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Abstract of the Dissertation

Revisiting Localization, Periodicity and Galois Symmetry

by

Runjie Hu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

It is known that two complex algebraic varieties can be algebraically isomorphic but not

homeomorphic. Such examples can be obtained by changing the coefficients of the defining

equations by some automorphism of the ground field.

This dissertation aims to understand how the entire Galois group of Q, the algebraic

closure of Q, changes the underlying manifold structures of smooth complex varieties defined

by equations with coefficients in Q. It is known by the theory of finite covering spaces

(étale theory) that the Galois action does not change that aspect of the homotopy type

determined by finite group theory (the profinite homotopy type). Thus we can use the known

theory of manifolds in a given homotopy type to study the Galois conjugates of algebraic

varieties in a given étale homotopy type. We study three aspects of this problem: (1) what

algebraic-topological data is sufficient to specify a topological manifold in a homotopy type;

(2) what might be the étale construction for manifolds; (3) how might one express the Galois

action in terms of the algebraic-topological data. We suggest an approach using the study in

(2) in order to propose a geometric interpretation of the question in (3).
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Chapter 1

Introduction

1.1 Review of Problem

When one applies topology to study algebraic objects like zero loci of polynomials, one needs

to be very careful about which topological data are algebraic and which are transcendental.

One motivating example to consider is a complex variety defined by some polynomials with

coefficients in the algebraic closure Q of the rationals Q. Any field automorphism of C

produces an algebraic isomorphism from some new variety to the given variety. However, the

algebraic isomorphism is usually not analytically continuous. Hence, one can expect that

a field automorphism of C might change the homeomorphism type of the variety, or even

worse, the homotopy type.

A famous example was given by Serre in 1964 ([Ser64]). He constructed a complex variety

defined over some algebraic number field and an automorphism of this field so that the

automorphism changes the fundamental group of the variety.

In other words, the usual homotopy invariants might be inappropriate to study algebraic

objects, e.g., the fundamental group. There are two ways to define the fundamental group

in topology: one is the group of homotopy classes of paths and the other is the group of

automorphisms of the universal cover. The first definition is not good enough for varieties
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since it uses the transcendental topology of C. However, the second one can be adapted to

algebraic discussions. It has been known for a long time, dating back to Riemann, that a

finite covering map over a variety is algebraic. Hence, one should think about the system of

all finite coverings. The automorphism group of this system is akin to the universal cover

definition for the fundamental group; in particular, this group is isomorphic to the system of

all finite quotients of the fundamental group.

There is a way to extend this idea to homotopy theory. Namely, one may only keep

the finite part of a homotopy type, which is called the profinite completion. It was proven

by Artin-Mazur ([AM69]) that the profinite completion of a complex variety is indeed an

algebraic invariant. One corollary is that the symmetry on varieties induced by the ground

field automorphisms does not change its profinite completion.

Some people consider the transcendental data useless to study algebraic objects. On

the contrary, they might be very useful for some algebraic problems. One can use the

transcendental data to give representations of some algebraic automorphism group: namely,

how the transcendental data of varieties are altered under algebraic automorphisms. For the

purpose of this dissertation, the transcendental data we consider are the underlying manifold

structures of smooth complex varieties over Q. More explicitly, we are interested in Sullivan’s

question in [Sul09, p. 271]:

Question 1.1.1. Analyze the action of the Galois group of the algebraic closure Q of Q

on the manifold structures in a profinite homotopy type associated to nonsingular algebraic

varieties defined over Q.

Before introducing our studies, it is worth stressing one difficulty for this question. Most

algebraic automorphisms of C are not continuous. Indeed, the only continuous ones are the

identity and complex conjugation. Hence, we need some tools to avoid the usual continuity

assumptions.

For this question, this dissertation splits into three parts.

2



1.1.1 Algebraic-topological Data to Specify a Manifold

An intuitive idea is to extract the information of manifold structures by some algebraic data

and then formulate the Galois symmetry on manifold structures in terms of these algebraic

data. Historically, topologists have had a powerful machinery known as the surgery theory to

study manifolds.

A motivating question for understanding the surgery theory is when a space X is homotopy

equivalent to a closed manifold. An obvious requirement is that the space X must have a

Poincaré duality on its homology. It turns out that the Poincaré duality induces a canonical

homotopy sphere bundle on X such that, when X is an actual manifold, this bundle carries

the homotopy information of the normal bundle of X in a Euclidean space.

There are some obstructions for this homotopy sphere bundle to come from some geometric

bundle. If the obstructions vanish, then there is a map M → X for some manifold M . The

next step is to make this map a homotopy equivalence by some process called surgery. During

this process, some other obstruction called the surgery obstruction appears. Once this surgery

obstruction also vanishes, we get some manifold homotopy equivalent to the original space X.

For technical reasons, we restrict our discussions to topological manifolds and simply

connected spaces. One reason for this is to avoid the discussions of the surgery obstruction

by some techniques. A second reason is that in the simply connected case one can split the

homotopy information into different primes, which is like splitting a number theory problem

about integers into different primes. In our case, one splits the obstruction for a geometric

bundle structure on a homotopy sphere bundle into different primes.

Historically, Sullivan reduces the obstruction at odd primes to some K-theory discussions.

The obstruction at prime 2 is a bit more complicated. By the works of Levitt, Morgan-Sullivan,

Madsen-Milgram, Brumfiel-Morgan and many others, the obstructions at prime 2 are reduced

to some discussions about characteristic classes.

On the other hand, there is also a more conceptual description for this obstruction by

Levitt-Ranicki using L-theory (which is an analogue of K-theory for quadratic forms).
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We believe that people already know the equivalence of the obstruction at different primes

and the L-theoretical obstruction because of some evidence of computations for L-theory by

Taylor-Williams. However, we cannot find a formal proof in literature. So we provide a proof

for this equivalence in this dissertation. (For a more detailed discussion, see Section 4.4 and

4.5.)

Theorem 1.1.2. The L-theoretical obstruction for the existence of a manifold homotopy

equivalent a given simply-connected Poincaré space is equivalent to the obstruction previously

defined at different primes.

One can also consider the uniqueness problem for manifolds in a homotopy type. This

is equivalent to thinking about some ‘moduli’ of all manifolds in a given homotopy type.

Sullivan also studies this ‘moduli’ at different primes. At odd primes, this ‘moduli’ is also

reduced to some K-theory discussion; at prime 2, it is reduced to some cohomology classes

(with Rourke and Morgan separately, and Milgram independently).

1.1.2 Étale Construction for Manifolds

As we said before, the fundamental group requires transcendental information on a variety

but the system of all its finite quotients is algebraic. There is an approach to extend this

idea to spaces.

As we know, a finite covering map over a variety is algebraic. So one can consider the

system of all finite covering maps over open subsets of a variety X (étale morphisms). This is

Grothendieck’s idea to replace the usual notion of open subsets used to define a topology by

a more categorical consideration. In his language, this system of all finite covering maps over

open subsest gives a new ‘topology’ for the variety X. A formal construction by Artin-Mazur

for such a topology, which is a generalization of the Cěch nerve construction, produces some

new space Xét.
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The miracle of this new space Xét (étale homotopy type) is that it captures the finite

information for the homotopy type of X, which is called the profinite completion, when X

is a complex variety. For example, the finite part of the fundamental group of X is exactly

the fundamental group of Xét. Since every construction above is purely formal, the finite

homotopy type of X is also algebraic information. In particular, the automorphisms of the

ground field do not change the finite homotopy type.

The second part of this dissertation is to understand this phenomenon for more geometric

objects, like manifolds. We just replace ‘the system of all finite covering maps over open

subsets of a variety X’ by ‘the system of branched coverings over a manifold M ’. By applying

Artin-Mazur’s formal construction to this new topology for M , we get a space Mét. Then we

prove a similar result. (For more details, see 5.2.1)

Theorem 1.1.3. For a manifoldM , Mét captures the (pro-)finite information of the homotopy

type of M .

1.1.3 Galois Symmetry on the Algebraic-topological Data

In this part, we first generalize the idea in Part 1 of the ‘moduli’ of all manifolds in a given

homotopy type to define the ‘moduli’ of all manifolds in a given finite homotopy type. More

explicitly, we take out the finite data of the ‘moduli’ at each prime and then compile them

for all primes.

Suppose that there are some elements in this generalized moduli which are represented by

complex varieties defined over Q (call such elements algebraic). From the discussions in Part

2, we know that the Galois automorphisms of Q do not change the finite homotopy type

of a complex variety defined over Q. Then the Galois automorphisms act on the algebraic

elements in this moduli.

On the other hand, there is a way to define some abelianized Galois symmetry on this

‘moduli’ directly by Sullivan. Before doing this, we recall some of his other works.
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He applies Galois symmetry on varieties to the example of the Grassmannian varieties,

which are the finite classifying spaces of bundles. He stablizes the Galois automorphisms on

the finite Grassmannians to get a Galois symmetry on the infinite Grassmannian BU . This

Galois symmetry on BU is indeed an abelianized Galois symmetry, which is exactly the same

as the Adams operations on bundles. As a consequence, he proves the Adams conjecture:

namely, the Adams operations on bundles do not change the underlying homotopy sphere

bundles in the finite homotopy sense.

Recall from Part 1 that the odd prime information of the moduli is reduced to some

K-theory discussion. In this way the abelianized Galois symmetry on BU induces a symmetry

on the moduli at odd primes. For prime 2, Sullivan sketches his idea and we put some efforts

in realizing his approach.

Then one can prove that this newly defined abelianized Galois symmetry on the moduli

is compatible with the Galois symmetry on the algebraic elements in the moduli. An obvious

corollary from this is the following. (For a more precise statement, see 6.2.1 and 6.2.2)

Theorem 1.1.4. The Galois symmetry on the algebraic elements (if they exist) of the ‘moduli’

of all manifolds in a given finite homotopy type is an abelianized symmetry and this symmetry

extends to the whole ‘moduli’ in a canonical way.

It is still very mysterious for us why this Galois symmetry is abelianized. We hope to get

a more geometric explanation for this but unfortunately we have not yet completed this prior

to the thesis defense date. Nevertheless, we write down our ideas and make some conjectures

about this problem at the very end in order to record some plausible arguments and pictures

for future studies. It seems that our ideas have a deep relation with Grothendieck’s dessins

d’enfants.

6



1.2 Organization

Briefly speaking, we give the preliminaries for this dissertation in Chapter 2. Chapters 3 and

4 study the first part of the problem, Chapter 5 is the second part and Chapter 6 is the third

part.

Explicitly, in Chapter 2, we review the surgery theory, completions (or localizations) of

spaces, Artin-Mazur’s étale homotopy theory and the a priori invariant method for defining

cohomology classes and K-theory elements. Chapter 3 develops the Z/n algebraic surgery

theory as a generalization of Z/n manifolds and proves many product formulae which will

be used in the next chapter. In Chapter 4 we use the method of a priori invariants to

study the homotopy type of L-spectra and prove the known equivalence of different bundle

lifting theories. Chapter 5 is devoted to generalizing Artin-Mazur’s theorem on the étale

homotopy theory of complex varieties to a more geometric setting of branched coverings

over pseudomanifolds. In Chapter 6, we study Sullivan’s result of the Galois symmetry on

the underlying topological manifold structures of smooth complex varieties. In the end, we

formulate some conjectures for a possible geometric interpretation of Sullivan’s result.
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Chapter 2

Preliminaries

This chapter includes a historical review for the problem which this dissertation aims to

study and the preliminaries that will be used for later chapters.

2.1 Surgery Theory

It is impossible to cover all aspects of the surgery theory in this section. We only give a brief

and quick review on the part used for this dissertation. In particular, we only focus on the

simply connected case, though the non simply connected case is often more interesting. The

subsection 1 is a historical review and the remaining two subsections are more technical.

2.1.1 Manifolds in a Homotopy Type

In this section, we review the existence and uniqueness problem of manifold structures in a

given homotopy type. In history Browder and Novikov independently proposed the following

way for the simply connected case (see [Bro72]).

Let X be a space representing the given homotopy type. Assume that X is simply

connected finite CW complex. Further assume that X has a Poincaré duality, that is, there is

a class [X] ∈ Hn(X;Z) such that the induced cap product −∩ [X] : Hn−∗(X;Z)→ H∗(X;Z)

9



is an isomorphism. Spivak proved that the Poincaré duality on X induces a canonical

spherical fibration νX → X ([Spi67]), which is called the Spivak normal spherical fibration.

His construction is like the following.

Embed X into an Euclidean space RK , for some K large enough. Take a regular

neighborhood N of X. Then N is a smooth manifold with boundary ∂N . Note that the

natural inclusion X → N is a homotopy equivalence. The homotopy fiber of ∂N → N ≃ X

is a sphere because of the Poincaré duality on X.

For a spherical fibration γ → B, the Thom space Th(γ) is the mapping cone of the

fibration map. Then the canonical spherical fibration νX on X has an extra data, i.e., a map

SK → Th(νX) induced by the natural quotient map SK → SK/(SK −N) ∼= N/∂N .

Let Gl be the topological monoid of self homotopy equivalences of the sphere Sl−1. There

is a natural inclusion Gl → Gl+1 by taking suspension. Let G be the union of all Gl’s. Then

BG is the classifying space for stable spherical fibrations. The Splivak normal spherical

fibration νX on X induces a natural map νX : X → BG.

The first obstruction to the existence of a manifold homotopy equivalent to X is the

existence of a vector bundle structure on the Spivak spherical fibration νX , namely, the

existence of a lifting for the map νX : X → BG along BO → BG. So there is a sequence of

obstruction classes in H∗+1(X; π∗(G/O)).

Suppose that the obstruction classes vanish, then one can slightly alter the map SK →

Th(νX) to be transversal to the zero section X. Then one gets a degree 1 map M → X,

where M is a smooth manifold. This map is covered by a vector bundle map νM → EX ,

where νM is the stable normal bundle of M in a Euclidean space and the underlying spherical

fibration EX is νX . We call such a map a degree 1 normal map.

Apply the surgery process onM to try to make this degree 1 normal map map a homotopy

equivalence. The obstruction in this step is isomorphic to the simply connected surgery group

Pn if n ≥ 5, which can be defined by the framed bordism group of framed manifolds with

10



boundary PL homeomophic to Sn−1 (see [Sul65, p. 10]). It is known that

Pn ∼=


Z, if n ≡ 0 (mod 4)

Z/2, if n ≡ 2 (mod 4)

0, otherwise

The theory is analogous for PL (piecewise-linear) or TOP (topological) manifolds. The

only difference is the first obstruction, namely, the existence of a PL or TOP bundle structure

on νX . This is equivalent to the existence of a lifting νX : X → BG along BPL→ BG or

BTOP → BG. Technically, one can get rid of the surgery obstruction (for dimension at least

6, see [Bro72, Corollary 3.8]) for PL or TOP manifolds. The main reason is that there is no

exotic PL sphere for dimension at least 5.

For some technical reason, let us focus on the TOP case.

Like the number theory, one can split a simply-connected topological problem into different

primes, by localization or profinite completion (which we will review in the next section). For

odd primes, Sullivan proved that the obstruction is equivalent to the existence of a real K

theory orientation for νX , namely, the existence of a Thom class in K̃O(p)(Th(νX)) ([Sul09,

Theorem 6.5]).

For prime 2, Brumfiel-Morgan ([BM76]) and Madsen-Milgram ([MM75]) independently

discovered the obstruction. The difference of their obstructions is subtle. Let us concentrate

on Brumfiel-Morgan’s result. There exist characteristic classes kG ∈ H4∗+3(X;Z/2) and

lG ∈ H4∗(X;Z/8) for a spherical fibration νX . The obstruction for having a TOP bundle

structure at prime 2 is the vanishing of kG and an Z(2)-coefficient lifting of lG. Similar results

were known by Quinn ([Qui72]) and Jones ([Jon71]). We will sketch the construction in

section 3.

Moreover, Ranicki defined Poincaré dualities on chain complexes and defined chain-level

bordisms ([Ran80]). In fact, he defined two kinds of chain complexes that can have Poincaré

duality, symmetric or quadratic. He then defined the symmetric L-group Lsn and the quadratic

11



L-group Lqn of bordism classes of such chain complexes. He further constructed two L-spectra

Ls and Lq whose homotopy groups are the L-groups. We will give more details for the

L-theory in the next two subsections.

Weiss ([Wei85]) also defined a chain-level analogue of spherical fibrations and Quinn’s

geometric normal spaces ([Qui72]), namely, chain bundles and normal chain complexes. It is

known that normal chains and Poincaré symmetric-quadratic pairs are equivalent ([Ran92,

Theorem 2.8]). There is also an L-group Lnn of bordism classes of normal chain complexes

and an L-spectrum Ln whose homotopy groups are Lnn. We will also give the details in the

next subsection.

There is a direct fibration of spectra Lq → Ls → Ln by the construction immediately.

The bundle lifting obstruction has an integral version by Levitt-Ranicki ([Ran92, Proposi-

tion 16.1], [LR87]), without splitting the problem into different primes. A spherical fibration

νX has a canonical Ln-orientation. νX has a TOP bundle structure if and only if the Ln-

orientation lifts to an Ls-orientation. Though people know the homotopy types of L-spectra

(by Taylor-Williams [TW79])), we could not find a proof whether Levitt-Ranicki’s theory is

equivalent to the theories at different primes introduced above. We will give a proof for this

equivalence in Chapter 4 although we believe that it is known to all experts.

As for the uniqueness problem, Sullivan defined the structure set to study all manifolds

in a given homotopy type ([Sul96]). Let us reformulate his definition in the following way.

Definition 2.1.1. The homotopy manifold category HMan is a category whose objects are

all closed topological manifolds and whose morphisms are homotopy classes of homotopy

equivalences.

