefficient of TAi+1e"+13 in mgi " 7(1). By the above argument,

pli+1) pli+1)

my (1)
lit1

= Z <0i+1,j + 10 5=0(biy15) + qo,l,/a:o(biﬂu‘))TAi+1€ni+1’j
j=1
lit1

= Z (0i+1,j + L*(bi+1,j) + d(bi+17j)) TAi+1em415  mod Th+ AT

0,nov*
j=1

Therefore, we only need to find b, ;, b;41; such that

O0i41,5 + L*(bi+17j) + d(bi—i-l,j) = 0. (437)

By Lemma 4.1, we have

0i115 € Lpos (L, Ao now)-

We consider the maps

(71'* )—1 A* *
Ql:as(La AO,TLOU) % Q.(L/Ga AO,nov) % Q.(Y // G7 AO,nov) %) Q‘(Y7 X Y // G7 AO,nov)

given by the following.

1) Since G acts on L freely, L — L/G is a principal G-bundle. Thus, by Lemma 2.2, there

exists an isomorphism
716 Q(L/G, Nonow) = Qpua(L, Aoynon)-

2) A} JG 18 the pullback map induced by the diagonal map

Avpe:Y [G=Y [GxY [G=L/G,  [p|~ ([p],[p).

3) Ty g is the pullback map induced by the projection map 7y ¢ : Y~ x Y JG—=Y JG.

Let

bit1; =Fmy e 0 Ay e o (Wz/G)_1(0i+17j)> biy1,; =0,
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where we use — if the sign in (4.3.7) is +, and we use + if the sign in (4.3.7) is —. It satisfies

Oir1,j £ 0" biprj+d(bivr;) = 0iy1; £ (4[&* oy g 0 Ay g0 (ﬁ/@)fl(()m,j)) +0
= Oiy1,; T (ZF(AY//G oTy g o)’ o (WZ/G)il(OHLj))

= 0i41,; £ <:F7TZ/G © (WZ/G)A(OHLJ)) = 0.

Let l € Nand a € QY / G). Let us denote f :=my g. Thenforall( € g, pe Y™ xY /G,
Va..., v € Typy(Y™ x Y J/ G), we have

(c(my ya@))p(va; - 01) = ) (df o C(x), dfy(v2), ..., dfyp (1)) = 0,
since ((p1,p2) = (C(p1),0) for all (p1,p2) €Y xY J/ G. Then
EQ(W;//GCY) = d(Lgr;//Goz) + Lg(dﬂ';//ca) = LQ(W{///Gda) =0.
This shows that b, ; is a basic form and completes the induction. By construction, if we let

b=1limb?, b=0,

1—00

then
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Chapter 5

The equivariant Ay, algebra associated

with a Lagrangian torus fiber

In this chapter, we define an equivariant Lagrangian Floer theory on compact symplectic
toric manifolds for the Lagrangian torus fibers with respect to the subtorus actions. It is
compatible with the ordinary Lagrangian Floer theory discussed in [23], [22], and [21]. After
preparing the notations and the setup in Section 5.1, we define an equivariant A, algebra
associated to a Lagrangian torus fiber in Section 5.3. Using the spectral sequences defined in
Section 5.4, we prove that the set of Lagrangian torus fibers (with weak bounding cochain
data) that have nontrivial equivariant Lagrangian Floer cohomology can be identified with a
subset of the algebraic torus over the Novikov field, with certain valuation restrictions. We

will see in Chapter 6 that the latter is a rigid analytic space.

5.1 The setup

We will assume the following setup and notations for the rest of the paper unless otherwise
stated.
Let (X,w,T™, p) be a compact symplectic toric manifold. More specifically, X is a (real)

2n-dimensional manifold with symplectic form w such that there is an effective Hamiltonian
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torus action on (X,w) by 7™ and p : X — t* is an associated moment map, where t is the
Lie algebra of T" and t* is the dual of t. Let A = p(X) be the moment polytope for the
T"-action. For each u € int A, L(u) := p~!(u) is a T"-invariant Lagrangian torus with a
T"-invariant relatively spin structure induced by the 7T™-action. Let J be a T™-invariant
almost complex structure on X compatible with w.

Let G = KT" C T" be a compact r-dimensional connected subtorus of 7™ given by
a (n x r)-matrix K with integer coefficients of rank . The G-action is induced from the
T"-action on X.

We identify

t" = My = (R™),

where My is the dual vector space of an n-dimensional R-vector space Ng. Let N = Z"
be the full-rank lattice in Ng and M := Homgz(N,Z) be the dual lattice of N such that
Mr 2 M®zR, Ng 2 N®zR, and T" = Ng/N. For every u € int A, p~!(u) is diffeomorphic

to T". We identify

t=2 Ng 2R" and H(L(uw),Z) = N=7" H(Lu),Z)=M==7Z".
Fix an integral basis {e},..., e’} for the lattice N. Let {ey,...,e,} be the dual basis of M.
Let the a; ; € Z be such that

H'(L(u),Z) = span, {Ozi = Zai,jej 1< < n} ;

j=1
where H}(L(w),Z) = spang{a,1,...,an}.
We consider the following coefficient rings. Define the universal Novikov field by

Apov = {Z a; T e

1—00
1€EN

N €Ra; €C, and n; € Z,Vi € N, lim \; = 00 } (5.1.1)
A non-Archimedean valuation function val : Ao, = RU{o0} on A,y is defined as follows.

min{)\; | i € Nya; #0} ify#0
Y= Z a;TYe" s val(y) == (5.1.2)
teN 00 ifty=0
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The universal Novikov ring is given by

AO,nov = {y € Anov | Val(y) Z O} . (513)

We also consider the energy-zero parts of Ape, and Agpoy. Define

A:{ZaiT’\i NER anda; € C VieN, ili)rilo)\i:oo} (5.1.4)

i€EN

to be the Novikov field and

Ao = {Z(liT)\i S A

1€EN

A\ >0 Vi€ N} (5.1.5)
to be the Novikov ring. The rings A, Ay carries a valuation function

min{\; |i € Nya; #0} ify#0
y = Z a; TN — val(y) == : (5.1.6)
ieN 00 ify=0

The valuations (5.1.2) and (5.1.6) induce a non-Archimedean norm y — |y|r := exp(— val(y))
on R, where R € {Apnoy, Agnov, A, Ao} and exp is the exponential map with Euler’s number
as the base. Moreover, we have an exponential map exp : Ag — A defined as follows. Every
b € Ay can be decomposed as b = by + by, where by € C and by satisfies val(b,) > 0. We

define exp(b) = e > %, where €% is the usual exponential of complex numbers.

5.2 The moduli space of pseudoholomorphic discs

Since we will mostly use moduli space of pseudoholomorphic discs with no interior marked

point in the rest of the paper, we simplify the notations as follows.

Definition 5.1 (Moduli space of pseudoholomorphic discs with boundary marked points).
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For any € mo(X, L) and k € N, let My.1(L, J, B) be the set

( )
Y is a genus 0 nodal Riemann surface with

connected boundary and complex structurey;
u: (3,08) — (X, L) is smooth;
duoj=Jodu; [u]=p¢€m(X,L);

(3,7, Z,u) (3,7, Z,u) is stable;  E(u) < 0o / ~, (5.2.1)
7= (20,21,...,2) € (0%)F,
where the z; are distinct non-nodal

boundary marked points and the enumeration

\ is in counterclockwise order along 0%

where (%, 7, Z,u) ~ (¥',5,Z,u') if and only if there exists a biholomorphism ¢ : (2, ;) —
(3, 7") such that v’ o ¢ = u and ¢(z;) = 2} for all 0 <7 < k. A biholomorphism ¢ satisfying
these conditions is called an isomorphism between (X, 7, 2, u) and (X', 5/, 2", «).

For any element x = [X, j, 2, u] € My41(L, J, B), we define its automorphism group by

4 )
© is a biholomorphism

Autr = (5,7) = (5,7) |uocp =u ;-

olz) =2z Y0O<i<k
\ Vs
Remark 5.1. By an abuse of notation, we also use Z'to denote the ordered subset {z, ..., zx}

of 0. And, whenever [ is another set, the elements in 2N I are ordered by the original

enumeration in Z.

Denote the evaluation map on My1(3) at the i-th marked point by ev; 5. We recall
a result in [21] below. The definitions related to G-equivariant Kuranishi structures are

introduced in Chapter 8.

Proposition 5.1 (G-equivariant Kuranishi structure on My,1(L, J,5)). Let L be a La-

grangian torus fiber of the toric moment map v over an interior point of the moment polytope
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A. For k> 1,6 € my(X, L) with 5 # 0, the moduli space My1(L, J, ) has a G-equivariant

Kuranishi structure with corners:

~ {up = (Up7gp7wpa Sp) |p = [Eaja 57 u] € Mk+1(L7 J7 B)}7
U= (5.2.2)

{&pq |p S Mk-‘rl(La ‘]7 6)7(] € 1mwp} .

The normalized boundary of My (L, J, 3) is a union of the fiber products

ko
aMkJrl(Lu Ja 6) = U U UMk1+1(L7 J7 ﬁl>evo,ﬁxevj,3 Mk2+1(L> J> ﬁ2)a

k1,k2>0  p1,B2€m2(X L) j=1
ki+ko=k+1  B1+B2=4

and the systems of G-equivariant Kuranishi structures are compatible with the fiber product
description. Moreover, ev; g : My1(L, J, ) — L is a T"-equivariant strongly continuous

weakly submersive map.

Proof sketch. A T"-equivariant Kuranishi structure on the moduli space My1(L, J, §) satis-
fying the properties is constructed in [21] Section 4.3.

We sketch the proof. Let x = [¥,j,2,u] € My1(L,J,5). We want to construct a
G-equivariant Kuranishi chart (U, £, Yy, s;) at x, where U, = V,./T", for some manifold V,
and some finite group I',. Let I', = Autx. Let G(z) = {(g9,7) € T" x 'y | gu = uo~}. We
say z is a special point if z is a nodal singularity or boundary marked point of >.

Let ¥ =

aca Ya; Where each extended disc component Y, consists of an irreducible disc

component and all the spheres rooted on it. Let Z,, = 2N X, be the set of marked points
on Y,. For each a € A, choose a non-empty G(x)-invariant open subset K, C 3\ 02 with

compact closure K, which does not intersect 9% or nodal singularities and let
Dy : W (34,080 0" TX, u'TL) = Wy — LP (S; u'TX @ A*'5,)

Dy : WHP (8,08 w*'TX,u*TL) — L (S;u'TX @ A»'Y)

be the linearization of 9. Choose, for each «, a finite-dimensional vector subspace E, C

CX(K,,u*TX) consisting of compactly supported elements such that the following holds.
i) D, ({£& € W,|&(2) = 0V special point z}) + E, = LP (Sq; u*TX @ A»1Y,).
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ii) @ E, is G(x)-invariant.

acA
iii) For each Vzy € 0%, the map Ev,, : D' (@ E.) — Tuw)L given by v — v(z) is

acA
surjective.

iv) If y € T', and ¥, = vX,, then 1, E, = E,.

Let Ey(z) = @Ea' If (g,7) € G(z), let E.((g,7) - 2) = g Ex ().

For each ;,6 choose [, many appropriate extra interior marked points @ on ¥, away from
nodes to stabilize the domain of x. Let @ be the ordered set of all such extra marked points
on . Let v(wt) = (X, 4, 2, ).

Suppose (v' = (Z(v'), 5/, 7, @), u') is a smooth curve with k -+ 1 boundary marked points
and [ interior marked points such that the domain v’ is close to v in My, and (v, ) is
close to (hx,w") for some h € T". For each v/, there is an embedding i, : X\ S — X(v'),
where S is a neighborhood of the set of marked points and singularities.

We decompose 3(v') = |J . X into extended disc components as well. Let r € R. Let

reR
Alry={ae€ A|iy(X,\5) C X! }. For each o € A(r), we obtain a map P, : E, — h.E, —
C>(XL, (W)*TX @ A3 using the convexity of the square of the distance function (and

an exponential decay estimate) which allows us to (choose a “closest” h € T™ and) define a

suitable parallel transport map. Then we define £, (v, v') = @ €@ imP,,. Let
reR acA(r)

Ve ={( ) close to (T" - z,w) | 0uv' = 0 mod E,(v,u)}.

Let s, : (v/,u') — Ou' and €, — V, be the orbibundle whose fiber is E,(v',u') at [(v/,u)]
and F,(z) at . Thus, an equivariant Kuranishi chart at z is defined.

For (kq, 1), (ke, 52) € N xmy(X, L), we say (ki, 51) < (ko, B2) if either w(f;) < w(fs) or
w(p1) = w(Pa) and ky < ko. For coordinate changes to be defined, we need to modify the
obstruction bundles &, inductively on (£, 5). Suppose for all (k¥',5) < (k,3) we have a
Kuranishi structure and, in particular, coordinate changes are defined on My (L, J, ).

More specifically, we have a finite cover {U(c) | [¢] € P (8')} of My1(L, J, 5"), where
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P(5) € Mp(L,J,5)/T" and K(c) C Myy1(L,J, ") is a T"-invariant closed subset
of the Kuranishi neighborhood at ¢. The fiber of the obstruction bundle of a point in
My 1(L, J, 3 is given by a direct sum of (perturbations of) fibers of (some of) the &’s
so that the coordinate changes on My 1(L, J, 5’) is defined. Then we define the Kuranishi
structure on My.1(L, J, ) by a downward induction on the number of disc components. For
each d > 1, let Sy My.1(L, J, B) be the set of elements with at least d disc components.

Suppose on Sgy1 Myy1(L, J, 5) we have a finite cover {K, | p € P} such that each K, is
a T"-invariant compact subset of the Kuranishi neighborhood 1, (sp_ 1(0)) and that

Sip1 My (L, J, ) C | J int K.

peR

As before, we find a cover of

Ka Mii1(Ls T, B) = Sa Myia (L, T, )\ | int K,
pey

by T™-invariant compact subsets K,,, ..., K,  of Kuranishi neighborhoods of finitely many
points 1, ..., %, € SqgMyy1(L, J,B) \ Say1 Myi1(L, J, 3) and define the fibers of the ob-
struction bundles by appropriate direct sums of the fibers of the obstruction bundles at the
;’s.

Then we glue the Kuranishi structures on Xy My1(L, J, §) and Upem int K. In particular,
when a point = € (Upeqs int Kp) N (|, int K,), we define the fibers of £, by taking direct
sums of (perturbations of) the relevant fibers of the obstruction bundles from the two types

of Kuranishi structures. The induction construction then allows us to obtain coordinate

changes. [

5.3 The equivariant A, algebra associated to a
Lagrangian submanifold

In this section, we define an equivariant A, algebra associated to a Lagrangian torus fiber L

of the toric moment map y over an interior point of the moment polytope A.
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Let g be the Lie algebra of G and g* be its dual. Let S(g*) be the symmetric algebra on
g*. Let Q(L) be the de Rham complex of L and Q¢ (L, R) = (Q(L) ® S(g*))“ be the Cartan
model of L. Let dg be the Cartan differential. Recall the definition of the universal Novikov

ring in (5.1.3). Define

Ca(L, Agnov) = Qa(L, R)®k Ao nov - (5.3.1)
Let C = Cg(L, Agnov)- It is a graded Ag pop-module: C' = @C’p, where
peEN
= P (VL) esi) Balre-e). (5.3.2)
i+25+2n=p

p
he C’m}. Denote by C[1] the
m=0

module determined by C[1]P = CP™'. Let ByC[1] = Ag 00 and

Define a degree on C such that degh = min {p eN

Bu(Cll)=Cll]®---®C[]  Vk>0.

Let BCI1] = @BkC[l]. For any 3 € my(X, L), we define m{ ; : ByC[1] — C[1], the contribu-
tion of the mszili space My1(L, J, §) by using the evaluation maps ev; g : My1(L, J, 5) —
L as follows. We denote by (evfﬁ)* the G-equivariant pullback by the evaluation map at the
k-th boundary marked point and (ev& )1 the G-equivariant integration along the fiber by the

evaluation map at the 0-th marked point, which we discuss in Section 8.29.

Let z1,...,2 € Q(L, Agpoy). For B =0,

mgﬁ:o(l) =0
mfﬁzg(xl) = dgx1, where dg is the Cartan differential, (533
mgﬁzo(xl ® m9) = (—1)%8% a0 A2y
(M, 0=0 Vk>3
For 8 # 0, define
m§ 5(1) = (ev{z)(1) (5.3.4)
and
mgﬁ(:vl ®--Quay) = (eVOGﬁ); ((evﬁﬁ)*:vl A A (evgﬁ)*xk) Vi > 1. (5.3.5)
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Then for k € N we define m{ : By(C[1]) — C[1] by, Va1 ® - - - 2 € BRC[1],

(5) 11 (8)

(@ @ @u) = > migm @)l e . (5.3.6)
ﬁer(X,L)

Let L be a Lagrangian torus fiber of the compact symplectic toric manifold X and let

S = {(w(B), L(8)) | B € m(X, L)}, (5.3.7)

Definition 5.2 (S-gapped curved filtered G-equivariant A, algebra). An S-gapped curved'
filtered G-equivariant A, algebra is a tuple (C, {m{ }1cn, S, G) such that the following
holds.

e (C,{m%}ren, S) is an S-gapped curved filtered A, algebra as defined in Definition 4.4.
e (7 is a compact connected Lie group.

e (' is an H*(BG)-algebra and BC[1] is an H*(BG)-coalgebra and, Yk € N, the operator

m{ is an H*(BG)-algebra homomorphism.

Proposition 5.2. Let (Co(L, Agnov), {m§ Fren, S, G) be the data defined in (5.3.1), (5.3.3),

(5.3.4), (5.3.5), and (5.3.7). It is an S-gapped curved filtered G-equivariant A, algebra.

Proof. For any k € N, (A\,n) € S, let

G G
M. (n) = Z RUCE

ﬁEWQ(X,L)
w(B)=A1.(B))=n

Then S-gappedness follows. For each k € N, 5 € my(X, L), we have

Z Z Z mklﬁl xl®x]71®mkcg”82<xj®xj+k271)®®xk)

kl k2>0 61 62€7T2(XL ] 1
kitke=k+1  B1+B2=p

k
= m{ymiy(a; ® ®wk+2 Vs @ @miy (1) @ - ® 1)

=1
(0 . ,
(I

IThe word “curved” means an mg : Ao.nov — C[1] is included, in contrast to the classical A, algebra.
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+ Z Z mk1 B 131®"'Sl?jfl®mi’52(xj®"'$Cj+k2—1)®"'®$k)a

ki1+ko=k+1 j=1
B1+B2=p
(k1,81)#(1,0)
(k2,B2)#(1,0)

-~

(I11)

i1 j—1
where * = > (degz; + 1) and t = > (degz; + 1). To show the A, relation, it suffices to
i=1 i=1

show the sum is zero for all k£, 5. By Proposition 5.1 and Proposition 8.4, (III) corresponds to
Corrg’/f/lk (L) (1@ @) Moreover, (I) corresponds to dGoCorrM (L) (1@ )
and (II) corresponds to CorrM () ©da(z1 ® - ®axy). Thus, by Stokes” Theorem 8.2 (or
Proposition 8.3), the sum is zero. Hence, by construction, (Ca(L, Agnov), {m$ tren, S, G) is

an S-gapped curved G-equivariant filtered A, algebra. n

Definition 5.3 ((m{;)"). Let & € N and 8 € m(X,L). For any b € H'(L, ), define
(m5)" : Bi(C[1]) — C[1] by

(mi ) (01 @ - @ a) = exp(F N b) my (21 © - - - @ ). (5.3.8)

And we define (m$)® : Br(Cg(L)[1]) — Cg(L)[1] by

w (B)
M) = > (mg)TH e (5.3.9)
BGTI'Q(X,L)

Proposition 5.3. Let L = p'(u) for some u € intA. Let b € H'(L,Ag). Then

(Ca(L, Agnov), {(m&)}hen) is a G-equivariant A, algebra.

Proof.

) § (M) (01 @i @ (M 5) (2 @ Q1) © - ® )
k1,k2>0 7j=1
k1+k2:/€+1
B1,82€m2(X,L)
B1+B2=p

:eaﬁﬂb Z Z mkl,Bl 131®"'®l‘j—1®m%,52(xj®"'®xj+k2—1)®"'®xk)
k1,k2>0 7=1
k‘l-‘rk‘zik‘-i—l
B1,B2€m2(X,L)
B1+pB2=p

=0 by Proposition 5.2.
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Definition 5.4 (Unit of an A, algebra). An element e € C? is called a unit of a G-equivariant

A algebra (C, {m$}ren, S, G) if the following holds.
Dml(r @ ®e®- - ®@x) =0forall zy,...,2, € C whenever k > 2 or k = 1.
2) m§(e,z) =z = (—1)%eTmy(z,e) for all x € C.
The element 1 € Cg(L, Agnoy) is a unit of (Ca(L, Agnoy), {(M$) }ren).

