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Abstract of the Dissertation

Equivariant Lagrangian Floer Theory on Compact Toric Manifolds

by

Yao Xiao

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

We introduce an equivariant Lagrangian Floer theory on compact symplectic toric man-

ifolds for the subtorus actions. We prove that the set of Lagrangian torus fibers (with

weak bounding cochain data) with non-vanishing equivariant Lagrangian Floer cohomology

forms a rigid analytic space. We can apply tropical geometry to locate such Lagrangian

torus fibers in the moment polytope. In addition, we apply equivariant theory to show that

moment Lagrangian correspondences induced by symplectic reduction are unobstructed after

bulk deformation, assuming the existence of certain equivariant Kuranishi structures and

compatible equivariant CF-perturbations.
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Chapter 1

Introduction

The study of Hamiltonian group actions on symplectic manifolds traces back to classical

mechanics, predating the invention of the term “symplectic manifold” and remains a main

theme in symplectic geometry. Notably, Noether’s principle states that every symmetry

on a physical system corresponds to a conservation law. For instance, time translation

symmetry corresponds to the conservation of energy, and rotational symmetry corresponds

to the conservation of angular momentum. In fact, on general symplectic manifolds that

are equipped with Hamiltonian group actions, we can interpret this beautiful principle as a

correspondence between smooth functions that are invariant under the Hamiltonian action

and smooth functions whose flows preserve the moment maps.

Symplectic structures that arise through symplectic reduction with respect to Hamiltonian

group actions, a procedure that generalizes the reduction of dimension of a physical system

by exploiting symmetry, are prevalent. Such a construction, however, often results in rather

singular spaces. Besides leveraging the symmetry to study the symplectic manifolds with

group actions themselves, we are also interested in applying equivariant theories on such

manifolds to study their possibly singular symplectic quotients.

Lagrangian Floer cohomology was developed by Floer [16] and generalized by Fukaya,

Oh, Ohta, and Ono ([24], [25], [20], and other papers by the authors) to study the topology
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of intersection of Lagrangian submanifolds in symplectic manifolds. It is the building block

of the derived Fukaya category of a symplectic manifold, which is predicted by the celebrated

Homological Mirror Symmetry conjecture to be equivalent to the derived category of coherent

sheaves on some “mirror” complex algebraic variety dual to the symplectic manifold.

An equivariant version of Lagrangian Floer theory is expected to be useful for the study

of the intersection of Lagrangian submanifolds invariant under Hamiltonian group actions.

Various constructions of equivariant Lagrangian Floer theory have been made to suit different

scenarios. See [49], [33], [34], [10], [26], [36], [35], and [38] for example. By exploiting the

symmetry on a symplectic manifold, we expect to apply equivariant Lagrangian Floer theory

to investigate the homological mirror symmetry of symplectic manifolds that admit non-trivial

Hamiltonian group actions. In this thesis, we explore an equivariant Lagrangian Floer theory

on compact symplectic toric manifolds, which are examples of symplectic manifolds with

“maximal” symmetry.

The thesis is organized as follows. We prepare the background on equivariant de Rham

theory and compact symplectic toric manifolds in Chapter 2 and Chapter 3. In Chapter

4, assuming the existence of certain equivariant Kuranishi data, we prove that moment

Lagrangian correspondences are unobstructed after bulk deformation. We define an equivariant

Lagrangian Floer theory in Chapter 5 on compact symplectic toric manifolds. In Chapter

6, we prove that the set of Lagrangian torus fibers (with weak bounding cochain data)

with non-vanishing equivariant Lagrangian Floer cohomology forms a rigid analytic space,

where we also apply tropical geometry to locate such Lagrangian torus fibers in the moment

polytope. We also show in Chapter 6) that, in certain cases, that the dimension of such a

rigid analytic space is equal to that of the acting group. In Chapter 7, we show that the

equivariant Lagrangian Floer cohomology in this setup is Hamiltonian isotopy invariant.

Lastly, we discuss equivariant Kuranishi structures in Chapter 8. Section 4.3 is based on [52],

and Chapter 5–8 are based on [51].
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Chapter 2

Equivariant de Rham theory

In this chapter, we review some properties of equivariant de Rham theory. The equivariant

de Rham theory is particularly useful for simplifying geometric problems involving smooth

manifolds with symmetry. For instance, when the fixed points are isolated, we can utilize

the localization formulas to reduce the integration of certain equivariant differential forms to

some local computations at the connected components of the fixed-point set.

An essential concept that underlies some of the most important applications of equivariant

cohomology is the notion of equivariant integration along the fiber. The construction of the

equivariant integration along the fiber map relies on the existence of equivariant Thom forms

on equivariant vector bundles.

After introducing some preliminary concepts in Section 2.1, we review the definition of

the equivariant de Rham cohomology in Section 2.2 and the Mathai-Quillen construction of

equivariant Thom forms in Section 2.4. Then we discuss the construction and properties of

equivariant integration along the fibers in Section 2.3. Much of the content of this chapter is

borrowed from [31], [50], [3], and [11]. The interested reader is referred to the aforementioned

works for more details.
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2.1 Preliminary definitions

We recall the definition of fundamental vector fields associated to smooth Lie group actions.

Definition 2.1 (Fundamental vector fields). Consider a smooth Lie group action on a

smooth manifold M . Let g be the Lie algebra of G. There is a Lie algebra homomorphism

σ : g→ Γ(TM), which assigns to every X ∈ g its fundamental vector field X on M , as

follows.

σ(X)p := X(p) :=
d

dt

∣∣∣∣
t=0

(e−tX · p) p ∈M. (2.1.1)

Equivalently, if we define jp : G→M by

jp(g) = g · p ∀g ∈ G, (2.1.2)

then

X(p) = (djp)e(−X).

Here the negative signs are used to make σ a Lie algebra homomorphism, rather than an

anti-homomorphism.

The smooth G-action on a smooth manifold M induces two g-actions on the de Rham

complex Ω(M) such that, for all X ∈ g and α ∈ Ω(M),

LX α = LX α and ιXα = ιXα, (2.1.3)

where LX , ιX are the usual Lie derivative and the usual interior product defined on differential

forms.

It is straightforward to see that if f :M → N is a G-equivariant map and X ∈ g, then the

fundamental vector fields XM , XN associated to M,N are f -related in the following sense.

Definition 2.2 (f -related vector fields). Let f :M → N be a smooth map between manifolds.

Then two vector fields Y ∈ Γ(TM), Z ∈ Γ(TN) are f-related if df ◦ Y = Z ◦ f .

We will encounter group actions which are free.
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Definition 2.3 (Locally free and free group actions). A continuous group action by a

topological group G on a topological space M is locally free if the isotropy group Gp is

finite ∀p ∈M , and it is free if Gp is trivial ∀p ∈M .

The quotient of a G-manifold by a free G-action is an example of a principal G-bundle.

Definition 2.4 (Principal G-bundles). Let G be a topological group. A topological principal

G-bundle is a fiber bundle π : P → B with fiber G and an open cover {(U, ϕU)} of B such

that the following holds.

1) G acts continuously and freely on the right of P .

2) For each U , the fiber-preserving homeomorphism ϕU : π−1(U)→ U×G is G-equivariant,

where G acts on U ×G by (x, a) · g = (x, ag).

When we consider smooth G-actions, we can define a principal G-bundle in the smooth

category by requiring that G is a smooth Lie group acting smoothly on P , that π is smooth,

and that the ϕU are diffeomorphisms.

Definition 2.5 (Connection 1-form on a principal G-bundle). A connection 1-form on a

smooth principal G-bundle π : P → B is an element A ∈ Ω1(P )⊗ g such that

g∗A = Adg−1 A, ιXA = X ∀X ∈ g .

Definition 2.6 (Universal G-bundles). Let G be a topological group. A universal G-bundle

is a principal G-bundle π : EG→ BG satisfying the following.

1) Every topological principal G-bundle P → B is isomorphic to the pullback bundle

f ∗EG via a continuous map f : X → BG.

2) If the pullback bundles f ∗EG, g∗EG are isomorphic for some continuous maps f, g :

X → BG, then f, g are homotopic.

The base space BG of the universal G-bundle is called a classifying space for G.
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The following fact is well-known (see for example [31] Section 1.2).

Proposition 2.1 (Existence of universal bundle). For any compact Lie group G, there exists

a universal G-bundle EG→ BG such that EG is contractible.

A compact Lie group G can be embedded in the orthogonal group O(k) for some k ∈ N.

Let

EG(m) = Vk(Rm+k+1) ∀m ∈ N (2.1.4)

be the Stiefel manifold of all orthonormal k-frames on Rm+k+1. Then the quotient of the free

G-action on

EG = lim−→
m

EG(m)

is a universal G-bundle

EG→ BG = EG/G. (2.1.5)

For the rest of the chapter, we will consider the smooth action by a compact connected

Lie group G on a smooth manifold M unless otherwise stated.

Definition 2.7 (Derivations). A function D : A→ A on a graded k-algebra A =
⊕
j∈N

Aj is a

derivation of degree m if

• D : Aj → Aj+m is k-linear for all j ∈ N; and

• D(uv) = (Du)v + (−1)m deg uuDv for all u, v ∈ A.

The derivations ιX ,LX , and d on the de Rham complex of a G-manifold M make Ω(M)

into a g-differential graded algebra, whose definition is given below.

Definition 2.8 (g-differential graded algebras). A graded commutative algebra A =
⊕
j∈N

Aj

is a g-differential graded algebra if there are derivations d,LX , ιX of degrees 1, 0,−1,

respectively, such that the following relations hold:

[d, d] = 0, [LX , d] = 0, [ιX , d] = LX , (2.1.6)
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[ιX , ιY ] = 0, [LX ,LY ] = L[X,Y ]g , [LX , ιY ] = ι[X,Y ]g , (2.1.7)

where

• the brackets [·, ·] on the left sides of the relations denote the graded commutators on

derivations defined by

[D1, D2] = D1D2 − (−1)abD2D1

if D1, D2 are derivations of degree a, b.

• the brackets [·, ·]g on the right denote the Lie brackets on the Lie algebra g.

We will write “g-differential graded algebra” as “g-dga” for short.

Definition 2.9 (Morphisms of g-dgas). A map ϕ : A → A′ between two g-dgas is a

morphism of g-dgas if it commutes with d,LX , and ιX for all X ∈ g.

We can generalize the definition of a connection on a principal G-bundle to one on a

g-dga.

Definition 2.10 (Locally free g-dga). A G-connection on a g-dga A =
⊕
j∈N
Aj is a linear

map A : g∗ → A1 such that, for all X ∈ g and all α ∈ g∗, the following holds.

1) LX(A(α)) = −A(ad∗X(α)).

2) ιX(A(α)) = α(X).

The curvature associated to a connection A is a linear map FA : g∗ → A2 given by

FA = dA+
1

2
[A,A]. (2.1.8)

A g-dga which admits a connection form is said to be locally free.

In [31], a locally free g-dga is called a W ∗-module and the existence of a connection is

called condition (C).
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Lemma 2.1 (G-action is locally free if and only if g-action is free). A smooth action on a

smooth manifold M by a compact connected Lie group G is locally free if and only if

gp = {X ∈ g | X(p) = 0} = {0} ∀p ∈M.

Proof. Consider a smooth G-action on a smooth manifold M . It suffices to show that

Lie(Gp) = gp ∀p ∈M.

Let exp : g→ G be the exponential map on g. Then exp(h) ⊂ H if H ⊂ G and h = Lie(H).

Let X ∈ Lie(Gp) be an element of the Lie algebra of the isotropy group of p for some p ∈M .

Then exp(−tX) ∈ Gp implies that the integral curve fixes p:

exp(−tX) · p = p ∀t ∈ R . (2.1.9)

Thus,

X(p) =
d

dt

∣∣∣∣
t=0

exp(−tX) · p = 0,

showing Lie(Gp) ⊂ gp for all p ∈M .

Conversely, if X(p) = 0, then by uniqueness of the integral curve, (2.1.9) holds. Thus,

X ∈ Lie(Gp).

Proposition 2.2. A smooth action on a smooth manifold M by a compact connected Lie

group G is locally free if and only if Ω(M) is a locally free g-dga.

Proof. We reproduce the proof in [31] §2.3.4. If a G-action is locally free, by Lemma 2.1, for

each p ∈M , there is an injective homomorphism

g→ TpM, X 7→ X(p). (2.1.10)

Fix a basis X1, . . . , Xr for g, a dual basis θ1, . . . , θr for g
∗, and a G-invariant metric g on M

such that, for all p ∈M , the vectors X1(p), . . . , Xr(p) are orthonormal. Then we can define

A : g∗ → Ω1(M) by

A(θi) = g(Xi,−) ∀1 ≤ i ≤ r. (2.1.11)
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Then the one-forms Θi = A(θi), 1 ≤ i ≤ r, span the vertical subbundle V of T ∗M . Let

H = V ⊥ be the horizontal subbundle.

Then

ιXj
(A(θi)) = g(Xi, Xj) = δij = ⟨θi, Xj⟩ ∀i, j.

We now show the G-equivariance

LXA(ξ) = A(ad∗X(ξ)). (2.1.12)

Let k, i ∈ {1 . . . , r}. For any j ∈ {1 . . . , r}, ιXj
(A(θi)) is constant. Thus,

0 = LXk
ιXj

(A(θi))

=
î
LXk

, ιXj

ó
(A(θi)) + ιXj

LXk
(A(θi))

= ι[Xk,Xj ](A(θi)) + ιXj
LXk

(A(θi)). (2.1.13)

Here
î
LXk

, ιXj

ó
is the commutator LXk

ιXj
− ιXj

LXk
. Let the cikj be the structure constants

defined by

[Xk, Xj] =
r∑
i=1

cikjXi.

By (2.1.13), we have

LXk
(A(θi)) = −

r∑
j=1

cikjΘj + αki,

for some horizontal αki. Since the metric is invariant, and both LXk
(A(θi)) and −

∑r
j=1 c

i
kjΘj

are vertical, we have αki = 0. On the other hand, for any j, we have

〈
ad∗Xk

(θi), Xj

〉
= ⟨θi,−[Xk, Xj]⟩ = −cikj.

This implies that ad∗Xk
(θi) = −

∑r
j=1 c

i
kjXj. Thus,

A(ad∗Xk
(θi)) = −

r∑
j=1

cikjg(Xj,−) = −
r∑
j=1

cikjΘj = LXk
(A(θi)).

Therefore, A is a G-connection on Ω(M).

Conversely, if there exists a G-connection A on Ω(M), then gp = {0} for all p ∈M and

thus the G-action is locally free by Lemma 2.1.
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2.2 Equivariant cohomology

A good definition of equivariant cohomology is expected to recover the cohomology of the

quotient manifold when the group action is free. Moreover, the equivariant cohomology

should be a contravariant functor from the category of G-manifolds to the category of rings.

2.2.1 Homotopy quotients and equivariant cohomology

In fact, there is a nice homotopy-theoretic quotient whose cohomology would satisfy these

properties. We review the construction and some basic properties of homotopy quotients in

§2.2.1. For more details about homotopy quotients, we refer the reader to [31] Chapter 1 and

[50] Part I.

Definition 2.11 (Homotopy quotient and equivariant cohomology). Let G be a topological

group which acts continuously on a topological space M . Let EG→ BG be the universal

G-bundle of the group G. The homotopy quotient MG of the G-space M is obtained by

Cartan’s mixing construction (also called the Borel construction):

MG := EG×GM := EG×M/ ∼, (2.2.1)

where

(p, x) ∼ (pg, g−1x) ∀p ∈ EG, ∀x ∈M, ∀g ∈ G.

The G-equivariant cohomology for the topological G-space M over a ring R is defined by

H∗G(M,R) := H∗(MG, R), (2.2.2)

where the right hand side is the singular cohomology of MG.

Given the principal G-bundle EG → BG and a G-manifold M , we obtain the mixing

diagram

EG

��

EG×Moo //

��

M

��

BG EG×GMσ1
oo

σ2
//M/G

. (2.2.3)
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The map σ1 : MG → BG is a fiber bundle with fiber M . And the fiber of the map

σ2 :MG →M/G at Gx is given by

{[p, gx] | p ∈ EG, g ∈ G} = {[pg, x] | p ∈ EG, g ∈ G} ∼= EG/Gx,

where Gx denotes the isotropy group of x ∈M . If G acts on M freely, then M →M/G is a

principal G-bundle and σ2 becomes a fiber bundle with fiber EG.

Theorem 2.1 (Properties of equivariant cohomology, [50] Proposition 9.2 and [50] Theorem

9.5). The G-equivariant cohomology of a G-manifold M satisfy the following properties.

1) (Functoriality of homotopy quotients) Every continuous G-equivariant map f :M → N

between G-spaces induces a continuous map

fG :MG → NG, [p, x] 7→ [p, f(x)]

between homotopy quotients. This defines a covariant functor from the category of

G-spaces to the category of topological spaces.

2) (Functoriality of equivariant cohomology) Every continuous G-equivariant map f :

M → N between G-spaces induces a pullback map

f ∗G : H∗G(N)→ H∗G(M),

which is a contravariant functor from the category of G-spaces to the category of rings.

3) (Free action) If G acts on M freely, then MG and M/G are weakly homotopy equivalent.

In particular, H∗G(M) ∼= H∗(M/G).

Since M → {pt} is a G-equivariant map for every G-manifold M , the induced pullback

map on cohomology endows the equivariant cohomology H∗G(M) a module structure over the

ring

H∗G(pt, R) = H∗(BG,R). (2.2.4)

Corollary 2.1. If M is a G-manifold, then H∗G(M) is a module over the ring H∗(BG).

11



2.2.2 The Weil model

Since we are working mainly with smoothG-manifolds, we are interested in a model reminiscent

of de Rham theory. Our goal now is to extract an algebraic model by looking at the de Rham

complex on the homotopy quotient, whose cohomology agrees with equivariant cohomology by

the de Rham theorem, more carefully. We refer the reader to [31] Chapter 3-4, [50] Chapter

19-20, and [3] for more details regarding the Weil model.

For the rest of the paper, we consider smooth actions by compact connected Lie groups.

Since G acts on EG × M freely, the quotient π : EG × M → EG ×G M is a principal

G-bundle. We observe that, for any principal G-bundle, the pullback map identifies the de

Rham forms on the base with the “basic” forms on the total space.

Theorem 2.2 (Basic forms are invariant and horizontal, [50] Theorem 12.5). Let π : P → B

be a principal G-bundle. Then α ∈ π∗(Ω(B)) if and only if α satisfies the following. For all

X ∈ g,

1) (invariant) LX α = 0, and

2) (horizontal) ιXα = 0.

The following lemma is well-known in equivariant de Rham theory. See [29] Chapter IV

§2 Proposition III or [50] Theorem 12.5 for instance. We will use it for proving Theorem 5.4.

Lemma 2.2 (Basic forms on principal bundles are pullbacks). Let G be a compact connected

Lie group. Let π : P → B be a smooth principal G-bundle. Then π∗ : Ω(B)→ Ωbas(P ) is an

isomorphism.

Proof. Since π is a surjective submersion, π∗ is injective. We now show π∗Ω(B) = Ωbas(P ).

Suppose η = π∗β for some β ∈ Ω(B). Then, for any g ∈ G and its induced diffeomorphism

φg : P → P , we have φ∗gη = φ∗gπ
∗β = (π ◦ φg)∗β = η. Since G is connected, this is equivalent

to Lζη = 0 for all ζ ∈ g, showing that η is G-invariant. Moreover, dπ ◦ ζ = 0 for all ζ ∈ g.

Hence, ιζ(π
∗β) = 0 for all ζ ∈ g. This shows that π∗Ω(B) ⊂ Ωbas(P ).

12



Suppose η ∈ Ω(P ) is G-horizontal and G-invariant. Let
{
Uα ×G

ψα−→ π−1(Uα)
}

be a

trivialization of π. Since ψ∗α commutes with Lζ and ιζ for all ζ ∈ g, the form ψ∗α(η
∣∣
π−1(Ui)

) is

also horizontal and invariant. Thus, there exists a unique βα ∈ Ω(Uα) such that βα ⊗ 1 =

ψ∗α(η
∣∣
π−1(Uα)

). Then (βα)x = (βα′)x if x ∈ Uα∩Uα′ , and we can define β ∈ Ω(B) by βx = (βα)x

for x ∈ Uα. Hence, we have π∗β = η.

Definition 2.12 (Basic subcomplexes). For any g-dga A, we define its basic subcomplex

Abas by

Abas := {α ∈ A | LX α = 0 and ιXα = 0 ∀X ∈ g}.

Corollary 2.2. If G acts on M freely, then there is an isomorphism

π∗ : (Ω(M/G), d)→ (Ωbas(M), d),

from the de Rham complex of M/G to the basic subcomplex of the de Rham complex of M .

Therefore, we have isomorphisms

H∗G(M) ∼= H∗(M/G) ∼= H∗(Ωbas(M), d).

Applying the above to the principal G-bundle EG×M →MG, we have

H∗(MG,R) ∼= H∗(Ωbas(EG×M), d).

This inspires an algebraic model, called the Weil model, for equivariant de Rham coho-

mology.

We first define a g-dga (W (g), D) which resembles (Ω(EG), d) in the sense that

1) W (g) is acyclic. This means that H0(W (g), D) ∼= R and H i(W (g), D) = 0 for all i ≠ 0.

2) W (g) is a locally free g-dga in the sense of Definition 2.10.

Definition 2.13 (Weil algebra). Let g∗ be the dual of the Lie algebra g of G. The Weil

algebra W (g) of g is defined by the following:

W (g) = Λ(g∗)⊗ S(g∗), (2.2.5)
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where Λ(g∗), S(g∗) denote the exterior algebra and symmetric algebra on g∗, respectively.

Let r = dimG. Let X1, . . . , Xr be a basis for g and α1, . . . , αr be a basis for g∗. Denote

θi = αi ⊗ 1 and ui = 1⊗ αi ∀1 ≤ i ≤ r.

Then we identify W (g) = Λ(θ1, . . . , θr)⊗ R[u1, . . . , ur].

The Weil algebra is graded by requiring deg θi = 1 and deg ui = 2 for all i.

Let the ckij be the structure constants in the sense that

[Xi, Xj] =
r∑

k=1

ckijXk ∀1 ≤ i, j ≤ r. (2.2.6)

Thus, if G is abelian, the ckij are 0. Then we define a differential D : W (g)→ W (g) by, for

all 1 ≤ k ≤ r,

Dθk = uk −
1

2

∑
i,j

ckijθiθj, (2.2.7)

Duk =
∑
i,j

ckijuiθj. (2.2.8)

Moreover, we define

ιXθk = αk(X), ιXuk = 0 ∀X ∈ g, (2.2.9)

and

LX = DιX + ιXD ∀X ∈ g . (2.2.10)

The derivations D, ιX ,LX make the Weil algebra W (g) into a g-dga. These definitions are

independent of the chosen basis. (See [50] §19.3.)

Let A =
⊕
j∈N
Aj be a g-dga with a G-connection A : g∗ → A1. Note that we can identify

A with a map A∗ : A∗1 → g and its curvature FA with (FA)∗ : A∗2 → g. We can define a map

κA : W (g) → A, sometimes called the Weil map, as follows. Let κΛ(g∗) : Λ(g
∗) → A be

given by

κΛ(g∗)(β1 ∧ · · · ∧ βk) = (β1 ◦ A∗) ∧ · · · (βk ◦ A∗) ∀β1, . . . , βk ∈ g∗, (2.2.11)
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where βi ◦ A∗ = (A∗1
A∗
−→ g

βi−→ R). And let κS(g∗) : S(g
∗)→ A be given by

κS(g∗)(γ1 · · · γk) = (γ1 ◦ (FA)∗) ∧ · · · ∧ (γk ◦ (FA)∗) ∀γ1, . . . , γk ∈ g∗, (2.2.12)

where γi ◦ FA = (A∗2
(FA)∗−−−→ g

γi−→ R). Then we define κθ : W (g)→ A by

κA(γ ⊗ β) = κΛ(g∗)(γ) ∧ κS(g∗)(β) ∀γ ∈ Λ(g∗), ∀β ∈ S(g∗). (2.2.13)

The map κA and the map it induces on S(g∗)G are sometimes also called Chern-Weil

homomorphisms.

One may find (2.2.7) and (2.2.8) resonant of Cartan’s second structural equation and the

Bianchi identity. In fact, the g-dga structure on W (g) is designed such that the Chern-Weil

homomorphism is a morphism of locally free g-dgas, and Ω(P ) for a principal G-bundle P is

a primitive example of a locally free g-dga. It turns out that the Weil algebra is an universal

object among all locally free g-dgas. By [31] Theorem 3.3.1, W (g) is characterized by the

following. For any g-dga A with a connection θ, there exists a unique map κA : W (g)→ A,

up to chain homotopy, such that the diagram

W (g)
κA // A

g∗

θW (g)

OO

A

== (2.2.14)

commutes, where θW (g) : g
∗ → W (g) is defined by α 7→ α⊗ 1.

We are now ready to introduce the Weil model, an algebraic model for equivariant de

Rham theory.

Definition 2.14 (Weil Model and equivariant de Rham cohomology, v1). The Weil model

for a G-manifold M is given by the following differential complex

(W (g)⊗ Ω(M))bas (2.2.15)

with differential dW = D ⊗ 1 + 1 ⊗ d. Here D is the differential on the Weil algebra as in

(2.2.7)–(2.2.8) and d is the de Rham differential on Ω(M). We define the equivariant de

Rham cohomology by

HdR
G (M) := H∗((W (g)⊗ Ω(M))bas, dW ). (2.2.16)
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If we take M to be a point, for example, then

HdR
G (pt) = H∗(S(g∗)G, dW ),

where S(g∗)G consists of elements of S(g∗) that are invariant under the coadjoint action of g

on g∗. If G is compact and connected, then H∗G(pt)
∼= S(g∗)G.

As expected, the two definitions of equivariant cohomology agree.

Theorem 2.3 (Equivariant de Rham theorem, [31] Theorem 2.5.1). For a compact connected

Lie group G and a smooth G-manifold M , there is an isomorphism

H∗G(M,R) ∼= H∗G,dR(M)

between the equivariant cohomology (2.2.2) defined via homotopy quotients and the equivari-

ant de Rham cohomology (2.2.16) defined via the Weil model.

2.2.3 The Cartan model

The Weil model provides a nice model for equivariant de Rham cohomology, but is in general

hard to compute. It turns out that there is a simplified model, the Cartan model, which is

more computable.

Consider an endomorphism γ : W (g)⊗ Ω(M)→ W (g)⊗ Ω(M) by

γ =

dim g∑
j=1

θj ⊗ ιXj
.

Since θr+1
j = 0, γr+1 = 0 as well. Thus, the map ϕ : W (g)⊗Ω(M)→ W (g)⊗Ω(M) given by

ϕ = exp γ = Id+γ +
1

2
γ ◦ γ +

1

3!
(γ ◦ γ ◦ γ) + · · · (2.2.17)

is a finite sum. This map ϕ, called the Mathai-Quillen isomorphism, transits the Weil

model to a more computable model, called the Cartan model.
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Theorem 2.4 (Mathai-Quillen isomorphism, [31] Theorem 4.2.1, see also [50] Theorem 21.1).

The automorphism

ϕ : W (g)⊗ Ω(M)→ W (g)⊗ Ω(M)

given by (2.2.17) restricts an isomorphism of algebras

(W (g)⊗ Ω(M))hor → W (g)hor ⊗ Ω(M) = S(g∗)⊗ Ω(M), (2.2.18)

α +
∑
|I|>1

θIαI 7→ α, (2.2.19)

with inverse
r∏
i=1

(1− θiιXi
)α← [ α. (2.2.20)

It further restricts an isomorphism of algebras

(W (g)⊗ Ω(M))bas → (S(g∗)⊗ Ω(M))G,

where the latter consists of G-invariant elements of S(g∗)⊗ Ω(M).

The Mathai-Quillen isomorphism carries the differential dW to

dG = 1⊗ d−
r∑
i=1

ui ⊗ ιXi
. (2.2.21)

This motivates the definition of the Cartan model.

Definition 2.15 (Cartan model and equivariant de Rham cohomology, v2). The Cartan

complex for a smooth G-manifold M is given by

ΩG(M) := (Ω(M)⊗ S(g∗))G .

We may identify every element in ΩG(M) as a polynomial map α : g → Ω(M) that is

G-equivariant:

α(Adg−1 X) = g∗α(X) ∀X ∈ g, ∀g ∈ G.

Define the equivariant de Rham differential dG : Ω∗G(M)→ Ω∗+1
G (M) by

(dGα)(X) = d(α(X))− ιX(α(X)) ∀X ∈ g, ∀α ∈ Ω∗G(M).
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An element of ΩG(M) is called a G-equivariant differential form. The grading is given by

ΩG(M) :=
⊕
j∈N

Ωj
G(M), where Ωj

G(M) =
⊕

0≤2l≤dimM

(
Ωj−2l(M)⊗ Sl(g∗)

)G
.

By Theorem 2.4, we can equivalently define the equivariant de Rham cohomology by

H∗G,dR(M) := H∗(ΩG(M), dG). (2.2.22)

Proposition 2.3 (Properties of the Cartan complex).

1) dG is zero on S(g∗)G.

2) (Functoriality of Cartan models) Every G-equivariant map f : M → N between

G-manifolds induces a pullback map

f ∗G : ΩG(N)→ ΩG(M)

on G-equivariant differential forms

(f ∗Gα)(X) = f ∗(α(X)) ∀X ∈ g, (2.2.23)

which is a contravariant functor from the category of G-manifolds to the category of

rings.

For a free smooth G-action onM , it is straightforward to see that H∗G,dR(M) ∼= H∗dR(M/G)

via the equivariant and non-equivariant de Rham theorems. There is, however, an alternative

proof which is evocative of the Chern-Weil theory.

Theorem 2.5 (Cartan operator is homotopic to identity, [31] §5). Consider a locally free

action of a compact connected Lie group G on a smooth manifold M . Then we can equip

Ω(M) with a G-connection

A =
r∑
i=1

Ai ⊗Xi ∈ Ω1(M)⊗ g . (2.2.24)

Let CarA be the composition

CarA : (Ω(M)⊗ S(g∗))G HorA−−−→
(
ΩA
hor(M)⊗ S(g∗)

)G 1⊗κS(g∗)−−−−−→ Ωbas(M), (2.2.25)
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where HorA is the projection to
(
ΩA
hor(M)⊗ S(g∗)

)G
, and κS(g∗) is defined in (2.2.12). Then

CarA : (ΩG(M), dG)→ (Ωbas(M), d)

is a chain map which is chain homotopic to the identity.

From now on, we will omit the subscript “dR” in and reserve the notation H∗G(M) for

equivariant de Rham cohomology.

2.3 Equivariant integration along the fiber

The equivariant integration along the fiber on manifolds is closely related to Section 8.3. We

refer the reader to [28] §VII and [31] §10 for details on integration along the fiber.

We first recall the definition of integration along the fiber via a submersion.

Theorem 2.6 (Integration along the fiber). Let f : M → N be a submersion between

smooth manifolds such that dimM − dimN = d. Let Ωc(M),Ωc(N) be the sets of G-

equivariant differential forms on M,N with compact support, respectively. Then there exists

a map f! : Ω
∗
c(M) → Ω∗−dc (N), called the integration along the fiber, where ∀α ∈ Ω∗c(M),

f!α ∈ Ω∗−dc (N) is uniquely determined by, ∀X ∈ g,∫
M

α(X) ∧ f ∗β =

∫
N

f!α(X) ∧ β ∀β ∈ Ω(N). (2.3.1)

Moreover, it satisfies the following properties:

1) (Adjoint property) f!(α ∧ f ∗β) = (f!α) ∧ β for all α ∈ Ωc(M) and all β ∈ Ω(N).

2) ιZf!α = f!ιY α for all α ∈ Ω∗c(M), whenever Y ∈ Γ(TM), Z ∈ Γ(TN), and Y, Z are

f -related.

3) df!α = f!dα for all α ∈ Ω∗c(M).

4) LY f!α = f! LZ α for all α ∈ Ω∗c(M), whenever Y ∈ Γ(TM), Z ∈ Γ(TN), and Y, Z are

f -related.
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5) (Thom isomorphism) If f is a vector bundle over a compact manifold, then f! induces

an isomorphism f! : H
∗
c (M)→ H∗−d(N) on cohomology.

Theorem 2.7 (Equivariant integration along the fiber). Let f :M → N be a G-equivariant

submersion between smooth manifolds such that dimM − dimN = d. Let ΩG,c(M),ΩG,c(N)

be the sets of G-equivariant differential forms with compact support. Then there exists a map

fG! : Ω
∗
G,c(M)→ Ω∗−dG,c (N), called equivariant integration along the fiber, where ∀α ∈ ΩG,c(M),

we define fG!α : g→ Ωc(N) by

(fG!α)(X) = fG!(α(X)) ∀X ∈ g . (2.3.2)

It satisfies the following properties.

1) fG!(α ∧ f ∗Gβ) = (fG!α) ∧ β for all α ∈ Ω∗G,c(M) and all β ∈ Ω∗G(N).

2) (Equivariant Thom isomorphism) If f is a G-equivariant vector bundle over a compact

manifold, then f! induces an isomorphism f! : H
∗
G,c(M) → H∗−dG (N) on equivariant

cohomology, whose inverse is the map on cohomology induced by wedging with a

G-equivariant Thom form:

Ω∗−dG (N)→ Ω∗G,c(M), β 7→ τ ∧ f ∗Gβ.

2.4 Equivariant Thom forms

The equivariant integration along the fiber construction, which is essential in the proof of the

localization theorem, relies on the existence of equivariant Thom forms.

Definition 2.16 (Equivariant vector bundles). A vector bundle π : E → M is a G-

equivariant vector bundle if G acts on it by vector bundle automorphisms. In other words,

the following holds.
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1) The action by each g ∈ G defines diffeomorphisms of E and M such that the following

diagram commutes.

E

π
��

g
// E

π
��

M g
//M

2) The action of g on E restricts to a linear isomorphism Ex → Egx on the fiber over x

for all x ∈M .

We follow [11] for the definition of equivariant Thom forms.

Definition 2.17 (Equivariant Thom forms). Let f : E → B be a G-equivariant oriented

real vector bundle of rank d. A G-equivariant differential form τ ∈ ΩdG(E) is an equivariant

Thom form if the following holds.

1) τ is equivariantly closed: dGτ = 0.

2)
∫
Ex
τ = 1 for all x ∈ B, where Ex = f−1(x).

3) There exists a G-invariant open neighborhood O of the zero section such that

a) supp τ ⊂ O,

b) O ∩ Ex is convex for all x ∈ B, and

c) O ∩ E|K is precompact for any compact subset K ⊂ B.

Theorem 2.8 (Mathai-Quillen’s universal equivariant Thom forms). There exists an SO(d)-

equivariant Thom form ThSO(d)(Rd) ∈ ΩSO(d)(Rd), called the universal Thom form, on the

SO(d)-equivariant vector bundle Rd → pt.

We refer the reader to [31] §7.2 for the detailed construction. On any orientedG-equivariant

vector bundle of rank k, one can construct a G-equivariant Thom form from the universal

equivariant Thom form ThSO(d)(Rd).
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Theorem 2.9 (Universal equivariant Thom form on an equivariant vector bundle, [31] §10).