Remark 2.1.1. There might be a set-theoretic concern for the class of all manifolds. To avoid

this, it is equivalent to consider all submanifolds of Euclidean spaces. Therefore, we may

assume that HMan is a small category.

12



For any manifold M , consider the overcategory HMan/M , whose objects are homotopy

classes of homotopy equivalences N →M .

Definition 2.1.2. The homotopy manifold structure category HS(M) over a closed manifold

M is a subcategory of HMan/M , whose objects are the same as HMan/M and whose

morphisms from f1 : N1 → M to f2 : N2 → M are homeomorphisms g : N1 → N2 so that

f2 ◦ g and f1 are homotopic.

Definition 2.1.3. The structure set STOP (M) is the isomorphism classes of objects of

HS(M).

For any homotopy equivalence f : M → N , one can transport the homotopy manifold

structures over M to N . That is, there is a categorical equivalence f∗ : HS(M)→ HS(N)

by composing with f and it induces a bijection f∗ : S
TOP (M)→ STOP (N).

Analogously, one can also define the structure set STOP (M,∂M) over a manifold M with

boundary ∂M , where a typical element is a homotopy equivalence N →M whose restriction

∂N → ∂M is also a homotopy equivalence.

Theorem 2.1.2. ([Sul96]) Let Mm be a simply connected manifold.

If ∂M ̸= ∅, assuming that ∂M is also simply connected and m ≥ 6, then STOP (M,∂M) ≃

[M,G/TOP ].

If ∂M = ∅, assuming m ≥ 5, then there is an exact sequence of based sets

0→ STOP (M)→ [M,G/TOP ]→ Pm → 0

Corollary 2.1.3. If Mm is a simply connected closed manifold of dimension m ≥ 6, then

STOP (M) ≃ [M − pt, G/TOP ]

In this way, one can reduce the problem about STOP (M) to the problem of determining

the homotopy type of G/TOP . Fortunately, this was already known ([Sul96, p. 85, Theorem

4][KS77, p. 329, 15.3])
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Theorem 2.1.4. When localized at prime 2, G/TOP ≃
∏

k>0(K(Z(2), 4k)×K(Z/2, 4k− 2));

when localized at odd primes, G/TOP ≃ BSO(odd).

We will review the techniques used for the proof of this theorem in Section 3.

2.1.2 L Groups

We review the definition of L-groups in this subsection. Throughout this article, by a chain

complex we always mean a bounded chain complex whose underlying abelian group at each

degree is a finitely generated free abelian group.

For a chain complex C∗, the tensor product C ⊗ C ∼= HomZ(C
−∗, C∗) has a natural

Z/2 action. An n-dimensional symmetric structure on a chain complex C is a degree n

homotopy Z/2 invariant ϕ. More explicitly, let W∗ → Z→ 0 be a free resolution of the trivial

Z[Z/2]-module Z. An explicit form of W∗ is

· · · → Z[Z/2] 1−T−−→ Z[Z/2] 1+T−−→ Z[Z/2] 1−T−−→ Z[Z/2]→ 0→ · · ·

where T is the generator in Z/2. Each degree n homotopy Z/2 invariant ϕ is represented

by an element ϕ ∈ Qs
n(C) = Hn(HomZ[Z/2](W,C ⊗ C)). Informally, ϕ consists of chain maps

ϕi : C
n+i−∗ → C∗ for i ≥ 0 so that each ϕi is a chain homotopy between ϕi−1 : C

n+i−1−∗ → C∗

and its dual D(ϕi−1) : C
n+i−1−∗ → C∗.

A symmetric chain complex (C, ϕ) is Poincaré if the chain map ϕ0 : C
n−∗ → C∗ is a chain

homotopy equivalence. The notion of Poincaré symmetric chains is a derived generalization

of nondegenerate symmetric bilinear forms of free abelian groups or nondegenerate linking

forms on torsion abelian groups.

Recall that a homotopy coinvariant is an element in Qq
n(C) = Hn(W ⊗Z[Z/2] (C ⊗ C)).

Define a quadratic structure on a chain complex C by a homotopy coinvariant ψ. Similarly,

ψ consists of chain maps ψi : C
n+i−∗ → C∗ for i ≤ 0 so that each ψi is a chain homotopy

between ψi−1 and its dual D(ψi−1) : C
n+i−1−∗ → C∗. A quadratic chain complex (C,ψ) is

called Poincaré if the chain map ψ0 : C
n−∗ → C∗ is a chain homotopy equivalence.
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Let ∆ be the category of totally ordered nonempty finite sets with morphisms order-

preserving inclusions. A ∆-set is a contravariant functor from ∆ to the category of sets.

Indeed, a ∆-set has the same hierarchy and boundary maps like a simplicial set, but a ∆-set

does not have degeneracy maps. Indeed, a ∆-set X can be viewed as a category with objects

the simplices in X and with morphisms the inclusions between simplices. A presheaf of chain

complexes over X is a functor C from the category X to the category of chain complexes.

Define the Verdier dual presheaf D(C) by D(C)(σ) = hocolimτ⊂σ C(τ)−∗ = ⊕τ⊂σC(τ)−∗+|τ |

for any simplex σ of X.

Now assume X is a finite ∆-set. Let Hom(D(C), C) be the differential graded presheaf

of homomorphisms. It also has a natural Z/2-action , so we can define n-dimensional

symmetric/quadratic structures on a presheaf. A symmetric/quadratic structure is (locally)

Poincaré if the chain map D(C)(σ)→ C(σ) is a chain homotopy equivalence for each simplex

σ of X.

Define the assembly (or equivalently, the set of global sections) of a presheaf C by

C(X) = hocolimσ∈X C(σ) = ⊕σ∈XC(σ)∗−n+|σ|, where n is the dimension of X.

Remark 2.1.5. All the definitions above like presheaf, Verdier dual presheaf, assembly and

symmetric/quadratic structures on a presheaf can be generalized to the case when X is a

regular cell complex (for a definition see [CF67, p. I.1.1]).

Lemma 2.1.6. Let X be an n-dimensional closed PL manifold with a PL triangulation. Let

C be a presheaf of chain complexes over X. Then the assembly D(C)(X) is canonically chain

homotopy equivalent to C(X)n−∗ = ΣnHom(C(X),Z).

Proof. Firstly,

C(X)n−∗ = ΣnHom(C(X),Z) = ΣnHom(hocolim
σ∈X

C(σ),Z)

= ΣnHom(⊕σ∈XC(σ)∗−n+|σ|,Z) = Σn(⊕σ∈XC(σ)−∗−n+|σ|)

= ⊕σ∈XC(σ)−∗+|σ| = hocolim
σ∈X

C(σ)−∗

15



Notice that C(σ)−∗ is a precosheaf over X. So it suffices to prove that given a precosheaf D

over X, the canonical chain map hocolimσ∈X hocolimτ⊂σ D(τ)→ hocolimσ∈X D(σ) is a chain

homotopy equivalence.

Let us write down the chain complexes of two sides explicitly. hocolimσ∈X D(σ) =

⊕σ∈XD(σ)∗−|σ|, with the differential decomposed like the following. For each σ, there is an

obvious differential D(σ)r−|σ| → D(σ)r−1−|σ|; for each pair τ ⊂ σ of codimension 1, there is a

map D(σ)r−|σ| → D(τ)r−|σ| = D(τ)r−1−|τ | induced by the cosheaf structure.

On the other hand, hocolimσ∈X hocolimτ⊂σ D(τ) = ⊕σ∈X ⊕τ⊂σ D(τ)∗−|τ |−n+|σ|, with the

differential decomposed into three parts. For each pair τ ⊂ σ, there is an obvious differential

D(τ)r−|τ |−n+|σ| → D(τ)r−1−|τ |−n+|σ|; for each pair γ ⊂ τ of codimension 1, there are a map

D(τ)r−|τ |−n+|σ| → D(γ)r−|τ |−n+|σ| = D(γ)r−1−|γ|−n+|σ| induced by the cosheaf structure; for

each pair σ ⊂ δ of codimension 1, there is an identity map D(τ)r−|τ |−n+|σ| → D(τ)r−|τ |−n+|σ| =

D(τ)r−1−|τ |−n+|δ|.

Hence, hocolimσ∈X hocolimτ⊂σ D(τ) is also isomorphic to ⊕α∈X⊕α⊂βD(α)∗−|α|−n+|β|, with

the differential decomposed into three parts like above. So we have proved that

hocolimσ∈X hocolimτ⊂σ D(τ) = hocolimα∈X hocolimα⊂β D(α), where by hocolimα⊂β D(α) we

mean the colimit over the constant diagram D(α) indexed by all simplices β containing the

fixed α. The map into hocolimσ∈D(σ) is induced by hocolimα⊂β D(α) → D(α). We only

need to prove that this map is a chain homotopy equivalence and the lemma follows from

[RW90, Proposition 1.14].

Notice that a PL triangulation onX induces a dual cell decomposition onX sinceX is a PL

manifold. The dual cell decomposition on X is a regular cell decomposition. Let D(α) be the

regular cell dual to a simplex α. But hocolimα⊂β D(α) = D(α)⊗ C∗(D(α)), where C∗(D(α))

is the cellular chain complex of D(α) (with respect to the dual cell decomposition). It is

obvious that the chain map D(α)⊗ C∗(D(α))→ D(α) is a chain homotopy equivalence.

Corollary 2.1.7. Let X be a closed n-dimensional PL manifold with a PL triangulation. Let

C be an m-dimensional Poincaré presheaf of symmetric/quadratic chain complexes over X.
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The assembly C(X) is a Poincaré symmetric/quadratic chain complex of dimension m+ n.

Proof. The lemma showed that D(C)(X)→ C(X)n−∗ is a chain homotopy equivalence, where

n is the dimension of X. Hence, the symmetric/quadratic structure on the presheaf C induces

a symmetric/quadratic structure on C(X). Moreover, since C is locally Poincaré, [RW90,

Proposition 1.14] indicates that D(C)(X)−m+∗ → C(X) is a chain homotopy equivalence and

hence the induced map C(X)m+n−∗ → C(X) is also a chain homotopy equivalence.

Remark 2.1.8. The lemmas 2.1.6 and 2.1.7 both hold for a PL regular cell decomposition

of a PL manifold, since the only fact we need to use in the proof is that the dual cone

decomposition of a PL regular cell decomposition for a PL manifold is still a regular cell

decomposition.

Definition 2.1.4. Let X = ∆1, the ∆-set of the unit interval. A presheaf C over X is

indeed a chain map C ⊕C ′ → D. Let ϕ (or ψ) be an n-dimensional symmetric (or quadratic)

structure on C. Call D a Poincaré symmetric (or quadratic) bordism between two Poincaré

symmetric (or quadratic) chain complexes C and C ′ if the presheaf (C, ϕ) (or (C, ψ)) is locally

Poincaré. Moreover, if C ′ = 0, call C → D a Poincaré symmetric (or quadratic) pair.

Remark 2.1.9. A (Poincaré) symmetric (or quadratic) presheaf C over an n-dimensional

simplex ∆n is also called an n-ad of (Poincaré) symmetric (or quadratic) chain complexes. A

(Poincaré) symmetric (or quadratic) presheaf over a finite ∆-set X is indeed a presheaf of

ads of (Poincaré) symmetric (or quadratic) chain complexes.

A non-Poincaré symmetric (or quadratic) chain complexes is like a Poincaré chain with a

‘singularity’. A more precise statement is the following, which will be used in many places.

Lemma 2.1.10. (Ranicki’s Miracle Lemma, [Ran80, Proposition 3.4]) The chain homotopy

classes of n-dimensional symmetric (or quadratic) chain complexes are in one-to-one corre-

spondence with the homotopy classes of n-dimensional Poincaré symmetric (or quadratic)

pairs.
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Proof Sketch. The proof is based on two constructions. Let us focus on the symmetric case

only. Given a Poincaré symmetric pair D
f−→ C, apply the Thom construction, that is, the

homotopy cofiber Cofib(f) of the chain map. Then there is a symmetric structure on Cofib(f)

induced from the symmetric structure on D → C.

Conversely, for a symmetric chain complex (C, ϕ), consider the the natural homotopy

fiber Fib(ϕ0) of the symmetric map ϕ0 : C
n−∗ → C∗. Then there exists a Poincaré symmetric

structure on the pair Fib(ϕ0) → Cn−∗. (In references, Fib(ϕ0) is sometimes written as

∂C).

In [Wei85] (also see [Ran92, Definition 2.2]), Weiss defined a chain bundle on a chain

complex C by a 0-dimensional cycle γ ∈ HomZ[Z/2](Ŵ , C−∗ × C−∗), where Ŵ is the Tate

complex associated to the group ring Z[Z/2], which is

· · · → Z[Z/2] 1−T−−→ Z[Z/2] 1+T−−→ Z[Z/2] 1−T−−→ Z[Z/2] 1+T−−→ Z[Z/2]→ · · ·

Q̂∗(C) = H∗(HomZ[Z/2](Ŵ , C ⊗ C)) is like the ‘K-theory of spherical fibrations’ for chain

complexes. HomZ[Z/2](Ŵ , C−∗ ⊗ C−∗) has the homotopy invariance property, i.e., the chain

maps f ∗, (f ′)∗ : HomZ[Z/2](Ŵ ,D−∗ ⊗ D−∗) → HomZ[Z/2](Ŵ , C−∗ ⊗ C−∗) induced by two

homotopic chain maps f, f ′ : C → D is still chain homotopic, where the homotopy relies on

a choice of a ‘diagonal’ element ω ∈ (C(∆1)⊗ C(∆1))1 (see [Ran80, Proposition 1.1]).

The identity map of ΣC represents a chain homotopy from the 0-map C
0−→ ΣC to itself.

It induces a chain homotopy map HomZ[Z/2](Ŵ , C−1−∗⊗C−1−∗)→ HomZ[Z/2](Ŵ , C−∗⊗C−∗).

By shifting the degree, we get a chain map

S : ΣHomZ[Z/2](Ŵ , C−∗ ⊗ C−∗)→ HomZ[Z/2](Ŵ , C1−∗ ⊗ C1−∗)

Moreover, there is a natural long exact sequence connecting homotopy coinvariants Qq
n(C),

homotopy invariants Qs
n(C) and Tate cohomology Q̂n(C) (see [Ran80, Proposition 1.2] for

the construction and proof), i.e.,

· · · → Qq
n(C)

1+T−−→ Qs
n(C)

J−→ Q̂n(C)
∂−→ Qq

n−1(C)→ · · ·
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where 1 + T corresponds to the polarization of a quadratic form into a symmetric form.

A normal structure on an m-dimensional symmetric chain complex (C, ϕ) is defined by a

chain bundle γ over C and a homology ζ ∈ (HomZ[Z/2](Ŵ , C1−∗ ⊗ C1−∗))n+1 between J(ϕ)

and ϕ∗(S
m(γ)).

There are some basic facts about normal chain complexes. Define an n-dimensional

symmetric-quadratic pair f : C → D by a Poincaré symmetric pair structure on C → D and

a Poincaré quadratic refinement of the symmetric structure on C. There are also notions of

bordisms and k-ads of symmetric-quadratic pairs.

Proposition 2.1.11. (1)([Ran92, Proposition 2.6(ii)]) Each Poincaré symmetric complex

has a canonical normal structure.

(2)([Ran92, Proposition 2.8(i)]) There is a natural one-to-one correspondence between

the homotopy classes of n-dimensional Poincaré symmetric-quadratic pairs and those of

n-dimensional normal chains.

Like before, we can define a normal structure on a presheaf of chain complexes over an

arbitrary finite ∆-set. Consequently n-ads and bordisms of normal complexes can also be

defined. There is a correspondence between presheaves of normal chains and presheaves of

symmetric-quadratic pairs. The lemma 2.1.7 for the normal case or the case of symmetric-

quadratic pairs is also true by the same argument.

Definition 2.1.5. ([Ran80, p. 137] and [Ran92, p. 40]) Define Lsm, L
q
m and Lnm by the sets of

bordism classes of m-dimensional Poincaré symmetric chain complexes, Poincaré quadratic

chain complexes and normal complexes, respectively. They are indeed abelian groups, where

the additions are induced by the direct sums of chains.

Because of the equivalence between normal chain complexes and Poincaré symmetric-

quadratic chain pairs, there is a natural long exact sequence ([Ran92, p. 45])

· · · → Lqm
1+T−−→ Lsm

J−→ Lnm
∂−→ Lqm−1 → · · · (2.1.1)
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For geometric intuitions, one can think of a Poincaré symmetric chain as a Poincaré space,

a Poincaré quadratic chain as a degree one normal map between two Poincaré spaces and a

normal chain as a normal space (see [Qui72] for a definition). One can use these intuitions

to make algebraic constructions like geometric constructions. For example, we may define

an algebraic gluing of two m-dimensional Poincaré symmetric pairs D → C and (−D)→ C ′

along the common boundary D and get a m-dimensional Poincaré symmetric chain complex

C
⋃
D C

′ ([Ran81, p. 77]), like the gluing of two manifolds along the common boundary.

Analogously, we can also construct the following chain-level bordism invariants.

Let (C, ϕ) be an m-dimensional Poincaré symmetric chain complex. ϕ induces a non-

degenerate symmetric bilinear form on H2k(C) when m = 4k and a nondegenerate linking

form on the torsion subgroup Tor(H2k+1(C)) when m = 4k + 1. If m = 4k, the signature

Sign(C) ∈ Z is defined by the signature of the bilinear form over H2k(C)⊗ R; if m = 4k + 1,

the de Rham invariant dR(C, ϕ) ∈ Z/2 is defined by the Z/2 rank of Tor(H2k+1(C))⊗ Z/2.