Definition 5.5 (Potential function). Define the potential function

FOo: | {u} x H'(n'(w), Ao/ (2mi Z)) — A

u€int A

(mg)"(1) = POG(d)e.

By Theorem 5.2 ([23] Proposition 4.6), for all w € int A, there exists PO*(b) € Ag such
that

PO"(0)PD[L(u)]e = exp(98 N b) my(1) = exp(95 N b) mg'(1) = (mg)"(1).

Thus, PO, (b) is defined and equal to PO(b) for all b € H'(u=*(u), Ag). For this reason, we
will omit GG in the notation of the potential function from now on.

Note that we have the inclusion

U {u} x H' (17 (@), Ao/ (210 Z)) — (A)"

u€int A
via
(ul, ey Unpy, Z xiei) — (exp(z)T™, ... exp(x,)T") = (Y1, -+, Yn)- (5.3.10)
i=1
Then the potential function takes the form of a formal Laurent series in ¥, ..., yp.

Corollary 5.1. For any u € int A, Vb € H' (71 (u), Ag), we have (m{)® o (m{)? = 0.
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Proof. For any x € Ce(L, Agnov), by the A relations (Proposition 5.3), we have

(m)” o (m)’(z) = —(m3)" ((m§)"(1) @ 2) + (=1)*=*(mg)"(z ® (mg)"(1)) = 0.

Therefore, we may define the equivariant Lagrangian Floer cohomology as follows.

Definition 5.6 (Equivariant Lagrangian Floer cohomology). For any Lagrangian torus
fiber L(u) = p~'(u), u € int A, and any b € H' (1! (u), Ag), we define the G-equivariant

Lagrangian Floer cohomology associated to the pair (L(u),b) by
HFG((L(U)v b)7 (L(U), b)7 AO,nov)-

In [23], the authors proved that one can express the potential function for a compact

Fano toric manifold (X,w) purely from the information of its moment polytope as follows.

Theorem 5.1 (Theorem 4.5 [23]). Let (X,w,T™, u) be a compact symplectic toric Fano

manifold with moment polytope

A=pX)=(uet | @uv)—\ >0} (5.3.11)
i=1
where m is the number of the facets of A, v; = (v;1,...,v;,) is the inner normal vector of

the i-th facet. We denote the affine function (u,v;) — A; by l;(u). On

U B (0, 5o )

u€int A
we have
mg (uh vy Up, Z xiei> == Z eXp((UZ', a:))Tl’(“),
i=1 i=1
where x = (x1,...,2,). In particular, if we use the coordinates (5.3.10), the potential function

PO defines a Laurent polynomial
PO = gty TN € Ay ) (5.3.12)
i=1
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When (X, w,T", 1) is compact symplectic toric but not necessarily Fano, the same formula

(5.3.12) computes the leading order potential function PO, of X.

Theorem 5.2 (Potential function of a compact symplectic toric manifold, [23] Theorem 4.6).
Let (X,w,T™, p) be a compact symplectic toric manifold with moment polytope (5.3.11).
Let u € int A and b € H'(L(u), (Ag/27i)). Then there exists an index set I C N such that
V1 <i<m,j €I, there exist r; € Q, 6; € N, and p; > 0 satisfying the following.

i) Yeb>0 Vi<j<n.

=1

i) If we let [;(u) = (u,v;) — A\,

Vi = Ze;vi,k, ;= Z eil;, and v = (v},,...,0},),
i=1 i=1
then the potential function is given by
PO (u, Z Tie;) — Z exp((vg, 2))TH® = Z rjexp((v), z)) T+, (5.3.13)
i=1 i=1 jel
In particular, if we use the coordinates (5.3.10),

RO = Zy;&l .. .y;)li,nT*)\i + er (H(y;m .. .yzi,nTAi)e;'.) TPi (5'3.14)
i=1

jel i=1

The rest of the section is devoted to the proof of Theorem 5.4.

Since (m{)’ commutes with dg, it is defined on H}(L).

Lemma 5.1. Let w € int A and let

b= Zcﬂz‘ € H'(L(u),Ag), where
i=1

where @, 11, ..., a, generates H.(L(u),Z). Then for any r + 1 < i < n, we have

() = (220)) PDIL W)
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Proof. For each 1 < j <m, let 8; € Hy(X, L(u),Z) = mo(X, L(u)) be the class of the basic
disc, which is a small disc transverse to u~' (j-th facet of A). Let my g be the ordinary A,
operator on the de Rham model. Note that

POUGPDL@e= > Y (mp)be--@b)T e
Bema(X,L(u)) k=0
I.(B)=2

only involves moduli spaces My1(L(u), J, ) for I,(3) = 2. On the one hand,

deg(my (b)) =k — (n =3+ L,(8) +k+1)—n)=2—1,(8) >0

implies 1,(8) < 2. On the other hand, for every 5 € my(X, L(u)), the evaluation map

main

evo : M7 (L(u), J, B) — L is a submersion. In particular, whenever MJ'""(L(u), J, 8) # 0,

its dimension is no less than dim L(u) = n:
n—3+1,p)+1>n = 1,6 >2.

This proves the claim. Therefore, for r +1 < i < n, we have

3‘39“ 8 0o o
( e (b)> ‘o, > (M) (b®@ - @b)T > e
Bema(X,L(w)) k=0
1,(8)=2

[e.e]

= ¥ Y s (07 © ap @ BT

Bema(X,L(u)) k=1 I=1
IM(/B)ZQ

w(B)

= > exp(@BNb)mys(en)T 2r e

Bema(X,L(u))
I.(8)=2

= Z exp(d6 N b) mfﬁ(ai)T%e
Bema(X,L(u))
Iu(B)ZQ

=(m{)"(ex).

Corollary 5.2. (m$)"| 5. (L@).a,) = 0 if and only if

HpO
(961»

(b) =0 Vr+1<i¢<n.
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Proof. Since the G-action on L(u) is free, a set of generators {a,1,...,a,} for H:(L(u),R)

also generates Hg(L(u), Agnov), where the multiplication on the latter is given by wedge

product. Then {a,1,...,a,} generates Hg(L(u), A noy) With multiplication given by (m$)?

as well. The A relations imply that

()" (mg)*(n@ 7)) £ (mg)" (mi)°(n) @ 7) £ (mF)" (n ® (m)"(7))

+ (mg)" ((mg)’"() @n@7) £ m§)" (n® (mg)"(1) @7) £ (m5)" (n@ 7@ (mg)"(1)) = 0.
In particular,
(mf)" (m5)*(n® 7)) £ (mg)" (m7)"(n) @ 7) £ (mF)” (n® (m7)"(7)) = 0.

Thus, (m§)® = 0 on Hg(L(u), Agne) if and only if (m$)? = 0 on HL(L(u), Agnow). By

Proposition 5.1, this holds if and only if

HPOY
8Ci

(b)=0 Vr+1<i<n.

5.4 Spectral sequences

In this section, we define a spectral sequence similar to the one in [47] which may be used to
compute the equivariant Lagrangian Floer cohomology. Using the properties of the spectral
sequence, we conclude that the set of Lagrangian torus fibers (with weak bounding cochain
data) that have nontrivial equivariant Lagrangian Floer cohomology can be identified with a
subset of the algebraic torus over the Novikov field, with certain valuation restrictions.

Let u € int A, L = p (u), and b € H'(L, Ay). Let
C =Qc(L,R)® Agpov, 6 = (mf)".

Then (C[1],6) is a cochain complex.
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Define
FPer = P QL)@ (T g - ).

m,neN
m—+2n=p

Define £ : C? — R by E(z) = X if z € FAC? but 2 ¢ FYC? for any X > \.

Let 019 = (mlGﬁ:O)b = my g—9 = dg. Since non-constant pseudoholomorphic discs with
boundary on L have a universal energy lower bound, there exists \” > 0 such that, VA,
Vz € FAC, we have (§ — d19)z € FAMY'C Let 0 < Ay < . We use the )\ to define a

decreasing integral filtration as follows. For any ¢ € N, let

Ficr= @ QL)@ (T™Ag- ")

m,neN
m+2n=p

and let F> C? = {0}.
Definition 5.7. Define

AP = FOCP A 5T (FTTT v
P41 . — APY ]:q—i-l CP =FI1CP N 5*1(fq+r—1 Cp+1) i J—_-q-i-l CP

B4 = FUCP O §(FITHE P 4 Fotl o

p.q
EP4 -— A7
r : 7 k) :
BPTN AL

For any r > 0, we have
Bl = F1CPN S(Frrtor=ty 4 Fetl or c ppi

and

Z0 = FICP N HFUT Pty + F or C ZPe.
It is easy to check the following.
Lemma 5.2. Let R be a commutative ring. Suppose A, M, T are R-modules, where M C A

is a submodule. Then we have the following:

. A L A+T
AN(M+T) M+T’
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i) ANM+T)=M+ANT.
Proposition 5.4.

i) APa Q) Bra = FICP O §(FIT2OP1) 4 FOTLOp O 5L (FI Ov,

p,q
Zr

Bqu

12

i) Epa
Proof. i) Note that F4CP N §(FI"T2CP~1) C AP4. Thus, by Lemma 5.2 ii),
AP9 N BPY = FICP N §(FITT2CP) 4 AP4 0 Frt P
=FICPN§(Fr 2 or ) + Fortern gt (Frtr—t orth
ii) Apply Lemma 5.2 i) to
A=AP9.  M=FICPNo(FIT2cr ), T =Frcr,
we have

AP AP Fatl op N
T vaq m Aqu - B,’I,,)’q - B£7q'

Definition 5.8 (E2?). For a fixed pair (p,q), if r > ¢+ 2, then
BP = F1OPO§(FI2OP 4 Fatt op
= FIorn(Crt) + Fattor
is independent of r. Moreover, for r > ¢ 4+ 2, we have inclusions

D4 D4 D4
C Zq+5 C Zq+4 C Zq+37

and thus an inverse system
P.q P.q P.q
We define

Pa . i FP
E?; .—thEr .

59



We will use the following lemma (proved in Proposition 6.3.9 [24]) to prove Theorem 5.3.

Lemma 5.3 (Proposition 6.3.9 in [24]). Let C' = @C’p be a graded finitely generated free
peN

module over Ay such that C' and each C? is complete with respected to the energy filtration.

Let § : C* — C**! be a degree 1 operator such that
§08=0 and O(FC)cC F*C.

Let W C CP be a finitely generated Ag-submodule. Then there exists a constant ¢ depending

on W but not on A such that
S(W)nFXCPH c 6 (W N FACP). (5.4.1)

Theorem 5.3. Let u € int A, and L = p~'(u). Let b € H'(L, Ay). There exists a spectral

sequence with the following properties.

i) The Es-page is given by Hg(L, Ao nov), where

i _ Fi(Ag-e™)
=~ 2m o)
qu o @Hg (L’R)@)J_—cﬂrl(/\o . em)

meN

(5.4.2)

ii) Vr,p € N,Vq € Z, there exists a well-defined map 6, : EP? — EPTLITT=1 gatisfying:

a)

p+1,g+r—1 P4 — ().
oF o P =0

b)
ker oP4
c)
e:l:l o P = 5p:|:2,q o 6:5:1
iii) There exists some ry > 2 with
FUHF?, ((L, b). (L, b), Apow >
EPY = EPT EPL o EPO - (5.4.4)

FO LR, ((L, b), (L,b), Mo nov )
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Proof. i) We compute

At ={x € FICP | dx € F* CP™'} = kerdg N F1CP,

Byt = §(FICPTY) N FUCP + FILCP = imdg N FICP + Fri e,
SSTIN RS el
ByT AL BYY

(ker dg N F1COP 4 Fot! Cp> J Frri o

>~

<im dg N F1Cp + Fotl Cp> / Fo+i o
= D HE " (LiR) © (F1(Ag- ™)/ F77 (g ™))
meN

ii) Define §,[x] = [dx] € EPT14t"=1 Then

B(APT) = FrHr=L Py 6(F7 CP)
C Fetrtortt sl ({0})

C ]:tH—r—l Op—irl N 5—1<]:q+27’—2 Cp+2> _ Ap+1,q+r—1‘
Also,

(AL 0 BYY)

S(S(FITHECT ) A FICP 4 5T (FI O n FH )
—o(FrHrerna (Fror)

= 0(FHt Cryn Frtriort!

C §(FUH CP) A Frtr=t OpHl oy FOrr orlp gL (FOE 2 o)

— AptLatr—1 o gptlatr—1
T T °
Therefore, 4, is well-defined.

a) opTLatr=1o §p4 = () follows from 6 o § = 0.

61



b) We have

ker 02+

Agz,q N 5—1(A£+1,q+r—1 N Bf—i—l,q—i—r—l)
- APT B

Af’q N 571(B71~o+1,q+r71)
- A0 BY

FOr A8 (FT v 067 (§(FH Oy 0 FrL Crdl g e vt
- APT OB

FiCcr N st (5<]:q+1 Cfp) N ]:q+r—1 Crtl + ]:q+r Cp+1)
- APT B

[ since (5(}"‘”1 CPyn Fatr-toptt 4 Fotr C”’+1> c Fotr

Fttorn =Y (Frtr—t ortl) 4 FACP N 6 (FIHT Cortl)

N AT B

since AP C 1 (ARTLatToL

im 65,1,q,r+1

§(Ar—ta=rtly 4 Apa ) Bpa

APT A BPY
FICPNS(FTTHCr=)y 4+ FICP N §(F 2 or-ly + FrHlorn Y (Forr—t ortl)
- AP B
FICP O S(FIrHt ety + FrHl v ng H(Frr -t ortt)
- AP BT '
Hence,
ker 9P+

im 57;3—1,11—7’—&—1
Fttorn =Y Frtr—tovtl) 4 FICP 0§ (FItT Orth)
S FICP N §(FTH L)  FOHL Cr gL (FTT O
F1OP N §H(Fat Crtt)

:]:-q crN 6(f-q77'+1 Cp_l) + f-q+1 CrN 5_1(.Fq+r C’p+1) by Lemma 5.2
Ap>q
- Tl Effr
AT A BT,

c) follows from the fact that 6 commutes with multiplying by e*! and that dege*! =

+2.

iii) We consider the restriction of the original spectral sequence to pages starting from Es.

Take C' = Ey and W = E5? in Lemma 5.3 to get a constant ¢ such that (5.4.1) holds.
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Let r > 2 be big enough such that (r — 1)\g — ¢ > X\g. Let r > ry. Then
(g+r—DX—c=qgro+(r—1DX—c>(g+ 1))
and thus, by (5.4.1),
§(FILCP)NFHr—t ot C 6 (FHev).

Consider any x € AP = F1CP N §~H(F4" 1 CPHY). Then dz € 6(F7 CP) and thus
there exists

y € FIHLOP A §-L(Fatr=1 opHly ¢ Apan Bra (5.4.5)

such that [dz] = [dy]. Thus, d.[z] = J,[y] = 0. Therefore, there exists a ry > 2 such
that we have

g o~ P4 o~ 2 P
[P BPO = 2 pRa

Consider the map

Tpg : FLH?(C,8) — EPS

defined as follows. An element [z] € F? HP(C, ) is represented by
r€FICPNG(0) C FICP N§ (Ftr—tCrtl) = APa

for any r > max{rg,q + 2}. We define m,,[z] to be the class represented by z in

Suppose z,2’ € F?HP(C,6) with x — 2’ = dy for some y € FICP~!. Let r >

max{rg,q+ 2}. Then
Sy € S(FICP™ 1) = §(Fr 20PN FILCP C AN BP.

This implies 7, 4[] = 7, 4[] in E?? and hence the well-definedness of .

Let [z] € EP4. Then for r large we have that [x] € EP? and that there exists y satisfying
(5.4.5).

[z —y]=[z] € EPY and d(z—vy)=0.
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Thus, [z —y] € F! H?(C, ) with 7, [z — y] = [z], showing the surjectivity of m, .

Suppose [z] € kerm,,. Then, for r large enough, we have
r € §(FUrt2orty ¢ Frrlor = §(CPt) 4+ Fattor.

Hence, [z] € F™ H?(C,§) and thus kerm,, C Fit' H?(C, ). Moreover, for large

enough 7,
AP9 N BP = §(CPY) 4+ FIHL CP = FUT HP(C,6) C kermmy,,.

Therefore, ker 7, , = F4*' HP(C, 5).
0
Theorem 5.4. Let u € int A and b € H'(L(u),Ag). Then b = > ze; = > ¢y, where
i=1 i=1
e, ..., e, generate H'(L(u),Z) = M as in Section 5.1 and .11, . . ., oy, generate HL(L(u),Z).
Let

823?—0 Vr+1<i:<n
Crit5(PO) :== < (Y1, ..., yn) € (A)"| 9C (5.4.6)
(val(y1),...,val(y,)) € int A

and let M Lag.(X,w) be the set

Ao
"2mi 7

{(u,b)e U {u} x H (L(u)

uc€int A

> ' HFg((L(w),b), (L(u),b), Anoy) # 0} . (5.4.7)
Then the following are equivalent.
) (y1,...,yn) = (1T, ... e T € Crit3 (PO).

ii)

HFG ((M_l(u)7 b)’ (:u_l('u’)’ b)7 A07110\/) = HG(:U’_I(’“)7 R) R AO,nov .

iii) (u,b) € MLags(X,w); ie.

H Fg (" (), D), (57 (w).5). Aguo) # 0.
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Proof. The equivalence of i) and iii) follows from Proposition 5.2. ii) = iii) is trivial. If ii)
does not hold, then the spectral sequence in Theorem 5.3 does not collapse at Ey page. This
is equivalent to saying (m$)’(a) # 0 for some element o € HL(L, Agnov). By degree count,
(m&)b(a) € Agnoy, which implies E3 = 0 and thus HFg (1 (u),b), (17 (w), ), Aonov) =
0. [
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Chapter 6

Crité(‘BD)

In this chapter, we prove that the set of Lagrangian torus fibers (with weak bounding cochain
data) with non-vanishing equivariant Lagrangian Floer cohomology can be identified with
a rigid analytic space. After discussing the proof in Section 6.1, we will provide examples
in Section 6.2. In particular, we can locate such Lagrangian torus fibers in the moment
polytope using tropical geometry. When the compact symplectic toric manifold is Fano
and the acting subtorus is trivial, the equivariant Lagrangian Floer theory agrees with the
ordinary Lagrangian Floer theory. And, in this case, the barycentric Lagrangian torus fiber
obtained by tropicalizing the non-archimedean rigid analytic space induced by the Jacobian
ideal of the potential function is known to generate the Fukaya category ordinary Lagrangian

Floer theory on compact toric Fano manifolds. (See [15] and [27].)

6.1 Crit3(P9O) is a rigid analytic space
We denote the coordinate valuation map by
trop : A" — (RU{o0})", Y1y, Yyn) — (val(yr), ..., val(y,)).

Lemma 6.1. Suppose A C R" is a polytope of the form (5.3.11). If A is an affinoid algebra

such that trop™'(A) = Sp A4, then A is a Cohen-Macaulay ring of dimension n. Moreover,
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trop~!(int A) is a rigid analytic space.
Proof. Suppose the moment polytope A is defined by m affine inequalities.

A =({u € Mg | (u,v;) = \i > 0},

i=1

where m > n is the number of facets of A and each v; = (v;1...,v;,,) € Nz is the inner

normal vector of the i-th facet. Denote y% := y,"" - y»"". Then

trop H(A) = {(y1, ..., yn) € A" | (val(31),...,val(y,)) € A}

= {1, yn) € A" [ val(y”) —val(TY) >0 V1 <i<m}

oy en

Vg

Y
T

<1 wgigm}.

By the smoothness of the Delzant polytope, the linear map

Vi1 ' Umpi &1

Uin " Umn Cm

is surjective, and it induces a surjective ring homomorphism

o A 2B - A Y, 2° s y?), (6.1.1)
Here 2¢:= 27" --- 28 if ¢ = (¢q, ..., &) In particular, ¢(z;) = y¥.