Let E → M be an oriented G-equivariant real vector bundle of rank d with a G-invariant

metric. Let P →M be the associated orthonormal frame bundle. Then the image τ ∈ ΩdG(E)

of the universal equivariant Thom form ThSO(d)(Rd) under the map

Ωd
SO(d)×G(R

d)
pr∗2−−→ Ωd

SO(d)×G(P × Rd)
κ−→ Ωd

G(E) (2.4.1)

G-equivariant Thom form of the bundle E →M .

Here pr∗2 is the pullback map induced by the projection P ×Rd → Rd. We briefly explain

the map κ. Since the actions of SO(d) and G on P × Rd commute, we can identify

ΩSO(d)×G(P × Rd) =
Ä(
Ω(P × Rd)⊗ S(g∗)

)G ⊗ S(so(d)∗)äSO(d)
.

Then, since SO(d) acts freely on P × Rd, there exists an SO(d)-connection on Ω(P × Rd),

which allows us to define the map in the same way as (2.2.12).

We will refer the interested reader to [11] for the proof of the following theorem.

Theorem 2.10 (Existence of basic Thom forms [11] Theorem 3.8 and Remark 5.2). Let

τ ∈ Ωd
G(E) be an equivariant Thom form on the G-equivariant oriented real vector bundle

E → B of rank d. Suppose the G-actions on E and B are locally free. Then there exists a

G-connection A : g∗ → Ω1(E) such the Cartan operator CarA as in (2.2.25) carries τ to a

G-basic Thom form τA, which also satisfies Definition 2.17.

We can generalize Theorem 2.10 to show the existence of equivariant Thom forms on

equivariant orbifold vector bundles.
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Chapter 3

Compact symplectic toric manifolds

In this chapter, we review some basic definitions and constructions related to compact

symplectic toric manifolds.

3.1 Hamiltonian group actions

Every symplectic toric manifold is an example of a Hamiltonian G-manifold.

Definition 3.1 (Moment maps and Hamiltonian group actions). Let G be a Lie group that

acts smoothly on a symplectic manifold (M,ω). Denote the diffeomorphism induced by the

action of g ∈ G by φg. Let g be the Lie algebra of G and g∗ be its dual.

1) We say the G-action is symplectic if the action preserves the symplectic structure:

φ∗gω = ω for all g ∈ G.

2) A symplectic G-action is said to be Hamiltonian if there exists a map

µ :M → g∗

such that the following holds.

a) µ is G-equivariant.
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b) For each X ∈ g, its fundamental vector field X is Hamiltonian:

d (µ∗(X)) = ιXω,

with Hamiltonian function µ∗(X) = ⟨µ(−), X⟩ :M → R.

We call µ amoment map of the HamiltonianG-action and (M,ω,G, µ) aHamiltonian

G-manifold. For a connected symplectic manifold, the moment map is unique up to a

constant in (g∗)G.

In fact, the concept of moment maps appears naturally in equivariant de Rham theory.

By degree reasons, every G-equivariant 2-form on a G-manifold takes the form ω + µ∗ such

that ω ∈ Ω2(M)G and µ∗ : g→ Ω0(M) = C∞(M). For any equivariant 2-form ω + µ∗ to be

equivariantly closed, we need

0 = dG(ω + µ∗)(X) = dω − ιXω(X) + d(µ∗(X)).

This is equivalent to 
dω = 0

d(µ∗(X)) = ιXω ∀X ∈ g .

Hence, every Hamiltonian G-manifold carries a natural equivariantly closed 2-form, which is

an equivariantly closed extension of the symplectic form.

Recall that, if the smooth G-action on a manifold is free and proper, the quotient space

will be a nice smooth manifold. A symplectic analog of this is the symplectic reduction

construction.

Theorem 3.1 (Marsden-Weinstein, Meyer [31] Theorem 9.6.1, [9] Theorem 23.1). Let G be

a compact Lie group, and let (M,ω,G, µ) be a Hamiltonian G-manifold. Suppose G acts

freely on µ−1(0). Then the quotient space of π : µ−1(0)→ µ−1(0)/G is a smooth manifold.

There is a natural symplectic structure ωred on the quotient space

M �G := µ−1(0)/G,
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which is compatible with the symplectic structure on M :

π∗ωred = ω

∣∣∣∣
µ−1(0)

.

The construction is called symplectic reduction and the spaceM�G is called a symplectic

quotient.

A more general version of Theorem 3.1 is the following.

Theorem 3.2 (Symplectic reduction of orbifolds at a regular level, [40] Lemma 3.9). Let G

be a compact Lie group, and let (M,ω,G, µ) be a Hamiltonian G-orbifold. Suppose c ∈ g∗ is

a regular value of µ and G preserves µ−1(c) (i.e. c is a fixed point of the coadjoint action on

g∗). Then µ−1(c)/G is a symplectic orbifold.

Definition 3.2 (Compact symplectic toric manifold). Let T n be an n-dimensional torus.

We say a Hamiltonian T n-manifold (M,ω, T n, µ) is toric if the T n-action on the compact

connected 2n-dimensional symplectic manifold (M,ω) is effective and Hamiltonian.

The image of a moment map of a Hamiltonian torus action has particularly nice properties.

We will see in Theorem 3.1 that they can be used to classify compact symplectic toric manifolds.

Theorem 3.3 (Atiyah, Guillemin-Sternberg, Convexity theorem, [9] Theorem 27.1). Suppose

that (M,ω, T r, µ) is a Hamiltonian T r-manifold for an r-torus. Then the following holds.

1) The level sets of µ are connected.

2) The image of µ is a convex polytope.

3) µ(M) is the convex hull of the fixed-point set.

We call µ(M) the moment polytope of the Hamiltonian T r-manifold.

In the case of a Hamiltonian action by a non-abelian compact Lie group, Theorem 3.3

has been generalized to the non-abelian convexity theorem (see [37] and [39]), where, instead

of the full moment map image, a similar result holds for the intersection of a closed Weyl

chamber with the moment map image.

25



Theorem 3.4 (Arnold-Liouville, Action-angle coordinates, [9] Theorem 18.12). Suppose the

smooth functions fi : M → R, 1 ≤ i ≤ n, on a 2n-dimensional symplectic manifold (M,ω)

satisfy

0 = {fi, fj} := ω(Xfi , Xfj) ∀1 ≤ i, j ≤ n. (3.1.1)

Here Xf denotes the Hamiltonian vector field for f . Let F = (f1, . . . , fn). Suppose c ∈ Rn is

a regular value of F and L is a compact connected component of F−1(c). Then the following

holds.

1) L is a Lagrangian torus.

2) There exists an open neighborhood U of L in M and a neighborhood W ∼= V × T n

of the zero section of T ∗T n such that Ψ : U → V × T n is a symplectomorphism, and

Ψ(p) = (φ1(p), . . . , φn(p), t1(p), . . . , tn(p)). The φi are called the action coordinates,

and the ti are called the angle coordinates.

On a symplectic toric manifold (M,ω, T n, µ), the moment map µ induces such “commuting

functions” as follows. Pick a basis X1, . . . , Xn ∈ Lie(T n). Then the maps of the form

fi :M → R, fi(p) = ⟨µ(p), Xi⟩ ∀p ∈M

satisfy

{fi, fj} = ⟨µ(−), [Xi, Xj]⟩ ,

which vanishes because the Lie bracket is trivial on the abelian Lie group T n.

The regular values of the moment map of a toric manifold corresponds to the interior

points of the moment polytope. In fact, more is true.

Proposition 3.1 (Non-regular toric moment map fibers, [4] Proposition IV.4.16). Let

(M2n, ω, T n, µ) be a compact symplectic toric manifold. Let ∆ = µ(∆) be the moment

polytope and F be a k-dimensional face of P and F̊ be its relative interior. Then µ−1(F )

is a symplectic manifold of dimension 2k and µ
∣∣
µ−1(F̊ )

: µ−1(F̊ )→ F̊ is a Lagrangian torus

fibration with fibers diffeomorphic to T k.
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3.2 Constructions of toric manifolds from Delzant

polytopes

Definition 3.3 (Delzant polytopes). Let NR ∼= Rn be an n-dimensional real vector space.

Let Γ ∼= Zn be a lattice in Rn. Let N∗R,Γ
∗ be the duals of NR,Γ, respectively. Let T = Rn /Γ.

A convex polytope ∆ ⊂ N∗R is a Delzant polytope if the following holds.

1) (Simplicity) Exactly n edges meet at every vertex.

2) (Rationality) For any vertex p of ∆, the edges that meet at p are rays of the form

p+ twi(p), where t ≥ 0 and wi(p) ∈ Γ∗, 1 ≤ i ≤ n.

3) (Smoothness) For any vertex p, {w1(p), . . . , wn(p)} form a Z-basis of Γ∗.

By the description, any Delzant polytope ∆ with m facets can be described as the

intersection

∆ =
m⋂
i=1

{u ∈ N∗R | ⟨u, vi⟩ − λi ≥ 0} (3.2.1)

of half-spaces for some vectors vi ∈ Γ ⊂ NR and constants λi ∈ R.

In fact, in [13], Delzant has classified all compact symplectic toric manifolds by their

moment polytopes.

Theorem 3.5 (Delzant’s Theorem). There is a one-to-one correspondence between the set

of compact symplectic toric manifolds and the set of Delzant polytopes in Rn.

Delzant’s construction

We briefly recall Delzant’s construction of a compact symplectic toric manifold from a Delzant

polytope of the form (3.2.1).

Let {e1, . . . , em} be the standard basis of Rm. Define a linear transformation

π : Rm → N∗R, ei 7→ vi.
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This induces a surjective map π : Rm /Zm → NR/Γ ∼= T n. The standard effective Hamiltonian

Tm-action on

Å
Cm,−i

m∑
i=1

dzi ∧ dzi
ã

is given by, for all (θ1, . . . , θm) ∈ Rm /Zm and all

(z1, . . . , zm) ∈ Cm,

(θ1, . . . , θm) · (z1, . . . , zm) =
(
e2πiθ1z1, . . . , e

2πiθmzm
)
.

A moment map for this action is

µ(z1, . . . , zm) =
1

2

m∑
i=1

|zi|2e∗i .

Note that K = kerπ ∼= Tm−n is also a torus. Then the moment map of the restriction of the

Tm-action to K is given by

µK = ι∗ ◦ µ(z1, . . . , zm)

where ι : kerπ → Rm /Zm is the inclusion map. Since the action of K on µ−1K (0) is free, we

can apply symplectic reduction (Theorem 3.1) to get a symplectic manifold (µ−1K (0)/K, ωred).

Since the Hamiltonian Tm-action on Cm can be regarded as the action by K × NR/Γ, by

the general theory of reduction in stages (see for example [9] §24.3), there is an effective

Hamiltonian NR/Γ-action on (µ−1K (0)/K, ωred), making it toric manifold.
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Chapter 4

Ordinary Lagrangian Floer theory on

compact toric manifolds

A renowned problem in symplectic topology is the Arnold’s conjecture, a version of which

predicts a lower bound of number of intersection points of two Hamiltonian isotopic Lagrangian

submanifolds in a compact symplectic manifold, provided that they intersect transversely.

To tackle the problem, Floer [16] considered a Morse-type cohomology, nowadays called

Lagrangian Floer cohomology, by considering an action functional, an analog of a Morse

function, on certain infinite-dimensional path spaces and solved the Arnold’s conjecture

under the assumption that the second homotopy group of the symplectic manifold relative

to the Lagrangian submanifolds are trivial. It turns out that, when the assumption is

removed, Floer’s boundary operator may not define a differential on Floer’s complex, due

to the bubbling phenomenon that appears in the compactification of the moduli spaces of

pseudoholomorphic strips. Indeed, in many cases, the appearance of disc bubbles cannot be

ruled out and is the source of the obstruction of defining Lagrangian Floer “cohomology”.

Therefore, A∞ structures were introduced to encode the information carried by the moduli

space of pseudoholomorphic curves. This is explained in detail in the books [24], [25], and

[20] by Fukaya, Oh, Ohta, and Ono.
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4.1 The A∞ algebra associated to a Lagrangian

submanifold

The study of moduli spaces of pseudoholomorphic curves is crucial in Lagrangian Floer

theory. Let (X,ω) be a compact symplectic manifold and J be a compatible almost complex

structure. Let L be a compact Lagrangian submanifold of X with a relatively spin structure.

For each β ∈ π2(X,L), we denote its symplectic area by ω(β) and its Maslov index by Iµ(β).

Definition 4.1 (Moduli space of pseudoholomorphic discs). Let k, l ∈ N and β ∈ π2(X,L).

The moduli spaceMk+1,l(L, J, β) is defined by

(Σ, jΣ, z⃗, w⃗, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ is a genus 0 nodal Riemann surface with

connected boundary and complex structure jΣ;

u : (Σ, ∂Σ)→ (X,L) is smooth;

du ◦ jΣ = J ◦ du; [u] = β ∈ π2(X,L);

(Σ, jΣ, z⃗, w⃗, u) is stable; E(u) <∞

z⃗ = (z0, z1, . . . , zk) ∈ (∂Σ)k+1,where the zi are

distinct non-nodal boundary marked points and the

enumeration is in counterclockwise order along ∂Σ;

w⃗ = (w1, . . . , wl) ∈ (Σ̊)l are distinct non-nodal

interior marked points



/
∼, (4.1.1)

where (Σ, jΣ, z⃗, w⃗, u) ∼ (Σ′, jΣ′ , z⃗
′
, w⃗

′
, u′) if and only if there exists a biholomorphism φ :

(Σ, jΣ)→ (Σ′, jΣ′) such that u′ ◦ φ = u, φ(zi) = z′i for all 0 ≤ i ≤ k, and φ(wj) = w′j for all

1 ≤ j ≤ l.

We denote the evaluation map at the i-th boundary marked point by

evi,(k+1,l,β) :Mk+1,l(L, J, β)→ L, [Σ, jΣ, z⃗, w⃗, u] 7→ u(zi) ∀0 ≤ i ≤ k,
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and we denote the evaluation map at the j-th interior marked point by

evj(k+1,l,β) :Mk+1,l(L, J, β)→ L, [Σ, jΣ, z⃗, w⃗, u] 7→ u(wj) ∀1 ≤ j ≤ l.

To define the A∞ algebra associated to the Lagrangian submanifold L, we consider moduli

spaces of the formMk+1,0(L, J, β) and the evaluation maps of the form evi,(k+1,0,β).

Definition 4.2 (The A∞ algebra associated to a Lagrangian submanifold). The A∞ algebra

(Ω(L,Λ0,nov), {mk}k∈N)

associated to L is given by the following data.

• Ω(L,Λ0,nov) = Ω(L)“⊗RΛ0,nov, where Ω(L) denotes the de Rham complex of L, Λ0,nov

denotes the universal Novikov ring defined by (5.1.3), and “⊗ denotes completion of the

tensor product with respect to the T -adic topology. We specify that Ω(L,Λ0,nov)
⊗0 =

Λ0,nov, and the elements of Ω(L,Λ0,nov)[1] are the elements of Ω(L,Λ0,nov) with degree

shifted down by 1.

• For each k ∈ N, the A∞ operator

mk =
∑

β∈π2(Y,L)

mk,β T
ω(β)e

Iµ(β)

2 : (Ω(L,Λ0,nov)[1])
⊗k → Ω(L,Λ0,nov)[1]

is defined by the following. Let x1, . . . , xk ∈ Ω(L,Λ0,nov). For β = 0,

m0,β=0(1) = 0

m1,β=0(x1) = dx1, where d is the de Rham differential

m2,β=0(x1 ⊗ x2) = (−1)deg x1x1 ∧ x2

mk,β=0 = 0 ∀k ≥ 3.

(4.1.2)

For β ̸= 0, define

m0,β(1) = (ev0,β)!(1) (4.1.3)

and, for k ≥ 1 ,

mk,β(x1⊗· · ·⊗xk) = (−1)
1+

k∑
j=1

j(deg xj+1)

(ev0,(k+1,0,β))!
Ä
ev∗1,(k+1,0,β) x1 ∧ · · · ∧ ev∗k,(k+1,0,β) xk

ä
.

(4.1.4)
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We note that the signs in the definition of the mk follow that in [20] Chapter 22. The key

observation is that the data in Definition 4.2 satisfies nice algebraic properties, as noted in

Theorem 4.1.

Theorem 4.1 ([24] Theorem 3.5.11). Let (Ω(L,Λ0,nov), {mk}k∈N, S) be the data defined in

Definition 4.2 and (5.3.7). It is an S-gapped curved filtered A∞ algebra.

We recall the notions showing up in the theorem below.

Definition 4.3 (Discrete submonoid). Consider the monoid (R≥0×2Z,+, (0, 0)) and the

projection maps E : R≥0×2Z→ R≥0, Iµ : R≥0 → 2Z. A subset S ⊂ R≥0×2Z is a discrete

submonoid if the following holds.

i) (S,+, (0, 0)) is a monoid.

ii) E(S) is discrete.

iii) For each E0 ∈ R≥0, S ∩ E−1([0, E0]) is a finite set.

In the setup of this section, the set

S = {(ω(β), Iµ(β)) | β ∈ π2(X,L)}. (4.1.5)

is a discrete submonoid.

Definition 4.4 (S-gapped curved filtered A∞ algebra). An S-gapped curved1 filtered

A∞ algebra is a tuple (C, {mk}k∈N, S) consisting of

• a Λ0,nov-module C,

• a family of operators mk : (C[1])
⊗k → C[1], and

• a discrete submonoid S ⊂ R≥0×2Z

such that the following holds.

1The word “curved” means an m0 : Λ0,nov → C[1] is included, in contrast to the classical A∞ algebra.
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i) (S-gapped) ∀k ∈ N, there is a decomposition

mG
k =

∑
(λ,n)∈S

mG
k,(λ,n) T

λe
n
2 .

ii) (Energy filtered) There is an energy filtration on C such that, ∀p ∈ N, the following

holds.

• The filtration on Cp is decreasing: F λCp ⊂ F λ′Cp if λ > λ′.

• ∀λ′ > 0, we have T λ
′ · F λCp ⊂ F λ+λ′Cp.

• Cp is complete with respect to the T -adic topology induced by the filtration.

• Cp has a basis whose elements are in F 0Cp \
⋃
λ>0 F

λCp.

• m0(1) ∈ F λC[1] for some λ > 0.

Moreover, for each k ∈ N, mk is filtration-preserving:

mk(F
λ1Cp1 ⊗ · · · ⊗ F λkCpk) ⊂ F λ1+···+λkCp1+···+pk−k+2

for all (λ1, . . . , λk) ∈ Rk
≥0 and all (p1, . . . , pk) ∈ Nk.

iii) (A∞ relations) The family {mk}k∈N satisfy the following A∞ relations: For any k ∈

N \{0}, s ∈ S,

∑
s1,s2∈S
s1+s2=s

∑
k1,k2∈N

k1+k2=k+1

k1∑
i=0

(−1)∗mk1,s1(x1 ⊗ · · · ⊗ xi⊗

mk2,s2(hi+1 ⊗ · · · ⊗ xi+k2)⊗ xi+k2+1 ⊗ · · · ⊗ xk) = 0, (4.1.6)

where ∗ =
i∑

j=1

(deg xj + 1).

4.2 Bulk deformations

Consider the Λ0,nov-module homomorphisms of the form

ql,k : (Ω(X,Λ0,nov)[2])
⊗l ⊗ (Ω(L,Λ0,nov)[1])

⊗k → Ω(L,Λ0,nov)[1],
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ql,k =
∑

β∈π2(X,L)

ql,k,βT
ω(β)e

Iµ(β)

2 ,

where ql,k,β : Ω(X,Λ0,nov)
⊗l ⊗ Ω(L,Λ0,nov)

⊗k → Ω(L,Λ0,nov) is defined by, for all x1, . . . , xk ∈

Ω(L,Λ0,nov) and all y1, . . . , yl ∈ Ω(X,Λ0,nov),

q0,k,β(x1 ⊗ · · · ⊗ xk) = mk,β(x1 ⊗ · · · ⊗ xk)

q1,0,β=0(y1) = (−1)†ι∗y1, where ι : L ↪→ X is the inclusion map

q1,0,β(y1) = 0 if β ̸= 0

ql,k,β(y1 ⊗ · · · ⊗ yl ⊗ x1 ⊗ · · · ⊗ xk) =

(−1)‡ 1
l!
(ev0,(k+1,l,β))!

(
(ev1(k+1,l,β))

∗y1 ∧ · · · ∧ (evl(k+1,l,β))
∗yl∧

ev∗1,(k+1,l,β) x1 ∧ · · · ∧ ev∗k,(k+1,l,β) xk

)
if l ̸= 0, k ̸= 0, and (l, k) ̸= (1, 0).

(4.2.1)

Here † is an integer depending on the degree of the differential form y, and ‡ is an integer

depending on the degrees of the differential forms y1, . . . , yl, x1, . . . , xk.

Let bbb ∈ Ωeven(X,Λ0,nov) and b ∈ Ωodd(L,Λ0,nov). The bulk-deformed A∞ operators are

defined by

mbbb,b
k (x1 ⊗ · · · ⊗ xk)

=
∑

β∈π2(Y,L)

∑
l≥0

∑
r0,...,rk≥0

ql,r0+···+rk+k,β(bbb
⊗l⊗br0 ⊗ x1 ⊗ br1 ⊗ · · · ⊗ xk ⊗ brk)T ω(β)e

Iµ(β)

2 .

In particular, for any bbb ∈ Ωeven(X,Λ0,nov) and b ∈ Ωodd(L,Λ0,nov),

mbbb,b
0 (1) =

∑
l,k∈N

β∈π2(X,L)

ql,k,β(bbb
⊗l⊗b⊗k)T ω(β)e

Iµ(β)

2 . (4.2.2)

We say L is unobstructed after bulk deformation by bbb, b if

mbbb,b
0 (1) = 0.

Since the bulk-deformed A∞ operators mbbb,b
k still satisfy the A∞ relations, there will be no

obstruction in defining the Floer cohomology of L by

HF (L,L,Λ0) := H∗
Ä
Ω(L,Λ0,nov),m

bbb,b
1

ä
.
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We refer the readers to [24], [25], [22], and [21] for more details on bulk deformation theory.

4.3 Moment Lagrangian correspondences are

unobstructed after bulk deformation

In this section, we prove that the moment Lagrangian correspondences induced by the

symplectic reduction of level sets with respect to free actions are unobstructed after bulk

deformations, under Assumption 1. We refer the reader to Chapter 8 for the notions related

to Kuranishi structures.

Let (Y, ωY , G, µ) be a Hamiltonian G-manifold consisting of the following data.

• (Y, ωY ) is a compact symplectic manifold.

• G is a compact connected Lie group acting on (Y, ωY ) in a Hamiltonian fashion. Let g

be the Lie algebra of G.

• µ : Y → g∗ is a moment map of the G-action.

Suppose G acts on µ−1(0) freely. Then by Theorem 3.1, there exist a symplectic reduction

map π : µ−1(0) → µ−1(0)/G =: Y � G and an induced symplectic form ωred on Y � G.

Following Abouzaid-Bottman [1], we will call the Lagrangian submanifold

L =
{
(p, [p]) ∈ Y − × Y �G

∣∣ p ∈ µ−1(0), π(p) = [p]
}

(4.3.1)

of (Y − × Y �G,−ωY ⊕ ωred) the moment Lagrangian correspondence induced by this

symplectic reduction. Denote the inclusion map by

ι : L→ Y − × Y �G. (4.3.2)

Let G act on Y − × Y �G such that it acts trivially on the second factor Y �G and acts on

the first factor Y − by the original Hamiltonian action.
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We denote Y −× Y �G by X and −ωY ⊕ωred by ω. Let J be a G-invariant ω-compatible

almost complex structure on Y . And we equip L with a relatively spin structure.

The main theorem of this section is the following.

Theorem 4.2. The Lagrangian submanifold L ⊂ (Y − × Y �G,−ωY ⊕ ωred) defined by

(4.3.1) is unobstructed after bulk deformation under Assumption 1.

Assumption 1. For each k, l ∈ N and β ∈ π2(X,L), we assume that the following holds.

i) Mk+1,l(L, J, β) has a G-equivariant Kuranishi structure, and G acts freely on each

Kuranishi chart.

ii) The evaluation map at every (interior or boundary) marked point is strongly smooth

and is G-equivariant on each chart.

iii) There is a compatible G-equivariant system of CF-perturbations Ŝ such that the Thom

forms in the CF-perturbation data (8.2.1) are G-basic.

iv) Moreover, the equivariant Kuranishi structures and equivariant CF-purturbations are

compatible with

∂Mk+1,l(L, J, β) =⋃
k1,k2,l1,l2≥0
k1+k2=k+1
l1+l2=l

⋃
β1,β2∈π2(X,L)
β1+β2=β

k2⋃
j=1

Mk1+1,l1(L, J, β1)ev0,(k1+1,l1,β1)
×evj,(k2+1,l2,β2)

Mk2+1,l2(L, J, β2).

v) The evaluation map ev0,(k+1,l,β) :Mk+1,l(L, J, β)→ L at the zero-th boundary marked

point is strongly submersive with respect to Ŝ.

The notions that appear in Assumption 1 involving equivariant Kuranishi structures will

be defined in Chapter 8. The key lemma in proving Theorem 5.4 is the following.

Lemma 4.1 (Key lemma). Suppose Assumption 1 holds. For any l, k ∈ N, the map

ql,k,β : Ω(X,Λ0,nov)
⊗l ⊗ Ω(L,Λ0,nov)

⊗k → Ω(L,Λ0,nov)
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defined in (4.2.1) maps an element of Ωbas(X,Λ0,nov)
⊗l ⊗ Ωbas(L,Λ0,nov)

⊗k to an element of

Ωbas(L,Λ0,nov).

Proof of Lemma 4.1. Consider a G-equivariant Kuranishi structure onMk+1,l(L, J, β) and a

compatible G-equivariant CF-perturbations which satisfy Assumption 1.

Recall that pullback maps defined via strongly smooth maps of the formM→ L, from

a Kuranishi space to a smooth manifold L, are defined to be chart-wise pullback, and the

integration along the fiber maps defined via strongly smooth maps of the form M → L,

which are strongly submersive with respect to a CF-perturbation, are defined by taking

integration along the fiber maps on suborbifolds that cover the Kuranishi charts and gluing

by partitions of unity. Therefore, it suffices to show that the pullback maps of the form

ev∗i,(k+1,l,β), (ev
j
(k+1,l,β))

∗, ι∗, preserve G-basicness on the G-equivariant Kuranishi charts, and

that the integration along the fiber maps of the form ev0,(k+1,l,β)! preserve G-basicness on

G-invariant open subsets of the G-equivariant Kuranishi charts.

Since ι is a G-equivariant map of smooth manifolds, ι∗ commutes with Lζ , ιζ for all ζ ∈ g,

showing that ι∗ preserves G-basicness. Similarly, ifMk+1,l(L, J, β) satisfies Assumption 1,

then pulling back by the equivariant maps of the form evi,(k+1,l,β), ev
j
(k+1,l,β) also preserve

G-basicness.

Let U = (U, E , ψ, s) be a G-equivariant Kuranishi chart of the moduli spaceMk+1,l(L, J, β).

Let

Sr = {Sϵr = (Wr
νr−→ Ur, τr, s

ϵ
r) | ϵ ∈ (0, 1]}

be a CF-perturbation representative on a nonempty G-invariant open subset Ur ⊂ U . Let

fUr denote the restriction of ev0,(k+1,l,β) to Ur. By assumption, it is a G-equivariant strongly

smooth map which is strongly submersive. By Asssumption 1 and Theorem 2.10, we may

assume that the equivariant Thom form τr is G-basic.

We want to show that (fUr)! commutes with ιζ and Lζ for all ζ ∈ g.
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Then for all ρ ∈ Ω(L) and all ζ ∈ g we have∫
L

(fUr)!(ιζh;Sϵr ) ∧ ρ

=

∫
(sϵr)−1(0)

ν∗ϵ ιζh ∧ (fUr ◦ νϵ)∗ρ ∧ τr

=

∫
(sϵr)−1(0)

ιζν
∗
ϵ h ∧ (fUr ◦ νϵ)∗ρ ∧ τr

=(−1)deg h+1

∫
(sϵr)−1(0)

ν∗ϵ h ∧ ιζ(fUr ◦ νϵ)∗ρ ∧ τr

+ (−1)deg h+deg ρ+1

∫
(sϵr)−1(0)

ν∗ϵ h ∧ (fUr ◦ νϵ)∗ρ ∧ ιζτr

=(−1)deg h+1

∫
(sϵr)−1(0)

ν∗ϵ h ∧ (fUr ◦ νϵ)∗ιζρ ∧ τr since τr is basic

=(−1)deg h+1

∫
L

(fUr)!h ∧ ιζρ

=

∫
L

ιζ(fUr)!(h;Sϵr ) ∧ ρ.

Thus,

(fUr)!(ιζh;Sϵr ) = ιζ(fUr)!(h;Sϵr ).

Similarly, ∫
L

(fUr)!(dh;Sϵr ) ∧ ρ =
∫
(sϵr)−1(0)

ν∗ϵ dh ∧ (fUr ◦ νϵ)∗ρ ∧ τr

=

∫
(sϵr)−1(0)

dν∗ϵ h ∧ (fUr ◦ νϵ)∗ρ ∧ τr

= (−1)deg h+1

∫
(sϵr)−1(0)

ν∗ϵ h ∧ d(fUr ◦ νϵ)∗ρ ∧ τr

= (−1)deg h+1

∫
(sϵr)−1(0)

ν∗ϵ h ∧ (fUr ◦ νϵ)∗dρ ∧ τr

= (−1)deg h+1

∫
L

(fUr)!(h;Sϵr ) ∧ dρ

=

∫
L

d(fUr)!(h;Sϵr ) ∧ ρ.

Hence,

(fUr)!(dh;Sϵr ) = d(fUr)!(h;Sϵr ).
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Moreover, we have

(fUr)!(Lζh;Sϵr ) = (fUr)!(ιζdh+ dιζh;Sϵr ) = (ιζd+ dιζ)(fUr)!(h;Sϵr ) = Lζ(fUr)!(h;Sϵr )

by Cartan’s magic formula. Thus, if h is a basic form on Ur, then (fUr)!(h;Sϵr ) is a basic form

on L.

The proof of Theorem 5.4 will be based on an induction on the monoid

Γ =

ßÅ
ω(β),

Iµ(β)

2

ã
∈ R≥0×Z

∣∣∣∣ β ∈ π2(X,L),M(L, J, β) ̸= ∅
™
. (4.3.3)

Consider the lexicographic order on Γ given by the following. Let (λ, n), (λ′, n′) ∈ Γ.

1) (λ, n) = (λ′, n′) if and only if λ = λ′, n = n′.

2) (λ, n) < (λ′, n′) if one of the following holds.

a) λ < λ′

b) λ = λ′, n < n′.

We may renumber the elements of Γ as follows.

Γ =
{
(λi, ni,j) ∈ R≥0×Z | i = 0, 1, . . . , 0 ≤ j ≤ li

}
so that λi < λi+1 for all i ≥ 0 and ni,j < ni,j+1 for all 1 ≤ j ≤ li−1.

Proof of Theorem 5.4. We want to construct

bbb(i) =
i∑

i′=0

li′∑
j′=1

bbbi′,j′ T
λi′eni′,j′ , b(i) =

i∑
i′=0

li′∑
j′=1

bi′,j′T
λi′eni′,j′ (4.3.4)

such that the bbbi′,j′ , bi′,j′ are G-basic forms on X,L, respectively, and the terms of mbbb(i),b(i)

0 (1)

with valuation less than or equal to λi vanish in the sense that

mbbb(i),b(i)

0 (1) ≡ 0 mod T λiΛ+
0,nov, (4.3.5)
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by induction on i.

Let

bbb(0) = 0, b(0) = 0.

Then

mbbb(0),b(0)

0 (1) ≡ ql=0,k=0,β=0(1) ≡ 0 mod Λ+
0,nov.

Assume that we have constructed

bbb(i) =
i∑

i′=0

li′∑
j′=1

bbbi′,j′ T
λi′eni′,j′ , b(i) =

i∑
i′=0

li′∑
j′=1

bi′,j′T
λi′eni′,j′

such that the bbbi′,j′ , bi′,j′ are G-basic forms and

mbbb(i),b(i)

0 (1) ≡ 0 mod T λiΛ+
0,nov. (4.3.6)

We want to construct

bbb(i+1) =
i+1∑
i′=0

li′∑
j′=1

bbbi′,j′ T
λi′eni′,j′ , b(i+1) =

i+1∑
i′=0

li′∑
j′=1

bi′,j′T
λi′eni′,j′ ,

such that (4.3.6) holds with i replaced by i+ 1. We note that if ql,k,β T
ω(β)e

Iµ(β)

2

• either takes a tensor product of more than one term with positive valuation, at least

one of which takes the form bbbi+1,• T
λi+1eni+1,• or bi+1,•T

λi+1eni+1,•

• or has β ̸= 0 and takes exactly one element of the form bbbi+1,• and bi+1,•,

then since the operators ql,k,β are filtration-preserving, the resulting term will have valuation

strictly higher than λi+1 and thus be 0 mod T λi+1Λ+
0,nov. Therefore, the contributions of

bbb(i+1)−bbb(i) and b(i+1) − b(i) to mbbb(i+1),b(i+1)

0 (1) mod T λi+1Λ+
0,nov are of the form

q1,0,β=0(bbbi+1,•)T
λi+1eni+1,• , q0,1,β=0(bbbi+1,•)T

λi+1eni+1,• .

The other contributions must come from bbb(i) and b(i). Since we know their contributions to

the terms of mbbb(i+1),b(i+1)

0 (1) with valuation less than or equal to λi vanish, their contributions

to the terms in mbbb(i+1),b(i+1)

0 (1) mod T λi+1Λ+
0,nov have to be exactly of valuation T λi+1 .
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Let oi+1,j be the coefficient of T λi+1eni+1,j in mbbb(i),b(i)

0 (1). By the above argument,

mbbb(i+1),b(i+1)

0 (1)

≡
li+1∑
j=1

(
oi+1,j + q1,0,β=0(bbbi+1,j) + q0,1,β=0(bi+1,j)

)
T λi+1eni+1,j

≡
li+1∑
j=1

(oi+1,j ± ι∗(bbbi+1,j) + d(bi+1,j))T
λi+1eni+1,j mod T λi+1Λ+

0,nov.

Therefore, we only need to find bbbi+1,j, bi+1,j such that

oi+1,j ± ι∗(bbbi+1,j) + d(bi+1,j) = 0. (4.3.7)

By Lemma 4.1, we have

oi+1,j ∈ Ω•bas(L,Λ0,nov).

We consider the maps

Ω•bas(L,Λ0,nov)
(π∗

L/G
)−1

−−−−−→
1)

Ω•(L/G,Λ0,nov)
∆∗

Y �G−−−→
2)

Ω•(Y �G,Λ0,nov)
π∗
Y �G−−−→
3)

Ω•(Y − × Y �G,Λ0,nov)

given by the following.

1) Since G acts on L freely, L→ L/G is a principal G-bundle. Thus, by Lemma 2.2, there

exists an isomorphism

π∗L/G : Ω•(L/G,Λ0,nov)
∼=−→ Ω•bas(L,Λ0,nov).

2) ∆∗Y �G is the pullback map induced by the diagonal map

∆Y �G : Y �G→ Y �G× Y �G = L/G, [p] 7→ ([p], [p]).

3) π∗Y �G is the pullback map induced by the projection map πY �G : Y − × Y �G→ Y �G.