For a 4k-dimensional Poincaré symmetric chain pair D → C, we can also define

the signature Sign(C) by the signature of the nondegenerate symmetric bilinear form on

Im(H2k(C)→ H2k(C,D)). Then we have the Novikov’s additive formula of Poincaré sym-

metric pairs, namely, Sign(C
⋃
D C

′) = Sign(C) + Sign(C ′), where D → C and (−D)→ C ′

are two 4k-dimensional Poincaré symmetric chain pairs.

Similarly, given an m-dimensional Poincaré quadratic chain complex (C,ψ), ψ induces an

nondegenerate quadratic form on H2k(C) when m = 4k and a nondegenerate skew-quadratic

form onH2k+1(C) whenm = 4k+2. Ifm = 4k, we can define the index I(C) = 1
8
Sign(C) ∈ Z,

where Sign(C) is the signature of the quadratic form on H2k(C) ⊗ R; if m = 4k + 2, the

Kervaire invariant K(C, ϕ) ∈ Z/2 is the Kervaire-Arf invariant of the quadratic form on

H2k+1(C)⊗ Z/2.

Let C ′ be an m-dimensional normal chain complex and let D → C be the corresponding

Poincaré symmetric-quadratic pair.

If m = 4k + 3, define the Kervaire invariant K(C ′) ∈ Z/2 by the Kervaire invariant of D.

20



If m = 4k + 1, the index of D is 0 since D is a boundary. Then there exists a Poincaré

quadratic pair (−D) → C̃. Define the de Rham invariant dR(C ′) ∈ Z/2 of C ′ by the de

Rham invariant of the Poincaré symmetric complex C
⋃
D C̃.

The de Rham invariant is independent of the choice of the quadratic pair (−D) → C̃.

Indeed, let (−D)→ C̃ ′ be another pair. Let I be the chain complex of the unit interval. Due

to its dimension, the quadratic complex (−C̃)
⋃
D×0D ⊗ I

⋃
D×1 C̃

′ must be the boundary of

some quadratic pair W . Then C ⊗ I
⋃
D⊗I(−W ) is the symmetric bordism between C

⋃
D C̃

and C
⋃
D C̃

′. Hence their de Rham invariants agree.

If m = 4k, the quadratic complex D is the boundary of some Poincaré quadratic pair

(−D)→ C̃. Then define the Z/8-signature by Sign(C ′, D) = Sign(C
⋃
D C̃) ∈ Z/8. It is also

invariant under different choices of C̃ by a similar argument like above.

With all the invariants defined above and the long exact sequence of L-groups, one can

prove the following.

Proposition 2.1.12. ([Ran81, Proposition 4.3.1])

(1)

Lqm
∼=


Z, if m ≡ 0 (mod 4)

Z/2, if m ≡ 2 (mod 4)

0, otherwise

(2)

Lsm
∼=


Z, if m ≡ 0 (mod 4)

Z/2, if m ≡ 1 (mod 4)

0, otherwise

(3)

Lnm
∼=


Z/8, if m ≡ 0 (mod 4)

Z/2, if m ≡ 1 or 3 (mod 4)

0, otherwise
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Moreover, all the isomorphisms are explicitly given by the invariants defined above.

2.1.3 L Spectra

As we know before, the L-groups are the homotopy groups of some L-spectra. We review the

construction of L-spectra in this subsection.

Let Ls(m) be the pointed ∆-set whose k-simplices are all the k-ads of (k−m)-dimensional

Poincaré symmetric chain complexes, with the obvious face maps. (Strictly speaking, there is

a set-theoretic issue here but one can get rid of this). The base k-simplex is the k-ad of zero

chains. Each Ls(m) satisfies the Kan condition and Ls(m) = ΩLs(m + 1). Then (Ls(m))

forms an Ω-spectrum with homotopy groups isomorphic to Lsk.

The spectra Lq(m) and Ln(m) are similarly constructed. There is a fibration sequence

of spectra Lq 1+T−−→ Ls J−→ Ln, whose associated long exact sequence of homotopy groups is

exactly the long exact sequence of L-groups (2.1.1).

For manifolds and the bundle lifting problem stated in the previous subsection, the

L-spectra we want to use is the connective version.

The l-connective cover Ls⟨l⟩ of Ls is constructed like follows. Let the m-th space Ls⟨l⟩(m)

be the ∆-set with k-simplicies all k-ads of (k −m)-dimensional Poincaré symmetric chain

complexes such that the presheaf restricted to each cell of dimension less than (m + l)

is an ad of acyclic chains. Again, Ls⟨l⟩(m) is an (l + m − 1)-connected Kan ∆-set and

Ls⟨l⟩(m) = ΩLs⟨l⟩(m+ 1).

The l-connective spectra Lq⟨l⟩ and Ln⟨l⟩ are defined likewise.

Warning 2.1.13. In the rest of this dissertation, we use the abbreviation Ls and Lq to

represent the 0-connective symmetric L-spectrum Ls⟨0⟩ and the 1-connective quadratic

L-spectrum Lq⟨1⟩ repectively. In particular, the homotopy group πi(Ls) vanishes for i < 0

and πi(Lq) vanishes for i < 1. We use the same symbol Ls and Lq to represent the 0-th space

of the two connective spectra to avoid too many notations. The reader may easily differ the

meaning of spectra or spaces by the context.
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In [Ran92, Proposition 7.1], Ranicki proved the equivalence of Poincaré quadratic com-

plexes for a surgery problem and Wall’s definition of surgery obstructions. Hence, by Quinn’s

construction of G/TOP (which is a ∆-set consisting of ads of all surgery problems, [Qui70]),

there is a canonical homotopy equivalence G/TOP → Lq.

Due to different connectiveness of Ls and Lq, we recall the definition ‘1/2-connective’ for

normal L-spectrum in [Ran92, Deinition 15.14] in order to get the fibration sequence of three

connective spectra.

A chain complex C is q-connective if the truncation at degree ≤ q of C is acyclic. A

symmetic chain complex (C, ϕ) is q-Poincaré if ∂C is q-connective. We can also define a

presheaf of q-Poincaré symmetric chain complexes over a finite ∆-set.

Remark 2.1.14. In general, one can define the spectra Lq(R),Ls(R),Ln(R) for any ring R.

There is an analogous way to take connective covers La⟨l⟩(R) like above, for a = q, s, n.

In [Ran92, p. 157], there is an alternative way to make l-connective spectra La(⟨l⟩, R), for

a = q, s, n. Take Lq(⟨l⟩, R) for example. Let the m-th space Lq(⟨l⟩, R)(m) be the ∆-set

with k-simplices all k-ads of (k − m)-dimensional Poincaré quadratic l-connective chain

complexes (see the definition for l-connectiveness below). In general, Lq(⟨l⟩, R) is canonically

homotopy equivalent to Lq⟨l⟩(R), but Ls(⟨l⟩, R) is not homotopy equivalent Ls⟨l⟩(R) unless

the homotopy group π∗(Ls(R)) has 4-periodicity, e.g., R = Z ([Ran92, Example 15.8]).

Let Ln⟨1/2⟩(m) be the ∆-set whose k-simplices are all k-ads of (k − m)-dimensional

0-connective 1-Poincaré normal chain complex such that the presheaf restricted to each cell

of dimension less than m is an ad of contractible chains. For an alternative construction, one

can use k-ads of symmetric-quadratic pairs.

The spaces Ln⟨1/2⟩(m) satisfy the Kan condition and form an Ω-spectrum.

Warning 2.1.15. Like above, for the rest of this dissertation, we use the symbol Ln for both

the spectrum Ln⟨1/2⟩(m) and the 0-th space of this spectrum. In particular, the homotopy

group πiLn vanishes for i < 0, is isomorphic to Z for i = 0 and is isomorphic to Lni for i > 0.
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Therefore, there is a natural fiber sequence of connective spectra ([Ran92, Proposition

15.16(i)])

Lq 1+T−−→ Ls J−→ Ln

Like the mock bundle picture to define the cobordism group over any space ([BRS76]),

a cellular map from a finite simplicial complex (or a ∆-complex) X to any of the defined

L-spaces above can be considered as a ‘mock bundle’ over X with ‘fibers’ in chain complexes,

which is exactly a presheaf C of ads of (Poincaré) symmetric/quadratic/normal complexes. So

the L-theory cohomology group (La)k(X) actually consists of bordism classes of presheaves

for a = s, q, n.

2.2 Profinite Completion and Galois Symmetry

We review the definition for the localization and the completion of a space. Then we revisit

the definitions for understanding the statement Artin-Mazur’s comparison theorem about

étale homotopy type of complex varieties, including some lemmas we will use in Chapter 5.

An application of these ideas is skeched in the last subsection, that is, Sullivan’s proof of the

Adams conjecture.

2.2.1 Localization and Completion

Let l be a set of primes in Z. The localization of Z at l is the ring Z(l) consisting of the

rationals whose denominators are not divided by the primes in l.

Let X be a simple space, namely, π1(X) is an abelian group and the π1(X)-action on

each homotopy group πi(X) is trivial.

Definition 2.2.1. X is an l-local space if each homotopy group πi(X) is an Z(l)-module.

Theorem 2.2.1. ([Sul09, p. 33, Corollary]) There exists a left adjoint functor for the

inclusion functor from the homotopy category of l-local simple spaces to the homotopy category
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of simple spaces.

There are two proofs for this theorem. One is to define l-local cells and construct l-local

CW complexes; the other one is to use the Postnikov tower of a space and localize the

homotopy group at each stage. For more details, one can read [Sul09, Chapter 2].

Definition 2.2.2. The left adjoint functor in the last theorem is called the l-localization

functor.

We will use X(l) for the l-localization of X and the pair of adjoint functors induce a

natural map X → X(l).

Besides localization of rings and spaces, we also have completions of rings and spaces. Let

us first review Artin-Mazur’s definition of completion.

Definition 2.2.3. A small category I is cofiltering if

(1) for any two objects i and j, there exists an object k with morphisms k → i and k → j;

(2) for any two morphisms i⇒ j, there exists an object k with a morphism k → i such

that the two compositions k → i⇒ j are equal.

Definition 2.2.4. Call a functor of small cofiltering categories ϕ : I → J cofinal if

(1) for any object j of J , there is an object j of I with a morphism ϕ(i)→ j;

(2) for any two morphisms ϕ(i) ⇒ j, where i and j are objects of I and J respectively,

there exists a morphism i1 → i in I so that the compositions ϕ(i1)→ ϕ(i) ⇒ j are identical.

Definition 2.2.5. Let D be a category. A pro-object of D is a functor I → D for some

cofiltering small category I. The associated pro-category Pro(D) consists of pro-objects of D

and the morphism sets are defined by

Hom({Xi}i∈I , {Yj}j∈J) = lim←−
j

lim−→
i

Hom(Xi, Yj)

There is a more concrete way to represent a pro-morphism.
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Proposition 2.2.2. ([AM69, Corollary 3.2]) Let f : X → Y be a pro-morphism, where X

and Y are two pro-objects indexed by I and J respectively. Then there exists a cofiltering

small category K with cofinal functors ϕ : K → I, ψ : K → J such that f is equivalent

to a morphism {fk : Xk → Yk}k∈K. In addition, this representative for f is unique up to

isomorphism in the cofinal sense.

Definition 2.2.6. Let Gr be the category of groups. Call a full subcategory C of Gr complete

if

(1) C contains the trivial group;

(2) for any exact sequence

1→ G→ H → K → 1

H ∈ C ⇒ G ∈ C and G,K ∈ C ⇒ H ∈ C;

(3) G|H| ∈ C for any G,H ∈ C.

Example 2.2.3. There are two useful examples for C. One is the class of all finite groups

and the other is the class of all p-groups for a fixed prime p. We assume C is one of them in

the following context.

In practice, we can avoid the set theoretic issue by considering isomorphism classes of

objects and hence we will assume C is small.

Lemma 2.2.4. ([AM69, Lemma 3.3]) The inclusion functor Pro(C)→ Pro(Gr) admits a

left adjoint ·̂ : Pro(Gr)→ Pro(C).

Definition 2.2.7. The left adjoint functor ·̂ : Pro(Gr)→ Pro(C) in the lemma is called the

C-completion of (pro-)groups.

Proof. ([AM69, p. 26]) Let G = {Gi} be a pro-group. Consider the pro-system of all

pro-homomorphisms f : G → A with A ∈ C. We get a pro-group {A} indexed by the

homomorphisms f , where a morphism f → f ′ is defined by the diagram

G A

A′

f

f ′ .
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Then we define Ĝ by {A} and check that it is left adjoint to the inclusion Pro(C) →

Pro(Gr).

Let W0 be the category of based connected CW complexes and let H0 be its homotopy

category. By a (pro) space we mean a (pro) object of H0.

Let A be an abelian group. The homology of a pro-space X = {(Xi, xi)} with coefficient

A is defined by the pro-group Hn(X;A) = {Hn(Xi;A)} and the cohomology is the group

Hn(X;A) = lim−→
i

Hn(Xi;A). Similarly, define the homotopy group πnX by the pro-group

{πn(Xi, xi)}.

Remark 2.2.5. One may hope to get rid of the basepoint issue in the discussion. There are

examples of pro-objects of the space category which are not pro-objects of based spaces.

[Isa01, Definition 5.1] suggested the following way. Let X = {Xi} be a pro-object of the

category of CW complexes. Define the fundamental groupoid of X by the pro-system of

fundamental groupoids ΠX = {ΠXi}. Let ΠnXi be a functor from ΠXi to the category

of (abelian) groups, which maps each point xi ∈ Xi to πn(Xi, xi). Call the pro-system

ΠnX = {ΠnXi} the pro local system of homotopy groups of X.

Let CW0 be the full subcategory of W0 consisting of the CW complexes with all homotopy

groups in C. Let CH0 be the corresponding homotopy category.

Definition 2.2.8. The C-completion of a pro-space X ∈ Pro(H0) is an object X̂ of Pro(CH0)

together with a pro-morphism X → X̂ such that any pro-morphism X → Y with Y ∈

Pro(CH0) uniquely factors through some pro-morphism X̂ → Y .

Theorem 2.2.6. ([AM69, Theorem 3.4]) The C-completion of a pro-space always exists. In

other words, the natural inclusion Pro(CH0) → Pro(H0) has a left adjoint ·̂ : Pro(H0) →

Pro(CH0).

The idea is analogous to the case of groups, namely, the pro-space X̂ is constructed out

of all homotopy classes of pro-maps f : X → F with F ∈ CH0.
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Remark 2.2.7. Sullivan further defined a homotopy inverse limit X̂S of any pro-space X̂ when

C is the class of finite groups or p-groups ([Sul09, Definition 3.1]) .

Remark 2.2.8. Let C be the class of p-groups. Then Artin-Mazur-Sullivan’s C-completion of a

space is not homotopy equivalent to the Bousfield-Kan’s Z/p-localization, unless the space is

nilpotent ([BK72, p. 8.3]).

It is not hard that

Proposition 2.2.9. ([AM69, Corollary 3.7])

π1(X̂) ≃ π̂1(X)

Definition 2.2.9. A map f : X → Y of pro-spaces is a weak equivalence if f induces an

isomorphism on (pro) homotopy groups.

Definition 2.2.10. ([AM69, Theorem 4.3]) A map of pro-spaces f : X → Y is called a

C-equivalence if

(1) π̂1X → π̂1Y is an isomorphism;

(2) for any C local system A over Y , Hn(Y ;A)→ Hn(X;A) is an isomorphism for every

n.

Theorem 2.2.10. ([AM69, Theorem 4.3]) A map of pro-spaces f : X → Y is a C-equivalence

if and only if f̂ : X̂ → Ŷ is a weak equivalence. In particular, the C-completion X → X̂ is a

C-equivalence.

Now let us review Sullivan’s completion. Let l be a set of primes. Let C be the class

of finite groups whose orders are only divisible by the primes in l. Then Artin-Mazur’s

C-completion of X is a pro space X̂l.

Theorem 2.2.11. ([Sul09, Proposition 3.3]) The homotopy inverse limit of X̂l exists.

Definition 2.2.11. This homotopy inverse limit is Sullivan’s l-adic completion of X. We

will use the same notation X̂l.
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The idea for the proof is the following. Let F be an arbitrary l-finite space, i.e., each

homotopy group πi(X) is a finite group in the class C and πi(X) vanishes for sufficiently large

i. For any space X, the set [X,F ] of homotopy classes of maps X → F is a finite set. So

[−, F ] is a functor from the homotopy category of spaces to the category of finite sets. Then

the pro-space X̂l gives a pro system of such functors. These functors have an inverse limit,

namely, a functor from the homotopy category of spaces to the category of compact Hausdorff

spaces. One can check that this limiting functor satisfies the Brown’s representability axioms

and hence there is a space representing this functor.

Here are some properties of Sullivan’s completion.

Proposition 2.2.12. ([Sul09, Proposition 3.16]) If π̂1(X)l = 0, then there is a natural

homotopy equivalence X̂l ≃
∏

p∈l X̂p.

Proposition 2.2.13. ([Sul09, Theorem 3.9]) Suppose X is simply connected and each

homotopy group πi(X) is finitely generated. Then

(1) H i(X;Z/n) ∼= H i(X̂l;Z/n), where n is a product of primes in l;

(2) π̂i(X)l
∼= πi(X̂l);

(3) ̂H i(X;Z)l ∼= H i(X; Ẑl) ∼= H i(X̂l; Ẑl).

2.2.2 Sites and Hypercoverings

In this subsection, we review Artin-Mazur’s comparison theorem for complex varieties, what

they called the generalized Riemann existence theorem. We only review all the definitions

and the lemmas which are needed to prove this theorem.