Let A= (\q,..., Ap) and
Top = AT, 2, T,
By [48] Proposition 6.9, trop~!(A) = Sp A, where
A =T, /(ker p)T,, 5 (6.1.2)
is a A-affinoid algebra of dimension n and trop~'(A) is a A-affinoid space. Then

trop ' (int A) = {z € trop *(A) | |%T ™

<1l V1<i<m}

is an admissible open subset of trop~'(A) by Proposition [5] 5.1/Proposition 7 (see Proposition

B.2). Therefore, trop~!(int A) is also a rigid analytic A-space. O
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Moreover, by [48] Proposition 6.9 and [48] Remarks 6.5 and 6.6,

A(A) = {Z ay | val(a.) + (u,c) = oo as|cl - o0 Yue A} (6.1.3)
ceZ™
is the completion of Alyi!, ..., yF'] with respect to the norm |- |a : Alyi', ..., 45" ] — Rso,

which is defined by

> ayf

ceL™

= sup [acls - exp(— (u, ).
ceZ™
A UEA

We can alternatively argue that A (A) is an affinoid algebra as follows. Since A (A) is a

A = Sup e~ (wvi) =) < o0 < 1 forall 1 <i<m,
uEA

we have a continuous homomorphism @ : A (21, . .., 2,) — A (A) prescribed by z; + y%T

A-Banach algebra with this norm and |yvT

according to [6] 6.1.1/Proposition 4. Moreover, by the smoothness of the polytope, since
V1, ..., Uy contains a Z-basis of Z", every ¢ € Z" is a Z-linear combination ¢ = > " ¢(v;)v;
of vi,...,vp. Thus, if f =3 _,nacy® € A(A), then

m/cviAi
f= (Z a7 e, ~~255W)) |

ceZ™

As |e(vy)] 4 -+ - + |e(v1)| = o0, we have

5 c(v;) A m m
val (acTizl v ) = val(a.) + Z c(vi)\; < val(a.) + Z c(v;) (u,v;) — 00

i=1 =1

NgE!

ci)Xi oy c(v .
for all u € A. Therefore, ) _,n a T zl( Do) e A (21, .., 2Zm). This shows that

® is a continuous epimorphism and thus A (A) is a A-affinoid algebra ([6] 6.1.1/Definition 1),

commonly denoted by A <y”1T*)‘1, e ,y“mT*’\m>.

Proposition 6.1. Let X be a compact symplectic toric manifold as in Section 5.1. Then
Crité (PO) is a rigid analytic space. Moreover, the closure of the image of the map trop :
Crit2(BO) — A, (y1,...,yn) — (val(y1),...,val(y,)) is a polytopal set, i.e. a union of

polytopes.

Proof. By Proposition 5.2, PO takes the form of (5.3.14). For all 1 <i < n, let

fi= zn:ai,j (%%)

J=1
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m

=D aiy (Z vpgtr™t T Y 0y g [ 'yfzk’"T_Ak)EI;) . (6.1.4)
j=1 k=1

s k=1 k=1

Then

W=V (frr1,---, fu) Ntrop™(A)

={(y1, - ya) €trop ™ (A) | filyr, - yn) =0 Vr+1<i<n}
AA)
(fr-i-la S >fn>

is a A-affinoid space.

By [5] 5.1/Proposition 7 (see Proposition B.2),

yom
TAm

)

is a finite intersection of admissible open subsets and thus is an admissible open subset of W.

<1,...‘

Hence, (M, Ow |ar) is a rigid analytic space.

The last claim follows from [30] Proposition 5.2. O

Proposition 6.2 (Crit5(9O) of CP"). Suppose G = «(1") is an r-dimensional subtorus of

T™ acting on (CP",T", w, ut), which has moment polytope
u; >0 V1<i<n,
1= u>0

i=1

Then Crit5 (B0) is a rigid analytic space of dimension 7.

A= (ul,...,un)GR"

Proof. By Theorem 5.1,

T
PO =y + - yn + .
yl...yn
Consider
- J0BO
=1 J
| N T .
=3 (W1, Yn) € (A) ai,j<yj_ ):() Vr+1<i:<n;,.
j=1 yl".yn
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Then

Crit5(PO) = Q Ntrop '(int A) = Q N {y € trop™(A) | ‘y”iT_’\"

<1 Vi<i<m}.
We first consider

W =QnNtrop *(A)

A ey Un,
~ Sp <y17 Y Z>
(Z/l oz =T, Zlarﬂ,j(yj —2)y ey Zlan,j(yj - 2))
j= j=
11 -+ Ain
Recall that A = : : is an invertible matrix. Let
Qp,1 Qpn
biq - bin
At =
bn 1 : bn,n
Change variables by setting
X1 ayr - Q1p 0 Y1 — =
Xn Qp1 " Apn 0 Yn — %
X1 o --- 0 1 z

By [6] 6.1.1/Proposition 4, this defines a continuous epimorphism

Ayi, ..oy Y, 2)

<y1 e YnZ — T) ZICLT+1’j(yj — Z), cey Z:lan,j(yj - Z))
Jj= I=

90:A<X17"‘7XTL7XTL+1> —

Then
AXy, oo X, X))

(Xn—i-l H:'L:l(Xn—‘rl + Z bi,ij) - Ta XT+17 cee aXn>
=1

J

W = Sp
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A(Xl, . ,XT,Xn+1>
(Xn+1 H?:l(Xn+1 + 231 bi; X;) — T>
J:

By [48] Proposition 6.9 and [48] Theorem 4.6, the Tate algebra

=~ Sp

Tr+1 — A<X1, PN 7X7“7 Xn+1>

is a Cohen-Macaulay ring of dimension r + 1, which is also an integral domain. Since
X1 [ (X1 + zr: b;; X;) — T #0, it is not a zero divisor and thus is a regular sequence
in 7,4,. Thus, by [é]ZITheorem 2.1.2, the Krull dimension of Wisr+1—-1=r.

Since Crit5(PO) = Q Ntrop~!(int A) € W, dim Critg(PO) < 7. On the other hand, let

€ > 0 be sufficiently small. Consider

Ac=[HueR" | (u,v;) — A > e} CA.

i=1

Q Ntrop *(A) D Q Ntrop '(A,)

Y1 Yn Tlfe
(Z ar+1,j(yj - 2)7 T Z a"»j<yj - Z))
=1 Jj=1
A2, ..., 20 Zng1)

12

Sp
n n
<21 oz — TS a0 (2 = Zng1)s s D G2 — Zn+1))
=1 =1
=:U.

Change the variables by setting

/
X1 aiy1 - Q1n 0 21 — Rn+1
/
Xn an,l e an,n 0 Zn T Rp+41
/ /
X1 0 - 0 1 “ntl

Then
AXL, X0, X))

(X;H-l H?:l (X7/—L+1 + Zl bZJXJ/) — Tl(n+1)e>
j:
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A(XY, o XL XD )

(Xfwl H?:1(X;L+1 + Zl biva]’.) — Tl—(n+1)5>
]:

gSp

Since X7 4 [Ti, (X) 4 + 231 bi; X}) — T'~("+1¢ i not a zero divisor in the integral domain
j:

A(X{, ..., X], X 1), which is Cohen-Macaulay of dimension r + 1, we see that dimU =

r. Since @ Ntrop ' (A.) C Critg(PO) C Q N trop ' (A) and dim (Q Ntrop (A,)) =

dim (Q N trop~!(A)) = r, we conclude that dim Crit5(PO) = 7. O

Proposition 6.3. Let X be a compact symplectic toric manifold of complex dimension n
as in 5.2. If G = T"! be an (n — 1)-dimensional subtorus of 7™ as in Section 5.1, then

Critg(BO) is a rigid analytic space of dimension n — 1.

Proof. Consider

Q= {(y1, cosyn) € (A" zn:a”’j <‘%%> B 0}‘

AA)

(£ )

Since A (A) is a subring of the formal power series ring, A (A) is also an integral domain.

Then

dim (Q N trop™'(A)) = dim

Since i U j (yj%) # 0, it is a regular sequence in A (A), which is a Cohen-Macaulay ring
of dirri;;sion n by [48] Proposition 6.9. Therefore, dim (Q N trop *(A)) =n — 1. Let
A, = ﬁ{u e R" | (u,v;) — A\; > €}
i=1
Then dim (Q Ntrop~!(A.)) =n — 1 as well. Since
Q Ntrop '(A,) C Critg(PO) C Q Ntrop H(A),

we conclude that dim Critg(PO) =n — 1. O

Corollary 6.1. Let X be a compact symplectic toric manifold of complex dimension n < 2
as in Theorem 5.2. If G = T" be a subtorus of 77 as in Section 5.1 for some 0 < r < n, then

Critg(BO) is a rigid analytic space of dimension r.
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Proof. The case when r = 0 follows from [23]. The case when r = 1,n = 2 follows from

Proposition 6.3. The case when r = 2,n = 2 follows from [48] Proposition 6.9. ]

6.2 Examples

Consider the action on a toric manifold (X%, w,T?, i) by a subtorus G = ¢(S'), where
St T2 O (ki0, ky0),
for some (k1, ko) € Z*\{(0,0)}. Since the action is free, H5(L(u),R) = H'(L(u)/G,R) —
H'(L(u),R) is generated by
Qg = —]{3261 + k’leg.
Complete it to a basis {ay, as} of H'(L(u),R). Let b = c¢ja; + caan. By Theorem 5.4, there
is a bijection

PO
802

MLagy(CP* w) — V ( ) Ntrop~!(int A) =: Crit5(LO)

2
<u17 U, b= Z xi@') — (yb y2) = (exle’ GIQTW),
i=1
Then
val(y;) = val(e™T"") = val(e®™) 4 val(T") = u;.

In particular, given (y1,y,) € Crit5(9B9), the Lagrangian associated with it is = (val(y1 ), val(y)).

6.2.1 Sl-action on CP?

Example 6.1 (S'-action on CP?). Consider (CP? w,T?, 1) associated with the moment

polytope

A ={ (ur,up) € R? vzl sz
1—U1—U220

Its potential function is then given by

T
PO =y +yo + —.
Y1Y2
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Denote by f the Laurent polynomial

0BO

862

o0BO o0BO T T T
L +k1y2 L = —ky(y1———)+tki(yo———) = —koyr +k1ya+(ky—ky) —
oy 0y 1Y Y192 Y192

= —k‘le

and denote Y = V(f) N (A*)?. By Kapranov’s theorem ([42] Theorem 3.1.3, also see Theorem
C.1),

trop(Y) = V (trop (f)) -
i) Suppose ki, ko, ko — k1 are all non-zero.
V(trop f) ={u € R* |uy =1 — uy —up < uy}

WueR? |ug=1—u; —uy <up}

UWu e R? |uy =up < 1—uy —us}.

trop(Crit5 (PO)) = trop(Y) Nint A is shown in Figure 6.1.

(0,1)

(0,0)C (1,0)

Figure 6.1: Case when kq, ko, k1 — ks # 0

Moreover,

W =Y Ntrop *(A)
A <y17y27 ﬁ>

(—k2y1 + k1ya + (k2 — kl)ﬁ)

gSp A<ylay272>
(—koyn + krya + (k2 — k1) 2, y1yez — 1))

is an affinoid space, and

Critg (BO) = W\ trop™" ({(0,0), (0,1),(1,0)}).
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ii)

We can compute the genus of W as a rigid analytic curve as follows. We have a canonical

reduction map

C[yh y2]

W — W = Spec .
g P Choayr + Fvya)yive)

By [17] Proposition 5.6.2, since W is a non-singular connected one-dimensional affinoid

space, the genus of W equal to the arithmetic genus of the compactification of W,

Let C4, Cy, Cs be the divisors corresponding to —ksy; + k1ye = 0, y1 = 0, yo = 0,
respectively. Then by the adjunction formula ([32] Chapter V, Exercise 1.3), the

arithmetic genus of W is equal to

3
ga(Cl+02+CB):Zga<ci)+cl‘02+02'c3+cl'03_2:1-
i=1

By the above argument, g(W) is a rigid analytic curve of genus 1.

If ky = 0 and ky # 0, then f = —ky (y1 — -2}

Y1y2

V(tropf) = {u € R* |uy =1 — ug — us}.

trop (Critg (PO)) = trop V(f) Nint A is shown in Figure 6.2.

(0,1)

Figure 6.2: Case when k; =0

Indeed,

Crit5 (PO) =Y Ntrop ' (int A)
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T
— koyy + hp—— =
Y1y2

0
T

=1 (y1,92) € (A)?] val(yy) > 0, val (—2> >0,
1

1( T ) >0
val | ———= ,
le/y% )

T
val(y,) > 0, val (;) > 0,
i

\
(

= (ylvzg) € (By)?

1

T
y1%07_27é0
Y1

\

T _1
= {(yl,?) € A2 e % < |y1| < 1}
1

~{y, e B} ( €72 < | <1} € SpA (1, Ty
is an annulus.
ifi) If kp = 0 and ky # 0, then f = ky (y2 — -=-).

V (trop (f)) = {u € R? | uy = 1 — uy — us}.

trop (Critg (PO)) = trop V(f) Nint A is shown in Figure 6.3.

(1,0)

Figure 6.3: Case when ko =0

Similar to the case k; =0,

Crit2 (BO) =Y Ntrop ' (int A)

o {yQ € B}\’e*% < |yo| < 1} C SpA<y2,Ty52>

is an annulus.
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iV) If k‘g - kl =0 and k?l, k?g 7& O, then f = —k’gyl + klyg.
V (trop (f)) = {u € R? | uy = up}.

trop (Critg (PO)) = trop V(f) Nint A is shown in Figure 6.4.

(0,0)

Figure 6.4: Case when ky — k1 =0

Moreover,

Crit5(PO) =Y Ntrop ' (int A)

T
- {(y1,y1) e A? val(yy) > 0, val (;) >0,y # O}
1

~{y, e B} ‘ et < || <1} CSpA (. Ty ?)

is an annulus.

6.2.2 Sl-action on a one-point blowup of CP?

Example 6.2 (S'-action on a one-point blowup of CP?). Consider the one-point blowup

(CP?*(1),w, T?, it) of CP* whose moment polytope is given by

( )
w>0 V1<i<2,

A = { (ug,ug) € R? 1—u; —uy >0

l—a—uy >0

Its potential function is

T Tl—a
PO =y +y2+ —+ :
Y1Y2 Y2
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03O 08O 03O
= [ = L —koun ¥ + k12 v
0csy oI 0y
T T T«
SRR R A

UY1Y2 Y1Y2 Yo

T T

= —koth + k1y2 + (k2 — k1) — ky .

Y1Y2 Y2

. Suppose ki, ko, ks — ki are all non-zero.

We now consider the tropicalization of Crité(fﬁg),
trop(f) : R* = R, > min{uy, us, 1 —uy — ug, 1 — @ — uy}.

a) up = uy <min{l —u; —ug, 1 — v — us}

( U2 = U1,
U1 = U2
u; < min{z, 5%}
= u <1 —2u =
1 ifa<li
U <1l—a—u =
) \ 1*70‘ ifa>1

b) ug =1—wu; —us < minfug, 1 — a — uy}
(

U2:1—2’U,1
U2:1—2U1

= U1§1—2U1 =

a<u <4,
ulgl—a—(l—Zul)
\
which can happen only if a < %
c) uy =1—a—uy <min{l — u; — ug, us}

(

( Uy =1l—-—a—u

uy=1—a—u
U Smin{a,l_To‘}
= w<l—u—(1—-—a—u) =

w <1—a—u =
) Lo jfq >
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d) ug =1—1u; —up <minfug, 1 — a —uy}

e) ug =1 —a—uy <minf{uy, 1 —uy —ug}

which can happen only if o > %

f) 1—u; —ug=1—a—uy <minfug, us}

:><

(
_ 1l-u
1 =
Ug = —2u1
uy > max{a, 3}
1—u
5+ < Uy =
L ifa<
1—uq o 1w —
< 1—a 2 _
a ifa>
\
p
11—«
u2—_2
l—«
uy = 5=
1—
T@gul =
11—«
o <y <a,
11—« e
< l—u — 52
\
(
U, =«
Uy =«
uy > max{l — 2o, 5%}
l—a—w<a =
1-2a0 ifa<
l—a—u <uy =
L if >

\

i) The case when 0 < o < 3 is shown in Figure 6.5.

O

Figure 6.5: Case when ky, ko, ko — k1 #0 and 0 < o < %

ii) The case when o =

1
3
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N
Wl
Lol

Figure 6.6: Case when kq, ko, ko — k1 # 0 and o = %

Figure 6.7: Case when ky, ko, ko — k1 # 0, % <a<l

iii) The case when 1/3 < o < 1 is shown in Figure 6.7.

We have
W =V (f) Ntrop *(A)
T Ti~°
. Ayt 5)
- p . . L . Tl—a
( kayr + ays + (ko k‘1)y1y2 ky v )
gsp A(yl,y2,z,x> ’
— koyy + kyys + (ke — k1)z — by,
Y1yez — Tyyox — T
and

Crit5 (PO) =W \ trop~! ({(0,0),(1,0), (0,1 — a), (e, 1 — a)}).

. Suppose k; =0 and kg, ky — k1 # 0. Then f = —k; (yl N yi/z) and
Crit5 (BO) =V (f) Ntrop ' (int A)
4 T )
— ]{Zg’yl + kg— = O
Y192
=1 (W1,92) € ()| val(yy) > 0, val(ys) > 0,
l—«
val (T ) > 0, val (i) > 0,
. Y2 Y1Y2 /
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(

T
T val(y;) > 0, val (—2> > 0,
— (yl, _2> c (A*)Q Y1 e
Y T

1

al( I ) >0 al( ) >0
val | ——— ,val | —=——
\ nT/y? T/y

is an annulus.

Moreover, we have
tropf :R* >R, uw~ min{uy, 1 — ug — us}.

trop(Crit5 (PO)) = trop V(f) Nint A is shown in Figure 6.8.

o

A4

Figure 6.8: Case when k; =0

. Suppose ks =0 and ky, ks — k1 # 0. Then

T Tl—a
PN S
Y1Y2 Y2

We have

T Tlfa
trop(f) = trop <y2 - =
Y1Y2 Y2

) ‘R* 5 R, w— min{uy, 1 —u; —uy, 1 —a—uy}.
Thus,
Vitropf) ={us=1—u —us <l—a—uU{l—u —us=1—a—us <uy}
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U{ug=1—a—us <1—u; —us}

1—U1 1-—

11—«
yup > af U{u = a,ug > 5

a}U{UQZ yup < ak

:{uQ =

The set trop(Crit5(P9)) is shown in Figure 6.9.

Q
€

(@ 50)

Figure 6.9: Case when ks = 0

Moreover,

W =V (f) Ntrop *(A)
A <y17y27 ﬁa T;;a>

T Tl—a

(o (92— 55 = 557)
A<y1,y2,Z,ZL‘>

(Yo — 2z — @, 1922 — T, o — T1=2)’

=~ Sp

and Crit5(BO) = W \ trop~! ({(0,52),(a,1 =), (1,0)}).

4. Suppose ky — ky =0 and kq, ky # 0.
We have

Tlfa

):R? = R, > min{uy, up, 1 — o — uy}.
Y2

trop(f) = trop(—y; + y2 —
Thus,

Vtropf) ={us =us <l—a—u}U{u;=1—a—uy <uy}

U{ug=1—a—uy <u}

}

1-— 1-—
Z{U1=U2,U1STa}U{W:l—Oé—Ul,MS 2@
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11—« 11—«
,yUp =2
2 2

U{UQ:

}

The set trop(Crit5(PO)) = trop V(f) Nint A in Figure 6.10.

Figure 6.10: Case ko — k1 =0

Moreover,

W =V (f)Ntrop *(A)
T T-°
A<y17y27ﬁ7 Yo >
(—y1 +y2 — T;;a)
A <y17 Y2, 2, .Z'>
(—th +y2 — &, 1Yz — T, yox — T17)’

>~ Sp

and Crit5(PO) = W \ trop~! ({(0,0),(0,1 — ), (52,5%)}).

6.2.3 S'-action on a two-point blowup of CP?

Example 6.3 (S'-action on a two-point blowup of CP?). Consider the two-point blowup

(CP*(2),w,T?, i1) of CP* whose moment polytope is given by
A= {(U17U2) €R2|—1 Sup <1, —-1<uy <Lu +uy < 1‘1‘@}7

where —1 < a < 1. Its potential function is

T1+a T T
PO =Ty, +Tys + +—+ —.
Y1Y2 n Y2
PO PO oPBO
—0=f:= ¥ = —koin L + k1Yo £
862 8y1 ayQ



T 1 ™ 1
(o o 1))
Y2 Y2 b2

T k k
=1 <_k2y1 + k1ya + (ko — k1) + - _1>
Y1iY2 Y1 Y2

. Suppose ki, ko, ks — ki are all non-zero.