Let

bbbi+1,j = ∓π∗Y �G ◦∆∗Y �G ◦ (π∗L/G)−1(oi+1,j), bi+1,j = 0,
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where we use − if the sign in (4.3.7) is +, and we use + if the sign in (4.3.7) is −. It satisfies

oi+1,j ± ι∗ bbbi+1,j +d(bi+1,j) = oi+1,j ±
Ä
∓ι∗ ◦ π∗Y �G ◦∆∗Y �G ◦ (π∗L/G)−1(oi+1,j)

ä
+ 0

= oi+1,j ±
Ä
∓(∆Y �G ◦ πY �G ◦ ι)∗ ◦ (π∗L/G)−1(oi+1,j)

ä
= oi+1,j ±

Ä
∓π∗L/G ◦ (π∗L/G)−1(oi+1,j)

ä
= 0.

Let l ∈ N and α ∈ Ωl(Y �G). Let us denote f := πY �G. Then for all ζ ∈ g, p ∈ Y − × Y �G,

v2 . . . , vl ∈ Tf(p)(Y − × Y �G), we have

(ιζ(π
∗
Y �Gα))p(v2, . . . , vl) = αf(p)(df ◦ ζ(x), dfp(v2), . . . , dfp(vl)) = 0,

since ζ(p1, p2) = (ζ(p1), 0) for all (p1, p2) ∈ Y × Y �G. Then

Lζ(π∗Y �Gα) = d(ιζπ
∗
Y �Gα) + ιζ(dπ

∗
Y �Gα) = ιζ(π

∗
Y �Gdα) = 0.

This shows that bbbi+1,j is a basic form and completes the induction. By construction, if we let

bbb = lim
i→∞

bbb(i), b = 0,

then

mbbb,b
0 (1) = 0.
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Chapter 5

The equivariant A∞ algebra associated

with a Lagrangian torus fiber

In this chapter, we define an equivariant Lagrangian Floer theory on compact symplectic

toric manifolds for the Lagrangian torus fibers with respect to the subtorus actions. It is

compatible with the ordinary Lagrangian Floer theory discussed in [23], [22], and [21]. After

preparing the notations and the setup in Section 5.1, we define an equivariant A∞ algebra

associated to a Lagrangian torus fiber in Section 5.3. Using the spectral sequences defined in

Section 5.4, we prove that the set of Lagrangian torus fibers (with weak bounding cochain

data) that have nontrivial equivariant Lagrangian Floer cohomology can be identified with a

subset of the algebraic torus over the Novikov field, with certain valuation restrictions. We

will see in Chapter 6 that the latter is a rigid analytic space.

5.1 The setup

We will assume the following setup and notations for the rest of the paper unless otherwise

stated.

Let (X,ω, T n, µ) be a compact symplectic toric manifold. More specifically, X is a (real)

2n-dimensional manifold with symplectic form ω such that there is an effective Hamiltonian
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torus action on (X,ω) by T n and µ : X → t∗ is an associated moment map, where t is the

Lie algebra of T n and t∗ is the dual of t. Let ∆ = µ(X) be the moment polytope for the

T n-action. For each uuu ∈ int∆, L(uuu) := µ−1(uuu) is a T n-invariant Lagrangian torus with a

T n-invariant relatively spin structure induced by the T n-action. Let J be a T n-invariant

almost complex structure on X compatible with ω.

Let G = KT r ⊂ T n be a compact r-dimensional connected subtorus of T n given by

a (n × r)-matrix K with integer coefficients of rank r. The G-action is induced from the

T n-action on X.

We identify

t∗ ∼= MR ∼= (Rn)∗,

where MR is the dual vector space of an n-dimensional R-vector space NR. Let N ∼= Zn

be the full-rank lattice in NR and M := HomZ(N,Z) be the dual lattice of N such that

MR ∼= M ⊗ZR, NR ∼= N ⊗ZR, and T n ∼= NR/N . For every uuu ∈ int∆, µ−1(uuu) is diffeomorphic

to T n. We identify

t ∼= NR ∼= Rn and H1(L(uuu),Z) ∼= N ∼= Zn, H1(L(uuu),Z) ∼= M ∼= Zn .

Fix an integral basis {e∗1, . . . , e∗n} for the lattice N . Let {e1, . . . , en} be the dual basis of M .

Let the ai,j ∈ Z be such that

H1(L(uuu),Z) = spanZ

{
αi =

n∑
j=1

ai,jej

∣∣∣∣∣∣ 1 ≤ i ≤ n

}
,

where H1
G(L(uuu),Z) = spanZ{αr+1, . . . , αn}.

We consider the following coefficient rings. Define the universal Novikov field by

Λnov =

{∑
i∈N

aiT
λieni

∣∣∣∣∣ λi ∈ R, ai ∈ C, and ni ∈ Z,∀i ∈ N, lim
i→∞

λi =∞

}
. (5.1.1)

A non-Archimedean valuation function val : Λnov → R∪{∞} on Λnov is defined as follows.

y =
∑
i∈N

aiT
λieni 7→ val(y) :=


min{λi | i ∈ N, ai ̸= 0} if y ̸= 0

∞ if y = 0

(5.1.2)
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The universal Novikov ring is given by

Λ0,nov = {y ∈ Λnov | val(y) ≥ 0} . (5.1.3)

We also consider the energy-zero parts of Λnov and Λ0,nov. Define

Λ =

{∑
i∈N

aiT
λi | λi ∈ R and ai ∈ C ∀i ∈ N, lim

i→∞
λi =∞

}
(5.1.4)

to be the Novikov field and

Λ0 =

{∑
i∈N

aiT
λi ∈ Λ

∣∣∣∣∣ λi ≥ 0 ∀i ∈ N

}
(5.1.5)

to be the Novikov ring. The rings Λ,Λ0 carries a valuation function

y =
∑
i∈N

aiT
λi 7→ val(y) :=


min{λi | i ∈ N, ai ̸= 0} if y ̸= 0

∞ if y = 0

. (5.1.6)

The valuations (5.1.2) and (5.1.6) induce a non-Archimedean norm y 7→ |y|R := exp(− val(y))

on R, where R ∈ {Λnov,Λ0,nov,Λ,Λ0} and exp is the exponential map with Euler’s number

as the base. Moreover, we have an exponential map exp : Λ0 → Λ0 defined as follows. Every

b ∈ Λ0 can be decomposed as b = b0 + b+, where b0 ∈ C and b+ satisfies val(b+) > 0. We

define exp(b) = eb0
∑

n∈N
bn+
n!
, where eb0 is the usual exponential of complex numbers.

5.2 The moduli space of pseudoholomorphic discs

Since we will mostly use moduli space of pseudoholomorphic discs with no interior marked

point in the rest of the paper, we simplify the notations as follows.

Definition 5.1 (Moduli space of pseudoholomorphic discs with boundary marked points).
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For any β ∈ π2(X,L) and k ∈ N, letMk+1(L, J, β) be the set

(Σ, j, z⃗, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ is a genus 0 nodal Riemann surface with

connected boundary and complex structurej;

u : (Σ, ∂Σ)→ (X,L) is smooth;

du ◦ j = J ◦ du; [u] = β ∈ π2(X,L);

(Σ, j, z⃗, u) is stable; E(u) <∞

z⃗ = (z0, z1, . . . , zk) ∈ (∂Σ)k+1,

where the zi are distinct non-nodal

boundary marked points and the enumeration

is in counterclockwise order along ∂Σ



/
∼, (5.2.1)

where (Σ, j, z⃗, u) ∼ (Σ′, j′, z⃗
′
, u′) if and only if there exists a biholomorphism φ : (Σ, j) →

(Σ′, j′) such that u′ ◦ φ = u and φ(zi) = z′i for all 0 ≤ i ≤ k. A biholomorphism φ satisfying

these conditions is called an isomorphism between (Σ, j, z⃗, u) and (Σ′, j′, z⃗′, u′).

For any element x = [Σ, j, z⃗, u] ∈Mk+1(L, J, β), we define its automorphism group by

Autx =


φ : (Σ, j)→ (Σ, j)

∣∣∣∣∣∣∣∣∣∣∣
φ is a biholomorphism

u ◦ φ = u

φ(zi) = zi ∀0 ≤ i ≤ k


.

Remark 5.1. By an abuse of notation, we also use z⃗ to denote the ordered subset {z0, . . . , zk}

of ∂Σ. And, whenever I is another set, the elements in z⃗ ∩ I are ordered by the original

enumeration in z⃗.

Denote the evaluation map on Mk+1(β) at the i-th marked point by evi,β. We recall

a result in [21] below. The definitions related to G-equivariant Kuranishi structures are

introduced in Chapter 8.

Proposition 5.1 (G-equivariant Kuranishi structure on Mk+1(L, J, β)). Let L be a La-

grangian torus fiber of the toric moment map µ over an interior point of the moment polytope
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∆. For k ≥ 1, β ∈ π2(X,L) with β ̸= 0, the moduli spaceMk+1(L, J, β) has a G-equivariant

Kuranishi structure with corners:

Û =

Ö
{Up = (Up, Ep, ψp, sp) | p = [Σ, j, z⃗, u] ∈Mk+1(L, J, β)} ,

{α⃗pq | p ∈Mk+1(L, J, β), q ∈ imψp} .

è
(5.2.2)

The normalized boundary ofMk+1(L, J, β) is a union of the fiber products

∂Mk+1(L, J, β) =
⋃

k1,k2≥0
k1+k2=k+1

⋃
β1,β2∈π2(X,L)
β1+β2=β

k2⋃
j=1

Mk1+1(L, J, β1)ev0,β×evj,βMk2+1(L, J, β2),

and the systems of G-equivariant Kuranishi structures are compatible with the fiber product

description. Moreover, evi,β :Mk+1(L, J, β) → L is a T n-equivariant strongly continuous

weakly submersive map.

Proof sketch. A T n-equivariant Kuranishi structure on the moduli spaceMk+1(L, J, β) satis-

fying the properties is constructed in [21] Section 4.3.

We sketch the proof. Let x = [Σ, j, z⃗, u] ∈ Mk+1(L, J, β). We want to construct a

G-equivariant Kuranishi chart (Ux, Ex, ψx, sx) at x, where Ux = Vx/Γx for some manifold Vx

and some finite group Γx. Let Γx = Autx. Let G(x) = {(g, γ) ∈ T n × Γx | gu = u ◦ γ}. We

say z is a special point if z is a nodal singularity or boundary marked point of Σ.

Let Σ =
⋃
α∈A Σα, where each extended disc component Σα consists of an irreducible disc

component and all the spheres rooted on it. Let z⃗α = z⃗ ∩ Σα be the set of marked points

on Σα. For each α ∈ A, choose a non-empty G(x)-invariant open subset Kα ⊂ Σ \ ∂Σ with

compact closure Kα which does not intersect ∂Σ or nodal singularities and let

Du,α : W 1,p (Σα, ∂Σα;u
∗TX, u∗TL) =: Wα → Lp

(
Σα;u

∗TX ⊗ Λ0,1Σα

)
,

Du : W
1,p (Σ, ∂Σ;u∗TX, u∗TL)→ Lp

(
Σ;u∗TX ⊗ Λ0,1Σ

)
be the linearization of ∂̄. Choose, for each α, a finite-dimensional vector subspace Eα ⊂

C∞c (Kα, u
∗TX) consisting of compactly supported elements such that the following holds.

i) Du ({ξ ∈ Wα | ξ(z) = 0 ∀ special point z}) + Eα = Lp (Σα;u
∗TX ⊗ Λ0,1Σα) .

47



ii)
⊕
α∈A

Eα is G(x)-invariant.

iii) For each ∀z0 ∈ ∂Σ, the map Evz0 : D−1u (
⊕
α∈A

Eα) → Tu(z0)L given by v 7→ v(z0) is

surjective.

iv) If γ ∈ Γx and Σα′ = γΣα, then γ∗Eα = Eα′ .

Let Ex(x) =
⊕
α∈A

Eα. If (g, γ) ∈ G(x), let Ex((g, γ) · x) = g∗Ex(x).

For each α, choose lα many appropriate extra interior marked points w⃗+
α on Σα away from

nodes to stabilize the domain of x. Let w⃗+ be the ordered set of all such extra marked points

on Σ. Let v(w⃗+) = (Σ, j, z⃗, w⃗+).

Suppose (v′ = (Σ(v′), j′, z⃗′, w⃗+′
), u′) is a smooth curve with k+1 boundary marked points

and l interior marked points such that the domain v′ is close to v inMk+1,l and (v′, u′) is

close to (hx, w⃗+) for some h ∈ T n. For each v′, there is an embedding iv′ : Σ \ S → Σ(v′),

where S is a neighborhood of the set of marked points and singularities.

We decompose Σ(v′) =
⋃
r∈RΣ

′
r into extended disc components as well. Let r ∈ R. Let

A(r) = {α ∈ A | iv′(Σα \S) ⊂ Σ′r}. For each α ∈ A(r), we obtain a map Pr,α : Eα → h∗Eα →

C∞(Σ′r, (u
′)∗TX ⊗ Λ0,1Σ′r) using the convexity of the square of the distance function (and

an exponential decay estimate) which allows us to (choose a “closest” h ∈ T n and) define a

suitable parallel transport map. Then we define Ex(v
′, u′) =

⊕
r∈R

⊕
α∈A(r)

imPr,α. Let

Vx = {(v′, u′) close to (T n · x, w⃗) | ∂̄ u′ ≡ 0 mod Ex(v
′, u′)}.

Let sx : (v′, u′) 7→ ∂̄ u′ and Ex → Vx be the orbibundle whose fiber is Ex(v
′, u′) at [(v′, u′)]

and Ex(x) at x. Thus, an equivariant Kuranishi chart at x is defined.

For (k1, β1), (k2, β2) ∈ N×π2(X,L), we say (k1, β1) < (k2, β2) if either ω(β1) < ω(β2) or

ω(β1) = ω(β2) and k1 < k2. For coordinate changes to be defined, we need to modify the

obstruction bundles Ex inductively on (k′, β′). Suppose for all (k′, β′) < (k, β) we have a

Kuranishi structure and, in particular, coordinate changes are defined on Mk′+1(L, J, β
′).

More specifically, we have a finite cover {U(c) | [c] ∈ Pk′(β
′)} of Mk′+1(L, J, β

′), where
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P (β′) ⊂ Mk′+1(L, J, β
′)/T n and K(c) ⊂ Mk′+1(L, J, β

′) is a T n-invariant closed subset

of the Kuranishi neighborhood at c. The fiber of the obstruction bundle of a point in

Mk′+1(L, J, β
′) is given by a direct sum of (perturbations of) fibers of (some of) the Ec’s

so that the coordinate changes onMk′+1(L, J, β
′) is defined. Then we define the Kuranishi

structure onMk+1(L, J, β) by a downward induction on the number of disc components. For

each d > 1, let SdMk+1(L, J, β) be the set of elements with at least d disc components.

Suppose on Sd+1Mk+1(L, J, β) we have a finite cover {Kp | p ∈ P} such that each Kp is

a T n-invariant compact subset of the Kuranishi neighborhood ψp

(
s−1p (0)

)
and that

Sd+1Mk+1(L, J, β) ⊂
⋃
p∈P

intKp.

As before, we find a cover of

KdMk+1(L, J, β) = SdMk+1(L, J, β) \
⋃
p∈P

intKp

by T n-invariant compact subsets Kx1 , . . . , Kxm of Kuranishi neighborhoods of finitely many

points x1, . . . , xm ∈ SdMk+1(L, J, β) \ Sd+1Mk+1(L, J, β) and define the fibers of the ob-

struction bundles by appropriate direct sums of the fibers of the obstruction bundles at the

xi’s.

Then we glue the Kuranishi structures on KdMk+1(L, J, β) and
⋃

p∈P intKp. In particular,

when a point x ∈
Ä⋃

p∈P intKp

ä
∩ (
⋃
i intKxi), we define the fibers of Ex by taking direct

sums of (perturbations of) the relevant fibers of the obstruction bundles from the two types

of Kuranishi structures. The induction construction then allows us to obtain coordinate

changes.

5.3 The equivariant A∞ algebra associated to a

Lagrangian submanifold

In this section, we define an equivariant A∞ algebra associated to a Lagrangian torus fiber L

of the toric moment map µ over an interior point of the moment polytope ∆.
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Let g be the Lie algebra of G and g∗ be its dual. Let S(g∗) be the symmetric algebra on

g∗. Let Ω(L) be the de Rham complex of L and ΩG(L,R) = (Ω(L)⊗ S(g∗))G be the Cartan

model of L. Let dG be the Cartan differential. Recall the definition of the universal Novikov

ring in (5.1.3). Define

CG(L,Λ0,nov) := ΩG(L,R)“⊗R Λ0,nov . (5.3.1)

Let C = CG(L,Λ0,nov). It is a graded Λ0,nov-module: C =”⊕
p∈N

Cp, where

Cp =
ÿ�⊕
i+2j+2n=p

(
Ωi(L)⊗ Sj(g∗)

)G“⊗R(Λ0 · en). (5.3.2)

Define a degree on C such that deg h = min

ß
p ∈ N

∣∣∣∣h ∈ p⊕
m=0

Cm

™
. Denote by C[1] the

module determined by C[1]p = Cp+1. Let B0C[1] = Λ0,nov and

Bk(C[1]) = C[1]⊗ · · · ⊗ C[1] ∀k > 0.

Let BC[1] = ”⊕
k∈N

BkC[1]. For any β ∈ π2(X,L), we define mG
k,β : BkC[1]→ C[1], the contribu-

tion of the moduli spaceMk+1(L, J, β) by using the evaluation maps evj,β :Mk+1(L, J, β)→

L as follows. We denote by (evGj,β)
∗ the G-equivariant pullback by the evaluation map at the

k-th boundary marked point and (evG0,β)! the G-equivariant integration along the fiber by the

evaluation map at the 0-th marked point, which we discuss in Section 8.29.

Let x1, . . . , xk ∈ Ω(L,Λ0,nov). For β = 0,

mG
0,β=0(1) = 0

mG
1,β=0(x1) = dGx1, where dG is the Cartan differential,

mG
2,β=0(x1 ⊗ x2) = (−1)deg x1x1 ∧ x2

mG
k,β=0 = 0 ∀k ≥ 3.

(5.3.3)

For β ̸= 0, define

mG
0,β(1) = (evG0,β)!(1) (5.3.4)

and

mG
k,β(x1 ⊗ · · · ⊗ xk) = (evG0,β)!

(
(evG1,β)

∗x1 ∧ · · · ∧ (evGk,β)
∗xk
)
∀k ≥ 1. (5.3.5)
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Then for k ∈ N we define mG
k : Bk(C[1])→ C[1] by, ∀x1 ⊗ · · · xk ∈ BkC[1],

mG
k (x1 ⊗ · · · ⊗ xk) =

∑
β∈π2(X,L)

mG
k,β(x1 ⊗ · · · ⊗ xk)T

ω(β)
2π e

Iµ(β)

2 . (5.3.6)

Let L be a Lagrangian torus fiber of the compact symplectic toric manifold X and let

S = {(ω(β), Iµ(β)) | β ∈ π2(X,L)}. (5.3.7)

Definition 5.2 (S-gapped curved filtered G-equivariant A∞ algebra). An S-gapped curved1

filtered G-equivariant A∞ algebra is a tuple (C, {mG
k }k∈N, S,G) such that the following

holds.

• (C, {mG
k }k∈N, S) is an S-gapped curved filtered A∞ algebra as defined in Definition 4.4.

• G is a compact connected Lie group.

• C is an H∗(BG)-algebra and BC[1] is an H∗(BG)-coalgebra and, ∀k ∈ N, the operator

mG
k is an H∗(BG)-algebra homomorphism.

Proposition 5.2. Let (CG(L,Λ0,nov), {mG
k }k∈N, S,G) be the data defined in (5.3.1), (5.3.3),

(5.3.4), (5.3.5), and (5.3.7). It is an S-gapped curved filtered G-equivariant A∞ algebra.

Proof. For any k ∈ N, (λ, n) ∈ S, let

mG
k,(λ,n) =

∑
β∈π2(X,L)

ω(β)=λ,Iµ(β))=n

mG
k,β .

Then S-gappedness follows. For each k ∈ N, β ∈ π2(X,L), we have

∑
k1,k2≥0

k1+k2=k+1

∑
β1,β2∈π2(X,L)
β1+β2=β

k1∑
j=1

(−1)∗mG
k1,β1

(x1 ⊗ · · · xj−1 ⊗mG
k2,β2

(xj ⊗ · · · xj+k2−1)⊗ · · · ⊗ xk)

= mG
1,0m

G
k,β(x1 ⊗ · · · ⊗ xk)︸ ︷︷ ︸

(I)

+
k∑
i=1

(−1)∗mG
k,β(x1 ⊗ · · · ⊗mG

1,0(xi)⊗ · · · ⊗ xk)︸ ︷︷ ︸
(II)

1The word “curved” means an m0 : Λ0,nov → C[1] is included, in contrast to the classical A∞ algebra.
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+
∑

k1+k2=k+1
β1+β2=β

(k1,β1 )̸=(1,0)
(k2,β2 )̸=(1,0)

k1∑
j=1

(−1)†mG
k1,β1

(x1 ⊗ · · ·xj−1 ⊗mG
k2,β2

(xj ⊗ · · · xj+k2−1)⊗ · · · ⊗ xk)

︸ ︷︷ ︸
(III)

,

where ∗ =
i−1∑
l=1

(deg xl + 1) and † =
j−1∑
l=1

(deg xl + 1). To show the A∞ relation, it suffices to

show the sum is zero for all k, β. By Proposition 5.1 and Proposition 8.4, (III) corresponds to

CorrG,ϵ∂Mk+1(L,J,β)
(x1⊗· · ·⊗xk). Moreover, (I) corresponds to dG◦CorrG,ϵMk+1(L,J,β)

(x1⊗· · ·⊗xk)

and (II) corresponds to CorrG,ϵMk+1(L,J,β)
◦ dG(x1⊗ · · · ⊗ xk). Thus, by Stokes’ Theorem 8.2 (or

Proposition 8.3), the sum is zero. Hence, by construction, (CG(L,Λ0,nov), {mG
k }k∈N, S,G) is

an S-gapped curved G-equivariant filtered A∞ algebra.

Definition 5.3 ((mG
k,β)

b). Let k ∈ N and β ∈ π2(X,L). For any b ∈ H1(L,Λ0), define

(mG
k,β)

b : Bk(C[1])→ C[1] by

(mG
k,β)

b(x1 ⊗ · · · ⊗ xk) = exp(∂β ∩ b)mG
k,β(x1 ⊗ · · · ⊗ xk). (5.3.8)

And we define (mG
k )

b : Bk(CG(L)[1])→ CG(L)[1] by

(mG
k )

b =
∑

β∈π2(X,L)

(mG
k,β)

bT
ω(β)
2π e

Iµ(β)

2 . (5.3.9)

Proposition 5.3. Let L = µ−1(u) for some u ∈ int∆. Let b ∈ H1(L,Λ0). Then

(CG(L,Λ0,nov), {(mG
k )

b}k∈N) is a G-equivariant A∞ algebra.

Proof.

∑
k1,k2≥0

k1+k2=k+1
β1,β2∈π2(X,L)
β1+β2=β

k1∑
j=1

(−1)∗(mG
k1,β1

)b(x1 ⊗ · · · xj−1 ⊗ (mG
k2,β2

)b(xj ⊗ · · · ⊗ xj+k2−1)⊗ · · · ⊗ xk)

=e∂β∩b
∑

k1,k2≥0
k1+k2=k+1
β1,β2∈π2(X,L)
β1+β2=β

k1∑
j=1

(−1)∗mG
k1,β1

(x1 ⊗ · · · ⊗ xj−1 ⊗mG
k2,β2

(xj ⊗ · · · ⊗ xj+k2−1)⊗ · · · ⊗ xk)

=0 by Proposition 5.2.

52



Definition 5.4 (Unit of an A∞ algebra). An element eee ∈ C0 is called a unit of a G-equivariant

A∞ algebra (C, {mG
k }k∈N, S,G) if the following holds.

1) mG
k (x1 ⊗ · · · ⊗ eee⊗ · · · ⊗ xk) = 0 for all x1, . . . , xk ∈ C whenever k ≥ 2 or k = 1.

2) mG
2 (eee, x) = x = (−1)deg xm2(x,eee) for all x ∈ C.

The element 1 ∈ CG(L,Λ0,nov) is a unit of (CG(L,Λ0,nov), {(mG
k )

b}k∈N).

Definition 5.5 (Potential function). Define the potential function

POG :
⋃

uuu∈int∆

{uuu} ×H1(µ−1(uuu),Λ0/(2πiZ))→ Λ

by

(mG
0 )

b(1) = POuuu
G(b)e.

By Theorem 5.2 ([23] Proposition 4.6), for all uuu ∈ int∆, there exists POuuu(b) ∈ Λ0 such

that

POuuu(b)PD[L(uuu)]e = exp(∂β ∩ b)m0(1) = exp(∂β ∩ b)mG
0 (1) = (mG

0 )
b(1).

Thus, POG(b) is defined and equal to PO(b) for all b ∈ H1(µ−1(uuu),Λ0). For this reason, we

will omit G in the notation of the potential function from now on.

Note that we have the inclusion

⋃
uuu∈int∆

{uuu} ×H1(µ−1(uuu),Λ0/(2πiZ))→ (Λ∗)n

via (
u1, . . . , un,

n∑
i=1

xiei

)
7→ (exp(x1)T

u1 , . . . , exp(xn)T
un) =: (y1, . . . , yn). (5.3.10)

Then the potential function takes the form of a formal Laurent series in y1, . . . , yn.

Corollary 5.1. For any uuu ∈ int∆, ∀b ∈ H1(µ−1(uuu),Λ0), we have (mG
1 )

b ◦ (mG
1 )

b = 0.
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Proof. For any x ∈ CG(L,Λ0,nov), by the A∞ relations (Proposition 5.3), we have

(mG
1 )

b ◦ (mG
1 )

b(x) = −(mG
2 )

b
(
(mG

0 )
b(1)⊗ x

)
+ (−1)deg x(mG

2 )
b(x⊗ (mG

0 )
b(1)) = 0.

Therefore, we may define the equivariant Lagrangian Floer cohomology as follows.

Definition 5.6 (Equivariant Lagrangian Floer cohomology). For any Lagrangian torus

fiber L(uuu) = µ−1(uuu), uuu ∈ int∆, and any b ∈ H1(µ−1(uuu),Λ0), we define the G-equivariant

Lagrangian Floer cohomology associated to the pair (L(uuu), b) by

HFG((L(uuu), b), (L(uuu), b),Λ0,nov).

In [23], the authors proved that one can express the potential function for a compact

Fano toric manifold (X,ω) purely from the information of its moment polytope as follows.

Theorem 5.1 (Theorem 4.5 [23]). Let (X,ω, T n, µ) be a compact symplectic toric Fano

manifold with moment polytope

∆ = µ(X) =
m⋂
i=1

{uuu ∈ t∗ | ⟨uuu, vi⟩ − λi ≥ 0}, (5.3.11)

where m is the number of the facets of ∆, vi = (vi,1, . . . , vi,n) is the inner normal vector of

the i-th facet. We denote the affine function ⟨uuu, vi⟩ − λi by li(uuu). On

⋃
uuu∈int∆

{uuu} ×H1

Å
µ−1(uuu),

Λ0

2πiZ

ã
,

we have

PO

(
u1, . . . , un,

n∑
i=1

xiei

)
=

m∑
i=1

exp(⟨vi, x⟩)T li(u),

where x = (x1, . . . , xn). In particular, if we use the coordinates (5.3.10), the potential function

PO defines a Laurent polynomial

PO =
m∑
i=1

y
vi,1
1 · · · yvi,nn T−λi ∈ Λ[y±11 , . . . , y±1n ]. (5.3.12)
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When (X,ω, T n, µ) is compact symplectic toric but not necessarily Fano, the same formula

(5.3.12) computes the leading order potential function PO0 of X.

Theorem 5.2 (Potential function of a compact symplectic toric manifold, [23] Theorem 4.6).

Let (X,ω, T n, µ) be a compact symplectic toric manifold with moment polytope (5.3.11).

Let uuu ∈ int∆ and b ∈ H1(L(uuu), (Λ0/2πi)). Then there exists an index set I ⊂ N such that

∀1 ≤ i ≤ m, j ∈ I, there exist rj ∈ Q, eij ∈ N, and ρj > 0 satisfying the following.

i)
m∑
i=1

eij > 0 ∀1 ≤ j ≤ n.

ii) If we let li(uuu) = ⟨uuu, vi⟩ − λi,

v′j,k =
m∑
i=1

eijvi,k, l′j =
m∑
i=1

eijli, and v′j = (v′j,1, . . . , v
′
j,n),

then the potential function is given by

PO(uuu,
n∑
i=1

xiei)−
m∑
i=1

exp(⟨vi, x⟩)T li(uuu) =
∑
j∈I

rj exp
(〈
v′j, x

〉)
T l

′
j(uuu)+ρj . (5.3.13)

In particular, if we use the coordinates (5.3.10),

PO =
m∑
i=1

y
vi,1
1 · · · yvi,nn T−λi +

∑
j∈I

rj

(
m∏
i=1

(y
vi,1
1 · · · yvi,nn T−λi)e

i
j

)
T ρj (5.3.14)

The rest of the section is devoted to the proof of Theorem 5.4.

Since (mG
1 )

b commutes with dG, it is defined on H1
G(L).

Lemma 5.1. Let uuu ∈ int∆ and let

b =
n∑
i=1

ciαi ∈ H1(L(uuu),Λ0), where

where αr+1, . . . , αn generates H1
G(L(uuu),Z). Then for any r + 1 ≤ i ≤ n, we have

(mG
1 )

b(αi) =

Å
∂POuuu

∂ci
(b)

ã
PD[L(uuu)]e.
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Proof. For each 1 ≤ j ≤ m, let βj ∈ H2(X,L(uuu),Z) ∼= π2(X,L(uuu)) be the class of the basic

disc, which is a small disc transverse to µ−1 (j-th facet of ∆). Let mk,β be the ordinary A∞

operator on the de Rham model. Note that

POuuu(b)PD[L(uuu)]e =
∑

β∈π2(X,L(uuu))
Iµ(β)=2

∞∑
k=0

(mk,β)(b⊗ · · · ⊗ b)T
ω(β)
2π e

only involves moduli spacesMk+1(L(uuu), J, β) for Iµ(β) = 2. On the one hand,

deg(mk,β(b
⊗k)) = k − ((n− 3 + Iµ(β) + k + 1)− n) = 2− Iµ(β) ≥ 0

implies Iµ(β) ≤ 2. On the other hand, for every β ∈ π2(X,L(uuu)), the evaluation map

ev0 :Mmain
k+1 (L(uuu), J, β)→ L is a submersion. In particular, wheneverMmain

k+1 (L(uuu), J, β) ̸= ∅,

its dimension is no less than dimL(uuu) = n:

n− 3 + Iµ(β) + 1 ≥ n ⇒ Iµ(β) ≥ 2.

This proves the claim. Therefore, for r + 1 ≤ i ≤ n, we haveÅ
∂POuuu

∂ci
(b)

ã
e =

∂

∂ci

Ü ∑
β∈π2(X,L(uuu))
Iµ(β)=2

∞∑
k=0

(mk,β)(b⊗ · · · ⊗ b)T
ω(β)
2π e

ê
=

∑
β∈π2(X,L(uuu))
Iµ(β)=2

∞∑
k=1

k∑
l=1

mk,β(b
⊗l−1 ⊗ αi ⊗ b⊗k−l)T

ω(β)
2π e

=
∑

β∈π2(X,L(uuu))
Iµ(β)=2

exp(∂β ∩ b)m1,β(αi)T
ω(β)
2π e

=
∑

β∈π2(X,L(uuu))
Iµ(β)=2

exp(∂β ∩ b)mG
1,β(αi)T

ω(β)
2π e

=(mG
1 )

b(αi).

Corollary 5.2. (mG
1 )

b|HG(L(uuu),Λ0) = 0 if and only if

∂POuuu

∂ci
(b) = 0 ∀r + 1 ≤ i ≤ n.
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Proof. Since the G-action on L(uuu) is free, a set of generators {αr+1, . . . , αn} for H1
G(L(uuu),R)

also generates HG(L(uuu),Λ0,nov), where the multiplication on the latter is given by wedge

product. Then {αr+1, . . . , αn} generates HG(L(uuu),Λ0,nov) with multiplication given by (mG
2 )

b

as well. The A∞ relations imply that

(mG
1 )

b
(
(mG

2 )
b(η ⊗ τ)

)
± (mG

2 )
b
(
(mG

1 )
b(η)⊗ τ

)
± (mG

2 )
b
(
η ⊗ (mG

1 )
b(τ)

)
± (mG

3 )
b
(
(mG

0 )
b(1)⊗ η ⊗ τ

)
± (mG

3 )
b
(
η ⊗ (mG

0 )
b(1)⊗ τ

)
± (mG

3 )
b
(
η ⊗ τ ⊗ (mG

0 )
b(1)

)
= 0.

In particular,

(mG
1 )

b
(
(mG

2 )
b(η ⊗ τ)

)
± (mG

2 )
b
(
(mG

1 )
b(η)⊗ τ

)
± (mG

2 )
b
(
η ⊗ (mG

1 )
b(τ)

)
= 0.

Thus, (mG
1 )

b = 0 on HG(L(uuu),Λ0,nov) if and only if (mG
1 )

b = 0 on H1
G(L(uuu),Λ0,nov). By

Proposition 5.1, this holds if and only if

∂POuuu

∂ci
(b) = 0 ∀r + 1 ≤ i ≤ n.

5.4 Spectral sequences

In this section, we define a spectral sequence similar to the one in [47] which may be used to

compute the equivariant Lagrangian Floer cohomology. Using the properties of the spectral

sequence, we conclude that the set of Lagrangian torus fibers (with weak bounding cochain

data) that have nontrivial equivariant Lagrangian Floer cohomology can be identified with a

subset of the algebraic torus over the Novikov field, with certain valuation restrictions.

Let uuu ∈ int∆, L = µ−1(uuu), and b ∈ H1(L,Λ0). Let

C = ΩG(L,R)“⊗Λ0,nov, δ = (mG
1 )

b.

Then (C[1], δ) is a cochain complex.
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Define

F λCp =
÷⊕
m,n∈N
m+2n=p

Ωm
G (L)⊗ (T λΛ0 · en).

Define E : Cp → R by E(x) = λ if x ∈ F λCp but x ̸∈ F λ′Cp for any λ′ > λ.

Let δ1,0 = (mG
1,β=0)

b = m1,β=0 = dG. Since non-constant pseudoholomorphic discs with

boundary on L have a universal energy lower bound, there exists λ′′ > 0 such that, ∀λ,

∀x ∈ F λC, we have (δ − δ1,0)x ∈ F λ+λ′′C. Let 0 < λ0 < λ′′. We use the λ0 to define a

decreasing integral filtration as follows. For any q ∈ N, let

F q Cp =
÷⊕
m,n∈N
m+2n=p

Ωm
G (L)⊗ (T qλ0Λ0 · en)

and let F∞Cp = {0}.

Definition 5.7. Define

Ap,qr := F q Cp ∩ δ−1(F q+r−1Cp+1)

Zp,q
r := Ap,qr + F q+1Cp = F q Cp ∩ δ−1(F q+r−1Cp+1) + F q+1Cp

Bp,q
r := F q Cp ∩ δ(F q−r+2Cp−1) + F q+1Cp

Ep,q
r :=

Ap,qr
Bp,q
r ∩ Ap,qr

.