Definition 2.2.12. A site is a category C with a distinguised set of families of morphisms

(Ui → U)i∈I for each object U , which is called the set of coverings of U , such that

(1) (U
1−→ U) is a covering for each object U ;

(2) for each covering (Ui → U)i∈I and each morphism V → U , the pullback Ui ×U V

exists and (Ui ×U V → V )i∈I is a covering of V ;
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(3) for any coverings (Ui → U)i∈I and (Vij → Ui)j∈Ji for each i ∈ I, the induced family

(Vij → U)ij is also a covering of U .

For simplicity, we always assume that the underlying category of a site admits finite limits

and finite coproducts.

Example 2.2.14. The set category Set has a natural site structure, where, for each set S,

its covering set consists of all families of maps (Si → S)i∈I such that the union of the images

is S.

Example 2.2.15. Let X be a topological space. The category of its open subsets Op(X) is

a site, with inclusions as its morphisms. Indeed, a covering in the site Op(X) is an open

cover over an open subset.

Example 2.2.16. Let X be a scheme. The étale site Sét(X) over X consists of all étale

morphisms U → X, where the coverings are the surjective families. If X is quasi-compact,

one can take the coverings to be finite surjective families.

Example 2.2.17. Let G be a profinite group. The category Fin(G) of finite continuous

G-sets is a site.

Definition 2.2.13. A morphism of sites F̃ : C2 → C1 is a functor F : C1 → C2 which

preserves finite limits, arbitrary colimits and the covering set for each object.

Definition 2.2.14. A point of a site C is a morphism of sites P̃ : Set→ C. In particular,

the image of the terminal object 1C of C is the one-point set.

A pointed simplicial object K∗ of a pointed site (C, P̃ ) is a simplicial object so that P (K∗)

is a pointed simplicial set, that is, there is a choice of a point in P (K0).

There is a generalization of the Cěch nerves, namely, the hypercoverings of a site.

Definition 2.2.15. ([AM69, Definition 8.4]) A hypercovering K∗ of a (pointed) site C is a

(pointed) simplicial object of C such that
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(1) K0 → 1C is a covering, where 1C is the terminal object of C;

(2) the canonical morphism Kn+1 → (CosknK)n+1 is a covering for any n ≥ 0, where

Coskn is the n-th coskeleton of a simplicial object (see [AM69, p. 6] for a definition of

coskeleton).

A simplicial morphism of hypercoverings K∗ → K ′
∗ is called a refinement if for each level

n the map Kn → K ′
n is a covering.

Let X be an object of C and S be a finite set. Define the object X × S of C by
⊔
S X.

Let I∗ be the simplicial set of the unit interval. Then for any simplicial object K∗ of C

we define the simplicial object K∗ × I∗ by (K∗ × I∗)n = Kn × In.

Two simplicial maps f, g : K∗ → K ′
∗ of simplicial objects are strictly homotopic if there

is a map F : K∗ × I∗ → K ′
∗ connecting them, i.e., F ◦ j0 = f and F ◦ j1 = g, where

j0, j1 : K∗ → K∗ × I∗ are induced by the maps [0], [1] : pt→ I∗. Call f and g homotopic if

they are connected by a finite chain of strict homotopies.

Let HR(C) be the category of hypercoverings of the (pointed) site C, whose morphisms

are homotopy classes of simplicial morphisms.

Lemma 2.2.18. ([AM69, Corollary 8.13]) HR(C) is a cofiltering category.

Definition 2.2.16. An object X of a site C is connected if it is not a nontrivial coproduct

in C. A site C is locally connected if each object is a coproduct of some connected objects,

where each connected object in the coproduct is called a connected component. Call a locally

connected site C connected if its terminal object is connected.

There is a natural connected component functor π : C → Set for a locally connected

site C defined by mapping an object to the index set of its connected components. Then

for any hypercovering K∗ of C, π(K∗) is a simplicial set. If C is pointed, then π(K∗) is a

pointed/based simplicial set; if C is connected, then the simplicial set π(K∗) is connected.

Since HR(C) is cofiltering, we get a pro-system of homotopy based simplicial sets

πC = {π(K∗)}K∗∈HR(C).
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Definition 2.2.17. Let C be a pointed connected site. The pro homotopy type of C is

defined by the pro-object πC in H0. Define the homotopy group πn(C) by the pro-group

{πnπ(K∗)}K∗∈HR(C).

Example 2.2.19. SupposeX is a pointed connected topological space. The ordinary topology

site Op(X) is pointed and each hypercovering is canonically pointed. Suppose any open

cover of X admits a refinement of good covers, i.e., any finite intersection of connected opens

is contractible. Then the pro-space πOp(X) is weak equivalent to the singular simplicial

space Sing(X).

Let us omit the definition of fibered categories and only define the descent data in the

form for our later use.

For each object X of a site C, let F(X) be the small category of objects {X ×

S|S is a finite set}, where morphisms are of the form X × S → X × S ′ so that the fol-

lowing diagram commutes.

X × S X × S ′

X

Any morphism f : X → Y in C induces a natural functor f ∗ : F(Y )→ F(X).

Definition 2.2.18. Let K∗ be a hypercovering of a site C. A locally constant covering (or a

descent data) on K∗ is an object α of F(K0) together with an isomorphism ϕ : ∂∗0α
≃−→ ∂∗1α

in F(K1) such that ∂∗1ϕ = ∂∗2ϕ ◦ ∂∗0ϕ in F(K2).

If C is locally connected, then a locally constant covering consists of a hypercovering K∗,

a finite set S and a 1-cocycle σ of π(K∗) with values in the symmetric group Sym(S). Two

locally constant coverings (K∗, S, σ) and (K ′
∗, S

′, σ′) are isomorphic if S = S ′ and there exists

a common refinement K ′′ with ϕ0 : K
′′ → K and ϕ1 : K

′′ → K ′ such that ϕ∗
0σ and ϕ∗

1σ
′ are

cohomologous.
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Lemma 2.2.20. ([AM69, Corollary 10.6]) Let C be a locally connected site and let K∗ be

a hypercovering. The set of isomorphism classes of locally constant coverings (K∗, S, σ) is

bijective to the set of isomorphism classes of simplicial covering sets of π(K∗).

Let G be a finite group. Define a principal bundle over C with fiber G by a locally

constant sheaf of a site C with stalk |G| left acted by G, namely, a locally constant covering

(K∗, |G|, σ) with σ ∈ G ⊂ Sym(|G|). Hence,

Lemma 2.2.21. ([AM69, Corollary 10.7]) Let C be a locally connected site and let G be

a finite group. The set of isomorphism classes of principal bundles over C with fiber G is

bijective to Hom(π1C, G).

Lemma 2.2.22. ([AM69, Corollary 10.8]) Let C be a connected pointed site and let A be a

finite abelian group. Any locally constant sheaf A with stalk A induces a local system Ã on

the pro-space πC. Moreover, there is a canonical isomorphism

H∗(C;A) ≃ H∗(πC; Ã)

Finally, let us review the results of étale homotopy theory for schemes. Let C be the class

of finite groups.

Theorem 2.2.23. ([AM69, Theorem 11.2]) Let X be a pointed connected geometrically

unibranched Noetherian scheme. Then the pro homotopy type Xét of the étale site Sét(X) is

a pro C-space, i.e., an object of CH0.

The proof is based on the following key lemma.

Lemma 2.2.24. ([AM69, Proposition 11.3]) Let G be a profinite group. Let K∗ be a

hypercovering of the site Fin(G). Then πnπ(K∗) is a finite group for each n.

For a scheme X over C of finite type, let Xcl be the underlying complex algebraic set

with analytic topology.
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Theorem 2.2.25. (Generalized Riemann Existence Theorem, [AM69, Theorem 12.9])

Let X be a pointed connected finite type scheme over C. Then there is a canonical map

Xcl → Xét, which induces an isomorphism in the category Pro(H0) after profinite completion.

Artin-Mazur first proved that Xcl → Xét is a C-equivalence. To show that the map is

indeed a profinite homotopy equivalence, the followings are needed.

Definition 2.2.19. Let C be a class of group and let C be a site. An object X of C

has C-dimension at most d if for any locally constant sheaf A of abelian groups over C,

Hn(X;A) = 0 for each n > d. C has C-dimension at most d if for each object X there is a

covering Y over X having C-dimension at most d.

Let f be a pointed morphism of pointed connected sites C→ C′ induced by a functor F :

C′ → C. For any hypercovering K∗ of C′, consider the maps L∗ → F (K∗) of hypercoverings

in C. They induce a morphism of pro-spaces

π(f) : πC = {π(L∗)}L∗∈HR(C) → {π(K∗)}K∗∈HR(C′) = πC′

Lemma 2.2.26. ([AM69, Theorem 12.5]) Let C be a complete class of groups. Let C and C′

be pointed connected sites of dimension at most d for some d. Let f be a pointed morphism

of pointed connected sites C→ C′. If π(f) is a C-equivalence, then the map π̂(f) induced by

C-completion is an isomorphism in the category H0.

2.2.3 Adams Conjecture and Sullivan’s Proof

Adams studied the image of the Hopf-Whitehead J-homomorphism J : πi(GL(n,C)) →

π2n+iS
2n in his series of papers [Ada63][Ada65a][Ada65b][Ada66]. The J-homomorphism is

indeed the map on homotopy groups induced by BU → BG. In this way, the J-homomorphism

induces a natural map K(X)→ J(X), where J(X) is the Grothendieck group of spherical

fibrations over X.
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The Adams operation ψk on K(X) is used in Adams’ series of papers. The natural

operation ψk is essentially determined by the following axioms, due to the splitting principle

of vector bundles:

(1) ψk is a ring homomorphism on K(X);

(2) ψk(γ) = γk if γ is a line bundle.

Adams conjectured the following.

Conjecture 2.2.27. (Adams Conjecture, [Ada63, Conjecture 1.2]) Let X be a finite CW

complex. For any η ∈ K(X) and any k, there is an N large enough such that kN (ψkη − η) is

a trivial element in J(X).

He proved the following.

Theorem 2.2.28. ([Ada65b, Theorem 1.1]) If the Adams conjecture is true, then the kernel

of K(X)→ J(X) is a linear combination of such forms kN(ψkη − η).

Define the profinite K-theory by K̂(X) = K̂(X). The classifying space of K̂(X) is

the profinite completion B̂U of BU , which follows directly from Sullivan’s construction of

profinite completion ([Sul74, p. 8]).

Then we modify the Adams operation ψk on K̂(X) ∼=
∏

p K̂(X)p via replacing ψk by

identity only when p divides k. Then the modified Adams operations ψk on K̂(X) induces

an action Ẑ× on K̂(X).

The Adams conjecture is restated and then proven by Sullivan.

Theorem 2.2.29. ([Sul74, p. 9, Theorem]) The modified Adams operation does not change

the underlying stable spherical fibration type for any element of K̂(X). This is also true for

the real K-theory.

Remark 2.2.30. Sullivan not only proved the Adams conjecture, but also provided a canonical

factorization of B̂Up
ψk

−→ B̂Up into B̂Up → Ĝ/Up → B̂Up for p not dividing k, where

Ĝ/Up → B̂Up is part of the full fibration G/U → BU → BG.
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Let us sketch Sullivan’s key idea for his proof here, which uses the étale theory in the

algebraic geometry.

Let X be the complex Grassmannian Grs(CN). Notice that it is a variety over Q. Then

any σ ∈ Gal(Q/Q) induces a self étale homotopy equivalence σ : Grs(CN)ét → Grs(CN)ét.

The equivalence map is compatible with the stablization of N . Then we have a self profinite

complete homotopy equivalence σ : B̂U(s) → B̂U(s). The map is also compatible with

respect to s. Note that BU(s−1)→ BU(s) is the universal spherical fibration with fiber S2s−1

that is induced from a vector bundle. After passing to stable range, σ : B̂U → B̂U → B̂G

factors through Ĝ/U canonically.

On the other hand, the modified Adams operation induces an abelianized Galois action

Ẑ× on B̂U . The self homotopy equivalence on B̂U is, uniquely up to homotopy, determined

by the induced map on H∗(B̂U ; Ẑ) ⊗ Q. After checking the Galois group Gal(Q/Q) and

the abelianzied Galois group Ẑ× actions on the cohomology of B̂U , then one can prove the

following, which implies the Adams conjecture.

Theorem 2.2.31. (Sullivan, [Sul74])

The natural action of Gal(Q/Q) on B̂U is equivalent to the abelianzied Galois group Ẑ×

action induced by modified Adams operations. The action does not change the underlying

profinite spherical fibration.

The method can also be applied to BO or BSO by considering BO(n,C) or BSO(n,C).

2.3 A Priori Invariants by Periods

In this section, we review the method used by Thom and Sullivan for defining cohomology

classes of a space X by periods. We review the a priori K-theory invariants by periods too.
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2.3.1 Z/n-Manifolds

We follow [MS74, Section 1] to review the discussions of Z/n manifolds. A Z/n manifold Mm

is defined by an oriented manifold with boundary ∂M together with an identification of ∂M

to a disjoint union of n copies (labelled by 1, . . . , n) of some oriented (m− 1)-manifold δM .

δM is also called the Bockstein of M . Conventionally, when n = 0, a Z/n manifold means a

closed manifold.

A Z/n manifold with boundary is an oriented manifold N with boundary ∂N and an

embedding of a disjoint union of n (labelled) copies of an oriented manifoldM ′ (with boundary

∂M ′) into ∂N . Call the manifold with boundary M ′ the Bockstein of N and call the Z/n

manifold ∂N −
⊔
n Int(M

′) the boundary of N .

Then one can define a bordism between two Z/n manifolds. ΩSO∗ (X;Z/n) is the bordism

group of singular Z/n manifolds in X so that the restricted map on the Bocksteins are

identical.

Remark 2.3.1. We can similarly define Z/n manifolds (with or without boundary) with other

structures like STOP, SPL,U, Spin and then get the corresponding bordism groups with

coefficient Z/n.

Like the algebraic map i : Z/n → Z/nm by multiplication with m, one can construct

ΩSO∗ (X;Z/n)→ ΩSO∗ (X;Z/nm) by taking a disjoint union of m copies of a Z/n manifold M

and view it as a Z/nm manifold. Define ΩSO
∗ (X;Z/p∞) = lim−→k

ΩSO
∗ (X;Z/pk) for any prime

number p.

On the other hand, the natural quotient map Z/nm → Z/n also induces a map

ΩSO
∗ (X;Z/nm)→ ΩSO

∗ (X;Z/n) by regrouping mn copies of Bocksteins into n copies.

The product of any two Z/n manifoldsM×N might not be a Z/n manifold. The problem

is that the neighborhood δM × δN does not look like n-sheets coming into the boundary.

[MS74] made a modification like follows.

A canonical neighborhood of each point in δM×δN is a product of a Euclidean space and a
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cone over n∗n, the join between two sets of n points. It is the boundary of some 2-dimensional

Z/nmanifoldsW , since ΩSO1 (pt;Z/n) = 0. Then replace the tubular neighborhood of δM×δN

by δM × δN ×W . The resulting manifold M ⊗ N is a Z/n-manifold. The Z/n-bordism

class of M ⊗ N is independent of the choice of W , since ΩSO
2 (pt;Z/n) = 0. The modified

multiplication is associative up to Z/n-bordism since ΩSO
3 (pt;Z/n) = 0.

There is a natural map ρ :M ⊗N →M ×N which is the identity both away from some

neighborhood of δM × δN and near δM × δN .

Lemma 2.3.2. ([MS74, Proposition 1.5]) The tangent bundle T (M ⊗N) is stably equivalent

to ρ∗(TM × TN)⊕ π∗E for some vector bundle E over W/(n ∗ n), where π is the quotient

map M ⊗N → δM × δN ×W/(n ∗ n)→ W/(n ∗ n).

2.3.2 Cohomological and K-Theoretical A Priori Invariants

Let LQ
M = 1 + LQ

4 (M) + LQ
8 (M) + · · · be the rational Hirzebruch L-genus of the tangent

bundle TM a manifold M . The rational class has a Z(2)-lifting LM , which is proved by the

transversality of Z/2k-manifolds ([MS74, Theorem 3.3]). Furthermore, the Z/2-reduction

of LM is the square of even Wu classes, namely, V 2
M = 1 + v22(M) + v24(M) + · · · ([MS74,

Corollary 3.2]).

Remark 2.3.3. The class L in [MS74] might cause some confusions. To be clear for the readers,

in [MS74] the class L ∈ H∗(BSO;Z(2)) is the inverse of the Hirzebruch L-genus as stated in

the [MS74, Corollary 3.2]. But the paragraph above the [MS74, Theorem 3.3] clarifies that

when applied to manifold, the notation LM means the class L for the normal bundle νM ,

which is equivalent to what we used above.

The natural Hurewicz homomorphism Ω∗(X;Z/2) → H∗(X;Z/2) is surjective, whose

kernel is generated by elements like [M, f ] · [N ] with N of positive dimension. More-

over, H∗(X;Z/2) ∼= Hom(H∗(X;Z/2),Z/2). Hence, we can define a cohomology class
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x ∈ Hn(X;Z/2) by a homomorphism ϕ : Ωn(X;Z/2)→ Z/2 such that ϕ([M, f ] · [N ]) = 0 if

the dimension of N is positive.

However, in application, we perturb the Hurewicz homomorphism to h′ : ΩSO∗ (X;Z/2)→

H∗(X;Z/2) by h′([M, f ]) = f∗(V
2
M ∩ [M ]). Then h′ is still surjective and the kernel of h′ is

generated by the elements like [M, f ] · [N ]− [M, f ] · χ2(N), where χ2(N) = ⟨V 2
N , [N ]⟩ is the

mod 2 Euler characteristic of N .