We have
trop(f) : R* = R, w— min{l +u, 1 +up, 1+ —uy —ug, 1 —up, 1 —ug}.

a) U1 = U9 S mln{a — Up — U2, —Uy, _UQ}'

¢ ifa<0
= Uz = u; < min{%,@} =3 :
0 ifa>0
b) up = o — ug — up < minfuy, —uy, —us}.
(
Uy = @ — 2Uyq (
Uy = @ — 2Uy
u < o — 2uy Uy = — 2uy
— = = a<u <%
wy < —uy a <y <min{g, 0}
a<0
uy < 2up — o \
\
¢) up = —up < minfug, @ — uy — ug, —us}.
(
u; =20
up > 0 up =uz =0
_— =
a—uy >0 a=>0
—ug >0
\
d) u = —up < min{o — uy — ug, —ug, us}.
/
U = —U1 Uz = —uq
s u < a = a ifa<0-
u; < min{0, a} =
u < —uy 0 ifa>0
\ \



e) upg = —uy — uy < minfuy, —uy, —us}.

u2 — a3u1
a—2u1 S UI 'LLQ — 0£—2u1
a—Ui g -
5 S —w max{a, 3} <up < —a
a—ug _a~u \
2 < 2
\
f) Uy = —Up < min{a — Uy — U2, U, _UQ}-
. (
Uy = —U U2 =~
up > max{0, —a} =
—u; < ug 0
L \
g) Ug = —U9 S mln{@ — Uy — u27u17 _ul}'
(
Uo = 0
0<wug Uy =muz =0
— =
0<a—u a>0
0< —uy
\
h) a— U] — Uy = —Up g min{U1,u27 —Uz}
p
Uy = X (
Uy = X
—u; < ug
— = @
—u; <« up 2 max{0, o, —a} =
(0
\
—u; < —«
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1) a—uy —uy = —uy < minfuy, ug, —ug}.

(
Uy =« (
Uy =«
—us < «
= = —a fa<0
—uy < Uy ug > max{0,a, —a} =
o ifa>0
—Uy < —v 0
\
j) —ur = —up < min{uy, ug, @ — uy — us}.
( r r
Uy = Uz Uy = Uz Uy = Uz
= —uy < uy = up >0 = 0<u <a-
—u; < a—2u U < « a>0
\ \ \

1) The case —1 < a < 0 is shown in Figure 6.11.

(=11 (o,1)

——a

(1, 0)

(=1,-1) (1L,=1)

Figure 6.11: Case when ki, ko, ko — k1 #0, -1 <a <0

2) The case a = 0 is shown in Figure 6.12.

3) The case a > 0 is shown in Figure 6.13.

Then

W =V (f) Ntrop *(A)
A <Ty17Ty27 =z l>

yiy2 ' y1’ y2

Sp (T (—kzyl + ks 4 (kg — ky) L= 4 k2 ﬁ))

Y19y2 1 Y2
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(-1,1) (0,1)

(0,0) (1,0)

(_17_1) (17_1)

Figure 6.12: Case when ky, ko, ks — k1 #0,a =0

(71!1) (071)

(o, @)

(1, a)
(0,0)

(—1,-1) (1,-1)
Figure 6.13: Case when ki, ko, ks — k1 #0,0<a <1

ANz, 29,2, 21,0
~ g (21, 22 1, T2) 7

— kIQZl + k’122 + (]'CQ — k)l)Z + k)gl’l — ]fll'g,

229z — T3 112y — T2, w929 — T2
and C“té(mg) =wn tropil ({(_17 _1)7 (_17 1)7 (CY, 1)7 (L a)? (17 _1)})

. Suppose k; =0 and ko, ky — k1 # 0. Then

T 1
=t (-2 1)
Y1Y2 Y1

and

trop f : R? = R, (ug,ug) = min{l +uy, 1 + @ — ug —ug, 1 —uy}.
Thus,
trop(V(f)) =V (trop f)
= =a—u; —uy < —uf U{u = —u; <a—up —us}
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U{a—u; —uy=—u; <up}
={ug = — 2uy,u; <0}U{u; =0,us < a}

U {us = o, u; > 0}.

(0, ) (1, a)

(07 71)

Figure 6.14: Case when k; = 0, kg, ko — k1 #£ 0

We have
A TylaTy% T1+"‘7 17 L
W =V(f)Ntrop *(A) = Sp <k T y;{f - 1y2>
(_ 2 (yl T oyiye y_l))
~ A<21722727$171’2>
- Sp ;
21 — R — T1,21%1 — T27
29%e — T2, 21292 — T3F2
and

Crit5 (PO) = W\ trop* {(aT—l’ 1) ,(0,-1), (1, oz)} .

3. Suppose ky, =0 and kq, ko — k1 # 0. Then

and
trop f : R? = R, (ug,ug) = min{l + ug, 1 + @ — uy — ug, 1 — us}.

trop(V(f)) =V (trop f)

89



={ug = —u; —uy < —ug} U{ug = —us < —uy — us}

U{a —uy —uy = —us <ug}

:{u2:a sup > atU{ug =0,u1 < a}

U{u; = a,uy > 0}

The case ks = 0, k1, ko — k1 # 0 is shown in Figure 6.15. We have

(a7 1)

Figure 6.15: Case when ko = 0,ky — k1 # 0

A (T T, T2 7 1

yiy2 ' Y1’ y2

(le (y2 - yfzjz o y%))
A (21, 29, 2, 21, T2)

W =V(f)Ntrop *(A) = Sp

= Sp

Y

(290 — 2 — X9, 20w9 — T7?))

and
a—1

Crit5(PO) = W\ trop* {(1, ) ,(=1,0), (a, 1)} :

4. Suppose ks — k; =0 and kq, ky # 0. Then

ko k
=T (_kal + k1ys + =2 —1>
Y1 Y2

and

trop f : R? = R, (u1,uz) — min{uy, ug, —uy, —us}.

Thus,

trop(V (f)) =V (trop f)
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={u; = us < min{—uy, —us}} U{u; = —u; < min{uy, —us}}
U{u; = —us < min{ug, —u1 }} U {us = —uy < min{uy, —us}}
U {us = —us < min{uy, —us }} U {—u; = —uy < min{uy,us}}
={u; = us <0} U{u; =uy =0}
U{ug = —up,uy <0} U {us = —uy,uy >0}

U{ug =u; =0} U{u; = ug > 0}.

The case ky — k1 = 0, k1, k2 # 0 is shown in Figure 6.16.

(7170)

(0,0)

(-1,-1) (17;1)

Figure 6.16: Case when ky — k1 = 0, k1, ks #£ 0

We have
A TbeyQa lea 27 L
W _ V(f) m trop_l(A) ~ Sp < Y1y2 kyl y2k>
(T (—/{le + k1y2 + y_? — y_;>>
gSp A<21,ZQ,Z,J}1,I2> :

— koz1 + k129 + Koz — k2o,

2wy — T2, 2wy — T?, 21292 — T3
and

a+1 a+1

Crité(mg)—W\tropl({( o ),(—1,0),(—1,—1),(1,—1)}).
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6.2.4 S'-action on S? (

d
) % 5% (%)
Example 6.4 (S'-action on 52 (£) x $%(4), ¢ < d). Denote by S*(r) the 2-sphere with
radius r. Consider (52 (g) x S? (%) w, T2, ) whose moment polytope is given by

A:{(ul,uQ)ERQ‘OSulgc,Oguzgd}.

Its potential function is

T¢ T4
PO =y1+y2+—+—.
n Y2
03O 0O IsDLIY)
= 0=f:= L = —koth ¥ + k1y2 ¥
0cy Oy 0y
T

1. Suppose ki, ks # 0. We have
trop(f) : R? = R, (u1,uz) — minf{uy, ¢ — uy, ug, d — us}.
a) up = ¢ —uy; < min{ug, d — ug}

(

(A

N

<UQ =

<
2 =

<d—uy

N

\

b) u; = us < min{c — uy,d — us}

(
Uy = Uz
Uy = U2
= w <c—u —
up < 5
up <d—wuy

\

c) up =d—uy < min{c— uy,us}
(
UQ:d—Ul

UQ:d—Ul
- wm<c—u T

up <

N0

u <d—u
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d) ¢ —up = uy < minfuy,d — us}
(

Ug = C — U

=93 c—u <y =

N

c—uy <d—(c—u)

\
e) c—up =d—uy < min{uy,us}
(
g =d—c+ up

- c—u <y =
up > 3
c—u <d—c+u
(
) ug =d —us < minfuy,c —uq}
(
d
UQ:§
d
UQ—§
- §§U1 =
d d
. §§U1§C—§
35S c—u

\

which cannot happen because ¢ < d.

The set trop(V(f)) Nint A is shown in Figure 6.17

A

N

Figure 6.17: Case when ki, ks # 0

We have
A <y1, Y2, L T—d>

Y1’ y2

W =V(f)Ntrop ' (A) = Sp

Ug = C — U

U =d—c+ uy

(_kQ (yl - %) + k1 (92 -

93

d

)

vz



A <Z/17 Y2, X1, :C2>

— ko (y1 —1’1) + ky (yz —952),

z1y1 — TC, moyy — T
and

Crit5(A) = W\ trop~! ({(c,0), (0,0), (0,d), (¢,d)})

. Suppose k; =0 and ks # 0. Then

f=—k(n-2).
Then
V() ={(T2,4) |yo € "} U{(=T2,y5) | y2 € A},
trop V(f) = { (w1, ) € R? |u; = g}
and

trop (Critg(PO)) = int AN trop V(f) = {g} x (0,0).

It is shown in Figure 6.18.

Figure 6.18: Case when k; =0

Indeed,

Crit5 (PO) = trop V(f) Nint A
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pr——=0
= (Y1, 12) € A? 4
0 <val(y1) < ¢,0 < val(yy) < d

- {:I:g} x {y € B} |0 < val(ys) < d}
is a union of two annuli.

3. Suppose k; =0 and k; # 0. Then

f:k1<y2—§—d>-

2

Then
V() ={(y.7%) |y e A} U { (s, -T%) | g2 € N},
trop V(f) = {(ul,uQ) eR?|uy = g}
and
int A (1 trop V(f) = (0, a) x {g} |

It is shown in Figure 6.19.

Figure 6.19: Case when ko =0

Indeed,

Crit5 (PO) = trop V() Nint A
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) Yo——=0
= (ylny)EA Y2

0 <val(y;) <¢,0<val(ys) < d

— {1 € B0 < vwl(y) <} x {25}

is a union of two annuli.

One can often assign Lagrangian submanifolds to certain tropical curves, which the
tropicalization pictures that appear in Section 6.2 are examples of. (See [45], [43], [44],
and [14].) In the case when the tropical curves are moment map images of the associated
Lagrangians, we are interested in learning about the intersection of the “tropical” Lagrangians

and the Lagrangian torus fibers that intersect them.
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Chapter 7

Equivariant Hamiltonian isotopy

Iinvariance

In this chapter, we show that the equivariant Lagrangian Floer cohomology defined in
Chapter 5 is invariant under equivariant Hamiltonian isotopy. As a result, a Lagrangian torus
fiber with nontrivial Lagrangian Floer cohomology is not displaceable by the Hamiltonian
diffeomorphisms invariant under the given subtorus action.

We first review the definition of an equivariant Hamiltonian isotopy.

Definition 7.1 (Hamiltonian isotopy). Let H : [0,1] x X — R be a time-dependent
Hamiltonian function on (X, w). Denote by H; the map H(t,-) and Xy, the Hamiltonian
vector field of H; satisfying tx,, w = dH;. A Hamiltonian isotopy on X generated by H is

a smooth map

Yy [0,1] x X — X, (t,z) — V()
satisfying

d
%%{ = Xp, oy

Definition 7.2 (G-equivariant Hamiltonian isotopy). A Hamiltonian isotopy ¢y : [0, 1]x X —

X of a symplectic manifold (X,w) with a symplectic action by a compact Lie group G is a
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G-equivariant Hamiltonian isotopy if
Uulg-v) =g -dy(r) VreX, VgeG, vte[01].

We will define the Floer cohomology H Fg(L,b, H, A, ) for a Hamiltonian function H

satisfying the conditions of the following theorem in Section 7.1.

Theorem 7.1 (G-equivariant Hamiltonian isotopy invariance). Let (X, w, T™, 1) be a compact
symplectic toric manifold with moment polytope A = u(X) C R". Let G < T™ be a compact
r-dimensional connected subtorus of 7™ with the induced action on X. Let u € int A and
L =p"u). Let H:[0,1] x X — R be a G-invariant time-dependent smooth Hamiltonian
function. Let

vr [0 x X = X, (t2) = Yy(e)

be the G-equivariant Hamiltonian isotopy generated by H such that ¢?% = id and that

YL (L)N L is a finite union

vp()nL= || R,

aEWo(w}_I(L)ﬁL)
where each R, = G - g, for some ¢, in the component represented by a € mo(¢} (L) N L).
We fix our choice of g, for each a € mo(¢5(L) N L). Let u € int A. Let L = p~'(u) and

b€ HY(L,Ay). Then, over the universal Novikov field, we have

HFG((L,b), (L, 1), Anov) = HFG(L, b, H, Aoy ), (7.0.1)
where the right-hand-side is defined in (7.1.2).
Proof Outline. Before proving Theorem 7.1 in detail, we outline the proof below.

i) We first construct a cochain complex (CFg(L,b, H),§%) for a Hamiltonian function H

satisfying the conditions of Theorem 7.1.
ii) Let Co(L, Apoy) = Qa(L)® Apoy and 69 = (m§)?. We show the cochain maps
f
(CFa(L,b,H),5%) = (Ca(L, Apoy), 69 = (m§)?)
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define a cochain homotopy equivalence; i.e. fog ~ id and gof ~ id.

7.1 The cochain complex (CFg(L,b, H), %)

Denote ¥} (L) by Lg. By our assumption,

LynL= || R

a€mo (v (L)NL)

where each R¥ = G - q, is a G-orbit for some ¢, in the component a € m(¢5;(L) N L). Let

Y3 be the inverse of ¥}, We have

Ly (L) =¥ (L) N L) = ¢y U e = U  v®D.
a€mo (g (L)NL) aemo(¥L, (L)NL)
Define
CFa(L,b,H):= P Qo(RIDr Anoy .
(ZET(()(LHQL)

Va,a' € mo(vi (L) N L), define

u is smooth,
u(s,0) € L, wu(s,1)e L VseR,
mo(RY REY = {u:Rx[0,1] = X |Iqg € vy (R, ¢ €v;'(RY) such that >/ ~,

lim wu(s,t) =k(q) Vte[0,1],

S—>—00

lim u(s,t) = ¥4 (q¢) Vt€]0,1]

\ S§—00
where u; ~ us if and only if u; and us represent the same class in mo(X).

99



Let ki, ko € N, a,a’ € mo(¢(L) N L), and B € m(RY, RA). Let My, ,(RY, RE B, J)

a’

be the compactification of

u: R x[0,1] — X is smooth, [u] = B,
ou <(’9u ) B
%—i-(] E_XHt(U) =0, F(u)< oo,

u(s,0) € L and u(s,1) € L VseR,
Jg € vy (RY), ¢ €vy'(Ry) such that

lim wu(s,t) =4 (q) Vt€[0,1] and
Mrkelg’kO(Rf,RH B, J) = (U,Tl,To) T /N .

lim u(s, t) = v (q) vt € [0,1],

= ((Cla 1)7 T (Qﬂ?l)) S (R X{l})kl7
where —oo < (f, <+ < (g < 400,

10 = ((11,0), ..., (T, 0)) € (R x{0})*,

where —oo <1 <+ < Ty < 00

Ck‘l cee Cl

TL e Tk

Mk1,ko (Rf> Rg? B’ ‘])

H

Rl RH

a/

Define the evaluation maps as follows.

V1<j<hki, evih i M (RERE B J) = L, (um,m)— u((,1).

J
VI<j<hky evip:ME (RIRE B, J)—~ L, (um,7)— u(r,0).
eV oo i Miy o (RERE B J) = Ry, (u,m1,70) = Uk ( lim u(s,0)> .
S——00
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eVioon t Miy o (RE RE B, J) = Ry, (u,71,70) — ¥k ( lim u(s,O)) .

s——+00
The evaluation maps are G-equivariant.

Let ki, ko € N, a,a’ € mo(v} (L) N L), and B € mo(R?, RY). Define
np 1 Qa(RN Sk Anov[1] = Qa(RE) Dk Aoy 1]

by
ng (n) = (evioo,B)!(eVgoo,B)*Tl‘

Define 6% : CFg(L,b, H)[1] = CFg(L,b, H)[1] such that, for each a € mo(Lgy N L),
6% Qa(RIY® Apoy[1] = CFa(L, b, H)
is given by

6% (n) = Z Z exp(0B Nb)ng(n)exp(0B N b)T%e@. (7.1.1)

a'ero(Lunl) Bema (R ,RE)

Lemma 7.1. My, ,(R? RE B, J) has an oriented G-equivariant Kuranishi structure such
that ev_o B, Vi p are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the following types of fiber products below.

1) M%y%(Rf,Rf,BGJ) Xe Mki’,k{)/(Rf;Rg;B”,J); where

evioo B/ V_ o Bl
® Cc 7T0<LH N L>7
o ki, Kk k{, ki € N such that ki + kY = k1, k{, + k{ = ko,

o B € m(RYE, RY), B” € my(R”, R) such that B'#B" = B.
i) My i (RY,RE, B, J)evglj)g/ Xevg Miry1(L, J, B"), where

o 1<i<k,

o ki, ki € Nsuch that k] + k{ = k1 + 1, and

e B' € my(RY, RE) B" € my(X, L) such that B'#B" = B.
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iii) My, w (R, RL, B, J)Cv%/ Xevg Mg 41(L, J, B"), where
o 1 <i<Kk,
o ki, kj € N such that k{ + kj = ko + 1,
e B € my(RY RE) B" € my(X, L) such that B'#B" = B.
Moreover, the G-equivariant maps ev_. g, €V4oo p are strongly smooth and weakly submersive.

Proof. The boundary decomposition follows from [19] Proposition 15.21. The construction of
a G-invariant Kuranishi structure on My, 1, (RZ, RE B) is similar to the proof of Proposition

5.1 (See [21] Section 4.3.). O
Proposition 7.1. 0% is well-defined and 6% o 6% = 0.

Proof. The proposition follows from Theorem 8.2, Proposition 8.4, and Lemma 7.1. In
particular, in Lemma 4.1, the contribution of i), ii) with (], ko, B') # (1,0,0), and iii) with
(k1, k§, B") # (0,1,0) are trivial. And the contributions of ii) with (&1, ko, B') = (1,0,0) and
iii) with (K7, ko, B’) = (0, 1,0) cancel with each other. O

Thus, we define

ker 6§
HFG(L,b, H, J, Apoy) = ——2. 12
G( ) 7<]7 ) lmag (7 )
7.2 The Floer continuation map f
Consider a smooth non-decreasing function y : R — [0, 1] such that
0 ifs<-—1
x(s) = . (7.2.1)
1 ifs>1

Define F': R x[0,1] x X — R by

F(s,t,x) =(1—x(s)H(t,x) V(s,t,x) € Rx[0,1] x X.
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Then

H(t,x) ifs<-—1
F(s,t,x) = :

0 ifs>1

Since H is G-invariant, F' is also G-invariant.

Note that F{ = F(s,t,-) : X — R defines a Hamiltonian vector field Xp; via dF{ = i1x, w.

Let ¢ : X — X be the flow of Xz, namely it satisfies

d
E@Di = Xpt o .

Recall we assumed that Ly N L= || R is a finite union. Va € mo(Ly N L), define
GGWQ(LH,L)

u is smooth,

u(s,0) € L Vs €eR,

u(s,1) € L Vs eR,

m(RY L) ={u:Rx[0,1] = X /N,
3q € ¥ (R?) such that

lim u(s,t) =¥4(q) Vte|0,1],

S——00

lim u(s,t) =p Vt € [0,1] for some p € L
/

\ 5—00

where u; ~ us if and only if u; and us represent the same class in mo(X).

Let ki,ko € N, a € mo(Lyg N L), and B € my(RY, L). Let My, 1, (RZ, L, B,J) be the
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compactification of

u: R x[0,1] — X is smooth, [u] = B,

ou <8u
%-i-(]

lim u(s,t) =¥k (q) Vte[0,1]

S§—>—00

for some ¢ € ¥;}(RY),
ME(RE LB, J) = { (u,71,70) q € U5 (RY)

1= ((C, 1), (G 1)) € (R x{1H)™,
where —oo < (, <+ < (g < +00,

70 = ((71,0), ..., (Th,0)) € (R x{0})*,

\ where —oo <1 <+ < Ty < 00
L
Gy G
{(a) On Oy 0 b
1 Tko
L

Mk17ko(R(Iz{7p> B, J)

H
RE L

Define the evaluation maps as follows.
V1<j<hk, ev'p: M (RILB,J)~ L, (u,1,7) u(G,1).

V1 < j < ko, evg% : MZi‘%kO(Rf,L,B, J) = L, (u,m1,70) — u(7;,0).

eV oo M;i%ko(Rf,L,B, J) = RE (u,m,m0) = ) ( lim u(s,O)) .

S§—>—00
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lim u(s,t) =p Vte€|[0,1] for some p € L,




eVico B MZi%kO(Rf, L,B,J)— L, (u,m,70)— lim u(s,1).