For any r ≥ 0, we have

Bp,q
r+1 = F q Cp ∩ δ(F q−r+1Cp−1) + F q+1Cp ⊂ Bp,q

r

and

Zp,q
r+1 = F q Cp ∩ δ−1(F q+r Cp+1) + F q+1Cp ⊂ Zp,q

r .

It is easy to check the following.

Lemma 5.2. Let R be a commutative ring. Suppose A,M, T are R-modules, where M ⊂ A

is a submodule. Then we have the following:

i)
A

A ∩ (M + T )
∼=

A+ T

M + T
;
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ii) A ∩ (M + T ) =M + A ∩ T .

Proposition 5.4.

i) Ap,qr ∩Bp,q
r = F q Cp ∩ δ(F q−r+2Cp−1) + F q+1Cp ∩ δ−1(F q+r−1Cp+1).

ii) Ep,q
r
∼=
Zp,q
r

Bp,q
r

Proof. i) Note that F q Cp ∩ δ(F q−r+2Cp−1) ⊂ Ap,qr . Thus, by Lemma 5.2 ii),

Ap,qr ∩Bp,q
r = F q Cp ∩ δ(F q−r+2Cp−1) + Ap,qr ∩ F q+1Cp

= F q Cp ∩ δ(F q−r+2Cp−1) + F q+1Cp ∩ δ−1(F q+r−1Cp+1)

ii) Apply Lemma 5.2 i) to

A = Ap,qr , M = F q Cp ∩ δ(F q−r+2Cp−1), T = F q+1Cp,

we have

Ep,q
r =

Ap,qr
Bp,q
r ∩ Ap,qr

∼=
Ap,qr + F q+1Cp

Bp,q
r

∼=
Zp,q
r

Bp,q
r
.

Definition 5.8 (Ep,q
∞ ). For a fixed pair (p, q), if r > q + 2, then

Bp,q
r = F q Cp ∩ δ(F q−r+2Cp−1) + F q+1Cp

= F q Cp ∩ δ(Cp−1) + F q+1Cp

is independent of r. Moreover, for r > q + 2, we have inclusions

· · · ⊂ Zp,q
q+5 ⊂ Zp,q

q+4 ⊂ Zp,q
q+3,

and thus an inverse system

· · · ⊂ Ep,q
q+5 ⊂ Ep,q

q+4 ⊂ Ep,q
q+3.

We define

Ep,q
∞ := lim

←−
Ep,q
r .
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We will use the following lemma (proved in Proposition 6.3.9 [24]) to prove Theorem 5.3.

Lemma 5.3 (Proposition 6.3.9 in [24]). Let C =”⊕
p∈N

Cp be a graded finitely generated free

module over Λ0 such that C and each Cp is complete with respected to the energy filtration.

Let δ : C∗ → C∗+1 be a degree 1 operator such that

δ ◦ δ = 0 and δ(F λC) ⊂ F λC.

Let W ⊂ Cp be a finitely generated Λ0-submodule. Then there exists a constant c depending

on W but not on λ such that

δ(W ) ∩ F λCp+1 ⊂ δ
(
W ∩ F λ−cCp

)
. (5.4.1)

Theorem 5.3. Let uuu ∈ int∆, and L = µ−1(uuu). Let b ∈ H1(L,Λ0). There exists a spectral

sequence with the following properties.

i) The E2-page is given by HG(L,Λ0,nov), where

Ep,q
2
∼=
⊕̂
m∈N

Hp−2m
G (L,R)“⊗ F q(Λ0 · em)

F q+1(Λ0 · em)
(5.4.2)

ii) ∀r, p ∈ N,∀q ∈ Z, there exists a well-defined map δr : E
p,q
r → Ep+1,q+r−1

r satisfying:

a)

δp+1,q+r−1
r ◦ δp,qr = 0;

b)

Ep,q
r+1
∼=

ker δp,qr
im δp−1,q−r+1

r

(5.4.3)

c)

e±1 ◦ δp,qr = δp±2,qr ◦ e±1

iii) There exists some r0 ≥ 2 with

Ep,q
2 =⇒ Ep,q

r0
∼= Ep,q

r0+1
∼= · · · ∼= Ep,q

∞ =
F qHF p

G

(
(L, b), (L, b),Λ0,nov

)
F q+1HF p

G

(
(L, b), (L, b),Λ0,nov

) . (5.4.4)
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Proof. i) We compute

Ap,q2 = {x ∈ F q Cp | δx ∈ F q+1Cp+1} = ker dG ∩ F q Cp,

Bp,q
2 = δ(F q Cp−1) ∩ F q Cp + F q+1Cp = im dG ∩ F q Cp + F q+1Cp.

⇒ Ep,q
2 =

Ap,q2

Bp,q
2 ∩ A

p,q
2

∼=
Ap,q2 + F q+1Cp

Bp,q
2

∼=

(
ker dG ∩ F q Cp + F q+1Cp

)
/F q+1Cp(

im dG ∩ F q Cp + F q+1Cp
)
/F q+1Cp

∼=
⊕
m∈N

Hp−2m
G (L;R)⊗ (F q(Λ0 · em)/F q+1(Λ0 · em))

ii) Define δr[x] = [δx] ∈ Ep+1,q+r−1
r . Then

δ(Ap,qr ) = F q+r−1Cp+1 ∩ δ(F q Cp)

⊂ F q+r−1Cp+1 ∩ δ−1({0})

⊂ F q+r−1Cp+1 ∩ δ−1(F q+2r−2Cp+2) = Ap+1,q+r−1
r .

Also,

δ(Ap,qr ∩Bp,q
r ) = δ

(
δ(F q−r+2Cp−1) ∩ F q Cp + δ−1(F q+r−1Cp+1) ∩ F q+1Cp

)
= δ
(
F q+1Cp ∩ δ−1(F q+r−1Cp+1)

)
= δ(F q+1Cp) ∩ F q+r−1Cp+1

⊂ δ(F q+1Cp) ∩ F q+r−1Cp+1 + F q+r Cp+1 ∩ δ−1(F q+2r−2Cp+2)

= Ap+1,q+r−1
r ∩Bp+1,q+r−1

r .

Therefore, δr is well-defined.

a) δp+1,q+r−1
r ◦ δp,qr = 0 follows from δ ◦ δ = 0.
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b) We have

ker δp,qr

=
Ap,qr ∩ δ−1(Ap+1,q+r−1

r ∩Bp+1,q+r−1
r )

Ap,qr ∩Bp,q
r

=
Ap,qr ∩ δ−1(Bp+1,q+r−1

r )

Ap,qr ∩Bp,q
r

since Ap,qr ⊂ δ−1(Ap+1,q+r−1
r )

=
F q Cp ∩ δ−1(F q+r−1Cp+1) ∩ δ−1

(
δ(F q+1Cp) ∩ F q+r−1Cp+1 + F q+r Cp+1

)
Ap,qr ∩Bp,q

r

=
F q Cp ∩ δ−1

(
δ(F q+1Cp) ∩ F q+r−1Cp+1 + F q+r Cp+1

)
Ap,qr ∩Bp,q

r

[ since
(
δ(F q+1Cp) ∩ F q+r−1Cp+1 + F q+r Cp+1

)
⊂ F q+r−1]

=
F q+1Cp ∩ δ−1(F q+r−1Cp+1) + F q Cp ∩ δ−1(F q+r Cp+1)

Ap,qr ∩Bp,q
r

.

im δp−1,q−r+1
r

=
δ(Ap−1,q−r+1

r ) + Ap,qr ∩Bp,q
r

Ap,qr ∩Bp,q
r

=
F q Cp ∩ δ(F q−r+1Cp−1) + F q Cp ∩ δ(F q−r+2Cp−1) + F q+1Cp ∩ δ−1(F q+r−1Cp+1)

Ap,qr ∩Bp,q
r

=
F q Cp ∩ δ(F q−r+1Cp−1) + F q+1Cp ∩ δ−1(F q+r−1Cp+1)

Ap,qr ∩Bp,q
r

.

Hence,

ker δp,qr
im δp−1,q−r+1

r

=
F q+1Cp ∩ δ−1(F q+r−1Cp+1) + F q Cp ∩ δ−1(F q+r Cp+1)

F q Cp ∩ δ(F q−r+1Cp−1) + F q+1Cp ∩ δ−1(F q+r−1Cp+1)

∼=
F q Cp ∩ δ−1(F q+r Cp+1)

F q Cp ∩ δ(F q−r+1Cp−1) + F q+1Cp ∩ δ−1(F q+r Cp+1)
by Lemma 5.2

=
Ap,qr+1

Ap,qr+1 ∩B
p,q
r+1

= Ep,q
r+1.

c) follows from the fact that δ commutes with multiplying by e±1 and that deg e±1 =

±2.

iii) We consider the restriction of the original spectral sequence to pages starting from E2.

Take C = E2 and W = Ep,q
2 in Lemma 5.3 to get a constant c such that (5.4.1) holds.
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Let r > 2 be big enough such that (r − 1)λ0 − c > λ0. Let r ≥ r0. Then

(q + r − 1)λ0 − c = qλ0 + (r − 1)λ0 − c > (q + 1)λ0

and thus, by (5.4.1),

δ(F q Cp) ∩ F q+r−1Cp+1 ⊂ δ
(
F q+1Cp

)
.

Consider any x ∈ Ap,qr = F q Cp ∩ δ−1(F q+r−1Cp+1). Then δx ∈ δ(F q+1Cp) and thus

there exists

y ∈ F q+1Cp ∩ δ−1(F q+r−1Cp+1) ⊂ Ap,qr ∩Bp,q
r (5.4.5)

such that [δx] = [δy]. Thus, δr[x] = δr[y] = 0. Therefore, there exists a r0 ≫ 2 such

that we have

Ep,q
r0
∼= Ep,q

r0+1
∼= · · · ∼= Ep,q

∞ .

Consider the map

πp,q : F qHp(C, δ)→ Ep,q
∞

defined as follows. An element [x] ∈ F qHp(C, δ) is represented by

x ∈ F q Cp ∩ δ−1(0) ⊂ F q Cp ∩ δ−1(F q+r−1Cp+1) = Ap,qr

for any r ≥ max{r0, q + 2}. We define πp,q[x] to be the class represented by x in

Ep,q
∞
∼= Ap,q

r

Ap,q
r ∩Bp,q

r
.

Suppose x, x′ ∈ F qHp(C, δ) with x − x′ = δy for some y ∈ F q Cp−1. Let r ≥

max{r0, q + 2}. Then

δy ∈ δ(F q Cp−1) = δ(F q−r+2Cp−1) ∩ F q Cp ⊂ Ap,qr ∩Bp,q
r .

This implies πp,q[x] = πp,q[x
′] in Ep,q

r and hence the well-definedness of πp,q.

Let [x] ∈ Ep,q
∞ . Then for r large we have that [x] ∈ Ep,q

r and that there exists y satisfying

(5.4.5).

[x− y] = [x] ∈ Ep,q
r and δ(x− y) = 0.
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Thus, [x− y] ∈ F qHp(C, δ) with πp,q[x− y] = [x], showing the surjectivity of πp,q.

Suppose [x] ∈ kerπp,q. Then, for r large enough, we have

x ∈ δ(F q−r+2Cp−1) + F q+1Cp = δ(Cp−1) + F q+1Cp.

Hence, [x] ∈ F q+1Hp(C, δ) and thus kerπp,q ⊂ F q+1Hp(C, δ). Moreover, for large

enough r,

Ap,qr ∩Bp,q
r = δ(Cp−1) + F q+1Cp ⇒ F q+1Hp(C, δ) ⊂ kerπp,q.

Therefore, kerπp,q = F q+1Hp(C, δ).

Theorem 5.4. Let uuu ∈ int∆ and b ∈ H1(L(uuu),Λ0). Then b =
n∑
i=1

xiei =
n∑
i=1

ciαi, where

e1, . . . , en generate H1(L(uuu),Z) ∼= M as in Section 5.1 and αr+1, . . . , αn generate H1
G(L(uuu),Z).

Let

Crit∆G(PO) :=

(y1, . . . , yn) ∈ (Λ∗)n

∣∣∣∣∣∣∣∣
∂PO

∂ci
= 0 ∀r + 1 ≤ i ≤ n

(val(y1), . . . , val(yn)) ∈ int∆

 (5.4.6)

and let MLagG(X,ω) be the set{
(uuu, b) ∈

⋃
uuu∈int∆

{uuu} ×H1

Å
L(uuu),

Λ0

2πiZ

ã ∣∣∣∣∣HFG((L(uuu), b), (L(uuu), b),Λnov) ̸= 0

}
. (5.4.7)

Then the following are equivalent.

i) (y1, . . . , yn) = (ex1T u1 , . . . , exnT un) ∈ Crit∆G(PO).

ii)

HFG
(
(µ−1(uuu), b), (µ−1(uuu), b),Λ0,nov

) ∼= HG(µ
−1(uuu),R)⊗R Λ0,nov .

iii) (uuu, b) ∈MLagG(X,ω); i.e.

HFG
(
(µ−1(uuu), b), (µ−1(uuu), b),Λ0,nov

)
̸= 0.
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Proof. The equivalence of i) and iii) follows from Proposition 5.2. ii) ⇒ iii) is trivial. If ii)

does not hold, then the spectral sequence in Theorem 5.3 does not collapse at E2 page. This

is equivalent to saying (mG
1 )

b(α) ̸= 0 for some element α ∈ H1
G(L,Λ0,nov). By degree count,

(mG
1 )

b(α) ∈ Λ0,nov, which implies E3 = 0 and thus HFG ((µ−1(uuu), b), (µ−1(uuu), b),Λ0,nov) =

0.
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Chapter 6

Crit∆G(PO)

In this chapter, we prove that the set of Lagrangian torus fibers (with weak bounding cochain

data) with non-vanishing equivariant Lagrangian Floer cohomology can be identified with

a rigid analytic space. After discussing the proof in Section 6.1, we will provide examples

in Section 6.2. In particular, we can locate such Lagrangian torus fibers in the moment

polytope using tropical geometry. When the compact symplectic toric manifold is Fano

and the acting subtorus is trivial, the equivariant Lagrangian Floer theory agrees with the

ordinary Lagrangian Floer theory. And, in this case, the barycentric Lagrangian torus fiber

obtained by tropicalizing the non-archimedean rigid analytic space induced by the Jacobian

ideal of the potential function is known to generate the Fukaya category ordinary Lagrangian

Floer theory on compact toric Fano manifolds. (See [15] and [27].)

6.1 Crit∆G(PO) is a rigid analytic space

We denote the coordinate valuation map by

trop : Λn → (R∪{∞})n, (y1, . . . , yn) 7→ (val(y1), . . . , val(yn)).

Lemma 6.1. Suppose ∆ ⊂ Rn is a polytope of the form (5.3.11). If A is an affinoid algebra

such that trop−1(∆) = SpA, then A is a Cohen-Macaulay ring of dimension n. Moreover,
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trop−1(int∆) is a rigid analytic space.

Proof. Suppose the moment polytope ∆ is defined by m affine inequalities.

∆ =
m⋂
i=1

{u ∈MR | ⟨u, vi⟩ − λi ≥ 0} ,

where m > n is the number of facets of ∆ and each vi = (vi,1 . . . , vi,n) ∈ NZ is the inner

normal vector of the i-th facet. Denote yvi := y
vi,1
1 · · · yvi,nn . Then

trop−1(∆) = {(y1, . . . , yn) ∈ Λn | (val(y1), . . . , val(yn)) ∈ ∆}

= {(y1, . . . , yn) ∈ Λn | val(yvi)− val(T λi) ≥ 0 ∀1 ≤ i ≤ m}

=

ß
(y1, . . . , yn) ∈ Λn

∣∣∣∣ ∣∣∣∣ yviT λi

∣∣∣∣ ≤ 1 ∀1 ≤ i ≤ m

™
.

By the smoothness of the Delzant polytope, the linear map

φ̃ : Zm ↠MZ ∼= Zn, (c1, . . . , cm) 7→

à
v1,1 · · · vm,1
...

. . .
...

v1,n · · · vm,n

íà
c1
...

cm

í
,

is surjective, and it induces a surjective ring homomorphism

φ : Λ[z±11 , . . . , z±1m ] ↠ Λ[y±11 , . . . , y±1n ], zc 7→ yφ̃(c). (6.1.1)

Here zc := zc11 · · · zcmm if c = (c1, . . . , cm). In particular, φ(zi) = yvi .

Let λ = (λ1, . . . , λm) and

Tm,λ = Λ
〈
z1T

−λ1 , . . . , zmT
−λm

〉
,

By [48] Proposition 6.9, trop−1(∆) ∼= SpA, where

A = Tm,λ/(kerφ)Tm,λ (6.1.2)

is a Λ-affinoid algebra of dimension n and trop−1(∆) is a Λ-affinoid space. Then

trop−1(int∆) ∼= {z ∈ trop−1(∆) | |ziT−λi | < 1 ∀1 ≤ i ≤ m}

is an admissible open subset of trop−1(∆) by Proposition [5] 5.1/Proposition 7 (see Proposition

B.2). Therefore, trop−1(int∆) is also a rigid analytic Λ-space.
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Moreover, by [48] Proposition 6.9 and [48] Remarks 6.5 and 6.6,

Λ ⟨∆⟩ :=

{∑
c∈Zn

acy
c

∣∣∣∣∣ val(ac) + ⟨u, c⟩ → ∞ as |c| → ∞ ∀u ∈ ∆

}
(6.1.3)

is the completion of Λ[y±11 , . . . , y±1n ] with respect to the norm | · |∆ : Λ[y±11 , . . . , y±1n ]→ R≥0,

which is defined by ∣∣∣∣∣∑
c∈Zn

acy
c

∣∣∣∣∣
∆

:= sup
c∈Zn

u∈∆

|ac|Λ · exp(−⟨u, c⟩).

We can alternatively argue that Λ ⟨∆⟩ is an affinoid algebra as follows. Since Λ ⟨∆⟩ is a

Λ-Banach algebra with this norm and |yviT−λi |∆ = sup
u∈∆

e−(⟨u,vi⟩−λi) ≤ e0 < 1 for all 1 ≤ i ≤ m,

we have a continuous homomorphism Φ : Λ ⟨z1, . . . , zm⟩ → Λ ⟨∆⟩ prescribed by zi 7→ yviT−λi

according to [6] 6.1.1/Proposition 4. Moreover, by the smoothness of the polytope, since

v1, . . . , vm contains a Z-basis of Zn, every c ∈ Zn is a Z-linear combination c =
∑m

i=1 c(vi)vi

of v1, . . . , vm. Thus, if f =
∑

c∈Zn acy
c ∈ Λ ⟨∆⟩, then

f = Φ

(∑
c∈Zn

acT

m∑
i=1

c(vi)λi
z
c(v1)
1 · · · zc(vm)

m

)
.

As |c(v1)|+ · · ·+ |c(v1)| → ∞, we have

val

Ç
acT

m∑
i=1

c(vi)λi

å
= val(ac) +

m∑
i=1

c(vi)λi ≤ val(ac) +
m∑
i=1

c(vi) ⟨u, vi⟩ → ∞

for all u ∈ ∆. Therefore,
∑

c∈Zn acT

m∑
i=1

c(vi)λi
z
c(v1)
1 · · · zc(vm)

m ∈ Λ ⟨z1, . . . , zm⟩. This shows that

Φ is a continuous epimorphism and thus Λ ⟨∆⟩ is a Λ-affinoid algebra ([6] 6.1.1/Definition 1),

commonly denoted by Λ
〈
yv1T−λ1 , . . . , yvmT−λm

〉
.

Proposition 6.1. Let X be a compact symplectic toric manifold as in Section 5.1. Then

Crit∆G(PO) is a rigid analytic space. Moreover, the closure of the image of the map trop :

Crit∆G(PO) → ∆, (y1, . . . , yn) 7→ (val(y1), . . . , val(yn)) is a polytopal set, i.e. a union of

polytopes.

Proof. By Proposition 5.2, PO takes the form of (5.3.14). For all 1 ≤ i ≤ n, let

fi =
n∑
j=1

ai,j

Å
yj
∂PO

∂yj

ã
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=
n∑
j=1

ai,j

(
m∑
k=1

vk,jy
vk,1
1 · · · yvk,nn T−λk +

∑
s

m∑
k=1

rsvk,j

m∏
k=1

(y
vk,1
1 · · · yvk,nn T−λk)e

k
s

)
. (6.1.4)

Then

W = V (fr+1, . . . , fn) ∩ trop−1(∆)

= {(y1, . . . , yn) ∈ trop−1(∆) | fi(y1, . . . , yn) = 0 ∀r + 1 ≤ i ≤ n}

= Sp
Λ ⟨∆⟩

(fr+1, . . . , fn)

is a Λ-affinoid space.

By [5] 5.1/Proposition 7 (see Proposition B.2),

M := Crit∆G(PO) = W ∩ trop−1(int∆) =

ß
(y1, . . . , yn) ∈ W

∣∣∣∣ ∣∣∣∣ yv1T λ1

∣∣∣∣ < 1, . . .

∣∣∣∣ yvmT λm

∣∣∣∣ < 1

™
is a finite intersection of admissible open subsets and thus is an admissible open subset of W .

Hence, (M,OW |M) is a rigid analytic space.

The last claim follows from [30] Proposition 5.2.

Proposition 6.2 (Crit∆G(PO) of CPn). Suppose G = ι(T r) is an r-dimensional subtorus of

T n acting on (CPn, T n, ω, µ), which has moment polytope

∆ =

(u1, . . . , un) ∈ Rn

∣∣∣∣∣∣∣∣∣
ui ≥ 0 ∀1 ≤ i ≤ n,

1−
n∑
i=1

ui ≥ 0

 .

Then Crit∆G(PO) is a rigid analytic space of dimension r.

Proof. By Theorem 5.1,

PO = y1 + · · · yn +
T

y1 · · · yn
.

Consider

Q =

{
(y1, . . . , yn) ∈ (Λ∗)n

∣∣∣∣∣∣
n∑
j=1

ai,j

Å
yj
∂PO

∂yj

ã
= 0 ∀r + 1 ≤ i ≤ n

}

=

{
(y1, . . . , yn) ∈ (Λ∗)n

∣∣∣∣∣∣
n∑
j=1

ai,j

Å
yj −

T

y1 · · · yn

ã
= 0 ∀r + 1 ≤ i ≤ n

}
.
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Then

Crit∆G(PO) = Q ∩ trop−1(int∆) = Q ∩
{
y ∈ trop−1(∆)

∣∣ ∣∣yviT−λi∣∣ < 1 ∀1 ≤ i ≤ m
}
.

We first consider

W = Q ∩ trop−1(∆)

∼= Sp
Λ⟨y1, . . . , yn, z⟩Ç

y1 · · · ynz − T,
n∑
j=1

ar+1,j(yj − z), . . . ,
n∑
j=1

an,j(yj − z)
å

Recall that A =

à
a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

í
is an invertible matrix. Let

A−1 =

à
b1,1 · · · b1,n
...

. . .
...

bn,1 · · · bn,n

í
.

Change variables by setting

X1

...

Xn

Xn+1

 =



a1,1 · · · a1,n 0

...
. . .

...

an,1 · · · an,n 0

0 · · · 0 1





y1 − z
...

yn − z

z

 .

By [6] 6.1.1/Proposition 4, this defines a continuous epimorphism

φ : Λ ⟨X1, . . . , Xn, Xn+1⟩ →
Λ⟨y1, . . . , yn, z⟩Ç

y1 · · · ynz − T,
n∑
j=1

ar+1,j(yj − z), . . . ,
n∑
j=1

an,j(yj − z)
å .

Then

W ∼= Sp
Λ⟨X1, . . . , Xn, Xn+1⟩Ç

Xn+1

∏n
i=1(Xn+1 +

n∑
j=1

bi,jXj)− T,Xr+1, . . . , Xn

å
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∼= Sp
Λ⟨X1, . . . , Xr, Xn+1⟩Ç

Xn+1

∏n
i=1(Xn+1 +

r∑
j=1

bi,jXj)− T
å

By [48] Proposition 6.9 and [48] Theorem 4.6, the Tate algebra

Tr+1 = Λ⟨X1, . . . , Xr, Xn+1⟩

is a Cohen-Macaulay ring of dimension r + 1, which is also an integral domain. Since

Xn+1

∏n
i=1(Xn+1 +

r∑
j=1

bi,jXj)− T ̸= 0, it is not a zero divisor and thus is a regular sequence

in Tr+1. Thus, by [8] Theorem 2.1.2, the Krull dimension of W is r + 1− 1 = r.

Since Crit∆G(PO) = Q ∩ trop−1(int∆) ⊂ W , dimCritG(PO) ≤ r. On the other hand, let

ϵ > 0 be sufficiently small. Consider

∆ϵ =
m⋂
i=1

{u ∈ Rn | ⟨u, vi⟩ − λi ≥ ϵ} ⊂ ∆.

Q ∩ trop−1(∆) ⊃ Q ∩ trop−1(∆ϵ)

∼= Sp
Λ
¨
y1
T ϵ , . . . ,

yn
T ϵ ,

T 1−ϵ

y1···yn

∂Ç
n∑
j=1

ar+1,j(yj − z), . . . ,
n∑
j=1

an,j(yj − z)
å

∼= Sp
Λ ⟨z1, . . . , zn, zn+1⟩Ç

z1 · · · zn+1 − T 1−(n+1)ϵ,
n∑
j=1

ar+1,j(zj − zn+1), . . . ,
n∑
j=1

an,j(zj − zn+1)

å
=: U.

Change the variables by setting

X ′1
...

X ′n

X ′n+1

 =



a1,1 · · · a1,n 0

...
. . .

...

an,1 · · · an,n 0

0 · · · 0 1





z1 − zn+1

...

zn − zn+1

z′n+1

 .

Then

U ∼= Sp
Λ⟨X ′1, . . . , X ′n, X ′n+1⟩Ç

X ′n+1

∏n
i=1(X

′
n+1 +

n∑
j=1

bi,jX ′j)− T 1−(n+1)ϵ

å
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∼= Sp
Λ⟨X ′1, . . . , X ′r, X ′n+1⟩Ç

X ′n+1

∏n
i=1(X

′
n+1 +

n∑
j=1

bi,jX ′j)− T 1−(n+1)ϵ

å
Since X ′n+1

∏n
i=1(X

′
n+1 +

n∑
j=1

bi,jX
′
j)− T 1−(n+1)ϵ is not a zero divisor in the integral domain

Λ⟨X ′1, . . . , X ′r, X ′n+1⟩, which is Cohen-Macaulay of dimension r + 1, we see that dimU =

r. Since Q ∩ trop−1(∆ϵ) ⊂ CritG(PO) ⊂ Q ∩ trop−1(∆) and dim (Q ∩ trop−1(∆ϵ)) =

dim (Q ∩ trop−1(∆)) = r, we conclude that dimCrit∆G(PO) = r.

Proposition 6.3. Let X be a compact symplectic toric manifold of complex dimension n

as in 5.2. If G ∼= T n−1 be an (n − 1)-dimensional subtorus of T n as in Section 5.1, then

CritG(PO) is a rigid analytic space of dimension n− 1.

Proof. Consider

Q =

{
(y1, . . . , yn) ∈ (Λ∗)n

∣∣∣∣∣∣
n∑
j=1

an,j

Å
yj
∂PO

∂yj

ã
= 0

}
.

Then

dim
(
Q ∩ trop−1(∆)

)
= dim

Λ ⟨∆⟩Ç
n∑
j=1

an,j
Ä
yj

∂PO
∂yj

äå .
Since Λ ⟨∆⟩ is a subring of the formal power series ring, Λ ⟨∆⟩ is also an integral domain.

Since
n∑
j=1

an,j
Ä
yj

∂PO
∂yj

ä
̸= 0, it is a regular sequence in Λ ⟨∆⟩, which is a Cohen-Macaulay ring

of dimension n by [48] Proposition 6.9. Therefore, dim (Q ∩ trop−1(∆)) = n− 1. Let

∆ϵ =
m⋂
i=1

{u ∈ Rn | ⟨u, vi⟩ − λi ≥ ϵ}.

Then dim (Q ∩ trop−1(∆ϵ)) = n− 1 as well. Since

Q ∩ trop−1(∆ϵ) ⊂ CritG(PO) ⊂ Q ∩ trop−1(∆),

we conclude that dimCritG(PO) = n− 1.

Corollary 6.1. Let X be a compact symplectic toric manifold of complex dimension n ≤ 2

as in Theorem 5.2. If G ∼= T r be a subtorus of T 2 as in Section 5.1 for some 0 ≤ r ≤ n, then

CritG(PO) is a rigid analytic space of dimension r.
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Proof. The case when r = 0 follows from [23]. The case when r = 1, n = 2 follows from

Proposition 6.3. The case when r = 2, n = 2 follows from [48] Proposition 6.9.

6.2 Examples

Consider the action on a toric manifold (X4, ω, T 2, µ) by a subtorus G = ι(S1), where

S1 ↪→ T 2, θ 7→ (k1θ, k2θ),

for some (k1, k2) ∈ Z2 \{(0, 0)}. Since the action is free, H1
G(L(uuu),R) ∼= H1(L(uuu)/G,R) ↪→

H1(L(uuu),R) is generated by

α2 = −k2e1 + k1e2.

Complete it to a basis {α1, α2} of H1(L(uuu),R). Let b = c1α1 + c2α2. By Theorem 5.4, there

is a bijection

MLagG(CP2, ω)→ V

Å
∂PO

∂c2

ã
∩ trop−1(int∆) =: Crit∆G(PO)(

u1, u2, b =
2∑
i=1

xiei

)
7→ (y1, y2) = (ex1T u1 , ex2T u2).

Then

val(yi) = val(exiT ui) = val(exi) + val(T ui) = ui.

In particular, given (y1, y2) ∈ Crit∆G(PO), the Lagrangian associated with it is µ−1(val(y1), val(y2)).

6.2.1 S1-action on CP2

Example 6.1 (S1-action on CP2). Consider (CP2, ω, T 2, µ) associated with the moment

polytope

∆ =

(u1, u2) ∈ R2

∣∣∣∣∣∣∣
ui ≥ 0 ∀1 ≤ i ≤ 2,

1− u1 − u2 ≥ 0

 .

Its potential function is then given by

PO = y1 + y2 +
T

y1y2
.
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Denote by f the Laurent polynomial

∂PO

∂c2
= −k2y1

∂PO

∂y1
+k1y2

∂PO

∂y2
= −k2(y1−

T

y1y2
)+k1(y2−

T

y1y2
) = −k2y1+k1y2+(k2−k1)

T

y1y2

and denote Y = V (f)∩ (Λ∗)2. By Kapranov’s theorem ([42] Theorem 3.1.3, also see Theorem

C.1),

trop(Y ) = V (trop (f)) .

i) Suppose k1, k2, k2 − k1 are all non-zero.

V (trop f) ={u ∈ R2 | u1 = 1− u1 − u2 ≤ u2}

∪{u ∈ R2 | u2 = 1− u1 − u2 ≤ u1}

∪{u ∈ R2 | u1 = u2 ≤ 1− u1 − u2}.

trop(Crit∆G(PO)) = trop(Y ) ∩ int∆ is shown in Figure 6.1.

(0, 0)

(0, 1)

(1, 0)

(
1
3
, 1
3

)

Figure 6.1: Case when k1, k2, k1 − k2 ̸= 0

Moreover,

W := Y ∩ trop−1(∆)

= Sp
Λ
¨
y1, y2,

T
y1y2

∂Ä
−k2y1 + k1y2 + (k2 − k1) T

y1y2

ä
∼= Sp

Λ ⟨y1, y2, z⟩
(−k2y1 + k1y2 + (k2 − k1)z, y1y2z − T )

is an affinoid space, and

Crit∆G(PO) = W \ trop−1 ({(0, 0), (0, 1), (1, 0)}) .

75



We can compute the genus ofW as a rigid analytic curve as follows. We have a canonical

reduction map

ρ : W → W̃ = Spec
C[y1, y2]

((−k2y1 + k1y2)y1y2)
.

By [17] Proposition 5.6.2, since W is a non-singular connected one-dimensional affinoid

space, the genus of W equal to the arithmetic genus of the compactification of W̃ .

Let C1, C2, C3 be the divisors corresponding to −k2y1 + k1y2 = 0, y1 = 0, y2 = 0,

respectively. Then by the adjunction formula ([32] Chapter V, Exercise 1.3), the

arithmetic genus of W̃ is equal to

ga(C1 + C2 + C3) =
3∑
i=1

ga(Ci) + C1 · C2 + C2 · C3 + C1 · C3 − 2 = 1.

By the above argument, g(W ) is a rigid analytic curve of genus 1.

ii) If k1 = 0 and k2 ̸= 0, then f = −k2
Ä
y1 − T

y1y2

ä
.

V (trop f) = {u ∈ R2 | u1 = 1− u1 − u2}.

trop
(
Crit∆G(PO)

)
= tropV (f) ∩ int∆ is shown in Figure 6.2.

(
1
2
, 0
)

(0, 1)

Figure 6.2: Case when k1 = 0

Indeed,

Crit∆G(PO) =Y ∩ trop−1(int∆)
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=


(y1, y2) ∈ (Λ∗)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

− k2y1 + k2
T

y1y2
= 0

val(y1) > 0, val

Å
T

y21

ã
> 0,

val

Å
T

y1T/y21

ã
> 0,


=


Å
y1,

T

y21

ã
∈ (B1

Λ)
2

∣∣∣∣∣∣∣∣
val(y1) > 0, val

Å
T

y21

ã
> 0,

y1 ̸= 0,
T

y21
̸= 0


=

ß
(y1,

T

y21
) ∈ Λ2

∣∣∣∣ e− 1
2 < |y1| < 1

™
∼=
¶
y1 ∈ B1

Λ

∣∣∣ e− 1
2 < |y1| < 1

©
⊂ SpΛ

〈
y1, T y

−2
1

〉
is an annulus.

iii) If k2 = 0 and k1 ̸= 0, then f = k1
Ä
y2 − T

y1y2

ä
.

V (trop (f)) = {u ∈ R2 | u2 = 1− u1 − u2}.

trop
(
Crit∆G(PO)

)
= tropV (f) ∩ int∆ is shown in Figure 6.3.

(
0, 1

2

)

(1, 0)

Figure 6.3: Case when k2 = 0

Similar to the case k1 = 0,

Crit∆G(PO) =Y ∩ trop−1(int∆)

∼=
¶
y2 ∈ B1

Λ

∣∣∣ e− 1
2 < |y2| < 1

©
⊂ SpΛ

〈
y2, T y

−2
2

〉
is an annulus.
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iv) If k2 − k1 = 0 and k1, k2 ̸= 0, then f = −k2y1 + k1y2.

V (trop (f)) = {u ∈ R2 | u1 = u2}.

trop
(
Crit∆G(PO)

)
= tropV (f) ∩ int∆ is shown in Figure 6.4.

(0, 0)

(
1
2
, 1
2

)

Figure 6.4: Case when k2 − k1 = 0

Moreover,

Crit∆G(PO) =Y ∩ trop−1(int∆)

=

ß
(y1, y1) ∈ Λ2

∣∣∣∣ val(y1) > 0, val

Å
T

y21

ã
> 0, y1 ̸= 0

™
∼=
¶
y1 ∈ B1

Λ

∣∣∣ e− 1
2 < |y1| < 1

©
⊂ SpΛ

〈
y1, T y

−2
1

〉
is an annulus.