Theorem 2.3.4. ([BM76, Proposition A.3]) Each graded class x∗ ∈ H∗(X;Z/2) is uniquely

determined by a homomorphism σ : ΩSO
∗ (X;Z/2)→ Z/2 such that

σ((M, f) ·N) = σ(M, f) · χ2(N) ∈ Z/2

where χ2 is the mod 2 Euler charateristic, (M, f) ∈ ΩSO
∗ (X;Z/2) and N ∈ ΩSO

∗ (pt;Z/2).

The defining equation for x∗ is

σ(Mm, f) = ⟨V 2
M · f ∗(

∑
i≥0

xm−4i), [M
m]⟩ ∈ Z/2

where (M, f) ∈ ΩSO
m (X;Z/2).

The previous discussion can be generalized to Z/2r. That is, the natural Hurewicz homo-

morphism h : Ω∗(X;Z/2r)→ H∗(X;Z/2r) is surjective; H∗(X;Z/2r) ∼= Hom(H∗(X;Z/2r),Z/2r).

The kernel of the Hurewicz homomorphism is a bit more complicated.

Lemma 2.3.5. ([BM76, Lemma A.10]) The map ΩSO∗ (X;Z/2r)→ H∗(X;Z/2r) is surjective

for any r, whose kernel is generated by three types of elements.

(1) [M, f ] · [N ], where [M, f ] ∈ ΩSO
∗ (X;Z/2r) and [N ] ∈ ΩSO

>0 (pt).

(2) jq([M, f ] · [N ]), where [M, f ] ∈ ΩSO∗ (X;Z/2) and [N ] ∈ ΩSO>0 (pt;Z/2) and jq : Z/2→

Z/2r.

(3) ρrδ([M, f ]·[N ]) , where [M, f ] ∈ ΩSO∗ (X;Z/2), [N ] ∈ ΩSO>0 (pt;Z/2) and ρr : Z→ Z/2r.

By modifying the Hurewicz homomorphism, one gets that
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Theorem 2.3.6. ([BM76, Proposition A.11]) Each graded class x∗ ∈ H∗(X;Z/2r) is uniquely

determined by a homomorphism σ : ΩSO
∗ (X;Z/2r)→ Z/2r such that

(1)

σ((M, f) ·N) = σQ(M, f) · Sign(N) ∈ Z/2r

where (M, f) ∈ ΩSO
∗ (X;Z/2r) and N ∈ ΩSO

∗ (pt);

(2)

σ(jr((M, f) ·N)) = σ(jr(M, f)) · Sign(N) ∈ Z/2 jr−→ Z/2r

where jr : Z/2→ Z/2r, (M, f) ∈ ΩSO
∗ (X;Z/2) and N ∈ ΩSO

∗ (pt;Z/2);

(3)

σ(δ((M, f) ·N)) = σ(δ(M, f)) · Sign(N) ∈ Z/2 jr−→ Z/2r

where jr : Z/2→ Z/2r, (M, f) ∈ ΩSO
∗ (X;Z/2) and N ∈ ΩSO

∗ (pt;Z/2)

The defining equation for x∗ is

σ(Mm, f) = ⟨LM · f ∗(
∑
i≥0

xm−4i), [M
m]⟩ ∈ Z/2r

where (M, f) ∈ ΩSO
m (X;Z/2r).

If we take the colimit of the previous discussion, then we get the Hurewicz homomorphism

Ω∗(X;Z/2∞) → H∗(X;Z/2∞) whose kernel is generated by [M, f ] · [N ]. So one can prove

the following.

Theorem 2.3.7. ([MS74, Theorem 4.1]) Each graded class x∗ ∈ H∗(X;Z(2)) is uniquely

determined by a commutative diagram

ΩSO
∗ (X)⊗Q Q

ΩSO
∗ (X;Z/2∞) Z/2∞

σQ

π π

σ2

where π : Q→ Q/(Z[1
3
, 1
5
, . . . ]) ∼= Z/2∞, such that

(1)

σQ((M, f) ·N) = σQ(M, f) · Sign(N) ∈ Q
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where (M, f) ∈ ΩSO
∗ (X) and N ∈ ΩSO

∗ (pt);

(2)

σ2((M, f) ·N) = σ2(M, f) · Sign(N) ∈ Z/2r j∞−→ Z/2∞

where (M, f) ∈ ΩSO
∗ (X;Z/2r), N ∈ ΩSO

∗ (pt;Z/2r) and j∞ : Z/2r → Z/2∞.

The defining equations for x∗ are

σQ(M
m, f) = ⟨LM · f ∗(

∑
i≥0

xm−4i), [M
m]⟩ ∈ Q

and

σ2(N
m, g) = ⟨LN · g∗(

∑
i≥0

xm−4i), [N
m]⟩ ∈ Z/2r j∞−→ Z/2∞

where (M, f) ∈ ΩSO
m (X) and (N, g) ∈ ΩSO

m (X;Z/2r).

For odd primes, the periods can be used to define elements of real K-theory. It is based

on the Conner-Floyd theory and the Anderson duality for real K-theory.

Theorem 2.3.8. (Conner-Floyd, [CF66]) There is an isomorphism

δ : ΩSO
4∗+i(X)⊗ΩSO

∗
Z(odd) → KOi(X)(odd)

where the homomorphism ΩSO
∗ → Z(odd) is given by the signature of manifolds.

The isomorphism δ indeed corresponds to the element ∆4n ∈ K̃O(odd)(MSO(4n)) defined

by ∆4n = Λ+−Λ−
Λ++Λ−

, where Λ+,Λ− are the ±1 eigenspaces of the ∗-operator on the exterior

algebra of the universal bundle over BSO(4n). By calculations, ph(∆) = 1
LQ · U , where ph

is the rational Pontryagin character, LQ is the rational Hirzebruch L-genus and U is the

universal Thom class of MSO.

Let Z/(odd) be the colimit of Z/n for all odd integers n. Let K̂O(X)odd be the inverse

limit of KO(X;Z/n) for all n odd. Hence,

Theorem 2.3.9. (Anderson Duality, cf. [MM79, p. 85]) Let X be a finite complex. There is

a natural exact sequence given by the evaluation homomorphism

0→ Ext(KO0(SX),Z(odd))→ KO0(X)(odd) → Hom(KO0(X)(odd),Z(odd))→ 0
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Remark 2.3.10. By an argument of the Atiyah-Hirzebruch spectral sequence, if H∗(X;Z(odd))

is concentrated in even degrees, then the map KO0(X)(odd) → Hom(KO0(X)(odd),Z(odd)) is

an isomorphism.

Indeed, for any cohomology theory h∗ of finite type, i.e., hi(pt) is a finitely generated

abelian group for any i, there is an Anderson dual homology theory Dh∗ ([And69]) such that

for any finite CW complex X there is an exact sequence for any i

0→ Ext(hi(SX),Z(odd))→ hi(X)(odd) → Hom(hi(X)(odd),Z(odd))→ 0

KO(odd) is Anderson dual to itself. Hence,

Theorem 2.3.11. ([Sul96, p. 87 Theorem 6]) Let X be a finite complex. Any commu-

tative diagram like the following with some conditions uniquely determines an element in

KO(odd)(X).

ΩSO
∗ (X)⊗Q Q

ΩSO
∗ (X;Z/(odd)) Z/(odd)

σQ

π π

σodd

where π : Q→ Q/(Z[1
2
]) ∼= Z/(odd) satisfying that

(1)

σQ((M, f) ·N) = σQ(M, f) · Sign(N) ∈ Q

where (M, f) ∈ ΩSO
∗ (X) and N ∈ ΩSO

∗ (pt);

(2)

σodd((M, f) ·N) = σodd(M, f) · Sign(N) ∈ Z/n j∞−→ Z/(odd)

where n is odd, (M, f) ∈ ΩSO
∗ (X;Z/n), N ∈ ΩSO

∗ (pt;Z/n) and j∞ : Z/n→ Z/(odd).

Since Hom(·,Z/n) of Z/n-modules is an exact functor, the Pontryagin duality for the Z/n

real K-theory holds, namely, the evaluation map KO(X;Z/n)→ Hom(KO(X;Z/n),Z/n) is

an isomorphism ([Sul09, p. 206]). On the other hand, K̂O(X)odd is isomorphic to K̂O(X)odd

([Sul09, p. 207]) if X is a finite complex. Hence, one gets that
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Corollary 2.3.12. ([Sul09, Theorem 6.3]) Let X be a finite complex. Any element of

K̂O(X)odd is uniquely determined by a homomorphism σ : ΩSO∗ (X;Z/(odd))→ Z/(odd) such

that

σ((M, f) ·N) = σ(M, f) · Sign(N) ∈ Z/n j∞−→ Z/(odd)

where n is odd, (M, f) ∈ ΩSO
∗ (X;Z/n), N ∈ ΩSO

∗ (pt;Z/n) and j∞ : Z/n→ Z/(odd).

2.3.3 Applications to Surgery Theory

We sketch the proof regarding the homotopy type of G/PL and the construction of Brumfiel-

Morgan’s characteristic classes for spherical fibrations.

Sullivan proved that the PL-surgery space G/PL localized at prime 2 splits as a product

of Eilenberg-Maclane spaces twisted by a cohomology operation at degree 4 ([Sul65][Sul96,

Theorem 4(i)]). The homotopy equivalence map is induced by some characteristic classes for

PL surgeries [Sul96, p. 88]. Later [RS71][MS74] constructed more elaborate classes.

For any Z/2 manifold M and any map M → G/PL, there is induced a degree 1 normal

map N → M . The Kervaire invariant of the map N → M induces a homomorphism

ΩSO∗ (G/PL;Z/2)→ Z/2. It is not hard to see that this homomorphism satisfies the product

formulae in Subsection 1. Hence,

Theorem 2.3.13. ([Sul96, p. 88, Corollary 1][RS71, Theorem 4.6]) There is a graded

class k = k2 + k6 · · · ∈ H4∗+2(G/PL;Z/2) such that for any Z/2 manifold M and any map

f :M → G/PL, the Kervaire invariant for the surgery problem induced by f is ⟨f ∗k·V 2
M , [M ]⟩.

For any 4l-dimensional manifold Z/2r manifold M and any map f :M → G/PL, there is

a surgery obstruction σ(M, f) defined in Z/2r for the surgery problem induced by f ([MS74,

p. 9.5]). Define σ′(M, f) = σ(M, f) − ⟨β(f ∗k · VMSq1VM), [M ]⟩ ([MS74, p. 540]), where β

is the Z/2 → Z/2r Bockstein. The induced map ΩSO
∗ (G/PL;Z/2∞) → Z/2∞ satisfies the

product formula ([MS74, Theorem 8.6]). Hence,
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Theorem 2.3.14. ([MS74, Theorem 8.7]) There is a graded class l = l4+l8 · · · ∈ H4∗(G/PL;Z(2))

such that for any Z/2r manifold M4m and any map f :M → G/PL, the surgery obstruction

for the surgery problem induced by f is ⟨f ∗l · LM , [M ]⟩+ ⟨β(f ∗k · VMSq1VM), [M ]⟩.

To prove the splitting of G/PL at prime 2, one needs the following two lemmas.

Lemma 2.3.15. ([Coo68, p. 170 (3.7)]) The k-invariant Xi−1 → K(πiX, i + 1) of the

Postnikov system of a simple space X vanishes if and only if the Hurewicz map hi : πi(X)→

Hi(X;Z) is a splitting monomorphism.

Lemma 2.3.16. ([Coo68, p. 172 (3.8)]) Let X be a simple space with πi(X) ∼= Z. The order

d of the k-invariant Xi−1 → K(πiX, i+1) of the Postnikov system is the least positive integer

d such that there is a cohomology class in H i(X) with value d on the generator of πi(X).

Hence, one can prove the following. For more details, we recommend [Coo68].

Theorem 2.3.17. ([Sul96, Theorem 4]) The classes k and l above induce a homotopy

equivalence (G/PL)(2) ≃ K(Z/2, 2) ×β·Sq2 K(Z(2), 4) ×
∏

i≥2(K(Z/2, 4i − 2) ×K(Z(2), 4i)),

where β is the Z/2→ Z(2) Bockstein.

Remark 2.3.18. In fact, (G/TOP )(2) ≃
∏

i≥1(K(Z/2, 4i− 2)×K(Z(2), 4i)) ([KS77, p. 329]).

In this sense, the manifold theory for TOP is simpler than PL.

If we apply the odd-prime a priori invariant method to the space G/PL, then we can get

the following. For more details, we recommend [MM79, Chapter 4].

Theorem 2.3.19. ([Sul96, Theorem 4][MM79, Corollary 4.31]) There is a canonical H-space

equivalence (G/PL)(odd) ≃ BSO⊗
(odd), where the H-space structure on G/PL is induced by

Whitney sums and the superscript ⊗ means that the H-space structure on BSO is induced by

tensor products of vector bundles.

Remark 2.3.20. (G/TOP )(odd) ≃ BSO⊗
(odd) since G/TOP and G/PL are only differed by a

Z/2 invariant ([KS77, p. 246]).
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Now let us sketch the construction of Brumfiel-Morgan’s characteristic classes for spherical

fibrations.

Let νk be a spherical fibration S(ν) → X. Recall that the Thom space Th(ν) is the

union of the mapping cylinder D(ν) of ν and a cone C(ν) along S(ν). Let Mm+k be a

manifold with a map f :M → Th(ν). Call f Poincaré transversal if f is transversal to S(ν),

f−1(S(ν))→ f−1(D(ν)) is a spherical fibration and f induces a map of spherical fibrations.

One can directly deduce that if f is Poincaré transversal then f−1(D(ν)) is a Poincaré duality

space of dimension m with the fundamental class [M ]∩ f ∗Uν , where Uν is the Thom class for

ν.

There is a sequence of obstructions Ok+n+1 ∈ Hk+n+1(M ;Pn) for making f Poincaré

transversal. The construction is like the following.

There is an open cover {Ui} mon X such that ν over each Ui has a PL bundle structure.

Then there is some triangulation on M such that each simplex σi is mapped into some

Th(ν|Ui
). Suppose for each simplex of dimension at most k+n, the restriction of f is already

Poincaré transversal.

Then for each (k+n+1)-dimensional simplex σk+n+1, we hope to get a valueOk+n+1(σ
k+n+1) ∈

Pn. So the problem is reduced to the case of a map f : Dk+n+1 → Th(ν) such that f |Sk+n

is Poincaré transversal and ν has some PL bundle structure. Then we can slightly shift f

without changing the restriction on f−1(C(ν)) to some map f ′ such that f ′ is PL transversal

to the zero-section. Let A be the preimage of the zero section under f ′ and let B = f−1(D(ν)).

Then A is a PL manifold with boundary and the inclusion A ∩ Sk+n → B ∩ Sk+n is a degree

1 normal map. This is an element in Pn. We can slightly homotope f ′ so that the union C

of a collar of B ∩ Sk+n and a tubular of A becomes (f ′)−1(D(ν)). If n ≥ 5 and the surgery

obstruction vanishes, then we can homotope f ′ such that the inclusion A∩ Sk+n → B ∩ Sk+n

is a homotopy equivalence and C becomes a Poincaré pair in Dn+k+1. So f ′ on Dn+k+1 is

Poincaré transversal. If n ≤ 4, one can see [BM76, p. 18].

Come back to the map f :Mm+k → Th(νk). We can embed M into some sphere SN+k+m
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for some N > 2(k +m) and consider the Pontryagin-Thom construction, namely, an induced

map F : SN+k+m → Th(ν) ∧ Th(EPL(N)), where EPL(N) → BPL(N) is the universal

block PL bundle of dimension N . The obstruction theory above gives us only one obstruction

class O ∈ HN+k+m(SN+k+m;Pm−1) ∼= Pm−1 for Poincaré transversality. The class O vanishes

if and only if we can cobord (M, f) to some Poincaré transversal (M ′, f ′). For more details

see [BM76, Section 3].

Then for a Z/2 manifold M4m+3+k and a map f :M → Th(νk), since P4m+1 = 0, we can

always assume f is homotopy transversal on δM . Then the obstruction for cobording (M, f)

to some Poincaré transversal (M ′, f ′) is an element in P4m+2 = Z/2. This is a homomorphism

Ω4m+3(Th(ν);Z/2) → Z/2. One can check that it satisfies the product formula. By the

Thom isomorphism for the spherical fibration νk one gets the following.

Theorem 2.3.21. ([BM76, Theorem 5.4]) There exists a graded characteristic class kG ∈

H4∗+3(X;Z/2) for a spherical fibration νk on X such that for any Z/2 manifold M4m+3+k

and any map f :M → Th(ν) the obstruction for f being Poincaré transversal by a bordism

is ⟨f ∗(kG · Uν) · V 2
M , [M ]⟩ ∈ Z/2.

To define the Z/8 characteristic class for νk, consider a Z/8 manifold M4m+k and a map

f :M → Th(ν). Since P4m−1 = 0, we may assume f is Poincaré transversal on δM .

Let us first consider the case that f is Poincaré transversal. Define the valuation on

(M, f) by the signature of the Poincaré space f−1(D(ν)) in Z/8. For the general case, [BM76,

p. 61] proved that there exists a map a : Kk+4 →MSG(k) for a Z/2 manifold

Kk+4 = Sk+3 × I/(x, 0) ∼ (−x, 1)

such that

(1) the Kervaire obstruction to the Poincaré transversality of a|δK is 1 ∈ Z/2;

(2) ⟨a∗(V 2 · U), [K]⟩ = 0 ∈ Z/2.