§—00

Let ki, ko €N, a,a’ € mo(Ly N L), and B € mo(RZ | RH). Define

i5 - Qa(RID®r Aor[1] = Ca(L)[1],

fB (77) = (evioo,B)!(eV?oo,Bykn'
Define

f:Cal(L,b, H,J)[1] = Co(L)[]

such that, for each a € mo(Ly N L),
F: Qa(RIE Aov[1] = Co(L)1]

is given by

=Y. ep@BNb)fyn)exp@BNbT 5 .

Bemy(RI,L)
Lemma 7.2. My, 1, (RY L, B, J) has an oriented G-equivariant Kuranishi structure such
that ev_o B, €V p are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the four types of fiber products below.
1) Mki»% (Rf, Rf, B/, J) X Mk’l’,k{)/<R£{; L, B”, J), where

e ccmy(Lynl)
o kY ki kj, ki € N such that k} + kY = ky, k{, + k{ = ko, and

o B' € my(RY RY), B" € my(RM,p) such that B'#B" = B.
ii) Mk’l,k:()(Rfa L, B’ J)ev, s Xevo Muyiay (L, B", J), where

o ki ki kj, ki € N such that k} + kY = ky, k{, + k{ = ko, and

o B S WQ(Rf’L>7 B" € 7T2(X, L) such that B/#BH = B.
iii) My xo(RE, L, B, J) ) Xevg Mirga(L, J, B”), where

ev .
i,B’
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o 1 < i <K,
o ki, ki € Nsuch that k] + k{ = k1 + 1, and
o B' € my(RY L), B” € my(X, L) such that B'#B" = B.

iV) Mh,ka (Rf7 L7 B/7 J)ev(o) Xevo ng+l(L7 J7 BH)? where
i,B’

o 1<i<kyl<j<kyg,
o ki, ki € N such that k{ + k] = ko + 1, and

o B’ € my(RY p), B" € my(X, L) such that B'#B" = B

Proof. The boundary decomposition follows from [19] Proposition 15.22. The construction of
such a G-equivariant Kuranishi structure is similar to the proof of Proposition 5.1 (See [21]

Section 4.3.) O

Corollary 7.1. | is a cochain map:
fods — 8% of =0. (7.2.2)

Proof. This follows from Lemma 7.2, Stokes’ Theorem 8.2, and the composition formula

(Proposition 8.4). O

7.3 The map g

Let x be as in (7.2.1). Define F : R x[0,1] x X — R by

- —t

F(s,t,x) = F (x):= x(s)H¢(x).

Then Fi(x) =0if s < -1 and Fi(m) = Hy(z) if s > 1.

Note that Fi = F(s,t,-) : X — R defines a Hamiltonian vector field X via ¢ X W= dfi.
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Va € mo(¢ (L) N L), define

7T2(

(

L,R¥)y={u:Rx[0,1] = X

\

u is smooth,
u(s,0) € L and u(s,1) € L VseR,
ng_noou(s,t) =p Vtel0,1] for some p € L, / ~,

Jq € Y5 (RT)  such that

lim u(s,t) = ¢%(q) Vt€[0,1]

s——+00

where u; ~ uy if and only if u; and wus represent the same class in 7o (X).

Let k1,ko € N, a € mo(Ly N L), and B € mao(L, R7). Let My, 4, (L, RE, B, J) be the

compactification of

reg
M k1,ko

(L,RY B, J) =

(U,Tl,To)

u: R x[0,1] — X is smooth, [u] = B,

Ju <8u ) B

%—i-(] E_XFZ(U) =0, E(u) < oo,
u(s,0) € L and u(s,1) € L VseR,

lim wu(s,t)=p Vte|0,1] for some p € L,

S§—>—00

lim u(s,t) = ¥4 (q) Wt €0,1] for some q € ¥ (RY),

S——+00

= ((Clv 1)’ SRR (C/ﬁv 1)) S (R X{l})kla
where —oo < (f, < -+ < (1 < 400,
To = ((7_170>7 SRR (Tkoﬁo)) S (R X{O})koa

where —oo <7 < -+ < T, < +00

L
Gy o G
On Ory 0 1(q)
1 Tho
L
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Mk1,ko(L7 Rf7 Ba J)

y w
L RH

Define the evaluation maps as follows.

VI<j<hki evih i M (LRI B, J) = L, (um,m)— u((,1).

V1<j<ko ev'Op:i M (LRIB,J)— L, (u,7,70) > u(r;,0).

evV_oo B Mffko(L, R B, J) = L, (u,m,7)+— lim u(s,1).

S§—>—00

Vo8 M5 (L, R B, J) = RY,  (u,m,m) — ¥} ( lim u(s,O)) .

s—+00

Let a € mo(Ly N L), and B € (L, RY).

Define
05 Co(L)[1] = Qa(Ry)®r Auox[1]
by
o5 (n) = (evioo,B)!(eVgoo,B>*n'
Define

g: Cg(L)[l] — Cg(L,b, H, J)[l]
such that, for each a € mo(Ly N L),
g:Ce(L)[1] — QG(R5)®AHOV[1]

is given by

w(B) Iu(B)

g = > exp(dBNb)gp(n) exp(OBNb)T 2 ez .
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7.4 Proof of Hamiltonian isotopy invariance

Define a smooth function F : [0,00) x R x[0,1] x X — R as follows. Fix a large constant,

say 10.
For 6 > 10, let

) ) Ft,(z) ifs<0
F(0,s,t,x) = Fg,s(x) = *
F._,(z) ifs>0
H Fl,| 0 |7 | H
—(0+1) —(6—-1) 6-1  6+1

Let x : R — [0, 1] be a smooth nondecreasing function such that

0 ifa<1

X(0) =

For 0 < 6 < 10, define

1 it6>9

F(0,s,t,2) = (1= X(0)) Hi(2) + X(0) Fy ().

Consider

u is smooth,

u(s,0) € L
m(RE REY = Lu:Rx[0,1] = X

S—>—00

\ S§—00

and

lim u(s, t) = ¢1(qu)

uls,1) € ¥ (L) VseER

lim u(s,t) = ¥4(q.) Vit € [0,1],

vt € [0,1]

where u; ~ uy if and only if u; and wus represent the same class in 7o (X).

Let a,a’ € mo(¢ (L) N L). Define

my WRE R = [ m(RERE)U
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where [u;] ~ [ug] if and only if [u1] = [us] in mo(X).

Let 6 € [0,00), ki, ko €N, a,a’ € my(v(L)N L), and B € wgo’”}(Rf,Rg). Define

MO (RE RE, B, J)

(

3
u: R x[0,1] — X is smooth, [u] =B,
ou <8u >
e . Xa =
95 T J 5 ngs(u) 0,
oul]? ou ?
E(U):‘% +’5—Xﬁg’s(u> < 00,

u(s,0) € L and u(s,1) e L VseR,

-1 H / -1 H
(U,Tl,T()) EI(]EQ/JH (Ra )7 q €¢H (Ra’>

lim u(s,t) =¢%(q) and
§——00

such that
lim (s, t) = ¥ (q) ¥t € [0,1],
S§—0Q

70 = ((11,0), ..., (Tky, 0)) € (R x{0})™,
where —oo <791 <+ < Tk, < +00,

= ((Clvl)v"'ﬂ(gklv 1)) < (R X{l})kla

\ where —oo0 < (, < -+ < (1 < +00

When 6 = oo, let

too,reg pH pH — H / H pn
Mkl,ko (Ra ﬂRa”B7 J) T U U Mkll,ké(Ra 7L7B7J) X Mk'l’,kg(La Ra’aB 7‘])’
B/#B//:B ki_"_k/l/:kl
k{+k{=ko
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where My (L, Rl B, J) is the compactification of

u: R x[0,1] — X is smooth, [u] = B,
ou (8u ) B
£+J E—XFSt(U) =0, E(u) < oo,

u(s,0) € L and u(s,1) € L Vs eR,
lim wu(s,t)=p Vte]0,1] for some p € L

S——00

re H -
Mk (L By B, J) o= (4,1, 70) | i u(s, )i (q) Yt € [0,1] for some q € ¥, (RY),

1= ((Clal)w"?(C’ﬂa 1)) € (R X{l})kla
where — oo < (g, < -+- < (1 < 400,

70 = ((11,0), ..., (7, 0)) € (R x{0})*,

where —oo <7 < -++ < 7y < +00

Let

MG RERE B = ({6) < MU(RE BRI BLJ)

€[0,+00]

and let MESI’;SO](R(?, RE. B, J) be its compactification.

MPE(RE RE B, J)

a’)’

y &
H

R RH

Define the evaluation maps as follows.
VI<j<hy, el MPTOTI(RIERE B.J) L, (0, (u,1,70)) — u((,1).

V1<j<ko evih:i MO (RERE BJ) L, (6, (u,m1.70)) — u(r;,0).

eV_0o,B - ML[)I’;;)O)’T@Q(R(?, R B, J) = RY, (0, (u,11,70)) — 1}, ( lim u(s,())) )

§——00
€Vico,B ¢ MIQI(?O)’TBQ(R(Q{? Rgv B7 J) - R(?? (9a (uaTbTO)) = ¢}{ <sll>IJPoo U(S, O)) .

Let a,a’ € mo(Ly N L), and B € 7l"/(RH RH).
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Define
@B : QG<R§I)®R Anov[l] — QG<R5)@R Anov[l]u
O5 (1) = (ev§o ph(evCy 5) .
Define
O: CFg(L,b, H, J)[l] — CFG(L,b, H, J)[l]

such that, for each a,d’ € m(¢ (L) N L),
0 : Qa(RI) @R Awov[1] = Q(RE) @R Apoy[1]

is given by

w(B) Iu(B)

O(n) = Z exp(0B N b)Op(n) exp(0BNL)T 2r e 2

Beny >} (RH RH)

Lemma 7.3. MLOI’;;O](RE , RE B, J) has an oriented G-equivariant Kuranishi structure such

that ev_o B, €V p are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the following types of fiber products below.

i) Mk/l,ké(Rvavalv J)eveo Xev_oo MQ;;?](RE,Rﬂ,B”, J), where
e ccmy(LynlL),
o kY Kk ki, ki € N such that &} + kY = ky, k{, + k{ = ko, and
o B' € my(RYE, RH), B" € m(RH, RY) such that B'#B" = B.

ii) ME%};EO}(RE, R B’ J)eva, Xev_oo My iy (RE, RE, B", J), where
e cemy(LynNL),
o ki Kk Kk{, ki € N such that ki + kY = ky, k{, + k{ = ko, and
o B' € m(RY, RY), B" € my(R?, R) such that B'#B" = B

111) ML()17;?}(R£{7 Rga Blv J)evM’B/ Xevg Mk(’)’—i-l(La B”, J), where
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o 1 < i <K,
o ki, k! € Nsuch that k] + k{ = k1 + 1, and

o B € m(RYE RE), B" € my(X, L) such that B'#B" = B.

iv) My I(RE RE B, )

Xevg Mg 41(L, B", J), where

evy i B/
o 1 <i<Kk,
e ki, ki € N such that k{ + kj = ko + 1, and

e B' € my(RY RY), B” € my(X, L) such that B'#B" = B.
v) Mk’l,% (Réq» LB’ J)evo Xev_u Mk’l’yk’o’ (L, Rg’ B, J), where

o ki Kk Kk{, ki € Nsuch that k{ + kY =k, k{ + kj = ko, and

e B' € my(RY, L), B" € my(L, RE) such that B'#B" = B.
vi) Mkl,ko (RE RH B, .J), whose quotient space by the free R-action is My, ,(RZ, RZ B, J).

Proof. The cases where bubbling happens at s = —oo and s = 400 correspond to i) and ii),
respectively. The cases where bubbling happens at ¢ = 1 and ¢ = 0 correspond to iii) and iv),
respectively. The case §# = 0 corresponds to vi). The case § = oo corresponds to v). The
construction of a G-invariant Kuranishi structure is similar to the proof of Proposition 5.1
(See [21] Section 4.3.). The boundary decomposition is similar to the proof of [19] Proposition
15.22. [

Corollary 7.2.

gof—1¢ =006% 4 6% 00,

Proof. In Lemma 7.3, the contributions of i) and ii) vanish. The terms iii) and iv) correspond
to (O — dg) 0 6§ and 6% o (© — dg). And v) corresponds to gof. The contribution of v)
vanishes except the case when B = 0, which corresponds to 1¢. Then the corollary follows

from Lemma 7.3, Proposition 8.4, and Theorem 8.2. O
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Corollary 7.3. fog is cochain homotopic to the identity map.
Proof. The proof is similar to that of Corollary 7.2. O

Corollary 7.4. If HF((L,b),(L,b), Anov) # 0, then L is not displaceable by any G-
equivariant Hamiltonian diffeomorphism that is the time-1 map of a G-equivariant Hamiltonian

isotopy.

Proof. If L is displaceable by 1, which is a G-equivariant Hamiltonian diffeomorphism
that is the time-1 map of a G-equivariant Hamiltonian isotopy, then ¢} (L) N L = () implies
CFg(L,b,H) = 0. Thus,

0= HFg(L,b, H) = HF:((L,b), (L,b), Aoy ).
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Chapter 8

Equivariant Kuranishi structures

In this chapter, we discuss concepts related to equivariant Kuranishi structures which we
use to define the A strctures. The definitions and the constructions of some of these
equivariant Kuranishi data on the moduli spaces have been discussed in [23], [22], [21],
and [18]. More specifically, in Section 8.1, we give the definitions of equivariant Kuranishi
structures and equivariant good coordinate systems. In Section 8.2 and Section 8.3, we
define CF-perturbations (“CF” stands for continuous family) and use it to define equivariant
integration along the fiber on Kuranishi spaces. And in Section 8.4, we discuss the equivariant

Stokes’ theorem and equivariant smooth correspondences on Kuranishi spaces.

8.1 Equivariant Kuranishi structures

We review related concepts in the orbifold theory in Appendix A. Moreover, we assume G is a
torus and G acts on M freely when necessary. For the general theory of Kuranishi structures,

we refer the readers to the book [20].

Definition 8.1 (G-equivariant Kuranishi chart). Let M be a separable metrizable topological
space with a topological action by a compact connected Lie group G. A G-equivariant

Kuranishi chart on M is a quadruple U = (U, £, 1, s) that satisfies the following.
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(a) U and & are oriented smooth effective orbifolds, possibly with corners, each equipped

with a smooth G-action.
(b) € 5 U is a smooth G-equivariant orbibundle.
(¢) s:U — & is a smooth G-equivariant section of 7.

(d) ¥ :s71(0) = M is a G-equivariant continuous map, which is a homeomorphism onto

an open subset in M.

We say U is a Kuranishi neighborhood, £ is an obstruction bundle, ¢ is a parametriza-

tion map, and s is a Kuranishi map.

Definition 8.2 (Restriction of a G-equivariant Kuranishi chart). Let U = (U, &, 1), s) be
a G-equivariant Kuranishi chart and U’ C U be a G-invariant open subset of U. Then the

restriction of U to U’ defines a Kuranishi chart U’ = (U, €|, |1 (0)nprs Slpr)-

Definition 8.3 (Embedding of G-equivariant Kuranishi charts). Let M be a separable
metrizable topological space with a topological action by a compact Lie group G. An

G-equivariant embedding of G-equivariant Kuranishi charts
a=(a,a): (UEp,s)— (U, E Y, S
is a G-equivariant embedding of the orbibundles (U U € Nyl > satisfying the following.
i) aos=soa.
i) ¢ o 04\8_1(0) =1).

iii) Vo € s71(0), the derivative Dq(y)s’ induces an isomorphism

TowU' . o
(D) (T,U) (&)

induced by

g, —9 El

stT TDOL(I)S/

!
T,U 5.2 To@U
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Definition 8.4 (G-equivariant Kuranishi structure). Let M be a separable metrizable
topological space with a topological action by a compact Lie group G. A G-equivariant

Kuranishi structure
U= ({U|pe M} {dy|peMaqein,}) (8.1.1)

on M consists of the following data.

1) Vpe M, U, = (Uy,,Ep, ¥y, Sp) is a G-equivariant Kuranishi chart on M such that there

exists a unique o, € U, satisfying ¢,(0,) = p.
2) Vp e M,Vg € G, U, =U,,.

3) Vp € M, Vq € im),, we have a G-equivariant embedding of G-equivariant Kuranishi
Qpq Qpq

charts a,, = <qu — U, 5q|qu — €p> from the restriction of U, to a G-invariant

open subset Uy, of U, with q € thg(s;"(0) N Upg). In particular, it satisfies the following.

a) The following diagrams commute.

Eq]quLé’p , 5q|quL>8p , s, 0) N Uy —5,1(0) N T,

ﬂql lwp qu }p M lw

Upg =, Up Upg =5, Up M
b) If z € 5,7(0) N Upg and aypg(z) = g, then Dys, induces an isomorphism

T,U, Ep |y
~ 8.1.2
(DQ;Oqu>(Txqu) Qpq (8‘1 |z) ( )

Such an embedding &, is called a G-equivariant Kuranishi coordinate change.
4) For any p € M, q € im), and any g, ¢ € G, we have dp; = &(gp)(g/)-

5) If r € ¥y(s;1(0) NUpq) and Upgr = a,! (Upg) N Ugy, then the cocycle condition is satisfied

qr

in the following sense:

Qpr (T) = Qpq © g (), Vz € Upgr,
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and

~

Qpr (V) = Qlpg © Qgrr (), Vo € Upyr, Yo € (E)s

A topological space M which satisfies the conditions above and has a G-equivariant Kuranishi

structure is called a G-equivariant Kuranishi space.

Definition 8.5 (G-equivariant good coordinate system). Let M be a separable metrizable

topological space. A G-equivariant good coordinate system

U= (B, <), {Us | p € B}, {Gqlp.a€B,q<p}) (8.1.3)

consists of
1) a finite partially ordered set (3, <);

2) Vp € P, a G-equivariant Kuranishi chart U, = (U, &, ¢y, sp) on M so that M C

U im)y; and
peP

3) Vp,q € P with g < p, an G-equivariant embedding (ayg, Qpq) of G-equivariant Kuranishi
charts @pq = (qu 2 Uy, Ealy 2 5p> from the restriction of U, to a G-invariant
Pa
open subset Uy, of Uy, called a G-equivariant good coordinate change from q to p,
satisfying

Im )pg = im P, N im g,
such that the following holds.
i) dpp = (idly, . id]g, ).
ii) If im ¢, Nim ), # 0, then either p < g or q < p.
iil) If e < q <pand Uy = qu_tl(qu) N Uy, then
Qpe(T) = Qg 0 age(), Vo € U,

and,

Qpe (V) = Qlpg © Qqe(V), Vo € Upge, Yv € (E)p.
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Definition 8.6 (Support system/support pair). Let <M,ﬁ> be a space with a G-equivariant

good coordinate system

U= (B, <), {Us | p € B}, {Gralpoa€Brqa<p}).

A G-equivariant support system K= {K, | p € B} on (M,ﬁ) is a collection of sets

satisfying the following.

e For each p € B, K, C U, is a nonempty G-invariant compact subset, which is the

closure of some open set lon C Uy.

o Ut (Kyns'(0)) =M.

peP
For any G-equivariant support system IE, we define
K| = <|_| /cp> /~, (8.1.4)
peP
where, for each x € K,y € Ky, we say x ~ y if and only if either y = agp(z) or = ayq(y).
The G-action on the charts induces a G-action on |K|.

A G-equivariant support pair (I%, l%++> on (M,Zj ) consists of G-equivariant support
systems K = {K, | p € B}, K = {7 | p € B} such that for all p € P we have K, C IOC,;H.
We write K < K++ for such a pair.

Given a G-equivariant support pair (l%, I%**), a G-invariant metric on [T, and § > 0,

we can define another support system

=

K(20) = {K,(20) [ p € B},

where

Kp(20) = {z € KJT | d(z, K,;) < 26}
Definition 8.7 (KG-embedding). A G-equivariant strict KG-embedding

{Gop = (pps Bpp) = Uy — Uy | (p,p) € M X P, p € imapy} i U — U
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from a Kuranishi structure I/ on M to a good coordinate system il on M consists of one
G-equivariant embedding of Kuranishi charts for each (p,p) € M x B, p € im1), such that
the following holds. If p,q € B, q < p and p € im ey, ¢ € imeh, N imehy(Upg N s;7(0)), then

on we have
uq | qu (qu)

ﬂo‘«;ql
Olpp O Opg = Clpq © Olgq-

An open substructure of a G-equivariant Kuranishi structure Uis a G-equivariant Kuranishi

structure U’ whose Kuranishi charts and coordinate changes are restrictions of those in U to

G-invariant open subsets U, of Kuranishi neighborhoods U,

A G-equivariant KG-embedding U—Uis a G-equivariant strict KG-embedding

LA{O — U from an open substructure Z;l\o of the Kuranishi structure /.

Lemma 8.1. Suppose that M is a space with a G-equivariant Kuranishi structure with
corners, where the G-action on each Kuranishi chart is free. Then M /G has a Kuranishi
structure with corners.