6.2.2 S1-action on a one-point blowup of CP2

Example 6.2 (S1-action on a one-point blowup of CP2). Consider the one-point blowup

(CP2(1), ω, T 2, µ) of CP2 whose moment polytope is given by

∆ =


(u1, u2) ∈ R2

∣∣∣∣∣∣∣∣∣∣∣
ui ≥ 0 ∀1 ≤ i ≤ 2,

1− u1 − u2 ≥ 0

1− α− u2 ≥ 0


.

Its potential function is

PO = y1 + y2 +
T

y1y2
+
T 1−α

y2
.
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=⇒ f :=
∂PO

∂c2
= −k2y1

∂PO

∂y1
+ k1y2

∂PO

∂y2

= −k2
Å
y1 −

T

y1y2

ã
+ k1

Å
y2 −

T

y1y2
− T 1−α

y2

ã
= −k2y1 + k1y2 + (k2 − k1)

T

y1y2
− k1

T 1−α

y2
.

1. Suppose k1, k2, k2 − k1 are all non-zero.

We now consider the tropicalization of Crit∆G(PO).

trop(f) : R2 → R, u 7→ min{u1, u2, 1− u1 − u2, 1− α− u2}.

a) u1 = u2 ≤ min{1− u1 − u2, 1− α− u2}

=⇒


u1 = u2

u1 ≤ 1− 2u1

u1 ≤ 1− α− u1

⇒



u2 = u1,

u1 ≤ min{1
3
, 1−α

2
}

=


1
3

if α ≤ 1
3

1−α
2

if α ≥ 1
3

b) u1 = 1− u1 − u2 ≤ min{u2, 1− α− u2}

=⇒


u2 = 1− 2u1

u1 ≤ 1− 2u1

u1 ≤ 1− α− (1− 2u1)

⇒


u2 = 1− 2u1

α ≤ u1 ≤ 1
3
,

which can happen only if α ≤ 1
3
.

c) u1 = 1− α− u2 ≤ min{1− u1 − u2, u2}

=⇒


u2 = 1− α− u1

u1 ≤ 1− u1 − (1− α− u1)

u1 ≤ 1− α− u1

⇒



u2 = 1− α− u1

u1 ≤ min{α, 1−α
2
}

=


α if α ≤ 1

3

1−α
2

if α ≥ 1
3
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d) u2 = 1− u1 − u2 ≤ min{u1, 1− α− u2}

=⇒


u2 =

1−u1
2

1−u1
2
≤ u1

1−u1
2
≤ 1− α− 1−u1

2

⇒



u2 = 1−u1
2

u1 ≥ max{α, 1
3
}

=


1
3

if α ≤ 1
3

α if α ≥ 1
3

e) u2 = 1− α− u2 ≤ min{u1, 1− u1 − u2}

=⇒


u2 =

1−α
2

1−α
2
≤ u1

1−α
2
≤ 1− u1 − 1−α

2

⇒


u2 =

1−α
2

1−α
2
≤ u1 ≤ α,

which can happen only if α ≥ 1
3
.

f) 1− u1 − u2 = 1− α− u2 ≤ min{u1, u2}

=⇒


u1 = α

1− α− u2 ≤ α

1− α− u2 ≤ u2

⇒



u1 = α

u2 ≥ max{1− 2α, 1−α
2
}

=


1− 2α if α ≤ 1

3

1−α
2

if α ≥ 1
3

i) The case when 0 < α < 1
3
is shown in Figure 6.5.

(α, 1− 2α)

(
1
3,

1
3

)

Figure 6.5: Case when k1, k2, k2 − k1 ̸= 0 and 0 < α < 1
3

ii) The case when α = 1
3
is shown in Figure 6.6.
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(
1
3,

1
3

)
Figure 6.6: Case when k1, k2, k2 − k1 ̸= 0 and α = 1

3

(
α, 1−α2

)(
1−α
2 , 1−α2

)

Figure 6.7: Case when k1, k2, k2 − k1 ̸= 0, 1
3
< α < 1

iii) The case when 1/3 < α < 1 is shown in Figure 6.7.

We have

W :=V (f) ∩ trop−1(∆)

=Sp
Λ
¨
y1, y2,

T
y1y2

, T
1−α

y2

∂Ä
−k2y1 + ay2 + (k2 − k1) T

y1y2
− k1 T

1−α

y2

ä
∼=Sp

Λ ⟨y1, y2, z, x⟩Ö
− k2y1 + k1y2 + (k2 − k1)z − k1x,

y1y2z − T, y2x− T 1−α

è ,

and

Crit∆G(PO) =W \ trop−1 ({(0, 0), (1, 0), (0, 1− α), (α, 1− α)}) .

2. Suppose k1 = 0 and k2, k2 − k1 ̸= 0. Then f = −k2
Ä
y1 − T

y1y2

ä
and

Crit∆G(PO) :=V (f) ∩ trop−1(int∆)

=


(y1, y2) ∈ (Λ∗)2

∣∣∣∣∣∣∣∣∣∣∣∣

− k2y1 + k2
T

y1y2
= 0

val(y1) > 0, val(y2) > 0,

val

Å
T 1−α

y2

ã
> 0, val

Å
T

y1y2

ã
> 0,
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=


Å
y1,

T

y21

ã
∈ (Λ∗)2

∣∣∣∣∣∣∣∣∣
val(y1) > 0, val

Å
T

y21

ã
> 0,

val

Å
T

y1T/y21

ã
> 0, val

Å
T 1−α

T/y21

ã
> 0


=


Å
y1,

T

y21

ã
∈ (B1

Λ)
2

∣∣∣∣∣∣∣
|y1| < 1, |y1| > e−

1
2 ,

|y1| < e−
α
2


=

ßÅ
y1,

T

y21

ã
∈ Λ2

∣∣∣∣ e− 1
2 < |y1| < e−

α
2

™
is an annulus.

Moreover, we have

trop f : R2 → R, u 7→ min{u1, 1− u1 − u2}.

trop(Crit∆G(PO)) = tropV (f) ∩ int∆ is shown in Figure 6.8.

Figure 6.8: Case when k1 = 0

3. Suppose k2 = 0 and k1, k2 − k1 ̸= 0. Then

f = k1

Å
y2 −

T

y1y2
− T 1−α

y2

ã
.

We have

trop(f) = trop

Å
y2 −

T

y1y2
− T 1−α

y2

ã
: R2 → R, u 7→ min{u2, 1−u1−u2, 1−α−u2}.

Thus,

V (trop f) ={u2 = 1− u1 − u2 ≤ 1− α− u2} ∪ {1− u1 − u2 = 1− α− u2 ≤ u2}
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∪ {u2 = 1− α− u2 ≤ 1− u1 − u2}

={u2 =
1− u1

2
, u1 ≥ α} ∪ {u1 = α, u2 ≥

1− α
2
} ∪ {u2 =

1− α
2

, u1 ≤ α}.

The set trop(Crit∆G(PO)) is shown in Figure 6.9.

(
α, 1−α2

)

Figure 6.9: Case when k2 = 0

Moreover,

W :=V (f) ∩ trop−1(∆)

=Sp
Λ
¨
y1, y2,

T
y1y2

, T
1−α

y2

∂Ä
a
Ä
y2 − T

y1y2
− T 1−α

y2

ää
∼=Sp

Λ ⟨y1, y2, z, x⟩
(y2 − z − x, y1y2z − T, y2x− T 1−α)

,

and Crit∆G(PO) = W \ trop−1
({(

0, 1−α
2

)
, (α, 1− α) , (1, 0)

})
.

4. Suppose k2 − k1 = 0 and k1, k2 ̸= 0.

We have

trop(f) = trop(−y1 + y2 −
T 1−α

y2
) : R2 → R, u 7→ min{u1, u2, 1− α− u2}.

Thus,

V (trop f) ={u1 = u2 ≤ 1− α− u2} ∪ {u1 = 1− α− u2 ≤ u2}

∪ {u2 = 1− α− u2 ≤ u1}

={u1 = u2, u1 ≤
1− α
2
} ∪ {u2 = 1− α− u1, u1 ≤

1− α
2
}
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∪ {u2 =
1− α
2

, u1 ≥
1− α
2
}

The set trop(Crit∆G(PO)) = tropV (f) ∩ int∆ in Figure 6.10.

(
1−α
2 , 1−α2

)

Figure 6.10: Case k2 − k1 = 0

Moreover,

W :=V (f) ∩ trop−1(∆)

=Sp
Λ
¨
y1, y2,

T
y1y2

, T
1−α

y2

∂
(−y1 + y2 − T 1−α

y2
)

∼=Sp
Λ ⟨y1, y2, z, x⟩

(−y1 + y2 − x, y1y2z − T, y2x− T 1−α)
,

and Crit∆G(PO) = W \ trop−1
({

(0, 0) , (0, 1− α) ,
(
1+α
2
, 1−α

2

)})
.

6.2.3 S1-action on a two-point blowup of CP2

Example 6.3 (S1-action on a two-point blowup of CP2). Consider the two-point blowup

(CP2(2), ω, T 2, µ) of CP2 whose moment polytope is given by

∆ =
{
(u1, u2) ∈ R2

∣∣−1 ≤ u1 ≤ 1,−1 ≤ u2 ≤ 1, u1 + u2 ≤ 1 + α
}
,

where −1 < α < 1. Its potential function is

PO = Ty1 + Ty2 +
T 1+α

y1y2
+
T

y1
+
T

y2
.

=⇒ 0 = f :=
∂PO

∂c2
= −k2y1

∂PO

∂y1
+ k1y2

∂PO

∂y2
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= T

Å
−k2

Å
y1 −

Tα

y1y2
− 1

y1

ã
+ k1

Å
y2 −

Tα

y1y2
− 1

y2

ãã
= T

Å
−k2y1 + k1y2 + (k2 − k1)

Tα

y1y2
+
k2
y1
− k1
y2

ã
1. Suppose k1, k2, k2 − k1 are all non-zero.

We have

trop(f) : R2 → R, u 7→ min{1 + u1, 1 + u2, 1 + α− u1 − u2, 1− u1, 1− u2}.

a) u1 = u2 ≤ min{α− u1 − u2,−u1,−u2}.

=⇒ u2 = u1 ≤ min{α
3
, 0} =


α
3

if α ≤ 0

0 if α ≥ 0

.

b) u1 = α− u1 − u2 ≤ min{u2,−u1,−u2}.

=⇒



u2 = α− 2u1

u1 ≤ α− 2u1

u1 ≤ −u1

u1 ≤ 2u1 − α

⇒


u2 = α− 2u1

α ≤ u1 ≤ min{α
3
, 0}

⇒


u2 = α− 2u1

α ≤ u1 ≤ α
3

α ≤ 0

.

c) u1 = −u1 ≤ min{u2, α− u1 − u2,−u2}.

=⇒



u1 = 0

u2 ≥ 0

α− u2 ≥ 0

−u2 ≥ 0

⇒


u1 = u2 = 0

α ≥ 0

.

d) u1 = −u2 ≤ min{α− u1 − u2,−u1, u2}.

=⇒


u2 = −u1

u1 ≤ α

u1 ≤ −u1

⇒


u2 = −u1

u1 ≤ min{0, α} =


α if α ≤ 0

0 if α ≥ 0

.
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e) u2 = α− u1 − u2 ≤ min{u1,−u1,−u2}.

=⇒



u2 =
α−u1

2

α−u1
2
≤ u1

α−u1
2
≤ −u1

α−u1
2
≤ −α−u1

2

⇒


u2 =

α−u1
2

max{α, α
3
} ≤ u1 ≤ −α

⇒


u2 =

α−u1
2

α
3
≤ u1 ≤ −α

α ≤ 0

.

f) u2 = −u1 ≤ min{α− u1 − u2, u1,−u2}.

=⇒


u2 = −u1

−u1 ≤ α

−u1 ≤ u1

⇒


u2 = −u1

u1 ≥ max{0,−α} =


−α if α ≤ 0

0 if α ≥ 0

.

g) u2 = −u2 ≤ min{α− u1 − u2, u1,−u1}.

=⇒



u2 = 0

0 ≤ u1

0 ≤ α− u1

0 ≤ −u1

⇒


u1 = u2 = 0

α ≥ 0

.

h) α− u1 − u2 = −u1 ≤ min{u1, u2,−u2}.

=⇒



u2 = α

−u1 ≤ u1

−u1 ≤ α

−u1 ≤ −α

⇒


u2 = α

u1 ≥ max{0, α,−α} =


−α if α ≤ 0

α if α ≥ 0

.
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i) α− u1 − u2 = −u2 ≤ min{u1, u2,−u1}.

=⇒



u1 = α

−u2 ≤ α

−u2 ≤ u2

−u2 ≤ −α

⇒


u1 = α

u2 ≥ max{0, α,−α} =


−α if α ≤ 0

α if α ≥ 0

j) −u1 = −u2 ≤ min{u1, u2, α− u1 − u2}.

=⇒


u1 = u2

−u1 ≤ u1

−u1 ≤ α− 2u1

⇒


u1 = u2

u1 ≥ 0

u1 ≤ α

⇒


u1 = u2

0 ≤ u1 ≤ α

α ≥ 0

.

1) The case −1 < α < 0 is shown in Figure 6.11.

(α,−α)

(−α, α)

(
α
3 ,

α
3

)

(−1, 1)

(−1,−1) (1,−1)

(1, α)

(α, 1)

Figure 6.11: Case when k1, k2, k2 − k1 ̸= 0,−1 < α < 0

2) The case α = 0 is shown in Figure 6.12.

3) The case α > 0 is shown in Figure 6.13.

Then

W :=V (f) ∩ trop−1(∆)

=Sp
Λ
¨
Ty1, T y2,

T 1+α

y1y2
, T
y1
, T
y2

∂Ä
T
Ä
−k2y1 + k1y2 + (k2 − k1) T

α

y1y2
+ k2

y1
− k1

y2

ää
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(0, 0)

(1,−1)(−1,−1)

(−1, 1) (0, 1)

(1, 0)

Figure 6.12: Case when k1, k2, k2 − k1 ̸= 0, α = 0

(α, α)

(0, 0)

(α, 1)

(−1,−1)

(−1, 1)

(1, α)

(1,−1)

Figure 6.13: Case when k1, k2, k2 − k1 ̸= 0, 0 < α < 1

∼=Sp
Λ ⟨z1, z2, z, x1, x2⟩Ö

− k2z1 + k1z2 + (k2 − k1)z + k2x1 − k1x2,

z1z2z − T 3+α, x1z1 − T 2, x2z2 − T 2

è ,

and Crit∆G(PO) = W ∩ trop−1 ({(−1,−1), (−1, 1), (α, 1), (1, α), (1,−1)}).

2. Suppose k1 = 0 and k2, k2 − k1 ̸= 0. Then

f = −k2T
Å
y1 −

Tα

y1y2
− 1

y1

ã
and

trop f : R2 → R, (u1, u2) 7→ min{1 + u1, 1 + α− u1 − u2, 1− u1}.

Thus,

trop(V (f)) =V (trop f)

={u1 = α− u1 − u2 ≤ −u1} ∪ {u1 = −u1 ≤ α− u1 − u2}
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∪ {α− u1 − u2 = −u1 ≤ u1}

={u2 = α− 2u1, u1 ≤ 0} ∪ {u1 = 0, u2 ≤ α}

∪ {u2 = α, u1 ≥ 0}.

(0, α) (1, α)

(0,−1)

(
α−1
2
, 1
)

Figure 6.14: Case when k1 = 0, k2, k2 − k1 ̸= 0

We have

W = V (f) ∩ trop−1(∆) = Sp
Λ
¨
Ty1, T y2,

T 1+α

y1y2
, T
y1
, T
y2

∂Ä
−k2T

Ä
y1 − Tα

y1y2
− 1

y1

ää
∼= Sp

Λ ⟨z1, z2, z, x1, x2⟩Ö
z1 − z2 − x1, z1x1 − T 2,

z2x2 − T 2, z1z2z − T 3+α

è ,

and

Crit∆G(PO) = W \ trop−1
ßÅ

α− 1

2
, 1

ã
, (0,−1), (1, α)

™
.

3. Suppose k2 = 0 and k1, k2 − k1 ̸= 0. Then

f = k1T

Å
y2 −

Tα

y1y2
− 1

y2

ã
and

trop f : R2 → R, (u1, u2) 7→ min{1 + u2, 1 + α− u1 − u2, 1− u2}.

trop(V (f)) =V (trop f)
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={u2 = α− u1 − u2 ≤ −u2} ∪ {u2 = −u2 ≤ α− u1 − u2}

∪ {α− u1 − u2 = −u2 ≤ u2}

={u2 =
α− u1

2
, u1 ≥ α} ∪ {u2 = 0, u1 ≤ α}

∪ {u1 = α, u2 ≥ 0}

The case k2 = 0, k1, k2 − k1 ̸= 0 is shown in Figure 6.15. We have

(α, 0)

(α, 1)

(−1, 0) (
1, α−1

2

)

Figure 6.15: Case when k2 = 0, k2 − k1 ̸= 0

W = V (f) ∩ trop−1(∆) = Sp
Λ
¨
Ty1, T y2,

T 1+α

y1y2
, T
y1
, T
y2

∂Ä
k1T

Ä
y2 − Tα

y1y2
− 1

y2

ää
∼= Sp

Λ ⟨z1, z2, z, x1, x2⟩
(z2 − z − x2, z2x2 − T 2, )

,

and

Crit∆G(PO) = W \ trop−1
ßÅ

1,
α− 1

2

ã
, (−1, 0), (α, 1)

™
.

4. Suppose k2 − k1 = 0 and k1, k2 ̸= 0. Then

f = T

Å
−k2y1 + k1y2 +

k2
y1
− k1
y2

ã
and

trop f : R2 → R, (u1, u2) 7→ min{u1, u2,−u1,−u2}.

Thus,

trop(V (f)) =V (trop f)
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={u1 = u2 ≤ min{−u1,−u2}} ∪ {u1 = −u1 ≤ min{u2,−u2}}

∪ {u1 = −u2 ≤ min{u2,−u1}} ∪ {u2 = −u1 ≤ min{u1,−u2}}

∪ {u2 = −u2 ≤ min{u1,−u1}} ∪ {−u1 = −u2 ≤ min{u1, u2}}

={u1 = u2 ≤ 0} ∪ {u1 = u2 = 0}

∪ {u2 = −u1, u1 ≤ 0} ∪ {u2 = −u1, u1 ≥ 0}

∪ {u2 = u1 = 0} ∪ {u1 = u2 ≥ 0}.

The case k2 − k1 = 0, k1, k2 ̸= 0 is shown in Figure 6.16.

(0, 0)

(−1,−1)

(−1, 0)

(1,−1)

(
1+α
2
, 1+α

2

)

Figure 6.16: Case when k2 − k1 = 0, k1, k2 ̸= 0

We have

W = V (f) ∩ trop−1(∆) ∼= Sp
Λ
¨
Ty1, T y2,

T 1+α

y1y2
, T
y1
, T
y2

∂Ä
T
Ä
−k2y1 + k1y2 +

k2
y1
− k1

y2

ää
∼= Sp

Λ ⟨z1, z2, z, x1, x2⟩Ö
− k2z1 + k1z2 + k2x1 − k1x2,

z1x1 − T 2, z2x2 − T 2, z1z2z − T 3+α

,

è ,

and

Crit∆G(PO) = W \ trop−1
ÅßÅ

α + 1

2
,
α + 1

2

ã
, (−1, 0), (−1,−1), (1,−1)

™ã
.

91



6.2.4 S1-action on S2
(
c
2

)
× S2

(
d
2

)
Example 6.4 (S1-action on S2

(
c
2

)
× S2

(
d
2

)
, c < d). Denote by S2(r) the 2-sphere with

radius r. Consider
(
S2
(
c
2

)
× S2

(
d
2

)
, ω, T 2, µ

)
whose moment polytope is given by

∆ =
{
(u1, u2) ∈ R2

∣∣ 0 ≤ u1 ≤ c, 0 ≤ u2 ≤ d
}
.

Its potential function is

PO = y1 + y2 +
T c

y1
+
T d

y2
.

=⇒ 0 = f :=
∂PO

∂c2
= −k2y1

∂PO

∂y1
+ k1y2

∂PO

∂y2

=− k2
Å
y1 −

T c

y1

ã
+ k1

Å
y2 −

T d

y2

ã
.

1. Suppose k1, k2 ̸= 0. We have

trop(f) : R2 → R, (u1, u2) 7→ min{u1, c− u1, u2, d− u2}.

a) u1 = c− u1 ≤ min{u2, d− u2}

=⇒


u1 =

c
2

c
2
≤ u2

c
2
≤ d− u2

⇒


u1 =

c
2

c
2
≤ u2 ≤ d− c

2

b) u1 = u2 ≤ min{c− u1, d− u2}

=⇒


u1 = u2

u1 ≤ c− u1

u1 ≤ d− u1

⇒


u1 = u2

u1 ≤ c
2

c) u1 = d− u2 ≤ min{c− u1, u2}

=⇒


u2 = d− u1

u1 ≤ c− u1

u1 ≤ d− u1

⇒


u2 = d− u1

u1 ≤ c
2
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d) c− u1 = u2 ≤ min{u1, d− u2}

=⇒


u2 = c− u1

c− u1 ≤ u1

c− u1 ≤ d− (c− u1)

⇒


u2 = c− u1

u1 ≥ c
2

e) c− u1 = d− u2 ≤ min{u1, u2}

=⇒


u2 = d− c+ u1

c− u1 ≤ u1

c− u1 ≤ d− c+ u1

⇒


u2 = d− c+ u1

u1 ≥ c
2

f) u2 = d− u2 ≤ min{u1, c− u1}

=⇒


u2 =

d
2

d
2
≤ u1

d
2
≤ c− u1

⇒


u2 =

d
2

d
2
≤ u1 ≤ c− d

2

,

which cannot happen because c < d.

The set trop(V (f)) ∩ int∆ is shown in Figure 6.17

Figure 6.17: Case when k1, k2 ̸= 0

We have

W = V (f) ∩ trop−1(∆) = Sp
Λ
¨
y1, y2,

T c

y1
, T

d

y2

∂Ä
−k2

Ä
y1 − T c

y1

ä
+ k1

Ä
y2 − T d

y2

ää
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∼= Sp
Λ ⟨y1, y2, x1, x2⟩Ö

− k2 (y1 − x1) + k1 (y2 − x2) ,

x1y1 − T c, x2y2 − T d

è ,

and

Crit∆G(∆) = W \ trop−1 ({(c, 0), (0, 0), (0, d), (c, d)})

2. Suppose k1 = 0 and k2 ̸= 0. Then

f = −k2
Å
y1 −

T c

y1

ã
.

Then

V (f) =
{(
T

c
2 , y2

)
| y2 ∈ Λ∗

}
∪
{(
−T

c
2 , y2

)
| y2 ∈ Λ∗

}
,

tropV (f) =
{
(u1, u2) ∈ R2

∣∣∣u1 = c

2

}
,

and

trop
(
Crit∆G(PO)

)
= int∆ ∩ tropV (f) =

{ c
2

}
× (0, b).

It is shown in Figure 6.18.

Figure 6.18: Case when k1 = 0

Indeed,

Crit∆G(PO) = tropV (f) ∩ int∆
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=

(y1, y2) ∈ Λ2

∣∣∣∣∣∣∣∣
y1 −

T c

y1
= 0

0 < val(y1) < c, 0 < val(y2) < d


=
{
± c
2

}
×
{
y2 ∈ B1

Λ

∣∣ 0 < val(y2) < d
}

is a union of two annuli.

3. Suppose k2 = 0 and k1 ̸= 0. Then

f = k1

Å
y2 −

T d

y2

ã
.

Then

V (f) =
¶Ä
y1, T

d
2

ä
| y1 ∈ Λ∗

©
∪
¶Ä
y1,−T

d
2

ä
| y2 ∈ Λ∗

©
,

tropV (f) =

ß
(u1, u2) ∈ R2

∣∣∣∣u2 = d

2

™
and

int∆ ∩ tropV (f) = (0, a)×
ß
d

2

™
.

It is shown in Figure 6.19.

Figure 6.19: Case when k2 = 0

Indeed,

Crit∆G(PO) = tropV (f) ∩ int∆
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=

(y1, y2) ∈ Λ2

∣∣∣∣∣∣∣∣
y2 −

T d

y2
= 0

0 < val(y1) < c, 0 < val(y2) < d


=
{
y1 ∈ B1

Λ

∣∣ 0 < val(y1) < d
}
×
ß
±d
2

™
is a union of two annuli.

One can often assign Lagrangian submanifolds to certain tropical curves, which the

tropicalization pictures that appear in Section 6.2 are examples of. (See [45], [43], [44],

and [14].) In the case when the tropical curves are moment map images of the associated

Lagrangians, we are interested in learning about the intersection of the “tropical” Lagrangians

and the Lagrangian torus fibers that intersect them.
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Chapter 7

Equivariant Hamiltonian isotopy

invariance

In this chapter, we show that the equivariant Lagrangian Floer cohomology defined in

Chapter 5 is invariant under equivariant Hamiltonian isotopy. As a result, a Lagrangian torus

fiber with nontrivial Lagrangian Floer cohomology is not displaceable by the Hamiltonian

diffeomorphisms invariant under the given subtorus action.

We first review the definition of an equivariant Hamiltonian isotopy.

Definition 7.1 (Hamiltonian isotopy). Let H : [0, 1] × X → R be a time-dependent

Hamiltonian function on (X,ω). Denote by Ht the map H(t, ···) and XHt the Hamiltonian

vector field of Ht satisfying ιXHt
ω = dHt. A Hamiltonian isotopy on X generated by H is

a smooth map

ψH : [0, 1]×X → X, (t, x) 7→ ψtH(x)

satisfying

d

dt
ψtH = XHt ◦ ψtH .

Definition 7.2 (G-equivariant Hamiltonian isotopy). A Hamiltonian isotopy ψH : [0, 1]×X →

X of a symplectic manifold (X,ω) with a symplectic action by a compact Lie group G is a
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G-equivariant Hamiltonian isotopy if

ψtH(g · x) = g · ψtH(x) ∀x ∈ X, ∀g ∈ G, ∀t ∈ [0, 1].

We will define the Floer cohomology HFG(L, b,H,Λnov) for a Hamiltonian function H

satisfying the conditions of the following theorem in Section 7.1.

Theorem 7.1 (G-equivariant Hamiltonian isotopy invariance). Let (X,ω, T n, µ) be a compact

symplectic toric manifold with moment polytope ∆ = µ(X) ⊂ Rn. Let G ↪→ T n be a compact

r-dimensional connected subtorus of T n with the induced action on X. Let uuu ∈ int∆ and

L = µ−1(uuu). Let H : [0, 1]×X → R be a G-invariant time-dependent smooth Hamiltonian

function. Let

ψH : [0, 1]×X → X, (t, x) 7→ ψtH(x)

be the G-equivariant Hamiltonian isotopy generated by H such that ψ0
H = id and that

ψ1
H(L) ∩ L is a finite union

ψ1
H(L) ∩ L =

⊔
a∈π0(ψ1

H(L)∩L)

Ra,

where each Ra = G · qa for some qa in the component represented by a ∈ π0(ψ1
H(L) ∩ L).

We fix our choice of qa for each a ∈ π0(ψ1
H(L) ∩ L). Let uuu ∈ int∆. Let L = µ−1(uuu) and

b ∈ H1(L,Λ0). Then, over the universal Novikov field, we have

HFG((L, b) , (L, b),Λnov) ∼= HFG(L, b,H,Λnov), (7.0.1)

where the right-hand-side is defined in (7.1.2).

Proof Outline. Before proving Theorem 7.1 in detail, we outline the proof below.

i) We first construct a cochain complex (CFG(L, b,H), δGH) for a Hamiltonian function H

satisfying the conditions of Theorem 7.1.

ii) Let CG(L,Λnov) = ΩG(L)“⊗Λnov and δG = (mG
1 )

b. We show the cochain maps

(
CFG(L, b,H), δGH

) f
⇌
g

(
CG(L,Λnov), δ

G = (mG
1 )

b
)
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define a cochain homotopy equivalence; i.e. f ◦ g ∼ id and g ◦ f ∼ id.

7.1 The cochain complex
(
CFG(L, b,H), δGH

)
Denote ψ1

H(L) by LH . By our assumption,

LH ∩ L =
⊔

a∈π0(ψ1
H(L)∩L)

RH
a ,

where each RH
a = G · qa is a G-orbit for some qa in the component a ∈ π0(ψ1

H(L) ∩ L). Let

ψ−1H be the inverse of ψ1
H . We have

L ∩ ψ−1H (L) = ψ−1H (ψ1
H(L) ∩ L) = ψ−1H

Ñ ⋃
a∈π0(ψ1

H(L)∩L)

RH
a

é
=

⋃
a∈π0(ψ1

H(L)∩L)

ψ−1H (RH
a ).

Define

CFG(L, b,H) :=
⊕

a∈π0(LH∩L)

ΩG(R
H
a )“⊗R Λnov .

∀a, a′ ∈ π0(ψ1
H(L) ∩ L), define

π2(R
H
a , R

H
a′ ) =


u : R×[0, 1]→ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u is smooth,

u(s, 0) ∈ L, u(s, 1) ∈ L ∀s ∈ R,

∃ q ∈ ψ−1H (RH
a ), q′ ∈ ψ−1H (RH

a′ ) such that

lim
s→−∞

u(s, t) = ψtH(q) ∀t ∈ [0, 1],

lim
s→∞

u(s, t) = ψtH(q
′) ∀t ∈ [0, 1]



/
∼,

where u1 ∼ u2 if and only if u1 and u2 represent the same class in π2(X).

99



Let k1, k0 ∈ N, a, a′ ∈ π0(ψ1
H(L) ∩ L), and B ∈ π2(RH

a , R
H
a′ ). Let Mk1,k0(R

H
a , R

H
a′ , B, J)

be the compactification of

Mreg
k1,k0

(RH
a , R

H
a′ , B, J) :=



(u,τ1τ1τ1, τ0τ0τ0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u : R×[0, 1]→ X is smooth, [u] = B,

∂u

∂s
+ J

Å
∂u

∂t
−XHt(u)

ã
= 0, E(u) <∞,

u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

∃ q ∈ ψ−1H (RH
a ), q′ ∈ ψ−1H (RH

a′ ) such that

lim
s→−∞

u(s, t) = ψtH(q) ∀t ∈ [0, 1] and

lim
s→∞

u(s, t) = ψtH(q
′) ∀t ∈ [0, 1],

τ1τ1τ1 = ((ζ1, 1), . . . , (ζk1 , 1)) ∈ (R×{1})k1 ,

where −∞ < ζk1 < · · · < ζ1 < +∞,

τ0τ0τ0 = ((τ1, 0), . . . , (τk0 , 0)) ∈ (R×{0})k0 ,

where −∞ < τ1 < · · · < τk0 < +∞



/ ∼ .

ζk1 · · ·

· · ·

ζ1

τ1 τk0

ψtH(q) ψtH(q
′)

L

L

Mk1,k0(R
H
a , R

H
a′ , B, J)

ev−∞,B

vv

ev+∞,B

((
RH
a RH

a′

Define the evaluation maps as follows.

∀1 ≤ j ≤ k1, ev
(1)
j,B :Mreg

k1,k0
(RH

a , R
H
a′ , B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(ζj, 1).

∀1 ≤ j ≤ k0 ev
(0)
j,B :Mreg

k1,k0
(RH

a , R
H
a′ , B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(τj, 0).

ev−∞,B :Mk1,k0(R
H
a , R

H
a′ , B, J)→ Ra, (u,τ1τ1τ1, τ0τ0τ0) 7→ ψ1

H

Å
lim

s→−∞
u(s, 0)

ã
.
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ev+∞,B :Mk1,k0(R
H
a , R

H
a′ , B, J)→ Ra′ , (u,τ1τ1τ1, τ0τ0τ0) 7→ ψ1

H

Å
lim

s→+∞
u(s, 0)

ã
.

The evaluation maps are G-equivariant.

Let k1, k0 ∈ N, a, a′ ∈ π0(ψ1
H(L) ∩ L), and B ∈ π2(RH

a , R
H
a′ ). Define

nB : ΩG(R
H
a )“⊗R Λnov[1]→ ΩG(R

H
a′ )“⊗R Λnov[1]

by

nB (η) = (evG+∞,B)!(ev
G
−∞,B)

∗η.

Define δGH : CFG(L, b,H)[1]→ CFG(L, b,H)[1] such that, for each a ∈ π0(LH ∩ L),

δGH : ΩG(R
H
a )“⊗Λnov[1]→ CFG(L, b,H)

is given by

δGH(η) =
∑

a′∈π0(LH∩L)

∑
B∈π2(RH

a ,R
H
a′ )

exp(∂B ∩ b) nB(η) exp(∂B ∩ b)T
ω(B)
2π e

Iµ(B)

2 . (7.1.1)

Lemma 7.1. Mk1,k0(R
H
a , R

H
a′ , B, J) has an oriented G-equivariant Kuranishi structure such

that ev−∞,B, ev+∞,B are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the following types of fiber products below.

i) Mk′1,k
′
0
(RH

a , R
H
c , B

′, J)ev+∞,B′ ×ev−∞,B′′ Mk′′1 ,k
′′
0
(RH

c , R
H
a′ , B

′′, J), where

• c ∈ π0(LH ∩ L),

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0,

• B′ ∈ π2(RH
a , R

H
c ), B

′′ ∈ π2(RH
c , R

H
a′ ) such that B′#B′′ = B.

ii) Mk′1,k0
(RH

a , R
H
a′ , B

′, J)
ev

(1)

i,B′
×ev0Mk′′1+1(L, J,B

′′), where

• 1 ≤ i ≤ k′1,

• k′1, k
′′
1 ∈ N such that k′1 + k′′1 = k1 + 1, and

• B′ ∈ π2(RH
a , R

H
a′ ), B

′′ ∈ π2(X,L) such that B′#B′′ = B.
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iii) Mk1,k′0
(RH

a , R
H
a′ , B

′, J)
ev

(0)

i,B′
×ev0Mk′′0+1(L, J,B

′′), where

• 1 ≤ i ≤ k′0,

• k′0, k
′′
0 ∈ N such that k′0 + k′′0 = k0 + 1,

• B′ ∈ π2(RH
a , R

H
a′ ), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

Moreover, the G-equivariant maps ev−∞,B, ev+∞,B are strongly smooth and weakly submersive.

Proof. The boundary decomposition follows from [19] Proposition 15.21. The construction of

a G-invariant Kuranishi structure onMk1,k0(R
H
a , R

H
a′ , B) is similar to the proof of Proposition

5.1 (See [21] Section 4.3.).

Proposition 7.1. δGH is well-defined and δGH ◦ δGH = 0.

Proof. The proposition follows from Theorem 8.2, Proposition 8.4, and Lemma 7.1. In

particular, in Lemma 4.1, the contribution of i), ii) with (k′1, k0, B
′) ̸= (1, 0, 0), and iii) with

(k1, k
′
0, B

′) ̸= (0, 1, 0) are trivial. And the contributions of ii) with (k′1, k0, B
′) = (1, 0, 0) and

iii) with (k′1, k0, B
′) = (0, 1, 0) cancel with each other.