Then consider the bordism class [M, f ]− j8[K, a], where j8 : Z/2→ Z/8, it is Poincaré

transversal by some bordism. So we can apply the previously defined valuation on [M, f ]−
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j8[K, a]. Modify this valuation by minus j8⟨f ∗(kG ·U) · VMSq1VM , [M ]⟩. Chenck the product

formulae for this valuation ([BM76, Theorem 8.4]). Hence,

Theorem 2.3.22. ([BM76, p. 8.1]) There exists a graded characteristic class lG ∈ H4∗(X;Z/8)

for a spherical fibration νk on X satisfying the following properties:

(1) ρ2(l
G) = V 2, where ρ2 : Z/8→ Z/2;

(2) βlG is the obstruction class for Poincaré transversalities, where β is the Z/8→ Z(2),

namely, for any Z/2r manifold M4m+1+k and any map f : M → Th(ν) the obstruction

f being Poincaré transversal by a bordism is ⟨f ∗(βlG · Uν) · LM , [M ]⟩ + jr⟨f ∗(kG · Uν) ·

VδMSq
1VδM , [δM ]⟩ ∈ Z/2r, where jr : Z/2→ Z/2r.

We have to mention that the following theorem is essentially due to Morgan-Sullivan,

though their result only states for PL bundles. However, if one knows some transversality

theorem for TOP manifolds and TOP bundles, then their result generalizes to TOP bundles.

Theorem 2.3.23. ([MS74, p. 530]) The Z(2)-class L for vector bundles defined above, whose

rationalization is the inverse Hirzebruch L-genus, can be lifted a Z(2)-class l
TOP for TOP

bundles.

The Winkelnkemper’s axiom I states that transversality unlocks the secret of manifolds.

One can define a TOP transversality theory on a spherical fibration ν by an assignment to

each singular simplex f : σi → Th(ν) a deformation of f till f is Poincaré tranversal in the

interior and in each face. Then one can define a concordance equivalence relation between

TOP transversality theories. Indeed, the equivalence classes of all TOP bundle structures on

ν is in one-to-one correspondence to the concordance classes of transversality theories on ν

([LM72], [BM76, Theorem E], [LR87, Theorem 1.11]). Since kG and βlG are the obstructions

for existence of TOP transversality theory on ν in the 2-local sense, so we have that

Theorem 2.3.24. kG and βlG are the obstructions for a spherical fibration ν to have a TOP

bundle structure in the 2-local sense.
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Remark 2.3.25. If ν has a TOP bundle structure, the Z/8 reduction of lTOP (ν) is exactly

lG(ν).

By applying the odd-prime period method and the correspondence between transversalities

and bundle structures, one can also get that

Theorem 2.3.26. ([Sul09, Theorem 6.5]) The existence of a KO(odd)-orientation is the

obstruction for a spherical fibration ν to have a TOP bundle structure in the odd-prime local

sense.

Remark 2.3.27. This theorem is also true if ‘a TOP bundle structure’ by ‘a PL bundle

structure’, since they are only differed a Z/2 invariant.
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Chapter 3

L-theory with Z/n coefficient

We generalize the idea of Z/n manifolds to chain-level. We put many efforts to construct the

bordism invariants for Z/n and prove the product formulae for these invariants.

3.1 Z/n Chains and their bordisms

Like Z/n manifolds, we can define Z/n symmetric, quadratic or normal chains. The definitions

for three cases are similar so we only discuss the symmetric case here. We use the notation

n · C for the direct sum of n (labelled) copies of a chain complex C.

Definition 3.1.1. An m-dimensional Z/n symmetric chain complex C is an m-dimensional

symmetric pair nδC → C, nδC is labelled by 1, . . . , n.

δC is also called the Bockstein of C.

Definition 3.1.2. A Z/n symmetric complex C is Poincaré if both the chain δC and the

pair nδC → C are Poincaré.

Definition 3.1.3. A Z/n symmetric chain pair D → C consists of symmetric pairs (−δD)→

δC, nδD → D and D
⋃
nδD nδC → C. It is a Z/n Poincaré pair if nδD → D is a Z/n

Poincaré symmetric chain and (−δD)→ δC, D
⋃
nδD nδC → C are both Poincaré pairs.
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Remark 3.1.1. We only use the symmetric-quadratic pair description for Z/n normal complexes.

A Z/n Poincaré symmetric-quadratic chain pair of dimension m consists of a Z/n Poincaré

quadratic chain complex nδE → E of dimension m − 1, a Poincaré symmetric chain pair

(−δE) → δD of dimension m − 1 and a Poincaré symmetric chain pair E
⋃
nδE nδD → D

of dimension m. In abbreviation, we use the symbol (D,E) instead of writing all the maps

above.

Then one can define a bordism between two Z/n (Poincaré) symmetric chains. One can

also define a k-ad of Z/n (Poincaré) symmetric chains.

Definition 3.1.4. Let Lsm(Z,Z/n) be the set of m-dimensional bordism classes of Z/n

Poincaré symmetric chain complexes.

Like Lsm, the Z/n L-group Lsm(Z,Z/n) is also an abelian group with the additive structure

by the direct sum of chains. Analogously, one can also define the abelian groups Lqm(Z,Z/n)

and Lnm(Z,Z/n).

Like the long exact sequence of L-groups in the last chapter, we also have

Proposition 3.1.2. There is a long exact sequence

· · · → Lqm(Z,Z/n)→ Lsm(Z,Z/n)→ Lnm(Z,Z/n)→ Lqm−1(Z,Z/n)→ · · ·

Like the Z/n manifold case, there are also natural maps Ls(Z,Z/n)→ Ls(Z,Z/nm) and

Ls(Z,Z/nm)→ Ls(Z,Z/n).

The Bockstein of Z/n chains induces a natural map Lsm(Z,Z/n)
δ−→ Lsm−1.

Proposition 3.1.3. There is a long exact sequence

· · · → Lsm
×n−→ Lsm

ι−→ Lsm(Z,Z/n)
δ−→ Lsm−1 → · · ·

Proof. Im(δ) = Ker(×n), Ker(ι) ⊂ Im(×n) and Im(ι) ⊂ Ker(δ) are obvious. Let us check

the rest.
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Ker(δ) ⊂ Im(ι): Take C ∈ Ker(δ). Then there is a Poincaré symmetric chain pair

−δC → D. Then ι(C
⋃
nδC

nD) = C since the C
⋃
nδC

nD× I gives the Z/n bordism between

C and C
⋃
nδC

nD, where I is the cellular chain of a unit interval.

Im(×n) ⊂ Ker(ι): Take a C ∈ Lsm. nC × I is a Z/n chain with boundary nC. So

ι(nC) = 0.

By a direct calculation, the followings are immediate.

Proposition 3.1.4. (1)

Lsm(Z,Z/2k) ∼=


Z/2k, if m ≡ 0 (mod 4)

Z/2, if m ≡ 1, 2 (mod 4)

0, otherwise

(2) Let p be an odd prime.

Lsm(Z,Z/pk) ∼=


Z/pk, if m ≡ 0 (mod 4)

0, otherwise

(3) The isomorphisms are given by the bordism invariants defined below.

To define the bordism invariants, let us only focus on the case when n = 2k, since the

odd n case is almost the same and much easier.

The signature of a Z/n manifold is defined to be the signature modulo n. It is well defined

because of Novikov’s additivity theorem. It is also a bordism invariant for the same reason.

Likewise, define the signature invariant σs0 = Sign ∈ Z/n for Z/n Poincaré symmetric chains.

For a 4l + 2 dimensional Z/2k Poincaré symmetric chain complex C, define the bordism

invariant σs2(C) = dR(δC) ∈ Z/2.

The dimension 4l+1 case is a bit more complicated. [MS74] defined the de Rham invariant

for 4l + 1 dimensional Z/n oriented manifolds. Here we use the same idea .

Let C be a 4l + 1 dimensional Z/2k Poincaré symmetric chain complex. Let A be the

self-annihilating subspace of H2l(δC), which has half of the total rank. Let T be the torsion
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of H2l(δC). Let TC,A be the torsion of H2l(C)/f(2k · (A+ T )). Define the de Rham invariant

by dR(C) = rankZ/2(TC,A ⊗ Z/2) ∈ Z/2.

There is an alternative way to define de Rham invariant. Since 2k copies of δC is a

boundary, the signature of δC vanishes. So it is the boundary of some Poincaré symmetric

chain pair, namely, (−δC)→ C ′. Then define σs1(C) = dR(C
⋃

2kδC 2kC ′) ∈ Z/2.

The second definition is independent of the choice of C ′. Indeed, let C ′′ be another

choice and then 2k((−C ′)
⋃
δC⊗0 δC ⊗ I

⋃
δC⊗1C

′′) must be the boundary of some Poincaré

symmetric pair W since its de Rham invariant must vanish. Then C ⊗ I
⋃

2kδC⊗I(−W ) is a

bordism between C
⋃

2kδC 2kC ′ and C
⋃

2kδC 2kC ′′. So they have the same de Rham invariant.

σs1 is a bordism invariant by a similar argument.

Warning 3.1.5. Extend σsm by 0 when the chain complex does not have the corresponding

dimension. This rule applies to other bordism invariants.

Analogously, we have the followings.

Proposition 3.1.6. There is a long exact sequence

· · · → Lqm
×n−→ Lqm

ι−→ Lqm(Z,Z/n)
δ−→ Lqm−1 → · · ·

Proposition 3.1.7. There is a long exact sequence

· · · → Lnm
×n−→ Lnm

ι−→ Lnm(Z,Z/n)
δ−→ Lnm−1 → · · ·

Again by direct computations, we have

Proposition 3.1.8. (1)

Lqm(Z,Z/2k) ∼=


Z/2k, if m ≡ 0 (mod 4)

Z/2, if m ≡ 2, 3 (mod 4)

0, otherwise
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(2) Let p be an odd prime.

Lqm(Z,Z/pk) ∼=


Z/pk, if m ≡ 0 (mod 4)

0, otherwise

(3) The isomorphisms are given by the bordism invariants defined below.

The bordism invariants for the quadratic case is like the symmetric case. Let C be a Z/2k

Poincaré quadratic chain complex.

If C has dimension 4l, then δC has dimension 4l − 1 and must be the boundary

of some Poincaré quadratic chain pair, namely, (−δC) → C ′. Then C
⋃

2kδC 2kC ′ is

a Poincaré quadratic chain and hence its signature is divisible by 8. Define σq0(C) =

1
8
· Sign(C

⋃
2kδC 2kC ′) ∈ Z/2k.

If C has dimension 4l + 2, then the dimension argument also shows that δC must be

the boundary of some quadratic Poincaré pair, namely, (−δC) → C ′. Define σq2(C) =

K(C
⋃

2kδC 2kC ′) ∈ Z/2.

If C has dimension 4l + 3, define σq3(C) = K(δC) ∈ Z/2.

Proposition 3.1.9. (1) If k = 1, 2, then

Lnm(Z,Z/2k) ∼=


Z/2k ⊕ Z/2, if m ≡ 0 (mod 4)

Z/2⊕ Z/2k, if m ≡ 1 (mod 4)

Z/2, if m ≡ 2, 3 (mod 4)

If k ≥ 3, then

Lnm(Z,Z/2k) ∼=


Z/8⊕ Z/2, if m ≡ 0 (mod 4)

Z/2⊕ Z/2k, if m ≡ 1 (mod 4)

Z/2, if m ≡ 2, 3 (mod 4)

(2) Let p be an odd prime. Then Lnm(Z,Z/pk) = 0.

(3) The isomorphisms are induced by the bordism invariants defined in the next section.
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Proof. The result follows from the diagram, where each horizontal and vertical line is an

exact sequence.

· · · · · · · · ·

· · · Lsm Lsm Lsm(Z,Z/n) · · ·

· · · Lqm Lqm Lqm(Z,Z/n) · · ·

· · · Lnm Lnm Lnm(Z,Z/n) · · ·

· · · · · · · · ·

Remark 3.1.10. All the direct sum decompositions above are unnatural. However, we will

find a way for an explicit decomposition in the last part of this chapter.

A Z/n (Poincaré) symmetric presheaf on a finite ∆-set is a (Poincaré) presheaf of ads of

Z/n symmetric chain complexes, like presheaf of ads of symmetric chain complexes. Later

on, we might discard the word ‘ads’ for simplicity and only use the phrase ‘a presheaf of Z/n

(Poincaré) symmetric chain complexes’.

Like the lemma 2.1.7, the following two lemmas are immediate.

Lemma 3.1.11. Let X be a closed n-dimensional PL manifold with a PL triangulation.

Let C be an m-dimensional (Poincaré) presheaf of Z/k symmetric/quadratic/normal chain

complexes over X. Then the assembly C(X) is also a Z/k (Poincaré) (n+m)-dimensional

symmetric/quadratic/normal chain complex.

Lemma 3.1.12. Let X be an oriented n-dimensional Z/k PL manifold with a PL triangu-

lation. Let C be an m-dimensional (Poincaré) presheaf of symmetric/quadratic/normal chain

complexes over X. Then the assembly C(X) is also a Z/k (Poincaré) (n+m)-dimensional

symmetric/quadratic/normal chain complex.
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3.2 Product of Z/n Chains

We can define the product structure for Z/n Poincaré symmetric/quadratic/normal chains

with the same idea for defining products of Z/n manifolds. Like the previous section, we only

foucs on the symmetric case. The quadratic and normal cases are analogous.

Let C and D be two Z/n Poincaré symmetric complexes.

Let I be the chain complex of the unit interval. First, take (C ⊗ nδD ⊗ I)
⋃
(C ⊗

D)
⋃
(nδC ⊗D⊗ I), where the union is via an identification of C ⊗ nδD⊗ 0 in C ⊗ nδD⊗ I

with C⊗nδD in C⊗D and by a similar identification for another part. Then the ‘singularity’

part in the boundary is nδC ⊗ nδD ⊗ I
⋃
nδC ⊗ nδD ⊗ I ∼= δC ⊗ δD ⊗ (n2I

⋃
n2I), where

n2I
⋃
n2I is the chain complex of the Z/n manifold n ∗ n. Since n ∗ n bounds a Z/n 2-

dimensional manifold. LetW be the corresponding cellular chain complex. Define the product

of C and D by

C ⊗ nδD ⊗ I
⋃

C ⊗D
⋃

nδC ⊗D ⊗ I
⋃

δC ⊗ δD ⊗W (3.2.1)

By abuse of notations, we still use C ⊗ D to represent their modified product. The

existence of such a modification is due to the fact ΩSO1 (pt;Z/n) = 0. The Z/n bordism class

of C⊗D does not depend on the choice of W , since ΩSO2 (pt;Z/n) = 0. The modified product

is associative up to bordism since ΩSO
3 (pt;Z/n) = 0.

Remark 3.2.1. In fact, the modified product of two Z/nmanifold is like our modified chain-level

products. That is, the modified product M ⊗N is diffeomorphic to the union

(M ⊗
⊔
n

δN × I)
⋃

(M ×N)
⋃

(
⊔
n

δM ⊗N × I)
⋃

(δM × δN ×W )

Consider the graph n∗n, namely, there are two sets of n points {i1, · · · , in} and {j1, · · · , jn}

and there is a path (s, t) connecting each pair of vertices is, jt. A choice of W gives a

permutation γ of {1, . . . , n}. It adds for each s a path ps into n ∗ n connecting the vertices

is, jγ(s). Call the new graph γ′. W also regroup the original paths (s, t) of γ into n classes

{(isk , jtk)}1≤k≤n, where each vertex it and js appear only once in the set of vertices of each
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group of paths, so that each group of paths together with {ps}1≤s≤n gives a loop in the new

graph. In this way, we csee what W does for δ(C ⊗D). W connects the t-th copy δC ⊗D

with γ(t)-th copy C ⊗ δD for 1 ≤ t ≤ n. Considering δ(C ⊗D)⊗ I we get that

Lemma 3.2.2. δ(C ⊗D) is bordant to (δC ⊗D)⊕ (C ⊗ δD), as Z/n Poincaré symmetric

chains.

For later uses, let us further consider a product of presheaves over two Z/n manifolds. Let

C and D be presheaves of symmetric chain complexes over two oriented Z/n PL manifolds

M and N respectively.

By adding a collar neighborhood of Bockstein δM to M , we may assume the presheaf C

on a collar neighborhood of a cell δσ of δM is C(δσ)⊗ C∗(c(n)), where c(n) is the cone over

n points. It is similar for D over N .

M ×N has a natural regular cell decomposition inherited from the cell decompositions of

M and N , namely, each cell inM×N has the form σ×τ for some cell σ ofM and some cell τ of

N . Then it is natural to define the presheaf C×D overM×N by (C×D)(σ×τ) = C(σ)⊗D(τ).

Consider the modified product M ⊗N . For any cell δσ× δτ of δM × δN , we just replace

its tubular neighborhood δσ × δτ in M ×N by δσ × δτ × c(n ∗ n) by δσ × δτ ×W , where

c(n ∗ n) is the cone over n ∗ n. On the chain level, we define C ⊗ D by the same value as

C × D except (C ⊗ D)(δσ × δτ ×W ) = C(δσ)⊗D(δτ)⊗ C∗(W ).

Comparing products of presheaves over modified products of manifolds and modified

products of two symmetric chains, it is obvious that

Proposition 3.2.3. The chain-level modified product of the assemblies C(M) ⊗ D(N) is

isomorphic to the assembly of the presheaf over the modified product of manifolds (C⊗D)(M⊗

N).

Proposition 3.2.4. The Bockstein of the assembly of the modified product presheaf δ(C ⊗

D)(M⊗N) is bordant to (δ(C(M))⊗D(N))⊕(C(M)⊗δ(D(N))), as Z/n Poincaré symmetric

chains.
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3.3 Product Structure of L-Theory with Z/n coefficient

We only consider the case n = 2k in this section, since the odd n case is much easier.