Similarly, if M is a G-equivariant good coordinate system with corners, where the G-action

on each Kuranishi chart is free, then M /G has a good coordinate system with corners.

Proof. Suppose the G-equivariant Kuranishi structure on M is given by
U= {Uy|pe M} {dplpe M, qeimy,}),

where the G-action on each chart U, = (U, &,, ¥y, sp) is free.

By G-equivariance and the freeness of the G-action, we obtain Kuranishi charts of the
form U,/G = (U,/G,E, /G, [1p], [sp]). Suppose @, is given by a pair of G-equivariant orbifold
embeddings

g Upg = Uy, Gpg 1 Eq |y, — &y
Then they induce maps [apg] @ Upe/G — Uy/G and [ayg] = (€, /G|y 1o — €p /G, which
together define a Kuranishi coordinate change [@,,] from Z;{\q /G to Z:{\p /G.
The data /G = ({U,/G |p € M G} {[@p] |p € M /G, q € im[1h,]}) satisfy the defini-

tion of a Kuranishi structure on M /G. O
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Definition 8.8 (Dimension/Orientation). Let M be a space with either a Kuranishi structure

or a good coordinate system.
i) We define the dimension of a Kuranishi chart of the form U = (U, £,1), s) by
dimi = dim U — rank €.

We require the dimension of the Kuranishi charts in the Kuranishi structure (resp.
good coordinate system) to be the same and define this common dimension to be the

dimension of M.

ii) An orientation of a Kuranishi chart & = (U, &,1, s) is given by an orientation on U
and an orientation on £. An orientation on M is a choice of an orientation for each
Kuranishi chart of the Kuranishi structure (resp. good coordinate system) such that

the coordinate change maps are orientation-preserving.

Definition 8.9 (G-equivariant strongly smooth map: orbifold — manifold). Let L be a
smooth manifold with a G-action and U be a smooth effective orbifold with a smooth G-action.
A G-equivariant continuous map g : U — L is a strongly smooth map if gop : V — L is

smooth for all orbifold charts (V,I", ) in the orbifold atlas of U.

Definition 8.10 (G-equivariant strongly smooth map: Kuranishi — manifold). Let L be
a smooth manifold with a G-action and (M,ﬁ ) be a G-equivariant Kuranishi space with

Kuranishi structure
U= ({Uy|pe M} {dy|p € M,qeimi,})
A G-equivariant strongly smooth map fA: (M, U ) — L is a collection
{fp:Up—= LpeMj

of G-equivariant strongly smooth maps satisfying the following. For all p € M, ¢ € im ),

the compatibility condition f, o apq = fy|v,, is satisfied. Define the map associated with the
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strongly smooth map fby
feM—= L, f(p)=fplop) VpeEM,

where o, is as in Definition 8.4 1). We can define a G-equivariant strongly smooth map
]?: {fp : Uy = L | p e P} from a space with good coordinate system to a manifold in a

similar way.

Definition 8.11 (G-equivariant differential forms on a G-equivariant Kuranishi space). Let
M be a space with a G-equivariant Kuranishi structure as in Definition 8.4. A G-equivariant

differential k-form on (./\/l,Z;l\ ) is given by a collection of differential forms
n={n, € WU, |pe M} (8.1.5)

such that

()" () |, = Malu,,s VP €M, Vg €imu,

where

(apg)™ : Q6 (Up) = QG(U)

denotes the G-equivariant pullback via U, ~=2U% 7 2 7 We denote the set of
G-equivariant differential k-forms on a G-equivariant Kuranishi space M by QF, (M,LAl ) and
denote Q¢ <M,Z:{\) = O (M,Z:i)

keN

Definition 8.12 (G-equivariant differential forms on a good coordinate system). Let M be
a space with a G-equivariant good coordinate system as in (8.1.3). Let K = {K, | p €B} be
a support system on (M,L? ) A G-equivariant differential k-form 7 on (M,ﬁ ) assigns
a G-equivariant differential k-form n, on K, for each p € P such that the following holds on

a G-invariant open neighborhood of ozp_ql(Kp) N Ky:
(@S)my=ne,  VpeM, Yqeimu,.

We denote the set of G-equivariant differential k-forms on a G-equivariant Kuranishi

space M by QF, (M,LA{) and denote Qg (M,LA{) = Ok (M,ﬁ)

keN
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Definition 8.13 (G-equivariant pullback map). Let M be a space with a G-equivariant
Kuranishi structure U as in (8.1.1). Let f = {(f,:U, = L|peM}:(MU)— Lbea

G-equivariant strongly smooth map and

n={n, € U, |pe M}

be a G-equivariant differential k-form on (M, U ). Then the G-equivariant pullback of 7
via ]?is given by

Fi={fm, € WU, |peM}.

We may also denote it by f*7). Similarly, we can define the G-equivariant pullback ?*ﬁ of a

differential form 7 on a good coordinate system via a G-equivariant strongly smooth map f

Lemma 8.2. Let (./\/l,?;{\ ) be a space with a G-equivariant Kuranishi structure
U= {U|pe M} {dy|peM,qgeimi,}).

Then there exists a G-equivariant good coordinate system i on M and a G-equivariant
KG-embedding U—u , given by a G-equivariant strict KG-embedding & : LAIO — U from
an open substructure 220 of U.

Moreover, the following holds.

i) Let hbea G-equivariant differential form on (/\/l, u ) Then there exists a G-equivariant
differential form  on (M,LA{) such that (IDE(Z) =h

Uo

i) Let Shea G-equivariant CF-perturbation on (./\/l, u ) Then there exists a G-equivariant

., S are compatible with ® and the following

Uo

CF-perturbation Son (./\/l, i ) such that &

holds.

a) If S is transverse to 0, then S is also transverse to 0.

b) If ]?is strongly submersive with respect to S , then fis strongly submersive with

respect to § .
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c) If ]’"\is weakly transverse to g : M — N with respect to S , then fis strongly

transverse to g : M — N with respect to S.
The proof of Lemma 8.2 is similar to that of [20] Theorem 3.35 and Lemma 9.10.

Proof sketch. For each d € N, let Sy M = {p € M | dim U, > d}. The proof is based on a

downward induction on d. Suppose a G-equivariant good coordinate system

Usr = (B, <), {Uy | p € B}, {Gpg|p,a € B g <p})

which covers Sqy1 M is constructed. Pick a collection {K,, | p € B} of G-invariant compact

subsets K, C U, such that we have an open neighborhood of Sg4; M:

Sga M C U’Lﬂp ) Nint Kp>

Let

B =SgM\ | ¢, (s,7(0) Nint K) € SqM\Szar M.
peP
Also pick z1,...,2, € SgM\Sg1 M and {K; | 1 < i < n} such that K; C U,, are

G-invariant subsets and

U¢$Z :vi ﬂlntK) D B.

Then we can construct, as in the proof of [20] Theorem 3.35 and that of [20] Lemma 9.10, a

G-equivariant good coordinate system that covers

Uwp ﬂth UU@AII xz ))

peP

and satisfies the properties by induction on n. O

8.2 Equivariant CF-perturbations

Definition 8.14 (G-equivariant CF-perturbation representative on a G-invariant subset). Let

U= (U,E,1,s) be a G-equivariant Kuranishi chart and U, C U be a G-invariant open subset
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of U. A G-equivariant CF-perturbation representative! of I/ on U, is a continuous
family of data
S =1{8 =W, 5 U, 1,55 | e € (0,1]} (8.2.1)

such that the following holds.
i) W, is an effective orbifold with a smooth G-action.?
ii) v, : W, — Uk, is a smooth oriented G-equivariant orbibundle.
iii) 7. € Qg(W,) is a G-equivariant Thom form of v, : W, — U,.3

iv) Let /(&) — We be the pullback bundle of £[;; — U via v, and let pry : v} (€], ) —
&y, be the projection map. VO < e <1, let 5, : W, — (€], ) be a section of the

bundle v} (£|, ) — W, satisfying the following.

a) sy =pryos, : Wy — &|, is a G-equivariant bundle map and the family {s}}cc(0,1

depends smoothly on e.
b) Moreover, lin(l) 5¢ = s 01, in the compact C'-topology.
e—

V:(£’Uc) &5&5

prlJ/ lﬂw o

Wt V—r> Ut

Definition 8.15 (Equivalent G-equivariant CF-perturbation representatives on subsets). Let
U= (U,E,1,s) be a G-equivariant Kuranishi chart and U, C U be a G-invariant open subset
of U. Let

S = {8 = (W 2 U, st 7)

ee(o,l]}.

and

Si={8 =W Usst.m)|e€ (0,1} Vie{1,2}

" CF” stands for ”continuous family”.

2Note that we require W, to be the total space of a G-orbibundle, unlike in the case of ordinary Kuranishi
structures, W denotes an open subset of some vector space.

3The construction of a G-equivariant Thom form can be found in [31] Chapter 10.
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be G-equivariant CF-perturbation representatives of U = (U, &, 1, s) on U,.

e S!is said to be a projection of S if there exists a G-equivariant bundle map P : W, —
W, which fiberwise is a surjective linear map such that the following holds.
a) Pa(m) =
b) For each € € (0,1], s¢oP = st.
e S!is said to be equivalent to S? if there exist G-equivariant CF-perturbation repre-
sentatives Sj ofdy on U, j=0,...,2N such that
a) VO<k<N-—1, Sgk and 32k+2 are both projections of 32k+1, and
b) Sy =S! and Sy = S2.
Definition 8.16 (G-equivariant CF-perturbation representative on a Kuranishi chart). A

G-equivariant CF-perturbation representative on a G-equivariant Kuranishi chart

U= (U,E,1,s) on M is a collection of data {S, | v € R}, where
S ={S = (W, 5 U, s5,7) | € € (0,1]},
such that the following holds.

i) Vv € R, S, is a G-equivariant CF-perturbation representative of & on a G-invariant

open subset U, of U.

i) YU =U.

teR
iii) If z € U, N U, for some ty,ts € MR, then there exists a G-invariant open subset
Uy, C Uy, NU,, such that the following holds. For each k € {1,2}, let iy : Uy, — Uy,

be the G-equivariant inclusion map and let
i5Se, = { ((GWe, = Urpy, 57y, 355, ) | € € (0,1]}

be the restriction of S, to U,,,. Then we require the CF-perturbation representatives

178y, , 158, of U on U, to be equivalent as in Definition 8.15.
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Definition 8.17 (Equivalent G-equivariant CF-perturbations on a Kuranishi chart). Let
SW ={S |t € R} and S? = {S; | j € J} be G-equivariant CF-perturbation representatives
on a G-equivariant Kuranishi chart i = (U, £,1, s). Then the G-equivariant CF-perturbations
SW 8@ on Y are said to be equivalent if, whenever z € U, N U; for some v € R,j € J,
there exists a G-invariant suborbifold Uy C U such that Uy C U, NUj and the following holds.
Let i, : Uy — U, and 4; : Uy — U;j be the G-equivariant inclusion maps. Then we require

iy S, 47 Sy to be equivalent on Uy.

Definition 8.18 (G-equivariant CF-perturbation on a Kuranishi chart). Let S be a G-
equivariant CF-perturbation representative on a G-equivariant Kuranishi chart 4. A G-

equivariant CF-perturbation on U represented by S is the class

/ S’ is a CF-perturbation representative on U,
[S5]=4S

S’ is equivalent to S

of G-equivariant CF-perturbation representatives on U that are equivalent to S.

Definition 8.19. Let U = (U, &, 1, s) be a G-equivariant Kuranishi chart and let
S = {8 = (W = U, 7, 85) | e € (0,1]}

be a CF-perturbation on a G-invariant open subset U, C U.

i) S, is said to be transverse to zero if, V0 < € < 1, the map 5§|W§ is transverse to the

zero section on some G-invariant neighborhood W C W, of the support of 7,.

ii) Let L be a smooth manifold. A G-equivariant smooth map f, : U, — L is said to be
strongly submersive with respect to S, if S, is transverse to zero and, V0 < e <1, ,

the map

Jeo v w10y

is a submersion on some G-invariant neighborhood W C W, of the support of 7,.
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iii) Let f.: U, — L be strongly submersive with respect to S, and g : N — L be a smooth

manifold between manifolds. We say f, is strongly transverse to g if S, is transverse

to zero and, for any € € (0, 1] and any z € (s¢)7'(0), the map f, o 1, (s¢)-1(0) 1S transverse

to g.

Definition 8.20. Let U = (U, &,1,s) be a G-equivariant Kuranishi chart. Let [S] be a

G-equivariant CF-perturbation on U, where S = {S, | v € R} and
S =1{8 =W, 5 U, 7,55 | e € (0,1]}.
i) [S] is said to be transverse to zero if S, is transverse to zero for all v € R.

ii) Let L be a smooth manifold. Let i, : U, — U be the G-equivariant inclusion map. A
G-equivariant smooth map f : U — L is said to be strongly submersive with respect
to [S] if [S] is transverse to zero and f o, is strongly submersive with respect to S, for

all v € fR.

iii) We can define strong transversality between a strongly submersive map from a Kuranishi
chart and a smooth map from a smooth manifold to the same target smooth manifold

similarly.

Definition 8.21 (G-equivariant CF-perturbation on a Kuranishi space). A G-equivariant

CF-perturbation on a space M with a Kuranishi structure with corners
U= {U,|pe M}, {dy|peM,qeimi,})
is a collection
S =A{[S,][p € M}
such that the following holds.
i) For each p € M, [S,] is a G-equivariant CF-perturbation on U, represented by
S, = {S; = (Wp,5,,7) ‘ e € (0, 1]}
on U,.
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ii) For any p € M, ¢ € im1),, the data [Sq|UPJ and [S,] are compatible with the G-

equivariant Kuranishi coordinate change

Apg = (apq 2 Upg = Uy, O 1 €y |qu — 5p>

in the following sense.

a) For each x € Uy, y = ap,(x), there exist a G-invariant open neighborhood
Uy C Uy, of x and a G-invariant open neighborhood U, , = a,,(U, ) of y such

that there exist G-equivariant CF-perturbation representatives

— € _ €
Sq,m - (Wq,wvsq,xv Tq,z) ’ Spuy - (Wpyyvﬁp,y’ Tp,y)

of [Sq|Uq,J’ [SP|U,,,J satisfying the following.
o W, C W, Wy, CW,are G invariant suborbifolds such that W, LN Wy
is a G-equivariant diffeomorphism.
* (hpg)c(Tgw) = Tpy-

® S S

€ — &€ € — &€
EC gq‘wqyz’ Py 5p{Wp,y‘

e For each € € (0, 1], the following diagram commutes.

a
(C:q,Uq,I = gplUp,z

€ €
sqviT Tspay

Wya Ting Wy

We can define a G-equivariant CF-perturbation

U= (B, <), {U [peP} {dlp,aeB,a<p})
on a G-equivariant good coordinate system similarly.

Definition 8.22 (G-invariant partition of unity on a good coordinate system). Let (M,Zj )

be a space with G-equivariant good coordinate system

U= (B, <), {Us | p € B}, {Galpoa€Bq<p}).
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Let (l%, IE**) be a G-equivariant support pair and let 6 > 0. Take a G-invariant metric on
[ICT+]. A collection of functions {x, | p € B} is said to be a G-invariant partition of unity

on (M,ﬁ) with respect to the data (I%, I%**, 5) if it satisfies the following.

i) For each p, let
Q(K,0) == {z e K] | d(z,K;) <}

ii) For each p, x, : [KTT| — [0, 1] is a G-invariant strongly smooth function in the following

sense:

XP|IC,T+OQP(IC,6) . ]C;’"' M Qp(]C, 5) — [07 1]

is G-invariant and smooth.
iii) For each p, we require supp x, C €2,(K, 9).
iv) There exists an open neighborhood A of M in |K**]| such that

pr(x)zl Vo e N.
P

Lemma 8.3. There exists a G-invariant partition of unity satisfying definition 8.22 subordi-

nate to the G-equivariant good coordinate system associated with the Kuranishi structure on

M1(L, J, 5) in Proposition 5.1.

Proof. Let <I€, l%**) be a G-equivariant support pair of the given good coordinate system.
Take a G-invariant metric on [K*t*|. Then by [20] Proposition 7.68, if § > 0 is sufficiently
small, a partition of unity ¥, associated with the data (M,Zj, /%, /%**, 5) that may not be
G-invariant exists. We average X, with respect to the G-action to obtain x,, which is now

G-invariant. O
We will define some sheaves of G-equivariant CF-perturbations via étale spaces.

Definition 8.23 (Etale space). An étale space over a topological space Y is a pair (A, p)
consisting of a topological space A and a continuous map p: A — Y such that p is a local

homeomorphism.
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Given an étale space over Y, one can construct a sheaf as follows. Let 2 be any open

subset of Y. We assign {2 the set of sections
I',A) ={s: Q2 — A s is continuous, po s = Idg}.

Definition 8.24 (Sheaf of G-equivariant CF-perturbations on a chart). Let U, be a G-
equivariant Kuranishi chart. For any open subset 2/G C U, /G, which is a quotient of a

G-invariant open subset (2 of U, let
CF(Q)

be the set of G-equivariant CF-perturbations of U, on €. Similar to [20] Proposition 7.22,
CFCH defines a sheaf on Uy,/G. We define the stalk of CF G at a point z € U, by taking
the direct limit

(CFEH), = lim CFE(Q), (8.2.2)

Qoz
where 2 runs through all G-invariant open subsets of U, containing x. Indeed, the direct

limit, up to isomorphism, can be constructed as

| JeFete@) ~,

Qoz

where, if [S)] € CFE(Q) and [S,] € CFEY (), then [Si] ~ [Sy] if and only if there exists
a G-invariant " C U, contained in both €2 and ', such that z € Q" and [S1|g] = [Sa|gn]-
For each G-invariant open subset 2 C U, containing x, there is a map
CFOH(Q) — (CFCEH),, [S] — [S.]. (8.2.3)
A member of (CFEH), is called a germ.
Definition 8.25. Let (M,LA{) be a space with a G-equivariant good coordinate system.
Suppose G acts on each Kuranishi chart freely. Let K be a support system on o and let
IIC| be as in (8.1.4). Let € [K| and @ : | | K, — |K| be the map that identifies equivalent
elements. Suppose
Pa)={peP|Q (@) NK, #0}={p < <p}, (8.2.4)
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where p,,...,p, are distinct. We denote the maximal such p, by p(z). We introduce the

following notations.
i) Define
(CFY), = {[S.] € (CFEHw@), | S, is restrictable to U, Vp € PB(x)}. (8.2.5)

Let

crel= | A} x CFD).
[zl€lKl/G

and p¢ : |CFg| — IK|/G, (z],[S.]) — [z]. We can topologize |CFg| in a way

similar to [20] Definition 12.20 such that p¢ becomes a local homeomorphism. Then
Q)G CFE(Q) = {[S]: Q= |CF{ | | [S] is continuous, p o [S] = Ida/c }
defines a sheaf on |[K|/G.

ii) Define

(CFSox)e = {[S:] € (CF). | Sy is transverse to zero} . (8.2.6)

One can similarly obtain a sheaf C]—"ﬁo,,C on |[K|/G.
iii) Let f: (./\/l,Z/A{ ) — L be a G-equivariant strongly smooth map. Define
mflc { € (CFQ). fis strongly submersive with respect to Sm} . (8.2.7)
This defines a sheaf C}"gﬁ,c on |[K|/G.

iv) Let ]?: (M,ﬁ) — L be a G-equivariant strongly smooth map and g : N — L be a

smooth map between manifolds. Define

G G fis strongly transverse to ¢
(CFfigic)e = § [Sa] € (CFi)a . (8.2.8)
with respect to S,

This defines a sheaf Cf?mgﬁ on |[K|/G.
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Definition 8.26 (Strongly transverse). Let U be a G-equivariant Kuranishi chart on M
and let € Y. Suppose [S,] is a germ at z. Let (W, <% U,, 7., {5}) be a representative
of [S;]. Let (Vx,Fx,Fx,gox,{ﬁZV) and (Vx,Fx,Ex,gox,gﬁi) be orbibundle charts of W, & at =,

respectively. In particular, there exists a unique o, € V, such that ¢,(0,) = x.

v @<
Vex Fp=—W, , VoxE,——¢&|, . (8.2.9)
pﬁl lvz prlj( Jw
V, —2 U, V. LU,

Let 55 = pryo ((ﬁi)fl 05 0pY : V, x F, » E,. We say [S,] is strongly transverse if,
Ve € (0, 1], the derivative
ViveSe : TeFy = T.E,

in the Fj-direction is surjective for all (v,£) € (@Z‘/‘T)f1 (v;'(0,) Nsupp(7,)). Define

(CFG0)e = {[S:] € (CFR)s | Sy is strongly transverse} . (8.2.10)

Proposition 8.1. Let (M,ﬁ) be a space with a G-equivariant good coordinate system.
Suppose G acts on each chart freely. Let K be a support system on U and let |C| be as in
(8.1.4).

i) The sheaves CFy,CFg c are soft.

i) If ]?is weakly submersive then the sheaf CF' ngC is soft. If fis weakly transverse to g,

then Cf?rﬁg,lC is soft.