Thus, we define

HFG(L, b,H, J,Λnov) :=
ker δGH
im δGH

. (7.1.2)

7.2 The Floer continuation map f

Consider a smooth non-decreasing function χ : R→ [0, 1] such that

χ(s) =


0 if s ≤ −1

1 if s ≥ 1

. (7.2.1)

Define F : R×[0, 1]×X → R by

F (s, t, x) = (1− χ(s))H(t, x) ∀(s, t, x) ∈ R×[0, 1]×X.
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Then

F (s, t, x) =


H(t, x) if s ≤ −1

0 if s ≥ 1

.

Since H is G-invariant, F is also G-invariant.

Note that F t
s = F (s, t, ·) : X → R defines a Hamiltonian vector field XF t

s
via dF t

s = ιXF
st
ω.

Let ψts : X → X be the flow of XF t
s
, namely it satisfies

d

dt
ψts = XF t

s
◦ ψts.

Recall we assumed that LH ∩L =
⊔

a∈π0(LH ,L)

RH
a is a finite union. ∀a ∈ π0(LH ∩L), define

π2(R
H
a , L) =



u : R×[0, 1]→ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u is smooth,

u(s, 0) ∈ L ∀s ∈ R,

u(s, 1) ∈ L ∀s ∈ R,

∃q ∈ ψ−1H (RH
a ) such that

lim
s→−∞

u(s, t) = ψtH(q) ∀t ∈ [0, 1],

lim
s→∞

u(s, t) = p ∀t ∈ [0, 1] for some p ∈ L



/
∼,

where u1 ∼ u2 if and only if u1 and u2 represent the same class in π2(X).

Let k1, k0 ∈ N, a ∈ π0(LH ∩ L), and B ∈ π2(R
H
a , L). Let Mk1,k0(R

H
a , L,B, J) be the
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compactification of

Mreg
k1,k0

(RH
a , L,B, J) :=



(u,τ1τ1τ1, τ0τ0τ0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u : R×[0, 1]→ X is smooth, [u] = B,

∂u

∂s
+ J

Å
∂u

∂t
−XF t

s
(u)

ã
= 0, E(u) <∞,

u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

lim
s→−∞

u(s, t) = ψtH(q) ∀t ∈ [0, 1]

for some q ∈ ψ−1H (RH
a ),

lim
s→∞

u(s, t) = p ∀t ∈ [0, 1] for some p ∈ L,

τ1τ1τ1 = ((ζ1, 1), . . . , (ζk1 , 1)) ∈ (R×{1})k1 ,

where −∞ < ζk1 < · · · < ζ1 < +∞,

τ0τ0τ0 = ((τ1, 0), . . . , (τk0 , 0)) ∈ (R×{0})k0 ,

where −∞ < τ1 < · · · < τk0 < +∞



.

ψHt (q)

ζk1 ζ1· · ·

τ1 τk0· · ·

p∂̄H ∂̄∂̄F t
s

L

L

Mk1,k0(R
H
a , p, B, J)

ev−∞,B

ww

ev+∞,B

''
RH
a L

Define the evaluation maps as follows.

∀1 ≤ j ≤ k1, ev
(1)
j,B :Mreg

k1,k0
(RH

a , L,B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(ζj, 1).

∀1 ≤ j ≤ k0, ev
(0)
j,B :Mreg

k1,k0
(RH

a , L,B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(τj, 0).

ev−∞,B :Mreg
k1,k0

(RH
a , L,B, J)→ RH

a , (u,τ1τ1τ1, τ0τ0τ0) 7→ ψ1
H

Å
lim

s→−∞
u(s, 0)

ã
.
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ev+∞,B :Mreg
k1,k0

(RH
a , L,B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ lim

s→∞
u(s, 1).

Let k1, k0 ∈ N, a, a′ ∈ π0(LH ∩ L), and B ∈ π2(RH
a , R

H
a′ ). Define

fB : ΩG(R
H
a )“⊗R Λnov[1]→ CG(L)[1],

by

fB (η) = (evG+∞,B)!(ev
G
−∞,B)

∗η.

Define

f : CG(L, b,H, J)[1]→ CG(L)[1]

such that, for each a ∈ π0(LH ∩ L),

f : ΩG(R
H
a )“⊗Λnov[1]→ CG(L)[1]

is given by

f(η) =
∑

B∈π2(RH
a ,L)

exp(∂B ∩ b) fB(η) exp(∂B ∩ b)T
ω(B)
2π e

Iµ(B)

2 .

Lemma 7.2. Mk1,k0(R
H
a , L,B, J) has an oriented G-equivariant Kuranishi structure such

that ev−∞,B, ev+∞,B are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the four types of fiber products below.

i) Mk′1,k
′
0
(RH

a , R
H
c , B

′, J)×Mk′′1 ,k
′′
0
(RH

c , L,B
′′, J), where

• c ∈ π0(LH ∩ L)

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0, and

• B′ ∈ π2(RH
a , R

H
c ), B

′′ ∈ π2(RH
c , p) such that B′#B′′ = B.

ii) Mk′1,k
′
0
(RH

a , L,B
′, J)ev+∞ ×ev0Mk′′1+k

′′
0
(L,B′′, J), where

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0, and

• B′ ∈ π2(RH
a , L), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

iii) Mk′1,k0
(RH

a , L,B
′, J)

ev
(1)

i,B′
×ev0Mk′′1+1(L, J,B

′′), where
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• 1 ≤ i ≤ k′1,

• k′1, k
′′
1 ∈ N such that k′1 + k′′1 = k1 + 1, and

• B′ ∈ π2(RH
a , L), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

iv) Mk1,k′0
(RH

a , L,B
′, J)

ev
(0)

i,B′
×ev0Mk′′0+1(L, J,B

′′), where

• 1 ≤ i ≤ k′0, 1 ≤ j ≤ k′′0 ,

• k′0, k
′′
0 ∈ N such that k′0 + k′′0 = k0 + 1, and

• B′ ∈ π2(RH
a , p), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

Proof. The boundary decomposition follows from [19] Proposition 15.22. The construction of

such a G-equivariant Kuranishi structure is similar to the proof of Proposition 5.1 (See [21]

Section 4.3.)

Corollary 7.1. f is a cochain map:

f ◦δGH − δG ◦ f = 0. (7.2.2)

Proof. This follows from Lemma 7.2, Stokes’ Theorem 8.2, and the composition formula

(Proposition 8.4).

7.3 The map g

Let χ be as in (7.2.1). Define F : R×[0, 1]×X → R by

F (s, t, x) = F
t

s(x) := χ(s)Ht(x).

Then F
t

s(x) = 0 if s ≤ −1 and F
t

s(x) = Ht(x) if s ≥ 1.

Note that F
t

s = F (s, t, ·) : X → R defines a Hamiltonian vector field X
F

t
s
via ιX

F
t
s

ω = dF
t

s.
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∀a ∈ π0(ψ1
H(L) ∩ L), define

π2(L,R
H
a ) =


u : R×[0, 1]→ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u is smooth,

u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

lim
s→−∞

u(s, t) = p ∀t ∈ [0, 1] for some p ∈ L,

∃q ∈ ψ−1H (RH
a ) such that

lim
s→+∞

u(s, t) = ϕtH(q) ∀t ∈ [0, 1]



/
∼,

where u1 ∼ u2 if and only if u1 and u2 represent the same class in π2(X).

Let k1, k0 ∈ N, a ∈ π0(LH ∩ L), and B ∈ π2(L,R
H
a ). Let Mk1,k0(L,R

H
a , B, J) be the

compactification of

Mreg
k1,k0

(L,RH
a , B, J) :=



(u,τ1τ1τ1, τ0τ0τ0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u : R×[0, 1]→ X is smooth, [u] = B,

∂u

∂s
+ J

Å
∂u

∂t
−X

F
t
s
(u)

ã
= 0, E(u) <∞,

u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

lim
s→−∞

u(s, t) = p ∀t ∈ [0, 1] for some p ∈ L,

lim
s→+∞

u(s, t) = ψtH(q) ∀t ∈ [0, 1] for some q ∈ ψ−1H (RH
a ),

τ1τ1τ1 = ((ζ1, 1), . . . , (ζk1 , 1)) ∈ (R×{1})k1 ,

where −∞ < ζk1 < · · · < ζ1 < +∞,

τ0τ0τ0 = ((τ1, 0), . . . , (τk0 , 0)) ∈ (R×{0})k0 ,

where −∞ < τ1 < · · · < τk0 < +∞



.

p

ζk1 ζ1· · ·

τ1 τk0· · ·

ψtH(q)∂̄H ∂̄∂̄F t
s

L

L
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Mk1,k0(L,R
H
a , B, J)

ev−∞,B

ww

ev+∞,B

''

L RH
a

Define the evaluation maps as follows.

∀1 ≤ j ≤ k1, ev
(1)
j,B :Mreg

k1,k0
(L,RH

a , B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(ζj, 1).

∀1 ≤ j ≤ k0, ev
(0)
j,B :Mreg

k1,k0
(L,RH

a , B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ u(τj, 0).

ev−∞,B :Mreg
k1,k0

(L,RH
a , B, J)→ L, (u,τ1τ1τ1, τ0τ0τ0) 7→ lim

s→−∞
u(s, 1).

ev+∞,B :Mreg
k1,k0

(L,RH
a , B, J)→ RH

a , (u,τ1τ1τ1, τ0τ0τ0) 7→ ψ1
H

Å
lim

s→+∞
u(s, 0)

ã
.

Let a ∈ π0(LH ∩ L), and B ∈ π2(L,RH
a ).

Define

gB : CG(L)[1]→ ΩG(R
H
a )“⊗R Λnov[1]

by

gB (η) = (evG+∞,B)!(ev
G
−∞,B)

∗η.

Define

g : CG(L)[1]→ CG(L, b,H, J)[1]

such that, for each a ∈ π0(LH ∩ L),

g : CG(L)[1]→ ΩG(R
H
a )“⊗Λnov[1]

is given by

g(η) =
∑

B∈π2(L,RH
a )

exp(∂B ∩ b) gB(η) exp(∂B ∩ b)T
ω(B)
2π e

Iµ(B)

2 .
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7.4 Proof of Hamiltonian isotopy invariance

Define a smooth function F̃ : [0,∞)× R×[0, 1]×X → R as follows. Fix a large constant,

say 10.

For θ ≥ 10, let

F̃ (θ, s, t, x) = F̃ t
θ,s(x) =


F t
s+θ(x) if s ≤ 0

F
t

s−θ(x) if s ≥ 0

.

H HF t
s+θ F

t
s−θ

0

−(θ + 1) θ + 1θ − 1−(θ − 1)

Let χ̃ : R→ [0, 1] be a smooth nondecreasing function such that

χ̃(θ) =


0 if θ ≤ 1

1 if θ ≥ 9

.

For 0 ≤ θ < 10, define

F̃ (θ, s, t, x) = (1− χ̃(θ))Ht(x) + χ̃(θ)F̃ t
10,s(x).

Consider

πθ2(R
H
a , R

H
a′ ) =


u : R×[0, 1]→ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u is smooth,

u(s, 0) ∈ L and u(s, 1) ∈ ψ1
θ,s(L) ∀s ∈ R,

lim
s→−∞

u(s, t) = ψt0(qa) ∀t ∈ [0, 1],

lim
s→∞

u(s, t) = ψt1(qa′) ∀t ∈ [0, 1]


/
∼,

where u1 ∼ u2 if and only if u1 and u2 represent the same class in π2(X).

Let a, a′ ∈ π0(ψ1
H(L) ∩ L). Define

π
[0,∞]
2 (RH

a , R
H
a′ ) =

Ñ
π2(R

H
a , R

H
a′ ) ∪

⋃
θ∈[0,∞)

πθ2(R
H
a , R

H
a′ )

é/
∼,
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where [u1] ∼ [u2] if and only if [u1] = [u2] in π2(X).

Let θ ∈ [0,∞), k1, k0 ∈ N, a, a′ ∈ π0(ψ1
H(L) ∩ L), and B ∈ π

[0,∞]
2 (RH

a , R
H
a′ ). Define

Mθ,reg
k1,k0

(RH
a , R

H
a′ , B, J)

:=



(u, τ1, τ0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u : R×[0, 1]→ X is smooth, [u] = B,

∂u

∂s
+ J

Å
∂u

∂t
−XF̃ t

θ,s
(u)

ã
= 0,

E(u) =

∥∥∥∥∂u∂s
∥∥∥∥2 + ∥∥∥∥∂u∂t −XF̃ t

θ,s
(u)

∥∥∥∥2 <∞,
u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

∃ q ∈ ψ−1H (RH
a ), q′ ∈ ψ−1H (RH

a′ ) such that

lim
s→−∞

u(s, t) = ψtH(q) and lim
s→∞

u(s, t) = ψtH(q
′) ∀t ∈ [0, 1],

τ0 = ((τ1, 0), . . . , (τk0 , 0)) ∈ (R×{0})k0 ,

where −∞ < τ0,1 < · · · < τ0,k0 < +∞,

τ1 = ((ζ1, 1), . . . , (ζk1 , 1)) ∈ (R×{1})k1 ,

where −∞ < ζk1 < · · · < ζ1 < +∞



.

When θ =∞, let

M+∞,reg
k1,k0

(RH
a , R

H
a′ , B, J) :=

⋃
B′#B′′=B

⋃
k′1+k

′′
1=k1

k′0+k
′′
0=k0

Mk′1,k
′
0
(RH

a , L,B
′, J)×Mk′′1 ,k

′′
0
(L,RH

a′ , B
′′, J),
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whereMk′′1 ,k
′′
0
(L,RH

a , B, J) is the compactification of

Mreg
k1,k0

(L,RH
a , B, J) :=



(u,τ1τ1τ1, τ0τ0τ0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u : R×[0, 1]→ X is smooth, [u] = B,

∂u

∂s
+ J

Å
∂u

∂t
−XF t

s
(u)

ã
= 0, E(u) <∞,

u(s, 0) ∈ L and u(s, 1) ∈ L ∀s ∈ R,

lim
s→−∞

u(s, t) = p ∀t ∈ [0, 1] for some p ∈ L

lim
s→∞

u(s, t)ψtH(q) ∀t ∈ [0, 1] for some q ∈ ψ−1H (RH
a ),

τ1τ1τ1 = ((ζ1, 1), . . . , (ζk1 , 1)) ∈ (R×{1})k1 ,

where −∞ < ζk1 < · · · < ζ1 < +∞,

τ0τ0τ0 = ((τ1, 0), . . . , (τk0 , 0)) ∈ (R×{0})k0 ,

where −∞ < τ1 < · · · < τk0 < +∞



.

Let

M[0,+∞],reg
k1,k0

(RH
a , R

H
a′ , B, J) =

⋃
θ∈[0,+∞]

Ä
{θ} ×Mθ,reg

k1,k0
(RH

a , R
H
a′ , B, J)

ä
and letM[0,+∞]

k1,k0
(RH

a , R
H
a′ , B, J) be its compactification.

M[0,+∞]
k1,k0

(RH
a , R

H
a′ , B, J)

ev−∞,B

vv

ev+∞,B

((
RH
a RH

a′

Define the evaluation maps as follows.

∀1 ≤ j ≤ k1, ev
(1)
j,B :M[0,+∞),reg

k1,k0
(RH

a , R
H
a′ , B, J)→ L, (θ, (u,τ1τ1τ1, τ0τ0τ0)) 7→ u(ζj, 1).

∀1 ≤ j ≤ k0, ev
(0)
j,B :M[0,+∞),reg

k1,k0
(RH

a , R
H
a′ , B, J)→ L, (θ, (u,τ1τ1τ1, τ0τ0τ0)) 7→ u(τj, 0).

ev−∞,B :M[0,+∞),reg
k1,k0

(RH
a , R

H
a′ , B, J)→ RH

a , (θ, (u,τ1τ1τ1, τ0τ0τ0)) 7→ ψ1
H

Å
lim

s→−∞
u(s, 0)

ã
.

ev+∞,B :M[0,+∞),reg
k1,k0

(RH
a , R

H
a′ , B, J)→ RH

a′ , (θ, (u,τ1τ1τ1, τ0τ0τ0)) 7→ ψ1
H

Å
lim

s→+∞
u(s, 0)

ã
.

Let a, a′ ∈ π0(LH ∩ L), and B ∈ π[0,∞]
2 (RH

a , R
H
a′ ).
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Define

ΘB : ΩG(R
H
a )“⊗R Λnov[1]→ ΩG(R

H
a′ )“⊗R Λnov[1],

by

ΘB (η) = (evG+∞,B)!(ev
G
−∞,B)

∗η.

Define

Θ : CFG(L, b,H, J)[1]→ CFG(L, b,H, J)[1]

such that, for each a, a′ ∈ π0(ψ1
H(L) ∩ L),

Θ : ΩG(R
H
a )“⊗R Λnov[1]→ ΩG(R

H
a′ )“⊗R Λnov[1]

is given by

Θ(η) =
∑

B∈π[0,∞]
2 (RH

a ,R
H
a′ )

exp(∂B ∩ b)ΘB(η) exp(∂B ∩ b)T
ω(B)
2π e

Iµ(B)

2 .

Lemma 7.3. M[0,+∞]
k1,k0

(RH
a , R

H
a′ , B, J) has an oriented G-equivariant Kuranishi structure such

that ev−∞,B, ev+∞,B are strongly continuous and weakly submersive. Moreover, its normalized

boundary is a union of the following types of fiber products below.

i) Mk′1,k
′
0
(RH

a , R
H
c , B

′, J)ev∞ ×ev−∞M
[0,+∞]

k′′1 ,k
′′
0
(RH

c , R
H
a′ , B

′′, J), where

• c ∈ π0(LH ∩ L),

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0, and

• B′ ∈ π2(RH
a , R

H
c ), B

′′ ∈ π2(RH
c , R

H
a′ ) such that B′#B′′ = B.

ii) M[0,+∞]

k′1,k
′
0
(RH

a , R
H
c , B

′, J)ev∞ ×ev−∞Mk′′1 ,k
′′
0
(RH

c , R
H
a′ , B

′′, J), where

• c ∈ π0(LH ∩ L),

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0, and

• B′ ∈ π2(RH
a , R

H
c ), B

′′ ∈ π2(RH
c , R

H
a′ ) such that B′#B′′ = B.

iii) M[0,+∞]

k1,k′0
(RH

a , R
H
a′ , B

′, J)ev1,i,B′ ×ev0Mk′′0+1(L,B
′′, J), where
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• 1 ≤ i ≤ k′1,

• k′1, k
′′
1 ∈ N such that k′1 + k′′1 = k1 + 1, and

• B′ ∈ π2(RH
a , R

H
a′ ), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

iv) M[0,+∞]

k′1,k0
(RH

a , R
H
a′ , B

′, J)ev0,i,B′ ×ev0Mk′′0+1(L,B
′′, J), where

• 1 ≤ i ≤ k′0,

• k′0, k
′′
0 ∈ N such that k′0 + k′′0 = k0 + 1, and

• B′ ∈ π2(RH
a , R

H
a′ ), B

′′ ∈ π2(X,L) such that B′#B′′ = B.

v) Mk′1,k
′
0
(RH

a , L,B
′, J)ev∞ ×ev−∞Mk′′1 ,k

′′
0
(L,RH

a′ , B
′′, J), where

• k′1, k
′′
1 , k

′
0, k
′′
0 ∈ N such that k′1 + k′′1 = k1, k

′
0 + k′′0 = k0, and

• B′ ∈ π2(RH
a , L), B

′′ ∈ π2(L,RH
a′ ) such that B′#B′′ = B.

vi) M̃k1,k0(R
H
a , R

H
a′ , B, J), whose quotient space by the free R-action isMk1,k0(R

H
a , R

H
a′ , B, J).

Proof. The cases where bubbling happens at s = −∞ and s = +∞ correspond to i) and ii),

respectively. The cases where bubbling happens at t = 1 and t = 0 correspond to iii) and iv),

respectively. The case θ = 0 corresponds to vi). The case θ = ∞ corresponds to v). The

construction of a G-invariant Kuranishi structure is similar to the proof of Proposition 5.1

(See [21] Section 4.3.). The boundary decomposition is similar to the proof of [19] Proposition

15.22.

Corollary 7.2.

g ◦ f−1G = Θ ◦ δGH + δGH ◦Θ.

Proof. In Lemma 7.3, the contributions of i) and ii) vanish. The terms iii) and iv) correspond

to (Θ − dG) ◦ δGH and δGH ◦ (Θ − dG). And v) corresponds to g ◦ f. The contribution of v)

vanishes except the case when B = 0, which corresponds to 1G. Then the corollary follows

from Lemma 7.3, Proposition 8.4, and Theorem 8.2.
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Corollary 7.3. f ◦ g is cochain homotopic to the identity map.

Proof. The proof is similar to that of Corollary 7.2.

Corollary 7.4. If HFG((L, b), (L, b),Λnov) ̸= 0, then L is not displaceable by any G-

equivariant Hamiltonian diffeomorphism that is the time-1 map of aG-equivariant Hamiltonian

isotopy.

Proof. If L is displaceable by ψ1
H , which is a G-equivariant Hamiltonian diffeomorphism

that is the time-1 map of a G-equivariant Hamiltonian isotopy, then ψ1
H(L) ∩ L = ∅ implies

CFG(L, b,H) = 0. Thus,

0 = HFG(L, b,H) ∼= HFG((L, b), (L, b),Λnov).

114



Chapter 8

Equivariant Kuranishi structures

In this chapter, we discuss concepts related to equivariant Kuranishi structures which we

use to define the A∞ strctures. The definitions and the constructions of some of these

equivariant Kuranishi data on the moduli spaces have been discussed in [23], [22], [21],

and [18]. More specifically, in Section 8.1, we give the definitions of equivariant Kuranishi

structures and equivariant good coordinate systems. In Section 8.2 and Section 8.3, we

define CF-perturbations (“CF” stands for continuous family) and use it to define equivariant

integration along the fiber on Kuranishi spaces. And in Section 8.4, we discuss the equivariant

Stokes’ theorem and equivariant smooth correspondences on Kuranishi spaces.

8.1 Equivariant Kuranishi structures

We review related concepts in the orbifold theory in Appendix A. Moreover, we assume G is a

torus and G acts onM freely when necessary. For the general theory of Kuranishi structures,

we refer the readers to the book [20].

Definition 8.1 (G-equivariant Kuranishi chart). LetM be a separable metrizable topological

space with a topological action by a compact connected Lie group G. A G-equivariant

Kuranishi chart onM is a quadruple U = (U, E , ψ, s) that satisfies the following.
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(a) U and E are oriented smooth effective orbifolds, possibly with corners, each equipped

with a smooth G-action.

(b) E π−→ U is a smooth G-equivariant orbibundle.

(c) s : U → E is a smooth G-equivariant section of π.

(d) ψ : s−1(0)→M is a G-equivariant continuous map, which is a homeomorphism onto

an open subset inM.

We say U is a Kuranishi neighborhood, E is an obstruction bundle, ψ is a parametriza-

tion map, and s is a Kuranishi map.

Definition 8.2 (Restriction of a G-equivariant Kuranishi chart). Let U = (U, E , ψ, s) be

a G-equivariant Kuranishi chart and U ′ ⊂ U be a G-invariant open subset of U . Then the

restriction of U to U ′ defines a Kuranishi chart U ′ = (U ′, E|U ′ , ψ|s−1(0)∩U ′ , s|U ′).

Definition 8.3 (Embedding of G-equivariant Kuranishi charts). Let M be a separable

metrizable topological space with a topological action by a compact Lie group G. An

G-equivariant embedding of G-equivariant Kuranishi charts

α⃗ = (α, α̂) : (U, E , ψ, s)→ (U ′, E ′, ψ′, s′)

is a G-equivariant embedding of the orbibundles
(
U

α−→ U ′, E α̂−→ E ′
)
satisfying the following.

i) α̂ ◦ s = s′ ◦ α.

ii) ψ′ ◦ α|s−1(0) = ψ.

iii) ∀x ∈ s−1(0), the derivative Dα(x)s
′ induces an isomorphism

Tα(x)U
′

(Dxα)(TxU)
∼=
E ′α(x)
α̂(Ex)

induced by

Ex α̂ // E ′α(x)

TxU Dxα
//

Dxs

OO

Tα(x)U
′

Dα(x)s
′

OO

.

116



Definition 8.4 (G-equivariant Kuranishi structure). Let M be a separable metrizable

topological space with a topological action by a compact Lie group G. A G-equivariant

Kuranishi structure

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp}) (8.1.1)

onM consists of the following data.

1) ∀p ∈M, Up = (Up, Ep, ψp, sp) is a G-equivariant Kuranishi chart onM such that there

exists a unique op ∈ Up satisfying ψp(op) = p.

2) ∀p ∈M,∀g ∈ G, Up = Ugp.

3) ∀p ∈M, ∀q ∈ imψp, we have a G-equivariant embedding of G-equivariant Kuranishi

charts α⃗pq =
(
Upq

αpq−−→ Up, Eq|Upq

α̂pq−−→ Ep
)
from the restriction of Uq to a G-invariant

open subset Upq of Uq with q ∈ ψq(s−1q (0) ∩ Upq). In particular, it satisfies the following.

a) The following diagrams commute.

Eq|Upq

α̂pq
//

πq

��

Ep
πp

��

Upq αpq
// Up

, Eq|Upq

α̂pq
// Ep

Upq

sq

OO

αpq
// Up

sp

OO
, s−1q (0) ∩ Upq

αpq
//

ψq
((

s−1p (0) ∩ Up
ψp

��

M

b) If x ∈ s−1q (0) ∩ Upq and αpq(x) = y, then Dysp induces an isomorphism

TyUp
(Dxαpq)(TxUpq)

∼=
Ep
∣∣
y

α̂pq
(
Eq
∣∣
x

) (8.1.2)

Such an embedding α⃗pq is called a G-equivariant Kuranishi coordinate change.

4) For any p ∈M, q ∈ imψp and any g, g′ ∈ G, we have α⃗pq = α⃗(gp)(g′q).

5) If r ∈ ψq(s−1q (0)∩Upq) and Upqr = α−1qr (Upq)∩Uqr, then the cocycle condition is satisfied

in the following sense:

αpr(x) = αpq ◦ αqr(x), ∀x ∈ Upqr,
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and

α̂pr(v) = α̂pq ◦ α̂qr(v), ∀x ∈ Upqr, ∀v ∈ (Er)x.

A topological spaceM which satisfies the conditions above and has a G-equivariant Kuranishi

structure is called a G-equivariant Kuranishi space.

Definition 8.5 (G-equivariant good coordinate system). LetM be a separable metrizable

topological space. A G-equivariant good coordinate systemÊU = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p}) (8.1.3)

consists of

1) a finite partially ordered set (P,≤);

2) ∀ p ∈ P, a G-equivariant Kuranishi chart Up = (Up, Ep, ψp, sp) on M so that M ⊂⋃
p∈P

imψp; and

3) ∀ p, q ∈ P with q ≤ p, an G-equivariant embedding (αpq, α̂pq) of G-equivariant Kuranishi

charts α⃗pq =
(
Upq

αpq−−→ Up, Eq|Upq

α̂pq−−→ Ep
)
from the restriction of Uq to a G-invariant

open subset Upq of Uq, called a G-equivariant good coordinate change from q to p,

satisfying

imψpq = imψp ∩ imψq,

such that the following holds.

i) α⃗pp =
Ä
id|Up

, id|Ep
ä
.

ii) If imψp ∩ imψq ̸= ∅, then either p ≤ q or q ≤ p.

iii) If r ≤ q ≤ p and Upqr = α−1qr (Upq) ∩ Uqr, then

αpr(x) = αpq ◦ αqr(x), ∀x ∈ Upqr,

and,

α̂pr(v) = α̂pq ◦ α̂qr(v), ∀x ∈ Upqr, ∀v ∈ (E r)x.
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Definition 8.6 (Support system/support pair). Let
Ä
M, ÊUä be a space with a G-equivariant

good coordinate systemÊU = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p}) .

A G-equivariant support system ÊK = {Kp | p ∈ P} on
Ä
M, ÊUä is a collection of sets

satisfying the following.

• For each p ∈ P, Kp ⊂ Up is a nonempty G-invariant compact subset, which is the

closure of some open set K̊p ⊂ Up.

•
⋃
p∈P

ψp

Ä
K̊p ∩ s−1p (0)

ä
=M.

For any G-equivariant support system ÊK, we define

|K| =

(⊔
p∈P

Kp

)
/ ∼, (8.1.4)

where, for each x ∈ Kp, y ∈ Kq, we say x ∼ y if and only if either y = αqp(x) or x = αpq(y).

The G-action on the charts induces a G-action on |K|.

A G-equivariant support pair
Ä ÊK, ÊK++

ä
on
Ä
M, ÊUä consists of G-equivariant support

systems ÊK = {Kp | p ∈ P}, ÊK++ = {K++
p | p ∈ P} such that for all p ∈ P we have Kp ⊂ K̊++

p .

We write ÊK < ÊK++ for such a pair.

Given a G-equivariant support pair
Ä ÊK, ÊK++

ä
, a G-invariant metric on |K++|, and δ > 0,

we can define another support systemÊK(2δ) = {Kp(2δ) | p ∈ P},

where

Kp(2δ) = {x ∈ K++
p | d(x,Kp) < 2δ}.

Definition 8.7 (KG-embedding). A G-equivariant strict KG-embedding

{α⃗pp = (αpp, α̂pp) : Up → Up | (p, p) ∈M×P, p ∈ imψp} : Û −→ ÊU
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from a Kuranishi structure Û onM to a good coordinate system ÊU onM consists of one

G-equivariant embedding of Kuranishi charts for each (p, p) ∈M×P, p ∈ imψp such that

the following holds. If p, q ∈ P, q ≤ p and p ∈ imψp, q ∈ imψp ∩ imψq(Upq ∩ s−1q (0)), then

on Uq|Upq∩α−1
qq (Upq)

we have

α⃗pp ◦ α⃗pq = α⃗pq ◦ α⃗qq.

An open substructure of a G-equivariant Kuranishi structure Û is a G-equivariant Kuranishi

structure Û ′ whose Kuranishi charts and coordinate changes are restrictions of those in Û to

G-invariant open subsets U ′p of Kuranishi neighborhoods Up.

A G-equivariant KG-embedding Û −→ ÊU is a G-equivariant strict KG-embedding

Û0 −→ ÊU from an open substructure Û0 of the Kuranishi structure Û .

Lemma 8.1. Suppose that M is a space with a G-equivariant Kuranishi structure with

corners, where the G-action on each Kuranishi chart is free. ThenM /G has a Kuranishi

structure with corners.

Similarly, ifM is a G-equivariant good coordinate system with corners, where the G-action

on each Kuranishi chart is free, thenM /G has a good coordinate system with corners.

Proof. Suppose the G-equivariant Kuranishi structure onM is given by

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp}) ,

where the G-action on each chart Up = (Up, Ep, ψp, sp) is free.

By G-equivariance and the freeness of the G-action, we obtain Kuranishi charts of the

form Up/G = (Up/G, Ep /G, [ψp], [sp]). Suppose α⃗pq is given by a pair of G-equivariant orbifold

embeddings

αpq : Upq → Up, α̂pq : Eq
∣∣
Upq
→ Ep .

Then they induce maps [αpq] : Upq/G → Up/G and [α̂pq] : (Eq /G)|Upq/G
→ Ep /G, which

together define a Kuranishi coordinate change [α⃗pq] from Ûq/G to Ûp/G.

The data Û/G = ({Up/G | p ∈M /G} , {[α⃗pq] | p ∈M /G, q ∈ im[ψp]}) satisfy the defini-

tion of a Kuranishi structure onM /G.
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Definition 8.8 (Dimension/Orientation). LetM be a space with either a Kuranishi structure

or a good coordinate system.

i) We define the dimension of a Kuranishi chart of the form U = (U, E , ψ, s) by

dimU = dimU − rank E .

We require the dimension of the Kuranishi charts in the Kuranishi structure (resp.

good coordinate system) to be the same and define this common dimension to be the

dimension ofM.

ii) An orientation of a Kuranishi chart U = (U, E , ψ, s) is given by an orientation on U

and an orientation on E . An orientation onM is a choice of an orientation for each

Kuranishi chart of the Kuranishi structure (resp. good coordinate system) such that

the coordinate change maps are orientation-preserving.

Definition 8.9 (G-equivariant strongly smooth map: orbifold → manifold). Let L be a

smooth manifold with a G-action and U be a smooth effective orbifold with a smooth G-action.

A G-equivariant continuous map g : U → L is a strongly smooth map if g ◦ φ : V → L is

smooth for all orbifold charts (V,Γ, φ) in the orbifold atlas of U .

Definition 8.10 (G-equivariant strongly smooth map: Kuranishi → manifold). Let L be

a smooth manifold with a G-action and
Ä
M, Û

ä
be a G-equivariant Kuranishi space with

Kuranishi structure

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp})

A G-equivariant strongly smooth map f̂ : (M, Û)→ L is a collection

{fp : Up → L | p ∈M}

of G-equivariant strongly smooth maps satisfying the following. For all p ∈ M, q ∈ imψp,

the compatibility condition fp ◦ αpq = fq|Upq is satisfied. Define the map associated with the
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strongly smooth map f̂ by

f :M→ L, f(p) = fp(op) ∀p ∈M,

where op is as in Definition 8.4 1). We can define a G-equivariant strongly smooth mapÊf = {fp : Up → L | p ∈ P} from a space with good coordinate system to a manifold in a

similar way.

Definition 8.11 (G-equivariant differential forms on a G-equivariant Kuranishi space). Let

M be a space with a G-equivariant Kuranishi structure as in Definition 8.4. A G-equivariant

differential k-form on
Ä
M, Û

ä
is given by a collection of differential forms

η̂ =
{
ηp ∈ Ωk

G(Up)
∣∣ p ∈M} (8.1.5)

such that

(αGpq)
∗ (ηp)

∣∣
Upq

= ηq|Upq , ∀p ∈M, ∀q ∈ imψp,

where

(αGpq)
∗ : Ωk

G(Up)→ Ωk
G(Uq)

denotes the G-equivariant pullback via Uq
restriction−−−−−→ Upq

αpq−−→ Up. We denote the set of

G-equivariant differential k-forms on a G-equivariant Kuranishi spaceM by ΩkG
Ä
M, Û

ä
and

denote ΩG

Ä
M, Û

ä
=
⊕
k∈N

Ωk
G

Ä
M, Û

ä
.

Definition 8.12 (G-equivariant differential forms on a good coordinate system). LetM be

a space with a G-equivariant good coordinate system as in (8.1.3). Let ÊK = {Kp | p ∈ P} be

a support system on
Ä
M, ÊUä. A G-equivariant differential k-form Êη on

Ä
M, ÊUä assigns

a G-equivariant differential k-form ηp on Kp for each p ∈ P such that the following holds on

a G-invariant open neighborhood of α−1pq (Kp) ∩Kq:

(αGpq)
∗ηp = ηq, ∀ p ∈M, ∀ q ∈ imψp.

We denote the set of G-equivariant differential k-forms on a G-equivariant Kuranishi

spaceM by Ωk
G

Ä
M, ÊUä and denote ΩG

Ä
M, ÊUä = ⊕

k∈N
Ωk
G

Ä
M, ÊUä.
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Definition 8.13 (G-equivariant pullback map). Let M be a space with a G-equivariant

Kuranishi structure Û as in (8.1.1). Let f̂ = {fp : Up → L | p ∈ M} : (M, Û) → L be a

G-equivariant strongly smooth map and

η =
{
ηp ∈ Ωk

G(Up)
∣∣ p ∈M}

be a G-equivariant differential k-form on (M, Û). Then the G-equivariant pullback of η

via f̂ is given by

f̂ ∗η̂ =
{
f ∗p ηp ∈ Ωk

G(Up)
∣∣ p ∈M} .