Recall that tensor products of chains induce the ring structures on Ls∗, L
n
∗ and the Ls∗-

module structure on Lq∗. The map Ls∗ → Ln∗ also induces an Ls∗-algebra structure on Ln∗ .

The product structures on the L-groups can be lifted to the spectra level. We recall the

construction in [Ran92, Appendix B] here.

The simplicial approximation of the diagonal map of ∆n gives a ∆-set structure on ∆n,

that is, a (k + l)-cell σt0,t1,··· ,tk,s0,s1,··· ,sl is indexed by each sequence 0 ≤ t0 < t1 < · · · tk ≤

s0 < s1 < · · · sl ≤ n.

Let C and D be two n-ads of chains. Then define a presheaf C ⊗ D of chains over ∆n by

(C ⊗ D)(σt0,··· ,tk,s0,··· ,sl) = C(∆t0,··· ,tk)⊗D(∆s0,··· ,sl). After taking a union, C ⊗ D is indeed an

n-ad of chains.

All these algebraic structures can be defined for the L-groups with Z/n-coefficient, by

the modified products constructed in the previous section. Moreover, the natural map

La∗ → La∗(Z,Z/n) is a ring map when a = s, n and an Ls-module map when a = q.

We will calculate the explicit product structures for these L-groups with Z/n-coefficient.

3.3.1 Symmetric and Quadratic Case

Firstly, like manifolds, the signature of chains is multiplicative.

Lemma 3.3.1. Let C and D be two Poincaré symmetric pairs, then

Sign(C ⊗D) = Sign(C) · Sign(D)

Hence, the multiplicative structure on Ls∗ induces the following isomorphisms.

Proposition 3.3.2.

Ls4s ⊗ Ls4t
∼=−→ Ls4(s+t)

Ls4s ⊗ L
q
4t

∼=−→ Lq4(s+t)
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Ln4s ⊗ Ln4t
∼=−→ Ln4(s+t)

Using the long exact sequence 3.1.3 and the calculation of Ls∗(Z,Z/2k), we get that

Proposition 3.3.3.

Ls4s(Z,Z/2k)⊗ Ls4t(Z,Z/2k)
∼=−→ Ls4(s+t)(Z,Z/2k)

Ls4s(Z,Z/2k)⊗ L
q
4t(Z,Z/2k)

∼=−→ Lq4(s+t)(Z,Z/2
k)

Lemma 3.3.4. Let C and D be Z/2k Poincaré symmetric chain complexes. Then

σs0(C ⊗D) = σs0(C) · σs0(D) ∈ Z/2k

The argument in [MS74, Chapter 6] also proves that

Proposition 3.3.5.

Ls4s+1 ⊗ Ls4t
∼=−→ Ls4(s+t)+1

Ls4s+1(Z,Z/2k)⊗ Ls4t(Z,Z/2k)
∼=−→ Ls4(s+t)+1(Z,Z/2k)

It follows that

Lemma 3.3.6. Let C and D be Z/2k Poincaré symmetric chain complexes. Then

σs1(C ⊗D) = σs1(C) · σs0(D) + σs0(C) · σs1(D) ∈ Z/2

Analogously,

Proposition 3.3.7.

Lq4s+2 ⊗ Ls4t
∼=−→ Lq4(s+t)+2

Lq4s+2(Z,Z/2k)⊗ Ls4t(Z,Z/2k)
∼=−→ Lq4(s+t)+2(Z,Z/2

k)

Lemma 3.3.8. Let C be a Z/2k Poincaré symmetric chain complex and let D be a Z/2k

Poincaré quadratic chain complex. Then

σq2(C ⊗D) = σs0(C) · σ
q
2(D) ∈ Z/2
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The following technical point is essentially [MS74, Theorem 6.1], which is crucial for the

rest discussions.

Lemma 3.3.9. Let S and Q be generators of Ls4s+1 and Lq4t+2. Suppose S⊗Q is the boundary

of some Poincaré quadratic pair S ⊗Q→ W . Then Sign(W ) = 4 ∈ Z/8.

The proof is based on the following lemma, which is essentially equivalent to [MS74,

Theorem 5.8]. Let C be a (4k− 1) dimensional Poincaré quadratic chain complex. Then C is

equivalent to a linking form q (valued in Q/Z) on the torsion group TH2k−1(C). Suppose C

is the boundary of some Poincaré quadratic pair C → D.

Lemma 3.3.10.
√
|TH2k−1(C)| · e

πi
4

Sign(D) =
∑

x∈TH2k−1(C) e
2πiq(x).

Sketch Proof of Lemma 3.3.9. There is a correspondence between bordism classes of Poincaré

symmetric or quadratic chains and the Witt group of nonsingular (skew-)symmetric or (skew-

)quadratic forms on abelian groups (which are free finitely generated or finite abelian group

respectively) ([Ran81, Proposition 4.2.1]).

Hence, S is equivalent to a symmetric linking form l1 : Z/2 × Z/2 → Q/Z and Q is

equivalent to a symplectic form l2 on Z/2⊕ Z/2 together with a quadratic form q2 so that

q2(1, 0) = q2(0, 1) = q2(1, 1) =
1
2
∈ Z/2 ⊂ Q/Z. Then S ⊗Q is equivalent to the quadratic

form q on Z/2⊕ Z/2 with q = q2.

Applying the previous lemma, we get that Sign(W ) = 4 ∈ Z/8 by a direct calulation.

Remark 3.3.11. If one wants to see a more elementary proof, we recommend the [MS74,

Theorem 5.9] and the example in [MS74, p. 508].

Hence, we also have the followings.

Corollary 3.3.12. Let S and Q be the generators of Ls4s+1 and Lq4t+2 respectively. Suppose

2k copies of S ⊗ Q is the boundary of the Poincaré quadratic pair S ⊗ Q → Wk. Then

σq0(Wk) = 2k−1 ∈ Z/2k.
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Lemma 3.3.13. Let C be a Z/2k Poincaré quadratic chain complex and D be a Z/2k Poincaré

symmetric chain complex. Then

σq0(C ⊗D) = σq0(C) · σs0(D) + j2k(σ
q
2(δC) · σs1(D) + σq2(C) · σs1(δD)) ∈ Z/2k

where j2k : Z/2→ Z/2k.

Proposition 3.3.14. The homomorphisms

Ls4s+1 ⊗ L
q
4t+3(Z,Z/2k)

∼=−→ Ls4s+1(Z,Z/2k)⊗ L
q
4t+3(Z,Z/2k)→ Lq4(s+t)+4(Z,Z/2

k)

Ls4s+2(Z,Z/2k)⊗ L
q
4t+2

∼=−→ Ls4s+2(Z,Z/2k)⊗ L
q
4t+2(Z,Z/2k)→ Lq4(s+t)+4(Z,Z/2

k)

are isomorphic to the nontrivial homomorphism j2k : Z/2→ Z/2k.

3.3.2 Normal Case

Now we are left with the normal case only. Let (D,E) be a Z/2k Poincaré symmetric-

quadratic chain pair of dimension m. For the use in the next chapter, we only consider the

case of dimension m ≥ 2.

(1) m ≡ 3 (mod 4).

Define σn3 (D,E) = σq2(E) ∈ Z/2. 3.3.8 also proves the product formula as follows.

Lemma 3.3.15. Let H be a Z/2k Poincaré symmetric chain complex. Then

σn3 (D ⊗H,E ⊗H) = σn3 (D,E) · σs0(H) ∈ Z/2

Due to the surjectivity of Ls4s → Ln4s, then

Proposition 3.3.16.

Ls4s ⊗ Ln4t+3(Z,Z/2k)
∼=−→ Ln4s ⊗ Ln4t+3(Z,Z/2k)

∼=−→ Ln4(s+t)+3(Z,Z/2k)
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(2) m ≡ 1 (mod 4)

The first summand Z/2 in the unnatural decomposition Lnm(Z/2) ∼= Z/2 ⊕ Z/2 is the

image of the homomorphism Lnm → Lnm(Z/2), which is canonically given.

Let us construct the generator of the second summand as follows. Let (D̃, Ẽ) be a Poincaré

symmetric-quadratic pair of dimension 3 such that the Kervaire invariant σq2(Ẽ) = 1 ∈ Z/2.

Let G̃ be a Z/2 Poincaré symmetric complex of dimension 2 such that σs1(δG) = 1.

Lemma 3.3.17. Each element (D,E) of the complement of the first summand of Ln5 (Z/2)

has σq0(E) = 1 ∈ Z/2.

Proof. The nontrivial class in the first summand has vanishing σq0 because it can be represented

by a Poincaré symmetric chain. Therefore, once we find a class (D,E) such that σq0(E) = 1,

the other element in the complement also has σq0(E) = 1. Indeed, for (D̃, Ẽ)⊗ G̃,

σq0((D̃, Ẽ)⊗ G̃) = σq2(Ẽ) · σs1(δG̃) = 1 ∈ Z/2

We use the class (D0, E0) = (D̃, Ẽ)⊗ G̃⊗G to generate the second summand in Lm(Z/2),

where G is a (m− 5)-dimensional Poincaré symmetric chain with signature 1.

The previous argument also proves that

Proposition 3.3.18.

Ln4s+1(Z,Z/2k)⊗ Ls4t(Z,Z/2k)
∼=−→ Ln4s+1(Z,Z/2k)⊗ Ln4t(Z,Z/2k)

∼=−→ Ln4s+t+1(Z,Z/2k)

Proposition 3.3.19.

Ln4s+3 ⊗ Ls4t+2(Z,Z/2k)
∼=−→ Ln4s+3(Z,Z/2k)⊗ Ls4t+2(Z,Z/2k)→ Ln4(s+t+1)+1(Z,Z/2k)

∼= Z/2⊕ Z/2

is an isomorphism onto the second summand.
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Due to the dimension, δE must be the boundary of some Poincaré quadratic pair δF .

Then E
⋃

2kδE 2kδF is a Poincaré quadratic chain.

If σq0(E
⋃

2kδE 2kδF ) = 0 ∈ Z/2k, then there exists another δF ′ such that

Sign(E
⋃

2kδE 2kδF ′) = 0 ∈ Z. E
⋃

2kδE 2kδF ′ must be the boundary of some Poincaré

quadratic pair F ′. Then D
⋃
E F

′ is a Z/2k Poincaré symmetric complex. Now define

σn1 (D,E) = σs1(D
⋃
E F

′) ∈ Z/2

If σq0(E
⋃

2kδE 2kδF ) = 1, then define σn1 (D,E) = σn1 ((D,E) − jk(D0, E0)), where

jk : Z/2→ Z/2k.

(3) m ≡ 0 (mod 4)

First let k ≥ 3. Assume that the Kervaire invariant σq2(δE) vanishes. Then δE is

the boundary of some Poincaré quadratic pair δF . Due to the dimension, the quadratic

complex 2kδF
⋃

2kδE E must be the boundary of some Poincaré quadratic pair F . Now

2k(δF
⋃
δE δD) → D

⋃
E F can be thought of as a Z/2k Poincaré symmetric complex

and (D,E) is bordant to (D
⋃
E F, 0) as Z/2k Poincaré symmetric-quadratic pairs. De-

fine σn0 (D,E) = Sign(D
⋃
E F ) ∈ Z/8. The value is independent of the choices of δF and F .

Indeed, a replacement of δF changes the signature by a multiple of 2k but a change of F

only alters the signature by a multiple of 8.

The first summand in the unnatural decomposition Lnm(Z,Z/2k) ∼= Z/8 ⊕ Z/2 is also

canonical, i.e., it is the image under the homomorphism Lnm → Lnm(Z,Z/2k). We construct

the generator of the second summand Z/2 as follows.

Lemma 3.3.20. The multiplication

Ln4 (Z,Z/2)⊗ Ls1 ∼= (Z/2⊕ Z/2)⊗ Z/2→ Ln5 (Z,Z/2) ∼= Z/2⊕ Z/2

is an isomorphism.

Proof. The bijectivity on the first summands of both sides follows from Ln4 ⊗ Ls1
∼=−→ Ln5 .
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There exists a 4-dimensional Poincaré symmetric-quadratic pair (D,E) with nonvanishing

σq2(E). Indeed, take a Poincaré quadratic chain δE with nonvanishing Kervaire invariant.

2δE must be the boundary of some Poincaré quadratic pair E. Because of the dimension, as

a Poincaré symmetric chain, δE must be the boundary of some Poincaré symmetric pair δD.

Then 2δD
⋃

2δE E is also a boundary.

Let G be a 1-dimensional Poincaré symmetric chain with σs1(G) = 1. Then

σq0(δE ⊗G) = σq2(δE) · σs1(G) = 1 ∈ Z/2

Hence, (D,E) is in the complement of the first summand of Ln5 (Z,Z/2) as well.

Applying the 4-periodicity, it also proves that

Proposition 3.3.21.

Ln4s(Z,Z/2)⊗ Ls4t+1

∼=−→ Ln4s(Z,Z/2)⊗ Ls4t+1(Z,Z/2)
∼=−→ Ln4(s+t)+1(Z,Z/2)

Thus, there must be a Z/2 Poincaré symmetric-quadratic pair (D′
0, E

′
0) of dimension

4, unique up to bordism, such that (D′
0, E

′
0) ⊗ G′ is bordant to (D0, E0), where G

′ is a

1-dimensional Poincaré symmetric complex of de Rham invariant 1.

We fix the Z/2 Poincaré symmetric-quadratic pair (D0, E0) = (D′
0, E

′
0)⊗G of dimension

m, where G is a (m− 4)-dimensional Poincaré symmetric complex with signature 1. Then

jk(D0, E0) is the element to produce the decomposition Lnm(Z,Z/2k) ∼= Z/8 ⊕ Z/2, where

jk : Z/2→ Z/2k.

For a general (D,E), let (D′, E ′) = (D,E) − jk(σq2(δE) · (D0, E0)). Define σn0 (D,E) =

σn0 (D
′, E ′) ∈ Z/8.

It is immediate that

Lemma 3.3.22. σn0 : Ln4k(Z,Z/2k) ∼= Z/8⊕ Z/2→ Z/8 is a projection.

Proposition 3.3.23.

Ln4s(Z,Z/2k)⊗ Ls4t
∼=−→ Ln4s(Z,Z/2k)⊗ Ln4t

∼=−→ Ln4(s+t)(Z,Z/2k)
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We also have the following.

Proposition 3.3.24.

Ln4s+3 ⊗ Ls4t+1

∼=−→ Ln4s+3(Z,Z/2k)⊗ Ls4t+1 → Ln4(s+t+1)(Z,Z/2k) ∼= Z/8⊕ Z/2

is an injection into the first summand.

Proof. It is irrelevant of the second summand due to the following diagram.

Ln4s+3 ⊗ Ls4t+1 Ln4(s+t+1)

Ln4s+3(Z,Z/2k)⊗ Ln4t+1 Ln4(s+t+1)(Z,Z/2k)

On the other hand, because of the 4-periodicity, it reduces to consider the following

diagram.

Ln4 (Z,Z/2)⊗ Ls1 Ln3 ⊗ Ls1

Ln5 (Z,Z/2) Ln4

∼=

The generator of Ln3 ⊗ Ls1 is mapped to (D̃, Ẽ) ⊗ G̃ ∈ Ln5 (Z,Z/2), with the notation

introduced in the proof of 3.3.17.

We have also proved the following.

Lemma 3.3.25. Let (D,E) be a Z/2k Poincaré symmetric-quadratic pair with k ≥ 3 and let

G be a Poincaré symmetric complex. Then

σn0 ((D,E)⊗G) = σn0 (D,E) · σs0(G) + j8(σ
n
3 (D,E) · σs1(G)) ∈ Z/8

where j8 : Z/2→ Z/8.

Now consider the case for k = 1, 2.

If k = 1, (D,E) is a Z/2 Poincaré symmetric-quadratic pair and 4(D,E) is a Z/8 pair.

Define

σn0,2(D,E) = σn0 (4(D,E)) ∈ 4 · Z/8 ∼= Z/2
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Alternatively, there is a similar way to define σn0,2 like the case of k ≥ 3. We do not repeat

the tedious process to describe it and check the agreement of two definitions.

Proposition 3.3.26.

Ln4s+2(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k)
0−→ Ln4(s+t+1)(Z,Z/2k)

Proof. We only consider the case when k = 1 and the case for general k is analogous.

Ln4(s+t+1)(Z/2) has a decomposition Z/2⊕ Z/2 and we want to show that the projection

of the image to each direct summand of Ln4(s+t+1) is 0.

For the first summand, consider the diagram

Ls4s+2(Z,Z/2)⊗ Ls4t+2(Z,Z/2) Ls4(s+t+1)(Z,Z/2)

Ln4s+2(Z,Z/2)⊗ Ln4t+2(Z,Z/2) Ln4(s+t+1)(Z,Z/2)

0

∼= ∼=

For the second summand, remember that the direct sum decomposition follows from the

isomorphism

Ln4 (Z,Z/2)⊗ Ls1
∼=−→ Ln5 (Z,Z/2)

However, Ln2 (Z,Z/2)⊗ Ls1 → Ln3 (Z,Z/2) is a zero map because of the diagram

Ls2(Z,Z/2)⊗ Ls1 Ls3(Z,Z/2) = 0

Ln2 (Z,Z/2)⊗ Ls1 Ln3 (Z,Z/2)

∼=

Then we also get that

Lemma 3.3.27. Let (D,E) be a Z/2 Poincaré symmetric-quadratic pair and let G be a Z/2

Poincaré symmetric complex. Then

σn0,2((D,E)⊗G) = σn0,2(D,E) · σs0(G) + σn3 (D,E) · σs1(G) ∈ Z/2
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Lemma 3.3.28. Let (D,E) be a Z/2 Poincaré symmetric-quadratic pair and G be a Z/2

Poincaré symmetric complex . Then

σn0,2(δ((D,E)⊗G)) = σn0,2(δ(D,E)) · σs0(G) + σn0,2(D,E) · σs0(δG) ∈ Z/2

Proof. δ((D,E)⊗G) is bordant to (δD, δE)⊗G⊕ (D,E)⊗ δG as Z/2 Poincaré symmetric-

quadratic pairs.