Proof. The proof is similar to that of [20] Theorem 12.24. Let K = {K, | p € P} be
a G-equivariant support system on M as in Definition 8.6. Let |K| = | | K,/ ~ be the
heterodimensional compactum as defined in (8.1.4).

Let x € |[K| and Q : | | K, — |K| be the map that identifies equivalent elements. Then,

by the definition of a good coordinate system, we have a totally ordered set

Px)={peP|Q '(x)N Ky #0} ={p; <...<pp} (8.2.11)
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for some positive integer k. We denote the maximal element p, by p(z) and the minimal

element p; by p_(x).

Lemma 8.4. There exists a germ [S,] € (CF), such that [Sw’Upl] € (Cfgd’%“)x.

Proof of Lemma 8.4. We construct, for each j, a germ [S; ] € (Cf?[’)upj)m such that, V1 <

J <k, [S;4] is restrictable to U, for all i < j.

We induct on 1 < j < k. Let j = 1. Take a G-invariant neighborhood U; C U,, of x on
which the coordinate change dpy)p, is defined. Let Wy = &, |U1 2L U; be the restriction of
the obstruction bundle for p; and 7; be a G-equivariant Thom form. Define s7 : W; — &, |U1

by

s{(w) = sp, o1 (w) + ew Yw € Wh. (8.2.12)

Then

81 = [(Wi 2 U, {s5))]

is strongly transverse. Then [S; ] € (CF ﬁﬁﬁﬂ“)z. Note that the following holds.

Gy, Gy,
o (CFiio)e C(CF ™ )a

o If { is weakly submersive, then (CF g%‘”)z C (CF g}uﬂl)x.

o If f is weakly transverse to g, then (C]:gﬁ’nzg"l)x C (C]-_?r%zpl)x.

Suppose a germ [S;,] € (CF g(’)u” ). is constructed. Then there exists some nonempty
G-equivariant open subset Ujo C Uy, such that the image of [S;] = [(VVJ s Uso, i, {55})}
under the map CFEi (U;) — (CFHi), is [S;.).

We may take a nonempty G-invariant subset U; C Ujy and a nonempty G-equivariant
tubular neighborhood Uy, . C Uy, of oy, +17,,J_(Uj) such that the coordinate change map
W, 09, 18 defined on Uy .. Without loss of generality, we assume U; o = U

Then there is a projection map ; : Ujy1 — U; such that 70y . = 1d on Uj.

Let Wy = m;W; N Uj+1 be the pullback bundle and 754, = 7} 7;.
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For any w € W, define

8541 (w) = 8y, 0 i (1) + By, (5575 (w)) = 5y, 01575 (w))) (8.2.13)

Then
[Sj41] = [<Wj+1 oy Ujt1, Tjt1, {5;41})}

defines a germ [S;y.] € (CFHir1),.

By this construction, [Sy] defines an element [S,] € (CF¢), satisfying Lemma 8.4. [

By forgetting the G-action, the construction coincides with the CF-perturbation con-

structed in [20] Lemma 12.12. In particular, the following holds.

i) [Sw] S (Cf}c)m
i) If 7 is weakly submersive, then [S.] € (C]:%,;c)x-
iii) If 7 is weakly transverse to g, then [S.] € (C—F?mg,;c)x-

Let @« € {th 0, f,f M g}. Suppose K C |K| is a G-invariant closed subset and
[Sk] € CF\(K). Let K** be another G-equivariant support system such that K < K+
Then [Sk] is the restriction of some [S,,] € CF .GJC(UrO N |K]|) for some G-invariant subset Uy,
of |[IC**| containing K.

For each z € |K|\ K, let [S,] and [S;,], 1 < j < p(x), be as in Lemma 8.4.

Since |K| is compact, we may take finitely many points {z, | v € R’} and representatives

[(We 2 Uey me D], [(Wary = Useys Togs 155, 1)] of [S,] and [S;.] such that

SES=1

reR’
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and the following holds.

i) 1o € R and, for all t € R \{to}, U N K = 0.

ii) For any p_(z) <p, < p(x), we consider local charts of the form (8.2.9). Let F, be the
fiber of v, and Ej be the fiber of the orbibundle of Uy . By construction, we have a
I';-equivariant projection 7 : V, ; — V,; and an embedding / J’ :m* &1 — &;. Then, for

any y € V,; and § € F}, the following diagram is commutative.

0 ————TeF, ———— Ty o) (Vo x Fy) ———— T,V ; ————0

Dy, 5?‘ Diy,¢) Sﬁ'l l
TC(EPj)

0— 1 (7(y), By_()) — T.(Ep,)

We may choose the CF-perturbations so that

a) D¢ 8] is surjective.

b) There exists a sufficiently small o, > 0 such that, if |55 —s;|c1 < 0., then the

third vertical map is surjective.

Let {x. | t € R’} be a G-invariant partition of unity subordinate to this covering. Suppose

y € |K|. Let
I(y) ={r e R x:(y) # 0}.
Then @, ., [S] is defined. Let (W:, 7, {s{}) be a representative of aj ., [S. Let
Wy, = 11 We, 7y = 1] = Let (wi)cr) € [ (We],). Let 0 < 0, and define
reR’ reR’ reR’
5, (W) = 5,(2) + Xeo (2) (85, (weo) = 8,(2)) + 0 D xel2) (55(we,) = 5(2)).

rel(y)
If we forget the G-action, the construction is the same as that in [20] Theorem 12.24. Therefore,
the transversality results follow from [20] Theorem 12.24. O

Proposition 8.1 implies the following.
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Proposition 8.2 (Existence of a G-equivariant CF-perturbation on a good coordinate
system). Let <M,Z/A{ ) be a space with G-equivariant good coordinate system. Let K be a

support system on LA{ .
i) There exists a G-equivariant CF-perturbation S of U such that & is transverse to zero.

i) If f: (X ,Z/A{) — L is a weakly submersive G-equivariant strongly smooth map, then S

can be chosen so that ]?is strongly submersive.

This induces a CF-perturbation on some Kuranishi structure on the same space in the

same way as [20] Lemma 9.9.

8.3 Equivariant integration along the fiber

We review the G-equivariant integration along the fiber in Appendix 7?7 and refer the reader
to [31] Chapter 10 for the detailed construction in the case of smooth G-manifolds. The case

of ordinary Kuranishi structures is explained in [20] Chapter 7-9.

Definition 8.27 (G-equivariant integration along the fiber on a chart). Let [S] be a G-
equivariant CF-perturbation transverse to zero on a Kuranishi chart U = (U, &,1), s), where

S ={S. |t e R} and
= {8 =W, & Uy, 1,5 | e € (0,1]}.

Let f: U — L be a G-equivariant strongly smooth map on U such that f : U — L is strongly
submersive with respect to [S]. We define the G-equivariant integration along the fiber
of f via [S] as follows.

Suppose h € Q, (U) and 0 < € < €. Let {x. | v € R} be a partition of unity subordinate
to the covering {U, | v € R}. Define fe (h; S€) € Qg (L) as follows. Let

far (h; 89 () =D fr (xeh(€); S) Ve € S(g),

teR

where f, denotes the integration along the fiber in the case of ordinary Kuranishi structures.
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Definition 8.28 (G-equivariant integration along the fiber on a good coordinate system).

Let (M,ﬁ) be a space with a good coordinate system

U= (B, <), {Us | p € B}, {Galpoa€Ba<p}).

and let L be a smooth manifold. Let 72 <./\/l,27 ) — L be a G-equivariant strongly smooth
map. Let She a CF-perturbation such that ]?is strongly submersive with respect to S. Let
(/%, /%**) be a G-equivariant support pair on (M,ﬁ)

Let h = {hy | p € B} be a compactly supported G-equivariant differential form on M.

Define the G-equivariant integration along the fiber of h with respect to fA, S by

=

(fo): (ﬁ, §€) =Y (fen (Xphms;

peP

Kp(25)ﬂBag(M)> '

This definition is independent of the choices of the support pair and the partition of unity

[20] Proposition 7.81.

Definition 8.29 (G-equivariant integration along the fiber on a Kuranishi space). Let
(M,Z:{\ ) be a space with a G-equivariant Kuranishi structure U with corners and let N be a
smooth manifold. Let f: (M,LA{) — N be a G-equivariant strongly smooth map. Let S be
a CF-perturbation such that fis strongly submersive with respect to S.
Let h = {h, | p € M} be a compactly supported G-equivariant differential form on M.
Then, by Lemma 9.10 of [20], the Kuranishi data U, f,8, h induce (non-uniquely) some

compatible good coordinate system data i , J?, S , T on M such that the conditions in Definition

8.28 are satisfied.

Define the G-equivariant integration along the fiber of h with respect to J/‘\,S'\ by
Jer (0, 8) = Jen (0, 5°). (8.3.1)

This definition is independent of the choices by [20] Theorem 9.14.
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8.4 Equivariant Stokes’ theorem and the smooth
correspondences

Definition 8.30 (Codimension-k corner of a manifold). Let M be a manifold with corners

and k € N. Define Sk(M) to be the closure of the set

there exists a neighborhood V' of x such that
rxeM

V is diffeomorphic to [0, 00)* x R*™*
Lemma/Definition 8.1 (Normalized boundary of a manifold with corners, [20] Lemma 8.2).
For every manifold with corners V', there exists a manifold with corners 9V and a smooth

map 7 : dV — S1(V) such that it induces a double covering map

W}SI(V)\S2(V) :S1(V)\ S2(V) — Si(V).

The Lemma is proved in [20] Lemma 8.2. We call 0V the normalized boundary of V.

Definition 8.31 (Normalized boundary of an orbifold with corners). Let U be an orbifold
with corners and {(V;,T';, ;) | i € I} be an orbifold atlas on U. Then the normalized

boundary of U is given by
oU = U @i(OVi/Ty).

el
Definition 8.32 (Normalized boundary of a Kuranishi space). Let (M, ) be a G-equivariant
Kuranishi space with corners as in Definition 8.4. The normalized boundary 0 (M,Z;{\ ) =
(8./\/1, 81;1\) of M is a Kuranishi space with corners, where

oM =] ¢ (s,"(0)NaU,)

peEM

and
ol = ({0 |p € O MY { ol o, [P € DM, a € (00} ).
which consists of G-equivariant Kuranishi charts
(9Up: <8Up75p|6Up7¢p‘8Up,Sp‘aUp) , VPeaM
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and G-equivariant Kuranishi coordinate change data

&pq‘UquaUq - <O‘pq|qumaUq’ O‘pq‘gqbpqﬁwq) g Vp € OM, q € h(9U,).
We can similarly define the normalized boundary of a good coordinate system.

Definition 8.33 (Normalized boundary of a good coordinate system). Let (./\/l,lj) be a
G-equivariant space with good coordinate system with corners as in Definition 8.5. The
normalized boundary 0 (M,ﬁ) = (8/\/1, GLA{) of (M,Zj) is a good coordinate system with

corners, where

oM = | ¥y (s,"(0) NOT,)

peM

and
oU = ({0 |p € DM {Goaly, o | P € OM.a € 1300} ).
which consists of G-equivariant Kuranishi charts

oy = (8UP’SP‘aUp7¢p|aUp>5p‘aUp>, Vpe oM

and G-equivariant Kuranishi coordinate change data

&pq‘qumaUq - (apq{quﬂaUﬁapq}gqbpqmam,) ’ VPEOM, q¢€ d}p(aUp)'

Theorem 8.1 (G-equivariant Stokes” Theorem on a good coordinate system with corners).
Let (M, 7 ) be a G-equivariant space with good coordinate system with corners as in Definition
8.5. Let N be a smooth G-manifold and fA: (./\/l, i ) — N be a G-equivariant strongly smooth

map such that fis strongly submersive with respect to some CF-perturbation S of i. Then
Wi = {1 € Q(Uy) | p € P} € U (M, U),
the following equality holds for sufficiently small € > 0:
da <J?G' (ﬁ; §E)> = fer (dcﬁ; §E> + (—1)mMDH(Fy (ﬁa; §5> :
where ﬁg, Mo, §§ are the restrictions of ]?, 7, S t0 0 </\/l, [7)
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Proof of Theorem 8.1. For any £ € g, we have
de (for (7:87) ) (€) = d (h ((€); §)) (8.4.1)
and
Jar (e &) (€) + (=)D Ty (703 S5) (€)
=11 (d(7(€)): §) + (—1)ImMDH(F), (7 (€): S) (84.2)
Then (8.4.1) equals (8.4.2) by [20] Theorem 8.11 (the usual Stokes’ Theorem on a good

coordinate system with corners). O

We can prove the following theorem in a similar way by applying [20] Theorem 9.28 (the

usual Stokes” Theorem on a Kuranishi space).

Theorem 8.2 (G-equivariant Stokes’ Theorem on a Kuranishi space with corners). Let
(M, u ) be a G-equivariant Kuranishi space with corners as in 8.4 and Shea CF-perturbation
of U. Let L be a smooth G-manifold and f: (M,LAI) — L be a G-equivariant map that is
strongly submersive with respect to S. Then v e QL (M,LAi ), the following equality holds

for sufficiently small € > 0:
de (J/C\G! (ﬁ, §E>> = fo (dGﬁ, §E> + (=1) MO () ey (ﬁa’%) :
where fa, N9, §§ are the restrictions of ]?, 7, S€tod <M,Z?)

Definition 8.34 (Weakly transverse to a smooth manifold map). Let <./\/l,a) be a G-

equivariant Kuranishi space with Kuranishi structure
U= {U|pe M}, {dy|peM,gecimy,})
Let
F={f:Uy>LlpeM}: (MU) =L

be a G-equivariant strongly smooth map to a smooth G-manifold N. Let g : N — L be a

G-equivariant smooth map between smooth manifolds. f is said to be weakly transverse

to g if f, is transverse to g for each p € M.
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Definition 8.35 (Weakly transverse strongly smooth maps). Let (My,U;), (Ma,Us) be
Kuranishi spaces and N be a smooth manifold. Let ﬁ : (./\/ll,@) — N be a strongly smooth
map for i € {1,2}. Let Ap : L — L x L be the diagonal map. Then we say ]/“\1 and j; are

weakly transverse if the map
Fix ot (M1, ) x (Mo, Uh) — L x L
is weakly transverse to Ay as in Definition 8.34.

Definition 8.36 (Fiber product of a Kuranishi structure with a smooth manifold for maps
in 8.34). Let fbe weakly transverse to g as defined in Definition 8.34. Let f be the map
associated with ans in Definition 8.10. We can define a G-equivariant Kuranishi structure

on the fiber product
M xpN ={(p,m) € MxN | f(p) = g(m)}.

Let (p,m) € M x N and (U,, &, ¥y, Sp) be the Kuranishi neighborhood assigned to p in u.
Let
Up xp N ={(z,m) € Uy x N'| fp(x) = g(m)}.

Let m, : £, — U, be the obstruction bundle of M for p, pr, : U, x;; N — U, be the projection

map to the first factor, and
Tpm) : P Ep = {((w, 2),€) € (Up X1, N) X Ep[w = my(e)} = Up X1, N
be the pullback orbibundle. Then s, induces a section of the pullback orbibundle by
Spm) (W, 2) = ((w, 2), sp(w)) V(w,z) € U, x1, N. (8.4.3)
Let
Upm) = (U(nm) =Up X N, Epmy =0r1E,  Spm),  Vpm) = Vp X IdN) :

Let (¢,2) € Y pm)(z, 2) for some (z,2) € Upm). Then we define
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® Upm),(a.2) = Upg X1 N;
® Q(pm),(q,2) = Opg XN Idy : qu X N — Up X, N ; and
[ a(p’m%(qyz) = apq X, IdN : gpq X N — gp X N.

Then the fiber product M x N induced by fand g is a G-equivariant Kuranishi space with
Kuranishi structure
{Z/{(p,m) } (pv m) e M XLN} >

UXp N = (p,m) € M xN, ;

~

Apq = (Qpm) (0,2)> Apm) (0,2))
(qa Z) € 1m w(p,m)

where

Upm) = (Up X N, Epmy = pri&p, Spm)is given by Eq. (8.4.3) Yipm) = VYp X IdM) )

Definition 8.37 (Fiber product of Kuranishi structures). Let f; : (M,U;) — L and
]?2 : (MZ,Z:{\Q) — L be G-equivariant weakly transverse strongly smooth maps as in Definition
8.35. We define

(M, Uh);, %7, (Mo, Us)

to be the fiber product

((Ml,LAﬁ) X (MQ,Z:{\Q)) X, (L X L)

induced by the weakly transverse maps ]?1 X ]/“\2 and Ay, as in Definition 8.36.

Definition 8.38 (G-equivariant smooth correspondences). Let Ny, N; be oriented compact
smooth G-manifolds without boundary. A G-equivariant smooth correspondence from
N, to N, is a collection of data

x= (MATT).

where

. (./\/l,u ) is an oriented G-equivariant Kuranishi space with corners,
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° ﬁ : (M,LA{) — N, is a G-equivariant strongly smooth map as in 8.10, and

~

o fi: (M,Z; ) — N, is a G-equivariant strongly smooth and weakly submersive map.
A perturbed G-equivariant smooth correspondence from N, to V; is a pair (%, g),

where X = (/\/l, u , f;, ﬁ) is a smooth correspondence from N, to N; and Sisa G-equivariant

CF-perturbation of U with respect to which fAt is strongly submersive.

Definition 8.39 (G-equivariant correspondence map). Let (% = (M,L?,f;,ﬁ),g) be a
perturbed smooth correspondence from N to N;. For € > 0 sufficiently small, we define the

G-equivariant correspondence map by

. . o-+dim Ny —dim (M,
Corr?ﬁ’e’g) tQ%(Ng) = Qg ( )(Nt)

associated with (.’f, §> by
Corr(({ g () = (Fa ((J)em S7) - ¥ € Qu(N,)
Then Stokes” Theorem 8.2 implies the following.

Proposition 8.3 (Compare with [20] Proposition 26.16).

Ge Ge _1)\dim X+deg(-) Ge
dg o Corr<x7§) = COH(%S) odg+ (—1) Corra(x’g).

Definition 8.40 (Composition of smooth correspondences). Let N, N; be oriented com-
pact smooth manifolds without boundary. For each bi-index ji € {21,32}, let X;; =
(Mji,z;l\ji, ]?S;jz., ]?tj) be a smooth correspondence from N; to N;. Assume J?t,21 and ]/”;732 are
weakly submersive. We define the composition X3; = (Mgl,agl, ]/“;731, j';gl) of X9; with X3,
by
<M31,Z:{\31) = (M32,ZZ32) Fasz X fim (Mm,azl) 5
J?s,31 : <M31,Z;31> — My ﬁ) Ny,
J/C;,Bz : (Msl,aal) — M ﬂ No.

Then X3; is again a smooth correspondence.
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Definition 8.41 (Composition of perturbed G-equivariant smooth correspondences). Let
N, N; be oriented compact smooth manifolds without boundary. For each bi-index ji €
{21, 32}, let <%ji, ‘SA'JZ) be a perturbed G-equivariant smooth correspondence from N; to IV,
where X, = (Mji,z;{\ji, ﬁji,ﬁ,ﬁ) Assume ﬁ’gl and fA's732 are weakly submersive. One can

define the composition (%31,331> of <%32,§32) with (%21,3\21) so that
e X3 is the composition of X5; and X35 as in Definition 8.40, and that

® fi 31 is strongly submersive with respect to S3; = So1 Fror X S32, whose construction

we refer to Definition 10.13 of [20].
Then (%31, §31> is again a perturbed G-equivariant smooth correspondence.

Proposition 8.4 (Equivariant composition formula). In the case of Definition 8.41, we have

Ge G,e o Ge
Corr(x%gw) o Corr(xm’gm) = Corr(x31,§31)'

%/31\%
AN SN

Proof. ¥n € Qg(Ny), V€ € g,

Corr?a’;% 50) ° Corrfj’;h Sn) (n)(€)

:Corre(x%gg?) o Corre(mgm)(n(f))

:Corre(xghgm)(n(f)) by [20] Theorem 10.21

=Cort(y o ()(6).

(331,331)
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Appendix A

Orbifolds

We review some orbifold theory in this appendix. The interested reader can read more about
general orbifold theory in [2] and [20] Chapter 23 and equivariant orbifolds and equivariant

Kuranishi charts in [18].