We may also denote it by f ∗η̂. Similarly, we can define the G-equivariant pullback Êf ∗Êη of a

differential form Êη on a good coordinate system via a G-equivariant strongly smooth map Êf .
Lemma 8.2. Let

Ä
M, Û

ä
be a space with a G-equivariant Kuranishi structure

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp}) .

Then there exists a G-equivariant good coordinate system ÊU on M and a G-equivariant

KG-embedding Û −→ ÊU , given by a G-equivariant strict KG-embedding Φ : Û0 −→ ÊU from

an open substructure Û0 of Û .

Moreover, the following holds.

i) Let ĥ be a G-equivariant differential form on
Ä
M, Û

ä
. Then there exists a G-equivariant

differential form Êh on
Ä
M, ÊUä such that Φ∗G(

Êh) = ĥ
∣∣∣
Û0
.

ii) Let Ŝ be aG-equivariant CF-perturbation on
Ä
M, Û

ä
. Then there exists aG-equivariant

CF-perturbation ÊS on
Ä
M, ÊUä such that Ŝ

∣∣∣
Û0
, ÊS are compatible with Φ and the following

holds.

a) If Ŝ is transverse to 0, then ÊS is also transverse to 0.

b) If f̂ is strongly submersive with respect to Ŝ, then Êf is strongly submersive with

respect to ÊS.
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c) If f̂ is weakly transverse to g : M → N with respect to Ŝ, then Êf is strongly

transverse to g :M → N with respect to ÊS.
The proof of Lemma 8.2 is similar to that of [20] Theorem 3.35 and Lemma 9.10.

Proof sketch. For each d ∈ N, let SdM = {p ∈ M | dimUp ≥ d}. The proof is based on a

downward induction on d. Suppose a G-equivariant good coordinate systemÎUd+1 = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p})

which covers Sd+1M is constructed. Pick a collection {Kp | p ∈ P} of G-invariant compact

subsets Kp ⊂ Up such that we have an open neighborhood of Sd+1M:

Sd+1M⊂
⋃
p

ψp

(
s−1p (0) ∩ intKp

)
.

Let

B = SdM\
⋃
p∈P

ψp

(
s−1p (0) ∩ intKp

)
⊂ SdM\Sd+1M .

Also pick x1, . . . , xn ∈ SdM\Sd+1M and {Ki | 1 ≤ i ≤ n} such that Ki ⊂ Uxi are

G-invariant subsets and
n⋃
i=1

ψxi
(
s−1xi (0) ∩ intKi

)
⊃ B.

Then we can construct, as in the proof of [20] Theorem 3.35 and that of [20] Lemma 9.10, a

G-equivariant good coordinate system that covers

⋃
p∈P

ψp

(
s−1p (0) ∩ intKp

)
∪

n⋃
i=1

ψxi
(
s−1xi (0)

)
and satisfies the properties by induction on n.

8.2 Equivariant CF-perturbations

Definition 8.14 (G-equivariant CF-perturbation representative on a G-invariant subset). Let

U = (U, E , ψ, s) be a G-equivariant Kuranishi chart and Ur ⊂ U be a G-invariant open subset
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of U . A G-equivariant CF-perturbation representative1 of U on Ur is a continuous

family of data

Sr = {Sϵr = (Wr
νr−→ Ur, τr, s

ϵ
r) | ϵ ∈ (0, 1]} (8.2.1)

such that the following holds.

i) Wr is an effective orbifold with a smooth G-action.2

ii) νr : Wr → Ur is a smooth oriented G-equivariant orbibundle.

iii) τr ∈ ΩG(Wr) is a G-equivariant Thom form of νr : Wr → Ur.
3

iv) Let ν∗r (E|Ur
)→ Wr be the pullback bundle of E|Ur

→ Ur via νr and let pr2 : ν
∗
r (E|Ur

)→

E|Ur
be the projection map. ∀0 < ϵ ≤ 1, let s̃ϵr : Wr → ν∗r (E|Ur

) be a section of the

bundle ν∗r (E|Ur
)→ Wr satisfying the following.

a) sϵr = pr2 ◦ s̃ϵr : Wr → E|Ur
is a G-equivariant bundle map and the family {sϵr}ϵ∈(0,1]

depends smoothly on ϵ.

b) Moreover, lim
ϵ→0

sϵr = s ◦ νr in the compact C1-topology.

ν∗r (E|Ur
)

pr1

��

pr2
// E|Ur

π|Ur

��

Wr νr
// Ur

Definition 8.15 (Equivalent G-equivariant CF-perturbation representatives on subsets). Let

U = (U, E , ψ, s) be a G-equivariant Kuranishi chart and Ur ⊂ U be a G-invariant open subset

of U . Let

Sr =
¶
Sϵr = (Wr

νr−→ Ur, s
ϵ
r, τr)

∣∣∣ ϵ ∈ (0, 1]
©
.

and

S ir =
¶
Sϵi = (Wi

νi−→ Ur, s
ϵ
i , τi)

∣∣∣ ϵ ∈ (0, 1]
©
∀i ∈ {1, 2}

1”CF” stands for ”continuous family”.
2Note that we require Wr to be the total space of a G-orbibundle, unlike in the case of ordinary Kuranishi

structures, W denotes an open subset of some vector space.
3The construction of a G-equivariant Thom form can be found in [31] Chapter 10.
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be G-equivariant CF-perturbation representatives of U = (U, E , ψ, s) on Ur.

• S ir is said to be a projection of S if there exists a G-equivariant bundle map P : Wr →

Wi which fiberwise is a surjective linear map such that the following holds.

a) PG!(τr) = τi.

b) For each ϵ ∈ (0, 1], sϵi ◦P = sϵr.

• S1
r is said to be equivalent to S2

r if there exist G-equivariant CF-perturbation repre-

sentatives S̃j of U on Ur, j = 0, . . . , 2N such that

a) ∀0 ≤ k ≤ N − 1, S̃2k and S̃2k+2 are both projections of S̃2k+1, and

b) S̃0 = S1
r and S̃2N = S2

r .

Definition 8.16 (G-equivariant CF-perturbation representative on a Kuranishi chart). A

G-equivariant CF-perturbation representative on a G-equivariant Kuranishi chart

U = (U, E , ψ, s) onM is a collection of data {Sr | r ∈ R}, where

Sr = {Sϵr = (Wr
νr−→ Ur, s

ϵ
r, τr) | ϵ ∈ (0, 1]},

such that the following holds.

i) ∀ r ∈ R, Sr is a G-equivariant CF-perturbation representative of U on a G-invariant

open subset Ur of U .

ii)
⋃
r∈R

Ur = U .

iii) If x ∈ Ur1 ∩ Ur2 for some r1, r2 ∈ R, then there exists a G-invariant open subset

Ur12 ⊂ Ur1 ∩ Ur2 such that the following holds. For each k ∈ {1, 2}, let ik : Ur12 ↪→ Urk

be the G-equivariant inclusion map and let

i∗kSrk =
{(
i∗kWrk → Ur12 , i

∗
kτrk , i

∗
k s

ϵ
rk

) ∣∣ ϵ ∈ (0, 1]
}

be the restriction of Srk to Ur12 . Then we require the CF-perturbation representatives

i∗1Sr1 , i∗2Sr2 of U on Ur12 to be equivalent as in Definition 8.15.
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Definition 8.17 (Equivalent G-equivariant CF-perturbations on a Kuranishi chart). Let

S(1) = {Sr | r ∈ R} and S(2) = {Sj | j ∈ J} be G-equivariant CF-perturbation representatives

on a G-equivariant Kuranishi chart U = (U, E , ψ, s). Then the G-equivariant CF-perturbations

S(1),S(2) on U are said to be equivalent if, whenever x ∈ Ur ∩ Uj for some r ∈ R, j ∈ J,

there exists a G-invariant suborbifold Urj ⊂ U such that Urj ⊂ Ur ∩Uj and the following holds.

Let ir : Urj ↪→ Ur and ij : Urj ↪→ Uj be the G-equivariant inclusion maps. Then we require

i∗rSr, i∗j Sj to be equivalent on Urj.

Definition 8.18 (G-equivariant CF-perturbation on a Kuranishi chart). Let S be a G-

equivariant CF-perturbation representative on a G-equivariant Kuranishi chart U . A G-

equivariant CF-perturbation on U represented by S is the class

[S] =

S ′
∣∣∣∣∣∣∣
S ′ is a CF-perturbation representative on U ,

S ′ is equivalent to S


of G-equivariant CF-perturbation representatives on U that are equivalent to S.

Definition 8.19. Let U = (U, E , ψ, s) be a G-equivariant Kuranishi chart and let

Sr = {Sϵr = (Wr
νr−→ Ur, τr, s

ϵ
r) | ϵ ∈ (0, 1]}

be a CF-perturbation on a G-invariant open subset Ur ⊂ U .

i) Sr is said to be transverse to zero if, ∀0 < ϵ ≤ 1, the map sϵr|W ϵ
r
is transverse to the

zero section on some G-invariant neighborhood W ϵ
r ⊂ Wr of the support of τr.

ii) Let L be a smooth manifold. A G-equivariant smooth map fr : Ur → L is said to be

strongly submersive with respect to Sr if Sr is transverse to zero and, ∀0 < ϵ ≤ 1, ,

the map

fr ◦ νr
∣∣
(sϵr)−1(0)

: (sϵr)
−1(0)→ L

is a submersion on some G-invariant neighborhood W ϵ
r ⊂ Wr of the support of τr.
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iii) Let fr : Ur → L be strongly submersive with respect to Sr and g : N → L be a smooth

manifold between manifolds. We say fr is strongly transverse to g if Sr is transverse

to zero and, for any ϵ ∈ (0, 1] and any x ∈ (sϵr)
−1(0), the map fr ◦ νr|(sϵr)−1(0) is transverse

to g.

Definition 8.20. Let U = (U, E , ψ, s) be a G-equivariant Kuranishi chart. Let [S] be a

G-equivariant CF-perturbation on U , where S = {Sr | r ∈ R} and

Sr = {Sϵr = (Wr
νr−→ Ur, τr, s

ϵ
r) | ϵ ∈ (0, 1]}.

i) [S] is said to be transverse to zero if Sr is transverse to zero for all r ∈ R.

ii) Let L be a smooth manifold. Let ir : Ur → U be the G-equivariant inclusion map. A

G-equivariant smooth map f : U → L is said to be strongly submersive with respect

to [S] if [S] is transverse to zero and f ◦ ir is strongly submersive with respect to Sr for

all r ∈ R.

iii) We can define strong transversality between a strongly submersive map from a Kuranishi

chart and a smooth map from a smooth manifold to the same target smooth manifold

similarly.

Definition 8.21 (G-equivariant CF-perturbation on a Kuranishi space). A G-equivariant

CF-perturbation on a spaceM with a Kuranishi structure with corners

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp})

is a collection

Ŝ = {[Sp] | p ∈M}

such that the following holds.

i) For each p ∈M, [Sp] is a G-equivariant CF-perturbation on Up represented by

Sp =
{
Sϵp = (Wp, s

ϵ
p, τp)

∣∣ ϵ ∈ (0, 1]
}

on Up.
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ii) For any p ∈ M, q ∈ imψp, the data
î
Sq|Upq

ó
and [Sp] are compatible with the G-

equivariant Kuranishi coordinate change

α⃗pq =
Ä
αpq : Upq → Up, α̂pq : Eq

∣∣
Upq
→ Ep

ä
in the following sense.

a) For each x ∈ Upq, y = αpq(x), there exist a G-invariant open neighborhood

Uq,x ⊂ Upq of x and a G-invariant open neighborhood Up,y = αpq(Uq,x) of y such

that there exist G-equivariant CF-perturbation representatives

Sq,x =
(
Wq,x, s

ϵ
q,x, τq,x

)
, Sp,y =

(
Wp,y, s

ϵ
p,y, τp,y

)
of
î
Sq|Uq,x

ó
,
î
Sp|Up,y

ó
satisfying the following.

• Wq,x ⊂ Wq, Wp,y ⊂ Wp are G invariant suborbifolds such that Wq,x
hpq−−→ Wp,y

is a G-equivariant diffeomorphism.

• (hpq)G!(τq,x) = τp,y.

• sϵq,x = sϵq
∣∣
Wq,x

, sϵp,y = sϵp
∣∣
Wp,y

.

• For each ϵ ∈ (0, 1], the following diagram commutes.

Eq|Uq,x

α̂pq
// Ep|Up,x

Wq,x

sϵq,x

OO

hpq
//Wp,y

sϵp,y

OO

We can define a G-equivariant CF-perturbationÊU = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p})

on a G-equivariant good coordinate system similarly.

Definition 8.22 (G-invariant partition of unity on a good coordinate system). Let
Ä
M, ÊUä

be a space with G-equivariant good coordinate systemÊU = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p}) .
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Let
Ä ÊK, ÊK++

ä
be a G-equivariant support pair and let δ > 0. Take a G-invariant metric on

|K++|. A collection of functions {χp | p ∈ P} is said to be a G-invariant partition of unity

on
Ä
M, ÊUä with respect to the data

Ä ÊK, ÊK++, δ
ä
if it satisfies the following.

i) For each p, let

Ωp(K, δ) := {x ∈ K++
p | d(x,Kp) < δ}.

ii) For each p, χp : |K++| → [0, 1] is a G-invariant strongly smooth function in the following

sense:

χp

∣∣
K++

p ∩Ωp(K,δ)
: K++

p ∩ Ωp(K, δ)→ [0, 1]

is G-invariant and smooth.

iii) For each p, we require suppχp ⊂ Ωp(K, δ).

iv) There exists an open neighborhood N ofM in |K++| such that∑
p

χp(x) = 1 ∀x ∈ N .

Lemma 8.3. There exists a G-invariant partition of unity satisfying definition 8.22 subordi-

nate to the G-equivariant good coordinate system associated with the Kuranishi structure on

Mk+1(L, J, β) in Proposition 5.1.

Proof. Let
Ä ÊK, ÊK++

ä
be a G-equivariant support pair of the given good coordinate system.

Take a G-invariant metric on |K++|. Then by [20] Proposition 7.68, if δ > 0 is sufficiently

small, a partition of unity χ̃p associated with the data
Ä
M, ÊU , ÊK, ÊK++, δ

ä
that may not be

G-invariant exists. We average χ̃p with respect to the G-action to obtain χp, which is now

G-invariant.

We will define some sheaves of G-equivariant CF-perturbations via étale spaces.

Definition 8.23 (Étale space). An étale space over a topological space Y is a pair (A, p)

consisting of a topological space A and a continuous map p : A → Y such that p is a local

homeomorphism.
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Given an étale space over Y , one can construct a sheaf as follows. Let Ω be any open

subset of Y . We assign Ω the set of sections

Γ(Ω,A) = {s : Ω→ A | s is continuous, p ◦ s = IdΩ}.

Definition 8.24 (Sheaf of G-equivariant CF-perturbations on a chart). Let Up be a G-

equivariant Kuranishi chart. For any open subset Ω/G ⊂ Up/G, which is a quotient of a

G-invariant open subset Ω of Up, let

CFG,Up(Ω)

be the set of G-equivariant CF-perturbations of Up on Ω. Similar to [20] Proposition 7.22,

CFG,Up defines a sheaf on Up/G. We define the stalk of CFG,Up at a point x ∈ Up by taking

the direct limit

(CFG,Up)x = lim−→
Ω∋x
CFG,Up(Ω), (8.2.2)

where Ω runs through all G-invariant open subsets of Up containing x. Indeed, the direct

limit, up to isomorphism, can be constructed as⊔
Ω∋x

CFG,Up(Ω)/ ∼,

where, if [S1] ∈ CFG,Up(Ω) and [S2] ∈ CFG,Up(Ω′), then [S1] ∼ [S2] if and only if there exists

a G-invariant Ω′′ ⊂ Up, contained in both Ω and Ω′, such that x ∈ Ω′′ and [S1|Ω′′ ] = [S2|Ω′′ ].

For each G-invariant open subset Ω ⊂ Up containing x, there is a map

CFG,Up(Ω)→ (CFG,Up)x, [S] 7→ [Sx]. (8.2.3)

A member of (CFG,Up)x is called a germ.

Definition 8.25. Let
Ä
M, ÊUä be a space with a G-equivariant good coordinate system.

Suppose G acts on each Kuranishi chart freely. Let ÊK be a support system on ÊU and let

|K| be as in (8.1.4). Let x ∈ |K| and Q :
⊔
Kp → |K| be the map that identifies equivalent

elements. Suppose

P(x) = {p ∈ P | Q−1(x) ∩Kp ̸= ∅} = {p1 ≤ · · · ≤ pk}, (8.2.4)
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where p1, . . . , pk are distinct. We denote the maximal such pk by p(x). We introduce the

following notations.

i) Define

(CFG
K)x =

{
[Sx] ∈ (CFG,Up(x))x

∣∣Sx is restrictable to Up ∀ p ∈ P(x)
}
. (8.2.5)

Let

| CFG
K | =

⋃
[x]∈|K|/G

{[x]} × (CFG
K)x

and pGK : | CFG
K | → |K|/G, ([x], [Sx]) 7→ [x]. We can topologize | CFG

K | in a way

similar to [20] Definition 12.20 such that pGK becomes a local homeomorphism. Then

Ω/G 7→ CFG
K(Ω) =

{
[S] : Ω→ |CFG

K |
∣∣ [S] is continuous, pGK ◦ [S] = IdΩ/G

}
defines a sheaf on |K|/G.

ii) Define

(CFG
⋔0,K)x =

{
[Sx] ∈ (CFG

K)x
∣∣Sx is transverse to zero

}
. (8.2.6)

One can similarly obtain a sheaf CFG
⋔0,K on |K|/G.

iii) Let Êf :
Ä
M, ÊUä→ L be a G-equivariant strongly smooth map. Define

(CFG⋔f,K)x =
¶
[Sx] ∈ (CFG

K)x

∣∣∣ Êf is strongly submersive with respect to Sx
©
. (8.2.7)

This defines a sheaf CFG⋔f,K on |K|/G.

iv) Let Êf :
Ä
M, ÊUä → L be a G-equivariant strongly smooth map and g : N → L be a

smooth map between manifolds. Define

(CFGf⋔g,K)x =

[Sx] ∈ (CFG
K)x

∣∣∣∣∣∣∣
Êf is strongly transverse to g

with respect to Sx

 . (8.2.8)

This defines a sheaf CFGf⋔g,K on |K|/G.
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Definition 8.26 (Strongly transverse). Let U be a G-equivariant Kuranishi chart on M

and let x ∈ U . Suppose [Sx] is a germ at x. Let (Wx
νx−→ Ux, τx, {sϵx}) be a representative

of [Sx]. Let
(
Vx,Γx, Fx, φx, φ̂

W
x

)
and

(
Vx,Γx, Ex, φx, φ̂

E
x

)
be orbibundle charts of W, E at x,

respectively. In particular, there exists a unique ox ∈ Vx such that φx(ox) = x.

Vx × Fx
φ̂W
x //

pr1
��

Wx

νx
��

Vx
φx

// Ux

, Vx × Ex
φ̂E
x //

pr1

��

E|Ux

π

��

Vx
φx

// Ux

. (8.2.9)

Let sϵx = pr2 ◦
(
φ̂Ex
)−1 ◦ sϵx ◦φ̂Wx : Vx × Fx → Ex. We say [Sx] is strongly transverse if,

∀ϵ ∈ (0, 1], the derivative

∇W
(v,ξ)s

ϵ
x : TξFx → TcEx

in the Fx-direction is surjective for all (v, ξ) ∈
(
φ̂Wx
x

)−1
(ν−1x (ox) ∩ supp(τx)). Define

(CFG⋔⋔0)x =
{
[Sx] ∈ (CFG

K)x
∣∣Sx is strongly transverse

}
. (8.2.10)

Proposition 8.1. Let
Ä
M, ÊUä be a space with a G-equivariant good coordinate system.

Suppose G acts on each chart freely. Let ÊK be a support system on ÊU and let |K| be as in

(8.1.4).

i) The sheaves CFG
K, CFG

⋔0,K are soft.

ii) If Êf is weakly submersive then the sheaf CFG⋔f,K is soft. If Êf is weakly transverse to g,

then CFGf⋔g,K is soft.

Proof. The proof is similar to that of [20] Theorem 12.24. Let ÊK = {Kp | p ∈ P} be

a G-equivariant support system on M as in Definition 8.6. Let |K| =
⊔
Kp/ ∼ be the

heterodimensional compactum as defined in (8.1.4).

Let x ∈ |K| and Q :
⊔
Kp → |K| be the map that identifies equivalent elements. Then,

by the definition of a good coordinate system, we have a totally ordered set

P(x) = {p ∈ P | Q−1(x) ∩Kp ̸= ∅} = {p1 ≤ . . . ≤ pk} (8.2.11)
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for some positive integer k. We denote the maximal element pk by p(x) and the minimal

element p1 by p−(x).

Lemma 8.4. There exists a germ [Sx] ∈ (CFGK)x such that [Sx|Up1
] ∈ (CFG,Up1⋔⋔0 )x.

Proof of Lemma 8.4. We construct, for each j, a germ [Sj,x] ∈ (CF
G,Upj
⋔0 )x such that, ∀1 ≤

j ≤ k, [Sj,x] is restrictable to Upi for all i < j.

We induct on 1 ≤ j ≤ k. Let j = 1. Take a G-invariant neighborhood U1 ⊂ Up1 of x on

which the coordinate change α⃗p(x),p1 is defined. Let W1 = Ep1
∣∣
U1

ν1−→ U1 be the restriction of

the obstruction bundle for p1 and τ1 be a G-equivariant Thom form. Define sϵ1 : W1 → Ep1
∣∣
U1

by

sϵ1(w) = sp1 ◦ ν1(w) + ϵw ∀w ∈ W1. (8.2.12)

Then

[S1] =
îÄ
W1

ν1−→ U1, τ1, {sϵ1}
äó

is strongly transverse. Then [S1,x] ∈ (CFG,Up1⋔⋔0 )x. Note that the following holds.

• (CFG,Up1⋔⋔0 )x ⊂ (CFG,Up1⋔0 )x.

• If Êf is weakly submersive, then (CFG,Up1⋔⋔0 )x ⊂ (CFG,Up1⋔f )x.

• If Êf is weakly transverse to g, then (CFG,Up1⋔⋔0 )x ⊂ (CFG,Up1f⋔g )x.

Suppose a germ [Sj,x] ∈ (CF
G,Upj
⋔0 )x is constructed. Then there exists some nonempty

G-equivariant open subset Uj,0 ⊂ Upj such that the image of [Sj] =
îÄ
Wj

νj−→ Uj,0, τj, {sϵj}
äó

under the map CFG,Upj (Uj)→ (CFG,Upj )x is [Sj,x].

We may take a nonempty G-invariant subset Uj ⊂ Uj,0 and a nonempty G-equivariant

tubular neighborhood Upj+1,x ⊂ Upj+1
of αpj+1,pj(Uj) such that the coordinate change map

αpj+2,pj+1
is defined on Upj+1,x. Without loss of generality, we assume Uj,0 = Uj

Then there is a projection map πj : Uj+1 → Uj such that πj ◦ αpj+1,pj = Id on Uj.

Let Wj+1 = π∗jWj
νj−→ Uj+1 be the pullback bundle and τj+1 = π∗j τj.
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Uj

Wj

Epj
∣∣
Uj

Uj+1

π∗jWj

Epj+1

∣∣
Uj+1

πj

α̂pj+1, pj

sϵj
π̃j

νj
νj+1

For any w ∈ Wj+1, define

sϵj+1(w) = spj+1
◦ νj+1(w) + α̂pj+1,pj

Ä
sϵj(π̃j(w))− spj ◦ νj(π̃j(w))

ä
. (8.2.13)

Then

[Sj+1] =
îÄ
Wj+1

νj+1−−→ Uj+1, τj+1, {sϵj+1}
äó

defines a germ [Sj+1,x] ∈ (CFG,Upj+1 )x.

By this construction, [Sk] defines an element [Sx] ∈ (CFG
K)x satisfying Lemma 8.4.

By forgetting the G-action, the construction coincides with the CF-perturbation con-

structed in [20] Lemma 12.12. In particular, the following holds.

i) [Sx] ∈ (CFK)x.

ii) If Êf is weakly submersive, then [Sx] ∈ (CFG⋔f,K)x.

iii) If Êf is weakly transverse to g, then [Sx] ∈ (CFGf⋔g,K)x.

Let • ∈ {⋔ 0,⋔ f, f ⋔ g}. Suppose K ⊂ |K| is a G-invariant closed subset and

[SK ] ∈ CFG•,K(K). Let K++ be another G-equivariant support system such that K < K++.

Then [SK ] is the restriction of some [Sr0 ] ∈ CFG•,K(Ur0 ∩ |K|) for some G-invariant subset Ur0

of |K++| containing K.

For each x ∈ |K| \K, let [Sx] and [Sj,x], 1 ≤ j ≤ p(x), be as in Lemma 8.4.

Since |K| is compact, we may take finitely many points {xr | r ∈ R′} and representatives

[(Wr
νr−→ Ur, τr, {sϵr})], [(Wxr,j

νxr,j−−→ Uxr,j, τxr,j, {sϵxr,j})] of [Sxr ] and [Sj,xr ] such that⋃
r∈R′

Ur ⊃ |K|
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and the following holds.

i) r0 ∈ R′ and, for all r ∈ R′ \{r0}, Ur ∩K = ∅.

ii) For any p−(x) ≤ pi ≤ p(x), we consider local charts of the form (8.2.9). Let Fx be the

fiber of νx and Epj be the fiber of the orbibundle of Upj . By construction, we have a

Γx-equivariant projection π : Vx,j → Vx,1 and an embedding I ′j : π
∗ E1 → E j. Then, for

any y ∈ Vx,j and ξ ∈ Fx, the following diagram is commutative.

0 // TξFx //

D(y,ξ) s
ϵ
1

��

T(y,ξ)(Vx,j × Fx) //

D(y,ξ) s
ϵ
j

��

TyVx,j //

��

0

0 // I ′j
(
π(y), Ep−(x)

)
// Tc(Epj)

//
Tc(Epj)

I ′j
(
π(y), Ep−(x)

) // 0

We may choose the CF-perturbations so that

a) D(y,ξ) s
ϵ
1 is surjective.

b) There exists a sufficiently small σx > 0 such that, if | sϵj −sj|C1 < σx, then the

third vertical map is surjective.

Let {χr | r ∈ R′} be a G-invariant partition of unity subordinate to this covering. Suppose

y ∈ |K|. Let

I(y) = {r ∈ R′ | χr(y) ̸= 0}.

Then α⃗∗p(xr) p(y)[Sr] is defined. Let (Wr, τr, {sϵr}) be a representative of α⃗∗p(xi) p(y)[Sr]. Let

Wy =
∏
r∈R′

Wr, τy =
∏
r∈R′

τr. Let (wr)r∈I(y) ∈
∏
r∈R′

(Wr|z). Let σ < σx and define

sϵy (w) = sy(z) + χr0(z)
(
sϵr0(wr0)− sy(z)

)
+ σ

∑
r∈I(y)

χr(z) (s
ϵ
r(wr0)− sy(z)) .

If we forget the G-action, the construction is the same as that in [20] Theorem 12.24. Therefore,

the transversality results follow from [20] Theorem 12.24.

Proposition 8.1 implies the following.
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Proposition 8.2 (Existence of a G-equivariant CF-perturbation on a good coordinate

system). Let
Ä
M, ÊUä be a space with G-equivariant good coordinate system. Let ÊK be a

support system on ÊU .
i) There exists a G-equivariant CF-perturbation ÊS of ÊU such that ÊS is transverse to zero.

ii) If Êf : (X, ÊU)→ L is a weakly submersive G-equivariant strongly smooth map, then ÊS
can be chosen so that Êf is strongly submersive.

This induces a CF-perturbation on some Kuranishi structure on the same space in the

same way as [20] Lemma 9.9.

8.3 Equivariant integration along the fiber

We review the G-equivariant integration along the fiber in Appendix ?? and refer the reader

to [31] Chapter 10 for the detailed construction in the case of smooth G-manifolds. The case

of ordinary Kuranishi structures is explained in [20] Chapter 7–9.

Definition 8.27 (G-equivariant integration along the fiber on a chart). Let [S] be a G-

equivariant CF-perturbation transverse to zero on a Kuranishi chart U = (U, E , ψ, s), where

S = {Sr | r ∈ R} and

Sr = {Sϵr = (Wr
νr−→ Ur, τr, s

ϵ
r) | ϵ ∈ (0, 1]}.

Let f : U → L be a G-equivariant strongly smooth map on U such that f : U → L is strongly

submersive with respect to [S]. We define the G-equivariant integration along the fiber

of f via [S] as follows.

Suppose h ∈ ΩlG,c(U) and 0 < ϵ ≤ ϵ0. Let {χr | r ∈ R} be a partition of unity subordinate

to the covering {Ur | r ∈ R}. Define fG! (h;Sϵ) ∈ ΩG,c(L) as follows. Let

fG! (h;Sϵ) (ξ) =
∑
r∈R

f! (χrh(ξ);Sϵr ) , ∀ξ ∈ S(g∗),

where f! denotes the integration along the fiber in the case of ordinary Kuranishi structures.
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Definition 8.28 (G-equivariant integration along the fiber on a good coordinate system).

Let
Ä
M, ÊUä be a space with a good coordinate systemÊU = ((P,≤) , {Up | p ∈ P} , {α⃗pq | p, q ∈ P, q ≤ p}) .

and let L be a smooth manifold. Let Êf :
Ä
M, ÊUä→ L be a G-equivariant strongly smooth

map. Let ÊS be a CF-perturbation such that Êf is strongly submersive with respect to ÊS. LetÄ ÊK, ÊK++
ä
be a G-equivariant support pair on

Ä
M, ÊUä.

Let Êh = {hp | p ∈ P} be a compactly supported G-equivariant differential form onM.

Define the G-equivariant integration along the fiber of h with respect to Êf, ÊS by

( ÊfG)! ÄÊh, ÊSϵä =∑
p∈P

(fp)G!

(
χphp,Sϵp

∣∣
Kp(2δ)∩Bδ2

(M)

)
.

This definition is independent of the choices of the support pair and the partition of unity

[20] Proposition 7.81.

Definition 8.29 (G-equivariant integration along the fiber on a Kuranishi space). LetÄ
M, Û

ä
be a space with a G-equivariant Kuranishi structure Û with corners and let N be a

smooth manifold. Let f̂ :
Ä
M, Û

ä
→ N be a G-equivariant strongly smooth map. Let Ŝ be

a CF-perturbation such that f̂ is strongly submersive with respect to Ŝ.

Let ĥ = {hp | p ∈M} be a compactly supported G-equivariant differential form onM.

Then, by Lemma 9.10 of [20], the Kuranishi data Û , f̂ , Ŝ, ĥ induce (non-uniquely) some

compatible good coordinate system data ÊU , Êf, ÊS,Êh onM such that the conditions in Definition

8.28 are satisfied.

Define the G-equivariant integration along the fiber of h with respect to f̂ , Ŝ by

f̂G!

Ä
ĥ, Ŝϵ

ä
= ÊfG!

ÄÊh, ÊSϵä . (8.3.1)

This definition is independent of the choices by [20] Theorem 9.14.
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8.4 Equivariant Stokes’ theorem and the smooth

correspondences

Definition 8.30 (Codimension-k corner of a manifold). Let M be a manifold with corners

and k ∈ N. Define Sk(M) to be the closure of the setx ∈M
∣∣∣∣∣∣∣
there exists a neighborhood V of x such that

V is diffeomorphic to [0,∞)k × Rn−k

 .

Lemma/Definition 8.1 (Normalized boundary of a manifold with corners, [20] Lemma 8.2).

For every manifold with corners V , there exists a manifold with corners ∂V and a smooth

map π : ∂V → S1(V ) such that it induces a double covering map

π
∣∣
S1(V )\S2(V )

: S1(V ) \ S2(V )→ S1(V ).

The Lemma is proved in [20] Lemma 8.2. We call ∂V the normalized boundary of V .

Definition 8.31 (Normalized boundary of an orbifold with corners). Let U be an orbifold

with corners and {(Vi,Γi, φi) | i ∈ I} be an orbifold atlas on U . Then the normalized

boundary of U is given by

∂U =
⋃
i∈I

φi(∂Vi/Γi).

Definition 8.32 (Normalized boundary of a Kuranishi space). Let (M, Û) be a G-equivariant

Kuranishi space with corners as in Definition 8.4. The normalized boundary ∂
Ä
M, Û

ä
:=Ä

∂M, ∂Û
ä
ofM is a Kuranishi space with corners, where

∂M =
⋃
p∈M

ψp
(
s−1p (0) ∩ ∂Up

)
and

∂Û =
(
{∂Up | p ∈ ∂M} ,

¶
α⃗pq
∣∣
Upq∩∂Uq

∣∣∣ p ∈ ∂M, q ∈ ψp(∂Up)
©)

,

which consists of G-equivariant Kuranishi charts

∂Up =
Ä
∂Up, Ep

∣∣
∂Up

, ψp
∣∣
∂Up

, sp
∣∣
∂Up

ä
, ∀p ∈ ∂M
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and G-equivariant Kuranishi coordinate change data

α⃗pq
∣∣
Upq∩∂Uq

=

Å
αpq
∣∣
Upq∩∂Uq

, α̂pq
∣∣
Eq |Upq∩∂Uq

ã
, ∀p ∈ ∂M, q ∈ ψp(∂Up).

We can similarly define the normalized boundary of a good coordinate system.

Definition 8.33 (Normalized boundary of a good coordinate system). Let (M, ÊU) be a

G-equivariant space with good coordinate system with corners as in Definition 8.5. The

normalized boundary ∂
Ä
M, ÊUä := Ä∂M, ∂ ÊUä of (M, ÊU) is a good coordinate system with

corners, where

∂M =
⋃
p∈M

ψp

(
s−1p (0) ∩ ∂Up

)
and

∂Û =
(
{∂Up | p ∈ ∂M} ,

¶
α⃗pq

∣∣
Upq∩∂Uq

∣∣∣ p ∈ ∂M, q ∈ ψp(∂Up)
©)

,

which consists of G-equivariant Kuranishi charts

∂Up =
Ä
∂Up, Ep

∣∣
∂Up

, ψp

∣∣
∂Up

, sp
∣∣
∂Up

ä
, ∀ p ∈ ∂M

and G-equivariant Kuranishi coordinate change data

α⃗pq

∣∣
Upq∩∂Uq

=

Å
αpq

∣∣
Upq∩∂Uq

, α̂pq

∣∣
Eq|Upq∩∂Uq

ã
, ∀ p ∈ ∂M, q ∈ ψp(∂Up).

Theorem 8.1 (G-equivariant Stokes’ Theorem on a good coordinate system with corners).

Let (M, ÊU) be a G-equivariant space with good coordinate system with corners as in Definition

8.5. Let N be a smooth G-manifold and Êf :
Ä
M, ÊUä→ N be a G-equivariant strongly smooth

map such that Êf is strongly submersive with respect to some CF-perturbation ÊS of ÊU . Then
∀Êη = {ηp ∈ Ωl

G(Up) | p ∈ P} ∈ Ωl
G

Ä
M, ÊUä ,

the following equality holds for sufficiently small ϵ > 0:

dG
Ä ÊfG!