Definition A.1 (Orbifold chart). Let U be a paracompact Hausdorff topological space. An

n-dimensional effective orbifold chart of U is a triple (V, T, ¢) such that
i) V is a smooth n-dimensional manifold (possibly with corners);
ii) T is a finite group acting smoothly and effectively on V';

iii) ¢ : V — U is a continuous map which induces a homeomorphism ¢ : V/I' — (V') onto

an open subset p(V') of U.

Let x € U. We say (V,T',¢) is an orbifold chart at x if there exists a point o, € V such
that ¢(0,) =z and I" - 0, = {0, }. Given an orbifold chart at x, the tangent space of the
orbifold U at x is given by T,,U = (1,,V)/T.

Let (V,T', ) be an orbifold chart and p € V. An orbifold subchart of (VT ) relative
to p is an orbifold chart (V,, I, <p|Vp) such that I', is the isotropy group of I' at p, V, is a

I',-invariant open neighborhood of p in V', and 30|Vp induces an injective map V,/I', — U.
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Definition A.2 (Embedding of orbifold charts). Let f : Uy — Us be a continuous map
between paracompact topological spaces. An embedding (h,\) : (V1,T1, 1) — (Va, [y, 2)

from an orbifold chart of U; to an orbifold chart of U, relative to f consists of
e a group isomorphism h : I'y — I'; and
e an h-equivariant embedding of manifolds A : Vi — V5

such that fop; = w0 A
An embedding of effective orbifold charts is an isomorphism if A is also a diffeomorphism.
If an isomorphism of two orbifold charts on the same topological space U is taken relative to

the identity map, we may simply say it is an isomorphism of orbifold charts.

Definition A.3 (Orbifold). Let U be a paracompact Hausdorff topological space. An

n-dimensional (effective) orbifold atlas is a collection

of n-dimensional effective orbifold charts such that the following holds.

i) g%(‘/%) =U.

ii) If vi(p) = ¢;(q) = z for some p € V;, ¢ € V;, then there exists an isomorphism of

orbifold charts

(hqpa /\qp) : (V;,pv (Fi)pa %“/Lp) — (V},qr (Fj>qa @j‘vj,q):

called a transition map, from some orbifold subchart of (V;,I';, ¢;) relative to p to

some orbifold subchart of (V;,I';, ;) relative to g.

A n-dimensional maximal orbifold atlas A on U is an n-dimensional orbifold atlas such
that: B C A whenever B and A U B are both orbifold atlases on U. An n-dimensional
effective orbifold (U, .A) is a paracompact Hausdorff topological space U equipped with an

n-dimensional maximal orbifold atlas A on U.
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Definition A.4 (Embedding of orbifolds). A topological map f : U; — U, between effective
orbifolds is an embedding of orbifolds if, Vx € U, there exists an embedding of effective
orbifold charts (h,A) from an orbifold chart (V,,T',,¢,) of U; at = to an orbifold chart
(V. I, ) of Uy at y = f(z) relative to f. An embedding of orbifolds is a diffeomorphism
of orbifolds if it is a homeomorphism. Let U be an effective orbifold. We denote the group of
diffeomorphisms from U to itself by Diff (U), which is a topological group under the compact

open topology.

Definition A.5 (Orbibundle chart). Let U, £ be orbifolds and 7 : £ — U be a continuous
surjective map between the underlying topological spaces. An orbibundle chart is a

quintuple (V, E, T, ¢, ), where

e (V.T',¢) is an orbifold chart on U,

e [/ is a finite-dimensional vector space with a linear I'-action, and

e (V x E,T',9) is an orbifold chart on £, where I' acts on V' x E diagonally
such that

i) mop = popr.

ii) @ induces a homeomorphism on the quotients 3 : (V x E)/T" — 7 (®(V/T)) such that

P lomod=Dpry.

)l

v T E¢—>j (V x E)/T T U(B(V/T)).
VU Sy 7T

Definition A.6 (Embedding of orbibundle charts). Let &, Uy, &, Us be orbifolds and m :
& — Uy, my 1 & — Uy be continuous surjective maps between the underlying topological
spaces. Let f :U; — Ug,f: &1 — & be continuous maps such that fom = mo f An
embedding of orbibundle charts is a triple

(ha )\7/):) : (‘/17E17F17S01ﬂ{51) — (‘/27E27F2a9027{52)
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from an orbibundle chart on 7 : £& — U; to an orbibundle chart on w9 : & — Us relative to

~

(f, f) such that the following holds.
i) (h,A): (V1,T1,¢1) = (V,T'9, ¢9) is an embedding of orbifold charts relative to f.

ii) (h,/):) : (Vi x B, Ty, 01) — (Vo X By, Ty, 95) is an embedding of orbifold charts relative
to f
iii) If my, : Vi x By — V; and my, @ Vo X Ey — V3 are projection maps to their first factors,

then

a) Aoy, =my, oA and

~

b) for each z € V3, A o {z} x By — {\(z)} x Ej is a linear embedding.
T XLy

An embedding of orbibundle charts is an isomorphism if (i, \) and (A, /):) define isomor-

phisms of orbifold charts and, for each z € V, A (s {x} x By = {\(2)} x Fy is a linear
Ty XL

isomorphism.

Definition A.7 (Orbibundle subchart at a point). Let (V,E,I',p,®) be an orbibun-
dle chart. If (V,,I'y, ¢l ) is an orbifold subchart of (V.T',¢) relative to p € V, then
(V,,,E7Fp,g0|vp,g5]vpx ) is also an orbibundle chart, called an orbibundle subchart of

(V,E.T, ¢, o) at p.

Definition A.8 (Orbibundle atlas). Let U, £ be orbifolds and 7 : £ — U be a continuous
surjective map between the underlying topological spaces. An orbibundle atlas is a locally

finite collection of orbibundle charts
{(Vi, B, T pi, @) | i € I}
such that
i) {(Vi,Ty, ;)| € I} is an orbifold atlas on U;

i) {(Vi x E;,T';,%;) | i € I} is an orbifold atlas on &;
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iii) for any ¢,7 € 1, if p € V;, ¢ € V; satisty ¢;(p) = ¢;(¢), then there exist an isomorphism

(hqpa)‘qpvxqﬁ : (Vz’,p,Ez',rz',p7%0|wpa@}wpri) - <Vj7anijj,q=90|vj,qv@‘me)

between an orbibundle subchart of (V;, E;, I';, ¢;, $;) at p and an orbibundle subchart

of (V}ijaFj?SOj)@j) at q.
Definition A.9 (Embedding of orbibundles). For o € {1, 2}, let
(Ea 2 Uy Vo= {(V B2 T8, 60, 30) |i € L})

be a pair such that 9& is an orbibundle atlas on &, =% U,. An embedding of orbibundles
(f, f) : (51 LENYIS )71> — (82 KEN U27Z:{\2) consists of two orbifold embeddings Uy i) U, and

& i> &, such that the follows holds.

i) Forany i € I1,j € I and p € V!, ¢ € V}? with f(¢;(p)) = ¢3(q), there exists an embed-
ding (hqp, faps ]?qp) relative to < f, f), from an orbibundle subchart of (V;!, E} T}, o}, 1)

at p to an orbibundle subchart of (V?, E7, T2, % $?) at q.
ii) mo f: fom.

Two orbibundle atlases 171, 172 on £ 5 U are equivalent if the pair of identity maps
(Id, I/(\i) : (8 55U, )71> — (8 55U, )72> is an embedding of orbibundles and Id, Id are diffeo-

morphisms of orbifolds.

Definition A.10 (Orbibundle). An orbibundle (£ & U, [9]) consists of a continuous
surjective map £ = U between the underlying topological spaces of two orbifolds and an

equivalence class of orbibundle atlases on .

Definition A.11 (G-action on an orbifold). Let G be a compact connected Lie group and U

be an effective orbifold. A continuous group homomorphism
a: G — Diff(U), a(g)(x)=g-x VreUl,

is a smooth action of G on U, if Vg € G,Vx € U there exist
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e an open neighborhood R of g in G,
e orbifold charts (Vi, Iz, ) at z and (V,, I, ¢,) at y =g -z of U,
e a group isomorphism hg, : I'; — F; , and
e a smooth map f,,: R xV, = V]
such that the following holds.
i) fgz 1S hgg-equivariant:

foa(v D) = hg (V) fyu(p) VP €V,

ii) 0,(9-p) =g @a(p) for all p € V.
An effective orbifold equipped with a smooth G-action is called a G-orbifold.

Definition A.12 (G-equivariant orbibundle). Let 7 : &€ — U be an orbibundle between
G-orbifolds and

{(Vi, Bi, Uiy 00, 03) i € 1}
be an orbibundle atlas on 7. Then, in particular, Vg € G, x € £, the G-action on £ induces
some smooth map fy, : R x (V, x E,) = V,, x E,,. We say 7 is a G-equivariant

orbibundle if the following holds.
i) 7 is G-equivariant: 7(g-z) =g - 7(x) Vge G, Vrxel.
ii) For each g € G,p € Vi, the map
E, = E,., v+ pryofy (g, x,v)
is linear.

A G-equivariant section of a G-equivariant orbibundle 7 : &€ — U is an orbifold
embedding s : U — & such that ros =1dy and g - s(z) = s(g-x) forallg e G, x € U.
An embedding of G-equivariant orbibundles (f, f) : (81 LENYI 171) — (52 SEN UQ,LAlg)

is an embedding of orbibundles such that f, anre both G-equivariant.
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Definition A.13 (Differential form on an orbifold). A differential form on an orbifold

(U, {(Vi, Ty, ;) | i € I}) is a collection
n={meV)"|iel}

which associates each orbifold chart (V;, T, ;) with a [';-invariant differential form »; € Q(V;)

such that the following holds.
i) If (h,A) = (Vi, T, i) = (V},T;, ;) is an isomorphism of orbifold charts, then A*n; = n;.
ii) If B, = (V},I', ;) is an orbifold subchart of (V;, T, ¢;), then n; = 77i|sBj~

Denote the set of differential forms on U by (U). An orientation on an orbifold U is a

choice of a differential form n € Q(U) such that 7; never vanishes.

Definition A.14 (Equivariant differential forms an orbifold). Let U be a G-orbifold and
Q(U) be the space of differential forms on U. The set of G-equivariant differential forms
on U is given by

Q(U) = (V) ® S(g7)"
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Appendix B

Rigid analytic geometry

In this appendix, we review some basic definitions and properties of rigid analytic geometry.
We refer the interested reader to [6], [5], [17], [41], [46], [7], and [12]. For tropical analytic
geometry and polyhedral domains (of the form trop=(A), where A is a polyhedron), we refer
the

We will work over an algebraically closed field A, which is a non-Archimedean field, namely,
a field that is complete with respect to a non-Archimedean absolute value (see Definition
B.2). Note that the general rigid analytic geometry concerns a non-Archimedean field K,

which may not be algebraically closed.

Definition B.1 (Non-Archimedean valuation). A function val : A — RU{oco} is a non-

Archimedean valuation on A if the following holds.
i) val(a) = oo if and only if a = 0.
ii) val(ab) = val(a) + val(b) for all a,b € A.
iii) val(a 4+ b) > min{val(a), val(b)} for all a,b € A.

Definition B.2 (Non-Archimedean absolute value). A function |- | : A — Rs¢ is a non-

Archimedean absolute value on A if the following holds.
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i) |a] =0 if and only if a = 0.
ii) |ab| = |a| + |b] for all a,b € A.
iii) |a + b < max{|al, |b|} for all a,b € A.

From iii) one can see that |n-a| < |a| for any n € N, |a] > 0, which shows that the
Archimedean property does not hold for a non-Archimedean absolute value. We can associate

a non-Archimedean absolute value to a field with non-Archimedean valuation by defining
—val(a)

’a|::€ )

where e is FEuler’s number.

We now introduce some major players of rigid analytic geometry.
Definition B.3 (Closed unit polydisc B}). The closed unit polydisc B} is defined by
By ={(z1,...,2,) € A" ||;] <1 VI <i<n}.
The set of all power series that converge on B} is called the Tate algebra.

Definition B.4 (Tate algebra). Let n > 1. The Tate algebra in n variables is defined by

Tn: {ZGC$CEA[[Z'1,...,$n]]

ceN™

a. € A, lim |a| = 0} :

le|—o0

where if ¢ = (¢1,...,¢,) is a multi-index, then z¢ = 7' -+ 25 and |¢| = ¢1 + -+ + ¢y.

Equivalently,

T, = {Zacxc € Afzy, ..., 2,]

ceN™

lim val(a.) = oo} .

le|—o0

We denote it by A (z1,...,z,). In particular, Ty = A.

Proposition B.1 (Properties of the Tate algebra). Let n > 1. The Tate algebra T,, is normal

and is a Noetherian integral domain.

156



Definition B.5 (A-affinoid algebra and A-affinoid space). A A-algebra that is isomorphic to
T, /I for some ideal I in T, is called a A-affinoid algebra and the maximal spectrum of A,
denoted by

SpA={a C A|aisamaximal ideal of A},

is called a A-affinoid space. A A-algebra morphism f : A — B between two A-affinoid
algebras is called a morphism of A-affinoid algebras. If f# : Sp B — Sp A is induced by

a morphism f : A — B of A-affinoid algebras such that
f#(m) = f""(m) VmeSpB,
then f# is called a morphism of A-affinoid spaces.

Definition B.6 (A-affinoid subdomain). Let f : A — B be a A-affinoid algebra homo-
morphism. Then f#(Sp B) is a A-affinoid subdomain of Sp A if the following universal
property holds. Whenever g : A — (' is a A-affinoid algebra homomorphism such that
g”*(SpC) C f#(Sp B), there exists a unique morphism h : A — C of A-affinoid algebras such
that g% = f# o h#.

We call such a morphism f# of A-affinoid spaces an open immersion if it satisfies the

universal property as above.

By [6] Proposition 7.7.2/1, if f# : Sp B — Sp A satisfies the universal property, then it
is injective. So the affinoid subdomain f#(Sp B) C Sp A can be identified with the affinoid

space Sp B.

Definition B.7 (Grothendieck topology). A Grothendieck topology (G-topology)

consists of
e a category C, called the admissible open subsets, and,

e for each U € ob(C, a set CovU, called the set of admissible coverings of U, which

consists of families of the form (U; SN o) )ier, where each ®; is a morphism in C,
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such that the following holds.
i) If ® : U’ — U is an isomorphism in morC, then the family (" = U) € Cov U.

i) Tf (U; 25 Ui € Cov U and (U —2 Uy)jes € Cov Us, then (Uy; — Uy 25 Uiy jes €

Cov U.

ii) If (U; RN U)ier € CovU and V' — U belongs to mor C, then the fiber products U; xy V/

exist in C and (U; xy V' — V);er belongs to Cov V.

A category with a Grothendieck topology is called a site. It’s a generalization of a
topological space. A topological space can be viewed as a site whose admissible open subsets
are open subsets of X and the set of admissible coverings of an open subset U of X consists

of the open covers of U.

Definition B.8 (Weak Grothendieck topology on a A-affinoid space). The weak G-topology
on a A-affinoid space X is defined as follows. The admissible open subsets are the affinoid
subdomains of X and the admissible coverings of an affinoid subdomain U C X are the

coverings of U by finitely many affinoid subdomains of X.

Definition B.9 (Structure sheaf). Let X be an affinoid space. We define a structure presheaf
O'x on the site X as follows. Let U C X be an affinoid subdomain of X which is the image of
a morphism f# : Sp B — Sp A of affinoid spaces. &' x(U) = B. By Tate’s acyclicity theorem
[5] 4.3/Theorem 1, O is a shealf.

Definition B.10 (Strong Grothendieck topology on a A-affinoid space). The strong G-

topology on a A-affinoid space X is defined as follows.

e A subset U C X is admissible open if there is a covering U = |J U; of U by (not
i€l

necessarily finitely many) affinoid subdomains U; of X such that, for any A-affinoid

space morphism ¢ : Y — X with ¢(Y) C U, the covering {¢~(U;) }icr has a refinement

which is a covering by finitely many affinoid subdomains of Y.
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e A covering U = |J U; of an admissible open subset U of X is admissible if, for each
jeJ
affinoid space morphism ¢ : Y — X with ¢(Y') C U, the covering {¢ ' (U;) }icr has a

refinement which is a covering by finitely many affinoid subdomains of Y.

Any sheaf defined with respect to the weak G-topology extends uniquely to a sheaf with
respect to the strong G-topology. In particular, &'x extends to a sheaf with respect to the

strong G-topology.

Definition B.11 (A-rigid analytic space). A A-rigid analytic space is a pair (X, ' x) such

that the following holds.

i) X can be endowed with a G-topology which satisfies the completeness conditions in

the following sense.

(GO) 0, X are admissible open.

(G1) If U = U;¢; Ui is an admissible covering and V' C U is a subset such that V N U;

is admissible open for all ¢, then V' is admissible open in X.

(G2) If U, U; are admissible open for all i € I and U = |J U; is an admissible covering
iel
which admits an admissible refinement, then (U;);cs is an admissible covering of

U.

ii) Ox is a sheaf of A-algebras such that there exists an admissible covering X = (J X;
i€l
where each (X, Ox |x,) is a A-affinoid space.

Proposition B.2 ([5] 5.1/Proposition 7). Suppose X is an affinoid space with the strong
Grothendieck topology and f € 0 x(X). Let

U={zeX|[|f(2) <1}, U={zeX||f(x)|>1}, U'={rveX||f(z)]>0}

Then any finite union of the sets of these types is admissible open in the strong G-topology.

Any finite covering by finite unions of such sets is admissible.
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Definition B.12 (Dimension of a rigid analytic space). Let X be a rigid analytic space and
x € X. Define
ﬁX@ = 1&1 ﬁx(U),

Uszx

where the direct limit is taken over all admissible open subsets U of X containing x.
The dimension dim, X of a rigid analytic space X at a point x € X is defined to be the

Krull dimension of &'x,. The dimension dim X of a rigid analytic space X is defined to be

dim X :=supdim, X =supdimOx, .
zeX zeX

In particular, the dimension of a A-affinoid space X = Sp A is the Krull dimension of A.

For any A-scheme X of finite type, one can associate a A-rigid analytic space X" with

X such that the underlying set of X" is the set of closed points of X.
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Appendix C

Tropical geometry

We review some tropical geometry which we use in Chapter 6.

Let A be a field with a valuation and A* = A\ {0}. Let
Ao ={y e Alval(y) 20}, Ay ={yeA|val(y) >0},

and k = Ag/A, be the residue field.

Recall there is a tropicalization map defined on the algebraic n-torus (A*)™:

trop : (A*)" — R", Y1y Yn) — (val(yr), ..., val(y,)).

Definition C.1 (Tropicalization of a Laurent polynomial). For any Laurent polynomial

F=Y aw €Ayt Lyt

ceZ™

where y© :=yi* - - -y, a. € A, define the tropicalization trop f : R" — R of f by
(trop f)(u) = min{val(a.) + (u,c) | c€ Z"}  Vu e R".

Definition C.2 (Tropical variety). We define the tropical hypersurface V (trop f) associ-
ated with a Laurent polynomial
f=> aw €Ay ... u]
ceZ™
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such that v € R" is an element of V (trop f) if and only if there exist at least two ¢, ¢’ € Z"
such that

trop(f)(u) = val(ay) + (u, ') = val(apr) + (u, ") .
Let I C Alyf", ..., y*'] be an ideal. The tropical variety associated with V(1) is defined to
be

V (trop(I ﬂ trop(V

Definition C.3 (Initial form/ideal). Let

Zacy c Ay, ... yf], ueR".
ceZ™
The Laurent polynomial
/Lnu(f) - Z T_val(aC)a y 6 kl:yl AR ’y;tl]’

n

ce
trop(f) (u)=val(ac)+(uc)

where T" € A is an element satisfying
val(T?) = A VA € val(A¥)

and : A* — k* is the reduction map, is called the initial form of the Laurent polynomial
f at u. Similarly, if I is an ideal in Afy;i', ..., y*!] and u € R", the initial ideal in, (1) is
given by

inu(l) = (inu(f) [ f€1).

Theorem C.1 (Kapranov’s Theorem, [42] Theorem 3.1.3). Let A be an algebraically closed

field with a non-trivial valuation. Let

f= Zacy e Alyft, ..y

ceZ™

be a Laurent polynomial. Then
V(trop f) = {u € R" | in,(f) is not a monomial} = trop(V'(f)),

where the last set is the closure of the image trop(V'(f)) of V/(f) C (A*)™ under the coordinate-

wise valuation map in R".
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Theorem C.2 (Fundamental theorem of tropical algebraic geometry, [42] Theorem 3.2.3).
Let A be an algebraically closed field with a non-trivial valuation. Let I C Afyi, ...,y be
an ideal. Then

(trop(V(f)) = {u € R" | in,(I) # (1)} = rop(V (D)),

fel
where the last set is the closure of the image trop(V (1)) of V(1) C (A*)™ under the coordinate-

wise valuation map in R".
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