ÄÊη; ÊSϵää = ÊfG!

Ä
dGÊη; ÊSϵä+ (−1)dim(M, ÊU)+l( Êf∂)G!

ÄÊη∂; ÊSϵ∂ä ,
where Êf∂, Êη∂, ÊSϵ∂ are the restrictions of Êf, Êη, ÊSϵ to ∂ ÄM, ÊUä.
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Proof of Theorem 8.1. For any ξ ∈ g, we have

dG
Ä ÊfG!

ÄÊη; ÊSϵää (ξ) = d
Ä Êf! ÄÊη(ξ); ÊSϵää (8.4.1)

and ÊfG!

Ä
dGÊη; ÊSϵä (ξ) + (−1)dim(M, ÊU)+l( Êf∂)G!

ÄÊη∂; ÊSϵ∂ä (ξ)
= Êf! Äd(Êη(ξ)); ÊSϵä+ (−1)dim(M, ÊU)+l( Êf∂)! ÄÊη∂(ξ); ÊSϵ∂ä (8.4.2)

Then (8.4.1) equals (8.4.2) by [20] Theorem 8.11 (the usual Stokes’ Theorem on a good

coordinate system with corners).

We can prove the following theorem in a similar way by applying [20] Theorem 9.28 (the

usual Stokes’ Theorem on a Kuranishi space).

Theorem 8.2 (G-equivariant Stokes’ Theorem on a Kuranishi space with corners). Let

(M, Û) be a G-equivariant Kuranishi space with corners as in 8.4 and Ŝ be a CF-perturbation

of Û . Let L be a smooth G-manifold and f̂ :
Ä
M, Û

ä
→ L be a G-equivariant map that is

strongly submersive with respect to Ŝ. Then ∀η̂ ∈ Ωl
G

Ä
M, Û

ä
, the following equality holds

for sufficiently small ϵ > 0:

dG
Ä
f̂G!

Ä
η̂, Ŝϵ

ää
= f̂G!

Ä
dGη̂, Ŝϵ

ä
+ (−1)dim(M,Û)+l(f̂∂)G!

Ä
η̂∂, Ŝϵ∂

ä
,

where f̂∂, η̂∂, Ŝϵ∂ are the restrictions of f̂ , η̂, Ŝϵ to ∂
Ä
M, Û

ä
.

Definition 8.34 (Weakly transverse to a smooth manifold map). Let
Ä
M, Û

ä
be a G-

equivariant Kuranishi space with Kuranishi structure

Û = ({Up | p ∈M} , {α⃗pq | p ∈M, q ∈ imψp})

Let

f̂ = {fp : Up → L | p ∈M} :
Ä
M, Û

ä
→ L

be a G-equivariant strongly smooth map to a smooth G-manifold N . Let g : N → L be a

G-equivariant smooth map between smooth manifolds. f̂ is said to be weakly transverse

to g if fp is transverse to g for each p ∈M.
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Definition 8.35 (Weakly transverse strongly smooth maps). Let (M1, Û1), (M2, Û2) be

Kuranishi spaces and N be a smooth manifold. Let f̂i : (Mi, Ûi)→ N be a strongly smooth

map for i ∈ {1, 2}. Let ∆L : L → L × L be the diagonal map. Then we say f̂1 and f̂2 are

weakly transverse if the map

f̂1 × f̂2 : (M1, Û1)× (M2, Û2)→ L× L

is weakly transverse to ∆L as in Definition 8.34.

Definition 8.36 (Fiber product of a Kuranishi structure with a smooth manifold for maps

in 8.34). Let f̂ be weakly transverse to g as defined in Definition 8.34. Let f be the map

associated with f̂ as in Definition 8.10. We can define a G-equivariant Kuranishi structure

on the fiber product

M×LN = {(p,m) ∈M×N | f(p) = g(m)}.

Let (p,m) ∈M×LN and (Up, Ep, ψp, sp) be the Kuranishi neighborhood assigned to p in Û .

Let

Up ×L N = {(x,m) ∈ Up ×N | fp(x) = g(m)}.

Let πp : Ep → Up be the obstruction bundle ofM for p, pr1 : Up×LN → Up be the projection

map to the first factor, and

π(p,m) : pr
∗
1 Ep = {((w, z), e) ∈ (Up ×L N)× Ep |w = πp(e)} → Up ×L N

be the pullback orbibundle. Then sp induces a section of the pullback orbibundle by

s(p,m)(w, z) = ((w, z), sp(w)) ∀(w, z) ∈ Up ×L N. (8.4.3)

Let

U(p,m) =
(
U(p,m) := Up ×L N, E(p,m) := pr∗1Ep, s(p,m), ψ(p,m) := ψp × IdN

)
.

Let (q, z) ∈ ψ(p,m)(x, z) for some (x, z) ∈ U(p,m). Then we define
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• U(p,m),(q,z) = Upq ×L N ;

• α(p,m),(q,z) = αpq ×N IdM : Upq ×L N → Up ×L N ; and

• α̂(p,m),(q,z) := α̂pq ×L IdN : Epq ×L N → Ep ×L N .

Then the fiber productM×LN induced by f̂ and g is a G-equivariant Kuranishi space with

Kuranishi structure

Û ×L N =

â{
U(p,m)

∣∣ (p,m) ∈M×LN
}
,α⃗pq = (α(p,m),(q,z), α̂(p,m),(q,z))

∣∣∣∣∣∣∣
(p,m) ∈M×LN,

(q, z) ∈ imψ(p,m)



ì
,

where

U(p,m) =
(
Up ×L N, E(p,m) := pr∗1Ep, s(p,m)is given by Eq. (8.4.3) , ψ(p,m) := ψp × IdM

)
.

Definition 8.37 (Fiber product of Kuranishi structures). Let f̂1 : (M1, Û1) → L and

f̂2 : (M2, Û2)→ L be G-equivariant weakly transverse strongly smooth maps as in Definition

8.35. We define

(M1, Û1)f̂1 ×f̂2 (M2, Û2)

to be the fiber product Ä
(M1, Û1)× (M2, Û2)

ä
×L (L× L)

induced by the weakly transverse maps f̂1 × f̂2 and ∆L as in Definition 8.36.

Definition 8.38 (G-equivariant smooth correspondences). Let Ns, Nt be oriented compact

smooth G-manifolds without boundary. A G-equivariant smooth correspondence from

Ns to Nt is a collection of data

X =
Ä
M, Û , f̂s, f̂t

ä
,

where

•
Ä
M, Û

ä
is an oriented G-equivariant Kuranishi space with corners,
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• f̂s :
Ä
M, Û

ä
→ Ns is a G-equivariant strongly smooth map as in 8.10, and

• f̂t :
Ä
M, Û

ä
→ Nt is a G-equivariant strongly smooth and weakly submersive map.

A perturbed G-equivariant smooth correspondence from Ns to Nt is a pair
Ä
X, Ŝ

ä
,

where X =
Ä
M, Û , f̂s, f̂t

ä
is a smooth correspondence from Ns to Nt and Ŝ is a G-equivariant

CF-perturbation of Û with respect to which f̂t is strongly submersive.

Definition 8.39 (G-equivariant correspondence map). Let
Ä
X = (M, Û , f̂s, f̂t), Ŝ

ä
be a

perturbed smooth correspondence from Ns to Nt. For ϵ > 0 sufficiently small, we define the

G-equivariant correspondence map by

CorrG,ϵ
(X,Ŝ)

: Ω•G(Ns)→ Ω
•+dimNt−dim(M,Û)
G (Nt)

associated with
Ä
X, Ŝ

ä
by

CorrG,ϵ
(X,Ŝ)

(η) = (f̂t)G!

Ä
(f̂s)

∗
Gη;Sϵ

ä
∀η ∈ Ω•G(Ns).

Then Stokes’ Theorem 8.2 implies the following.

Proposition 8.3 (Compare with [20] Proposition 26.16).

dG ◦ CorrG,ϵ(X,Ŝ)
= CorrG,ϵ

(X,Ŝ)
◦ dG + (−1)dimX+deg(·)CorrG,ϵ

∂(X,Ŝ)
.

Definition 8.40 (Composition of smooth correspondences). Let Ns, Nt be oriented com-

pact smooth manifolds without boundary. For each bi-index ji ∈ {21, 32}, let Xji =Ä
Mji, Ûji, f̂s;ji , f̂t;ji

ä
be a smooth correspondence from Ni to Nj. Assume f̂t,21 and f̂s,32 are

weakly submersive. We define the composition X31 =
Ä
M31, Û31, f̂s,31, f̂t,31

ä
of X21 with X32

by Ä
M31, Û31

ä
=
Ä
M32, Û32

ä
f̂s,32
×f̂t,21

Ä
M21, Û21

ä
,

f̂s,31 :
Ä
M31, Û31

ä
−→M21

f̂s,21−−→ N1,

f̂s,32 :
Ä
M31, Û31

ä
−→M32

f̂t,32−−→ N2.

Then X31 is again a smooth correspondence.
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Definition 8.41 (Composition of perturbed G-equivariant smooth correspondences). Let

Ns, Nt be oriented compact smooth manifolds without boundary. For each bi-index ji ∈

{21, 32}, let
Ä
Xji, Ŝji

ä
be a perturbed G-equivariant smooth correspondence from Ni to Nj,

where Xji =
Ä
Mji, Ûji, f̂s,ji, f̂t,ji

ä
Assume f̂t,21 and f̂s,32 are weakly submersive. One can

define the composition
Ä
X31, Ŝ31

ä
of
Ä
X32, Ŝ32

ä
with

Ä
X21, Ŝ21

ä
so that

• X31 is the composition of X21 and X32 as in Definition 8.40, and that

• f̂t,31 is strongly submersive with respect to Ŝ31 = Ŝ21f̂t,21 ×f̂s,32 Ŝ32, whose construction

we refer to Definition 10.13 of [20].

Then
Ä
X31, Ŝ31

ä
is again a perturbed G-equivariant smooth correspondence.

Proposition 8.4 (Equivariant composition formula). In the case of Definition 8.41, we have

CorrG,ϵ
(X32,Ŝ32)

◦ CorrG,ϵ
(X21,Ŝ21)

= CorrG,ϵ
(X31,Ŝ31)

.

X31

X32X21

N1 N2 N3

Proof. ∀η ∈ ΩG(N1), ∀ξ ∈ g,

CorrG,ϵ
(X32,Ŝ32)

◦ CorrG,ϵ
(X21,Ŝ21)

(η)(ξ)

=Corrϵ(X32,Ŝ32) ◦ Corr
ϵ

(X21,Ŝ21)(η(ξ))

=Corrϵ(X31,Ŝ31)(η(ξ)) by [20] Theorem 10.21

=CorrG,ϵ
(X31,Ŝ31)

(η)(ξ).
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Appendix A

Orbifolds

We review some orbifold theory in this appendix. The interested reader can read more about

general orbifold theory in [2] and [20] Chapter 23 and equivariant orbifolds and equivariant

Kuranishi charts in [18].

Definition A.1 (Orbifold chart). Let U be a paracompact Hausdorff topological space. An

n-dimensional effective orbifold chart of U is a triple (V,Γ, φ) such that

i) V is a smooth n-dimensional manifold (possibly with corners);

ii) Γ is a finite group acting smoothly and effectively on V ;

iii) φ : V → U is a continuous map which induces a homeomorphism φ̄ : V/Γ→ φ(V ) onto

an open subset φ(V ) of U .

Let x ∈ U . We say (V,Γ, φ) is an orbifold chart at x if there exists a point ox ∈ V such

that φ(ox) = x and Γ · ox = {ox}. Given an orbifold chart at x, the tangent space of the

orbifold U at x is given by TxU = (ToxV )/Γ.

Let (V,Γ, φ) be an orbifold chart and p ∈ V . An orbifold subchart of (V,Γ, φ) relative

to p is an orbifold chart (Vp,Γp, φ|Vp) such that Γp is the isotropy group of Γ at p, Vp is a

Γp-invariant open neighborhood of p in V , and φ|Vp induces an injective map Vp/Γp → U .
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Definition A.2 (Embedding of orbifold charts). Let f : U1 → U2 be a continuous map

between paracompact topological spaces. An embedding (h, λ) : (V1,Γ1, φ1)→ (V2,Γ2, φ2)

from an orbifold chart of U1 to an orbifold chart of U2 relative to f consists of

• a group isomorphism h : Γ1 → Γ2 and

• an h-equivariant embedding of manifolds λ : V1 → V2

such that f ◦ φ1 = φ2 ◦ λ.

An embedding of effective orbifold charts is an isomorphism if λ is also a diffeomorphism.

If an isomorphism of two orbifold charts on the same topological space U is taken relative to

the identity map, we may simply say it is an isomorphism of orbifold charts.

Definition A.3 (Orbifold). Let U be a paracompact Hausdorff topological space. An

n-dimensional (effective) orbifold atlas is a collection

{(Vi,Γi, φi) | i ∈ I}

of n-dimensional effective orbifold charts such that the following holds.

i)
⋃
i∈I
φi(Vi) = U .

ii) If φi(p) = φj(q) = x for some p ∈ Vi, q ∈ Vj, then there exists an isomorphism of

orbifold charts

(hqp, λqp) : (Vi,p, (Γi)p, φi
∣∣
Vi,p

)→ (Vj,q, (Γj)q, φj
∣∣
Vj,q

),

called a transition map, from some orbifold subchart of (Vi,Γi, φi) relative to p to

some orbifold subchart of (Vi,Γi, φi) relative to q.

A n-dimensional maximal orbifold atlas A on U is an n-dimensional orbifold atlas such

that: B ⊂ A whenever B and A ∪ B are both orbifold atlases on U . An n-dimensional

effective orbifold (U,A) is a paracompact Hausdorff topological space U equipped with an

n-dimensional maximal orbifold atlas A on U .
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Definition A.4 (Embedding of orbifolds). A topological map f : U1 → U2 between effective

orbifolds is an embedding of orbifolds if, ∀x ∈ U1, there exists an embedding of effective

orbifold charts (h, λ) from an orbifold chart (Vx,Γx, φx) of U1 at x to an orbifold chart

(V ′y ,Γ
′
y, φ

′
y) of U2 at y = f(x) relative to f . An embedding of orbifolds is a diffeomorphism

of orbifolds if it is a homeomorphism. Let U be an effective orbifold. We denote the group of

diffeomorphisms from U to itself by Diff(U), which is a topological group under the compact

open topology.

Definition A.5 (Orbibundle chart). Let U, E be orbifolds and π : E → U be a continuous

surjective map between the underlying topological spaces. An orbibundle chart is a

quintuple (V,E,Γ, φ, φ̂), where

• (V,Γ, φ) is an orbifold chart on U ,

• E is a finite-dimensional vector space with a linear Γ-action, and

• (V × E,Γ, φ̂) is an orbifold chart on E , where Γ acts on V × E diagonally

such that

i) π ◦ φ̂ = φ ◦ pr1.

ii) φ̂ induces a homeomorphism on the quotients φ̂ : (V ×E)/Γ→ π−1(φ(V/Γ)) such that

φ−1 ◦ π ◦ φ̂ = pr1.

V × E φ̂
//

pr1
��

E
π
��

V φ
// U

(V × E)/Γ φ̂
//

pr1 %%

π−1(φ(V/Γ))

φ−1◦π
xx

V/Γ

.

Definition A.6 (Embedding of orbibundle charts). Let E1, U1, E2, U2 be orbifolds and π1 :

E1 → U1, π2 : E2 → U2 be continuous surjective maps between the underlying topological

spaces. Let f : U1 → U2, f̂ : E1 → E2 be continuous maps such that f ◦ π1 = π2 ◦ f̂ . An

embedding of orbibundle charts is a triple

(h, λ, λ̂) : (V1, E1,Γ1, φ1, φ̂1)→ (V2, E2,Γ2, φ2, φ̂2)
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from an orbibundle chart on π1 : E1 → U1 to an orbibundle chart on π2 : E2 → U2 relative to

(f, f̂) such that the following holds.

i) (h, λ) : (V1,Γ1, φ1)→ (V2,Γ2, φ2) is an embedding of orbifold charts relative to f .

ii) (h, λ̂) : (V1 × E1,Γ1, φ̂1)→ (V2 × E2,Γ2, φ̂2) is an embedding of orbifold charts relative

to f̂ .

iii) If πV1 : V1 × E1 → V1 and πV2 : V2 × E2 → V2 are projection maps to their first factors,

then

a) λ ◦ πV1 = πV2 ◦ λ̂ and

b) for each x ∈ V1, λ̂
∣∣∣
{x}×E1

: {x} × E1 → {λ(x)} × E2 is a linear embedding.

An embedding of orbibundle charts is an isomorphism if (h, λ) and (h, λ̂) define isomor-

phisms of orbifold charts and, for each x ∈ V , λ̂
∣∣∣
{x}×E1

: {x} × E1 → {λ(x)} × E2 is a linear

isomorphism.

Definition A.7 (Orbibundle subchart at a point). Let (V,E,Γ, φ, φ̂) be an orbibun-

dle chart. If (Vp,Γp, φ|Vp) is an orbifold subchart of (V,Γ, φ) relative to p ∈ V , then

(Vp, E,Γp, φ|Vp , φ̂|Vp×E) is also an orbibundle chart, called an orbibundle subchart of

(V,E,Γ, φ, φ̂) at p.

Definition A.8 (Orbibundle atlas). Let U, E be orbifolds and π : E → U be a continuous

surjective map between the underlying topological spaces. An orbibundle atlas is a locally

finite collection of orbibundle charts

{(Vi, Ei,Γi, φi, φ̂i) | i ∈ I}

such that

i) {(Vi,Γi, φi) | i ∈ I} is an orbifold atlas on U ;

ii) {(Vi × Ei,Γi, φ̂i) | i ∈ I} is an orbifold atlas on E ;
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iii) for any i, j ∈ I, if p ∈ Vi, q ∈ Vj satisfy φi(p) = φj(q), then there exist an isomorphism

(hqp, λqp, λ̂qp) :
Ä
Vi,p, Ei,Γi,p, φ

∣∣
Vi,p
, φ̂i
∣∣
Vi,p×Ei

ä
→
Ä
Vj,q, Ej,Γj,q, φ

∣∣
Vj,q
, φ̂j
∣∣
Vj,q×Ej

ä
between an orbibundle subchart of (Vi, Ei,Γi, φi, φ̂i) at p and an orbibundle subchart

of (Vj, Ej,Γj, φj, φ̂j) at q.

Definition A.9 (Embedding of orbibundles). For α ∈ {1, 2}, letÄ
Eα

πα−→ Uα, V̂α = {(V α
i , E

α
i ,Γ

α
i , φ

α
i , φ̂

α
i ) | i ∈ Iα}

ä
be a pair such that V̂α is an orbibundle atlas on Eα

πα−→ Uα. An embedding of orbibundlesÄ
f, f̂
ä
:
Ä
E1

π1−→ U1, V̂1
ä
→
Ä
E2

π2−→ U2, Û2
ä
consists of two orbifold embeddings U1

f−→ U2 and

E1
f̂−→ E2 such that the follows holds.

i) For any i ∈ I1, j ∈ I2 and p ∈ V 1
i , q ∈ V 2

j with f(φ1
i (p)) = φ2

j(q), there exists an embed-

ding
Ä
hqp, fqp, f̂qp

ä
relative to

Ä
f, f̂
ä
, from an orbibundle subchart of (V 1

i , E
1
i ,Γ

1
i , φ

1
i , φ̂

1
i )

at p to an orbibundle subchart of
(
V 2
j , E

2
j ,Γ

2
j , φ

2
j , φ̂

2
j

)
at q.

ii) π2 ◦ f̂ = f ◦ π1.

Two orbibundle atlases V̂1, V̂2 on E π−→ U are equivalent if the pair of identity maps

(Id,“Id) : ÄE π−→ U, V̂1
ä
→
Ä
E π−→ U, V̂2

ä
is an embedding of orbibundles and Id,“Id are diffeo-

morphisms of orbifolds.

Definition A.10 (Orbibundle). An orbibundle (E π−→ U, [V̂]) consists of a continuous

surjective map E π−→ U between the underlying topological spaces of two orbifolds and an

equivalence class of orbibundle atlases on π.

Definition A.11 (G-action on an orbifold). Let G be a compact connected Lie group and U

be an effective orbifold. A continuous group homomorphism

α : G→ Diff(U), α(g)(x) = g · x ∀x ∈ U,

is a smooth action of G on U , if ∀g ∈ G,∀x ∈ U there exist
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• an open neighborhood R of g in G,

• orbifold charts (Vx,Γx, φx) at x and (V ′y ,Γ
′
y, φ

′
y) at y = g · x of U ,

• a group isomorphism hg,x : Γx → Γ′y , and

• a smooth map fg,x : R× Vx → V ′y

such that the following holds.

i) fg,x is hg,x-equivariant:

fg,x(γ · p) = hg,x(γ)fg,x(p) ∀p ∈ Vx.

ii) φ′y(g · p) = g · φx(p) for all p ∈ Vx.

An effective orbifold equipped with a smooth G-action is called a G-orbifold.

Definition A.12 (G-equivariant orbibundle). Let π : E → U be an orbibundle between

G-orbifolds and

{(Vi, Ei,Γi, φi, φ̂i) | i ∈ I}

be an orbibundle atlas on π. Then, in particular, ∀g ∈ G, x ∈ E , the G-action on E induces

some smooth map fg,x : R × (Vx × Ex) → Vg·x × Eg·x. We say π is a G-equivariant

orbibundle if the following holds.

i) π is G-equivariant: π(g · x) = g · π(x) ∀g ∈ G, ∀x ∈ U.

ii) For each g ∈ G, p ∈ V1, the map

Ex → Eg·x, v 7→ pr2 ◦fg,x(g, x, v)

is linear.

A G-equivariant section of a G-equivariant orbibundle π : E → U is an orbifold

embedding s : U → E such that π ◦ s = IdU and g · s(x) = s(g · x) for all g ∈ G, x ∈ U .

An embedding of G-equivariant orbibundles
Ä
f, f̂
ä
:
Ä
E1

π1−→ U1, V̂1
ä
→
Ä
E2

π2−→ U2, Û2
ä

is an embedding of orbibundles such that f, f̂ are both G-equivariant.
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Definition A.13 (Differential form on an orbifold). A differential form on an orbifold

(U, {(Vi,Γi, φi) | i ∈ I}) is a collection

η = {ηi ∈ Ω(V )Γi | i ∈ I}

which associates each orbifold chart (Vi,Γi, φi) with a Γi-invariant differential form ηi ∈ Ω(Vi)

such that the following holds.

i) If (h, λ) : (Vi,Γi, φi)→ (Vj,Γj, φj) is an isomorphism of orbifold charts, then λ∗ηj = ηi.

ii) If Bj = (Vj,Γj, φj) is an orbifold subchart of (Vi,Γi, φi), then ηj = ηi|Bj
.

Denote the set of differential forms on U by Ω(U). An orientation on an orbifold U is a

choice of a differential form η ∈ Ω(U) such that ηi never vanishes.

Definition A.14 (Equivariant differential forms an orbifold). Let U be a G-orbifold and

Ω(U) be the space of differential forms on U . The set of G-equivariant differential forms

on U is given by

ΩG(U) := (Ω(U)⊗ S(g∗))G .
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Appendix B

Rigid analytic geometry

In this appendix, we review some basic definitions and properties of rigid analytic geometry.

We refer the interested reader to [6], [5], [17], [41], [46], [7], and [12]. For tropical analytic

geometry and polyhedral domains (of the form trop−1(∆), where ∆ is a polyhedron), we refer

the

We will work over an algebraically closed field Λ, which is a non-Archimedean field, namely,

a field that is complete with respect to a non-Archimedean absolute value (see Definition

B.2). Note that the general rigid analytic geometry concerns a non-Archimedean field K,

which may not be algebraically closed.

Definition B.1 (Non-Archimedean valuation). A function val : Λ → R∪{∞} is a non-

Archimedean valuation on Λ if the following holds.

i) val(a) =∞ if and only if a = 0.

ii) val(ab) = val(a) + val(b) for all a, b ∈ Λ.

iii) val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ Λ.

Definition B.2 (Non-Archimedean absolute value). A function | · | : Λ → R≥0 is a non-

Archimedean absolute value on Λ if the following holds.
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i) |a| = 0 if and only if a = 0.

ii) |ab| = |a|+ |b| for all a, b ∈ Λ.

iii) |a+ b| ≤ max{|a|, |b|} for all a, b ∈ Λ.

From iii) one can see that |n · a| ≤ |a| for any n ∈ N, |a| > 0, which shows that the

Archimedean property does not hold for a non-Archimedean absolute value. We can associate

a non-Archimedean absolute value to a field with non-Archimedean valuation by defining

|a| = e− val(a),

where e is Euler’s number.

We now introduce some major players of rigid analytic geometry.

Definition B.3 (Closed unit polydisc Bn
Λ). The closed unit polydisc Bn

Λ is defined by

Bn
Λ = {(x1, . . . , xn) ∈ Λn | |xi| ≤ 1 ∀1 ≤ i ≤ n} .

The set of all power series that converge on Bn
Λ is called the Tate algebra.

Definition B.4 (Tate algebra). Let n ≥ 1. The Tate algebra in n variables is defined by

Tn =

{∑
ccc∈Nn

acccx
ccc ∈ ΛJx1, . . . , xnK

∣∣∣∣∣ accc ∈ Λ, lim
|ccc|→∞

|accc| = 0

}
,

where if ccc = (c1, . . . , cn) is a multi-index, then xccc = xc11 · · ·xcnn and |ccc| = c1 + · · · + cn.

Equivalently,

Tn =

{∑
ccc∈Nn

acccx
ccc ∈ ΛJx1, . . . , xnK

∣∣∣∣∣ lim
|ccc|→∞

val(accc) =∞

}
.

We denote it by Λ ⟨x1, . . . , xn⟩. In particular, T0 = Λ.

Proposition B.1 (Properties of the Tate algebra). Let n ≥ 1. The Tate algebra Tn is normal

and is a Noetherian integral domain.
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Definition B.5 (Λ-affinoid algebra and Λ-affinoid space). A Λ-algebra that is isomorphic to

Tn/I for some ideal I in Tn is called a Λ-affinoid algebra and the maximal spectrum of A,

denoted by

SpA = {a ⊂ A | a is a maximal ideal of A},

is called a Λ-affinoid space. A Λ-algebra morphism f : A → B between two Λ-affinoid

algebras is called a morphism of Λ-affinoid algebras. If f# : SpB → SpA is induced by

a morphism f : A→ B of Λ-affinoid algebras such that

f#(m) = f−1(m) ∀m ∈ SpB,

then f# is called a morphism of Λ-affinoid spaces.

Definition B.6 (Λ-affinoid subdomain). Let f : A → B be a Λ-affinoid algebra homo-

morphism. Then f#(SpB) is a Λ-affinoid subdomain of SpA if the following universal

property holds. Whenever g : A → C is a Λ-affinoid algebra homomorphism such that

g#(SpC) ⊂ f#(SpB), there exists a unique morphism h : A→ C of Λ-affinoid algebras such

that g# = f# ◦ h#.

We call such a morphism f# of Λ-affinoid spaces an open immersion if it satisfies the

universal property as above.

By [6] Proposition 7.7.2/1, if f# : SpB → SpA satisfies the universal property, then it

is injective. So the affinoid subdomain f#(SpB) ⊂ SpA can be identified with the affinoid

space SpB.

Definition B.7 (Grothendieck topology). A Grothendieck topology (G-topology)

consists of

• a category C, called the admissible open subsets, and,

• for each U ∈ ob C, a set CovU , called the set of admissible coverings of U , which

consists of families of the form (Ui
Φi−→ U)i∈I , where each Φi is a morphism in C,
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such that the following holds.

i) If Φ : U ′ → U is an isomorphism in mor C, then the family (U ′
Φ−→ U) ∈ CovU .

ii) If (Ui
Φi−→ U)i∈I ∈ CovU and (Uij

Φij−−→ Ui)j∈J ∈ CovUi, then (Uij
Φij−−→ Ui

Φi−→ U)i∈I,j∈J ∈

CovU .

iii) If (Ui
Φi−→ U)i∈I ∈ CovU and V → U belongs to mor C, then the fiber products Ui×U V

exist in C and (Ui ×U V → V )i∈I belongs to Cov V .

A category with a Grothendieck topology is called a site. It’s a generalization of a

topological space. A topological space can be viewed as a site whose admissible open subsets

are open subsets of X and the set of admissible coverings of an open subset U of X consists

of the open covers of U .

Definition B.8 (Weak Grothendieck topology on a Λ-affinoid space). The weak G-topology

on a Λ-affinoid space X is defined as follows. The admissible open subsets are the affinoid

subdomains of X and the admissible coverings of an affinoid subdomain U ⊂ X are the

coverings of U by finitely many affinoid subdomains of X.

Definition B.9 (Structure sheaf). Let X be an affinoid space. We define a structure presheaf

OX on the site X as follows. Let U ⊂ X be an affinoid subdomain of X which is the image of

a morphism f# : SpB → SpA of affinoid spaces. OX(U) = B. By Tate’s acyclicity theorem

[5] 4.3/Theorem 1, OX is a sheaf.

Definition B.10 (Strong Grothendieck topology on a Λ-affinoid space). The strong G-

topology on a Λ-affinoid space X is defined as follows.

• A subset U ⊂ X is admissible open if there is a covering U =
⋃
i∈I
Ui of U by (not

necessarily finitely many) affinoid subdomains Ui of X such that, for any Λ-affinoid

space morphism φ : Y → X with φ(Y ) ⊂ U , the covering {φ−1(Ui)}i∈I has a refinement

which is a covering by finitely many affinoid subdomains of Y .
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• A covering U =
⋃
j∈J

Uj of an admissible open subset U of X is admissible if, for each

affinoid space morphism φ : Y → X with φ(Y ) ⊂ U , the covering {φ−1(Ui)}i∈I has a

refinement which is a covering by finitely many affinoid subdomains of Y .

Any sheaf defined with respect to the weak G-topology extends uniquely to a sheaf with

respect to the strong G-topology. In particular, OX extends to a sheaf with respect to the

strong G-topology.

Definition B.11 (Λ-rigid analytic space). A Λ-rigid analytic space is a pair (X,OX) such

that the following holds.

i) X can be endowed with a G-topology which satisfies the completeness conditions in

the following sense.

(G0) ∅, X are admissible open.

(G1) If U =
⋃
i∈I Ui is an admissible covering and V ⊂ U is a subset such that V ∩ Ui

is admissible open for all i, then V is admissible open in X.

(G2) If U,Ui are admissible open for all i ∈ I and U =
⋃
i∈I
Ui is an admissible covering

which admits an admissible refinement, then (Ui)i∈I is an admissible covering of

U .

ii) OX is a sheaf of Λ-algebras such that there exists an admissible covering X =
⋃
i∈I
Xi

where each (Xi,OX |Xi
) is a Λ-affinoid space.

Proposition B.2 ([5] 5.1/Proposition 7). Suppose X is an affinoid space with the strong

Grothendieck topology and f ∈ OX(X). Let

U = {x ∈ X | |f(x)| < 1}, U ′ = {x ∈ X | |f(x)| > 1}, U ′′ = {x ∈ X | |f(x)| > 0}.

Then any finite union of the sets of these types is admissible open in the strong G-topology.

Any finite covering by finite unions of such sets is admissible.
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Definition B.12 (Dimension of a rigid analytic space). Let X be a rigid analytic space and

x ∈ X. Define

OX,x := lim−→
U∋x

OX(U),

where the direct limit is taken over all admissible open subsets U of X containing x.

The dimension dimxX of a rigid analytic space X at a point x ∈ X is defined to be the

Krull dimension of OX,x. The dimension dimX of a rigid analytic space X is defined to be

dimX := sup
x∈X

dimxX = sup
x∈X

dimOX,x .

In particular, the dimension of a Λ-affinoid space X = SpA is the Krull dimension of A.

For any Λ-scheme X of finite type, one can associate a Λ-rigid analytic space Xan with

X such that the underlying set of Xan is the set of closed points of X.
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Appendix C

Tropical geometry

We review some tropical geometry which we use in Chapter 6.

Let Λ be a field with a valuation and Λ∗ = Λ \ {0}. Let

Λ0 = {y ∈ Λ | val(y) ≥ 0}, Λ+ = {y ∈ Λ | val(y) > 0},

and k = Λ0/Λ+ be the residue field.

Recall there is a tropicalization map defined on the algebraic n-torus (Λ∗)n:

trop : (Λ∗)n → Rn, (y1, . . . , yn) 7→ (val(y1), . . . , val(yn)).

Definition C.1 (Tropicalization of a Laurent polynomial). For any Laurent polynomial

f =
∑
c∈Zn

acy
c ∈ Λ[y±11 , . . . , y±1n ],

where yc := yc11 · · · ycnn , ac ∈ Λ, define the tropicalization trop f : Rn → R of f by

(trop f)(u) = min{val(ac) + ⟨u, c⟩ | c ∈ Zn} ∀u ∈ Rn .

Definition C.2 (Tropical variety). We define the tropical hypersurface V (trop f) associ-

ated with a Laurent polynomial

f =
∑
c∈Zn

acy
c ∈ Λ[y±11 , . . . , y±1n ]
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such that u ∈ Rn is an element of V (trop f) if and only if there exist at least two c′, c′′ ∈ Zn

such that

trop(f)(u) = val(ac′) + ⟨u, c′⟩ = val(ac′′) + ⟨u, c′′⟩ .

Let I ⊂ Λ[y±11 , . . . , y±1n ] be an ideal. The tropical variety associated with V (I) is defined to

be

V (trop(I)) =
⋂
f∈I

trop(V (f)).

Definition C.3 (Initial form/ideal). Let

f =
∑
c∈Zn

acy
c ∈ Λ[y±11 , . . . , y±1n ], u ∈ Rn .

The Laurent polynomial

inu(f) =
∑
c∈Zn

trop(f)(u)=val(ac)+⟨u,c⟩

T− val(ac)ac · yc ∈ k[y±11 , . . . , y±1n ],

where T ∈ Λ is an element satisfying

val(T λ) = λ ∀λ ∈ val(Λ∗)

and : Λ∗ → k∗ is the reduction map, is called the initial form of the Laurent polynomial

f at u. Similarly, if I is an ideal in Λ[y±11 , . . . , y±1n ] and u ∈ Rn, the initial ideal inu(I) is

given by

inu(I) = (inu(f) | f ∈ I) .

Theorem C.1 (Kapranov’s Theorem, [42] Theorem 3.1.3). Let Λ be an algebraically closed

field with a non-trivial valuation. Let

f =
∑
c∈Zn

acy
c ∈ Λ[y±11 , . . . , y±1n ]

be a Laurent polynomial. Then

V (trop f) = {u ∈ Rn | inu(f) is not a monomial} = trop(V (f)),

where the last set is the closure of the image trop(V (f)) of V (f) ⊂ (Λ∗)n under the coordinate-

wise valuation map in Rn.
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Theorem C.2 (Fundamental theorem of tropical algebraic geometry, [42] Theorem 3.2.3).

Let Λ be an algebraically closed field with a non-trivial valuation. Let I ⊂ Λ[y±11 , . . . , y±1n ] be

an ideal. Then

⋂
f∈I

trop(V (f)) = {u ∈ Rn | inu(I) ̸= ⟨1⟩} = trop(V (I)),

where the last set is the closure of the image trop(V (I)) of V (I) ⊂ (Λ∗)n under the coordinate-

wise valuation map in Rn.
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