Lemma 3.3.29. Let (D,E) be a Z/2 Poincaré symmetric-quadratic pair and let G be a Z/2

Poincaré symmetric complex. Then

σn1 ((D,E)⊗G) = σn1 (D,E) · σs0(G) + σn0,2(D,E) · σs1(G) ∈ Z/2

Similarly, if k = 2, (D,E) is a Z/4 Poincaré symmetric-quadratic pair and define

σn0,4(D,E) = σn0 (2(D,E)) ∈ 2 · Z/8 ∼= Z/4

There are also some multiplicative formulae of bordism invariants. They are pretty similar to

the k = 1 case, so let us skip stating them.

(4) Product Structure on Ln∗ (Z,Z/2k)

We already proved the product formula Ln4s+2(Z,Z/2k)⊗Ln4t+2(Z,Z/2k)
0−→ Ln4(s+t+1)(Z,Z/2k).

Proposition 3.3.30.

Ln4s+1(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k)
0−→ Ln4(s+t)+3(Z,Z/2k)

Proof. It follows from the diagram

Ls4s+1(Z,Z/2k)⊗ Ls4t+2(Z,Z/2k) Ls4(s+t)+3(Z,Z/2k)

Ln4s+1(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k) Ln4(s+t)+3(Z,Z/2k)

0

∼=
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and the diagram

Ln4s−2(Z,Z/2k)⊗ Ln3 ⊗ Ls4t+2(Z,Z/2k) Ln4(s+t)(Z,Z/2k)⊗ Ln3

Ln4s+1(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k) Ln4(s+t)+3(Z,Z/2k)

0

Proposition 3.3.31.

Ln4s(Z,Z/2k)⊗ Ln4t+3(Z,Z/2k)→ Ln4(s+t)+3(Z,Z/2k)

is isomorphic to the map

(Z/2l ⊕ Z/2)⊗ Z/2 π1−→ Z/2l ⊗ Z/2→ Z/2

where the first arrow is the projection onto the first factor. l = 3 if k ≥ 3 and l = k if

k = 1, 2.

Proof. The map on the first direct summand Z/2l is the 4-periodicity. For the second direct

summand Z/2, it can be deduced by the diagram

Ln4s(Z,Z/2k)⊗ Ln4t+3 ⊗ Ls1 Ln4s(Z,Z/2k)⊗ Ln4(t+1)

Ln4(s+t)+3(Z,Z/2k)⊗ Ls1 Ln4(s+t+1)(Z,Z/2k)

and the fact that (4Z/8)⊗ Z/2 is 0 in Z/8⊗ Z/2.

So we have also proved the following.

Lemma 3.3.32. Let (D,E) and (D′, E ′) be two Z/2 Poincaré symmetric-quadratic pairs.

Then

σn3 ((D,E)⊗ (D′, E ′)) = σn0,2(D,E) · σn3 (D′, E ′) + σn3 (D,E) · σn0,2(D′, E ′) ∈ Z/2
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Proposition 3.3.33.

Ln4s+1(Z,Z/2k)⊗ Ln4t+3(Z,Z/2k)→ Ln4(s+t+1)(Z,Z/2k)

is isomorphic to the map

(Z/2⊕ Z/2l)⊗ Z/2 π1−→ Z/2⊗ Z/2
∼=−→ Z/2 jl−→ Z/2l i−→ Z/2l ⊕ Z/2

where the first arrow is the projection onto the first direct summand and i is the natural

inclusion. l = 3 if k ≥ 3 and l = k if k = 1, 2.

Proof. The map on the first direct summand Z/2⊗Z/2 is calculated before. The map on the

second direct summand can be deduced from the fact that (4Z/8)⊗ Z/2 is 0 in Z/8⊗ Z/2

and the diagram chasing on

Ln4s+1(Z,Z/2k)⊗ Ln4t+3 ⊗ Ls1 Ln4s+1(Z,Z/2k)⊗ Ln4(t+1)

Ln4(s+t+1)(Z,Z/2k)⊗ Ls1 Ln4(s+t+1)+1(Z,Z/2k)

Proposition 3.3.34.

Ln4s(Z,Z/2k)⊗ Ln4t(Z,Z/2k)→ Ln4(s+t)(Z,Z/2k)

is isomorphic to the map

(Z/2l ⊕ Z/2)⊗ (Z/2l ⊕ Z/2)→ (Z/2l ⊗ Z/2l)⊕ (Z/2l ⊗ Z/2)⊕ (Z/2⊗ Z/2l)
(1+0+0,0+i+i)−−−−−−−−→ Z/2l ⊕ Z/2

where the first arrow is the projection and the second arrow means the identity on Z/2l and

the sum of two Z/2’s onto Z/2. l = 3 if k ≥ 3 and l = k if k = 1, 2.

Proof. All the nontrivial maps are 4-periodicity. The map follows from the diagram

Ln4s(Z,Z/2k)⊗ Ln4t(Z,Z/2k)⊗ Ls1 Ln4s(Z,Z/2k)⊗ Ln4t+1(Z,Z/2k)

Ln4(s+t)(Z,Z/2k)⊗ Ls1 Ln4(s+t)+1(Z,Z/2k)
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We have also proved the following.

Lemma 3.3.35. Let (D,E) and (D′, E ′) be two Z/2k Poincaré symmetric-quadratic pairs

with k ≥ 3. Then

σn0 ((D,E)⊗ (D′, E ′)) = σn0 (D,E) · σn0 (D′, E ′)

+j8(σ
n
1 (D,E) · σn3 (D′, E ′) + σn3 (D,E) · σn1 (D′, E ′)) ∈ Z/8

where j8 : Z/2→ Z/8.

For the case when k = 1, 2, the result is similar.

Proposition 3.3.36. Let (D,E) and (D′, E ′) be two Z/2k Poincaré symmetric-quadratic

pairs with k ≥ 3. Then

σn0 (δ((D,E)⊗ (D′, E ′))) = σn0 (δ(D,E)) · σn0 (D′, E ′) + σn0 (D,E) · σn0 (δ(D′, E ′))

+j8(σ
n
3 (δ(D,E)) · σn1 (D′, E ′) + σn1 (D,E) · σn3 (δ(D′, E ′)))

+j8(σ
n
3 (D,E) · σn1 (δ(D′, E ′)) + σn1 (δ(D,E)) · σn3 (D′, E ′))

Proposition 3.3.37.

Ln4s(Z,Z/2k)⊗ Ln4t+1(Z,Z/2k)→ Ln4(s+t)+1(Z,Z/2k)

is the map isomorphic to the map

(Z/2l ⊕ Z/2)⊗ (Z/2⊕ Z/2l)→ (Z/2l ⊗ Z/2)⊕ (Z/2l ⊗ Z/2l)⊕ (Z/2⊗ Z/2)
(1+0+0,0+1+jl)−−−−−−−−−→ Z/2⊕ Z/2l

where the first arrow is the projection. l = 3 if k ≥ 3 and l = k if k = 1, 2.

Proof. The map onto the second direct summand Z/2l is either already proven. The map

onto the first direct summand Z/2 follows from the diagram

Ln4s(Z,Z/2k)⊗ Ls4t−2(Z,Z/2k)⊗ Ln3 Ln4s+3(Z,Z/2k)⊗ Ln4t−2(Z,Z/2k)

Ln4(s+t)(Z,Z/2k)⊗ Ln4t+1(Z,Z/2k) Ln4(s+t)+1(Z,Z/2k)
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The product Ln4s+2(Z,Z/2k)⊗Ln4t+3(Z,Z/2k)→ Ln4(s+t+1)+1(Z,Z/2k) is essentially proven

above. Hence, we also get that

Lemma 3.3.38. Let (D,E) and (D′, E ′) be Z/2 Poincaré symmetric-quadratic pairs. Then

σn1 ((D,E)⊗ (D′, E ′)) = σn0,2(D,E) · σn1 (D′, E ′) + σn1 (D,E) · σn0,2(D′, E ′) ∈ Z/2

Proposition 3.3.39. The only nontrivial part in the following maps

Ln4s(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k)→ Ln4(s+t)+2(Z,Z/2k)

Ln4s+1(Z,Z/2k)⊗ Ln4t+1(Z,Z/2k)→ Ln4(s+t)+2(Z,Z/2k)

Ln4s+3(Z,Z/2k)⊗ Ln4t+3(Z,Z/2k)→ Ln4(s+t+1)+2(Z,Z/2k)

is the 4-periodicity.

Proof. The second and the third map can be essentially deduced from the fact Ln4s+2 = 0 and

the product structure on Ln∗ .

The rest follows from the diagram

Ln4s(Z,Z/2k)⊗ Ls4t+2(Z,Z/2k)⊗ Ln3 Ln4s+3(Z,Z/2k)⊗ Ln4t+2(Z,Z/2k)

Ln4(s+t)+2(Z,Z/2k)⊗ Ln3 Ln4(s+t+1)+2(Z,Z/2k)
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Chapter 4

L-theory Characteristic Classes and

Bundle Lifting Problem

In this chapter, we first construct some cohomology classes for three L-spectra and then

prove that these classes induce splittings of the spectra localized at 2. The method we use is

the a priori invariant method for cohomolgy classes introduced in the Chapter 2.

When we have the characteristic classes, we determine the relationship among characteristic

classes of different L-theories under the fibration Lq → Ls → Ln.

Moreover, there are ring structures and module structures over L-spectra and we will

also calculate the induced coproducts of these classes. Note that, for the surgery theory,

the ring structure on Lq is induced from the Whitney sum structure on G/TOP . This ring

structure can be induced from Ls-module structure on Lq. We show that the coproduct of

the characteristic classes of Lq induced by surgery theory and the coproduct induced from

the module structure are essentially the same.

Levitt-Ranicki’s L-theory orientations of bundles ([Ran92, Proposition 16.1]) imply that

the cohomology classes of L-spectra we construct in this chapter induce some characteristic

classes for spherical fibrations and for TOP -bundles. We prove that these classes are exactly

the same classes constructed in [MS74] and [BM76].
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Throughout this chapter, the symmetric spectrum Ls is 0-connective, the quadratic

spectrum Lq is 1-connective and the normal spectrum Ln is 1/2-connective, as we clarified

in Chapter 2. By abuse of notations, we still use La to represent the 0-th space for each

spectrum (a = s, q, n) and a reader can easily distinguish the meanings by the context.

We have to point out that the results in this chapter about the homotopy types of three

L-spectra at prime 2 and at odd primes are all proven in [TW79] already. However, they

don’t whether their results are equivalent to the bundle lifting theory. We made the homotopy

equivalences more explicit and proved that our constructions are essentially the same as

the constructions by Brumfiel-Morgan, Morgan-Sullivan, Rourke-Sullivan at prime 2 and by

Sullivan at odd primes.

4.1 L-theory Characteristic Classes and Splittings of

L-spectra at Prime 2

4.1.1 Quadratic L-spectrum

This subsection is a reproof of the splitting of Lq(≃ G/TOP ) at prime 2, with the technique

of Z/n quadratic chains discussed in the previous chapter.

Lemma 4.1.1. The Hurewicz map h : π4k+2(Lq)→ H4k+2(Lq;Z) is an injection onto a direct

summand.

Proof. It suffices to prove that the mod 2 Hurewicz map h2

h2 : L
q
4k+2
∼= π4k+2(Lq)

i−→ ΩSO
4k+2(Lq;Z/2)

j−→ H4k+2(Lq;Z/2)

is injective.

Let us construct a splitting inverse of i and then i is obviously an injection. For any

(M4k+2, f) ∈ ΩSO
4k+2(Lq;Z/2), it corresponds to a presheaf Cf of Poincaré quadratic chains
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over M . The assembly Cf (M) gives a splitting

ΩSO
4k+2(Lq;Z/2)→ Lq4k+2(Z,Z/2)

∼=←− Lq4k+2

To prove h2 is injective, let g : S4k+2 → Lq be the generator of the homotopy group.

Then the injectivity of i implies that (S4k+2, g) does not bound any Z/2 singular manifold in

Lq. Hence, there exists some nonvanishing generalized Stiefel-Whitney number of (S4k+2, g).

Since all the Stiefel-Whitney classes of a sphere vanish, it means that some cohomology class

H4k+2(Lq;Z2) evaluates nontrivially on h2(S
4k+2, g).

Proposition 4.1.2. There exists a graded class

kq = kq2 + kq6 + · · · ∈ H4∗+2(Lq;Z/2)

which agrees with the Kervaire class of G/TOP constructed in [RS71, Theorem 4.6].

Proof. LetM be a Z/2 manifold with a map f :M → Lq. Let Cf be the associated presheaf of

quadratic chains over M . Define a map σq2 : Ω
SO(Lq;Z/2)→ Z/2 by σq2(M, f) = σq2(Cf (M)).

Let N be another Z/2 manifold. The product property follows from the chain-level

product formula

σq2((M, f) ·N) = σq2(Cf (M)⊗ C∗(N)) = σq2(Cf (M)) · σs0(C∗(N)) = σq2(M, f) · χ2(N)

Since π4k(Lq) ≃ Lq4k ≃ Z, to prove the splitting injectivity of the Hurewicz map localized

at prime 2, it suffices to construct some characteristic class lq4k ∈ H4k(Lq4k,Z(2)) such that its

evaluation on the generator of Lq4k is an odd number.

Let M be a Z or Z/2k manifold with a map f : M → Lq and let Cf be the associated

presheaf of quadratic chain complexes over M . Define

σq0(M, f) = σq0(Cf (M))− jk⟨β(VMSq1VM · f ∗kq), [M ]⟩ ∈ Z or Z/2k
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Recall that the de Rham invariant of a Z/2k manifold M satisfies the equation ([MS74,

Lemma 8.2])

dR(M) = ⟨V Sq1V, [M ]⟩ ∈ Z/2

where V Sq1V = (1 + v2 + v4 + · · · ) · Sq1(1 + v2 + v4 + · · · ) and {vi} is the Wu class.

Then

dR(δM) = ⟨β(V Sq1V ), [M ]⟩ ∈ Z/2 ≃ 2k−1 · Z/2k

where β is the Z/2→ Z/2k Bockstein homomorphism.

The chain-level product formula implies the following.

Lemma 4.1.3. Let M and N be Z/2k manifolds with a map f :M → Lq. Then

σq0((M, f) ·N) = σq0(M, f) · Sign(N) ∈ Z or Z/2k

Therefore,

Proposition 4.1.4. There exists a graded class

lq = lq4 + lq8 + · · · ∈ H4∗(Lq;Z(2))

such that for any map f :M → Lq,

σq0(M, f) = ⟨LM · f ∗lq, [M ]⟩ ∈ Z or Z/2k

where M is a Z or Z/2k manifold.

Recall that the set [X,Lq] classifies the bordism classes of presheaves of Poincaré quadratic

chains over X. The previous results can be restated as follows.

Proposition 4.1.5. For any presheaf Q of 0-connective Poincaré quadratic chains over X,

there exist graded characteristic classes

kq(Q) = kq2 + kq6 + · · · ∈ H4∗+2(X;Z/2)

lq(Q) = lq4 + lq8 + · · · ∈ H4∗(X;Z(2))

which are invariant under presheaf bordism.
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Now let f : S4k → Lq be a generator of π4k(Lq) ≃ Z. Then the associated presheaf of

quadratic chains Cf has σq0(Cf (S4k)) = 1. Hence,

⟨lq4k, f∗[S
4k]⟩ = ⟨LS4k · f ∗lq4k, [S

4k]⟩ = σq0(Cf (S4k)) = 1

Then we have reproved that

Theorem 4.1.6. Localized at prime 2,

Lq ≃
∏
k>0

(K(Z(2), 4k)×K(Z/2, 4k − 2))

where the homotopy equivalence is given by the classes lq and kq.

4.1.2 Symmetric L-spectrum

Applying the argument of 4.1.1, we can prove an analogous statement about Ls.

Lemma 4.1.7. The Hurewicz map h : π4k+1(Ls)→ H4k+1(Ls,Z) is an injection onto a direct

summand.

We will define the 4∗-degree integral class before the (4 ∗+1)-degree Z/2 class.

It is different from Lq that the space Ls is not connected. Denote the t-th component by

Lst . Notice that the 0-cells of Lst are just 0-dimensional Poincaré symmetric chains with the

0-th homology of rank t.

Let M be a Z or Z/2l manifold with a map f : M → Ls and let Cf be the associated

presheaf of symmetric chains. Define

σs0(M, f) = σs0(Cf (M)) ∈ Z or Z/2l

It is immediate that the product formula holds, i.e.,

σs0((M, f) ·N) = σs0(M, f) · Sign(N)

where N is another Z or Z/2l manifold. Hence, we have
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Proposition 4.1.8. There exists a graded class

lst = lst,0 + lst,4 + lst,8 + · · · ∈ H4∗(Lst ;Z(2))

such that for any map f :M → Lst ,

σs0(M, f) = ⟨LM · f ∗lst , [M ]⟩ ∈ Z or Z/2l

where M is a closed manifold or a Z/2l manifold.

Ls also has an additional structure due to the infinite loop space structure, i.e.,

at,t′ : Lst × Lst′ → Lst+t′

The homotopy equivalence between different components is indeed the composition of

maps

at : Ls0 = Ls0 × pt→ Ls0 × Lst
a0,t−−→ Lst

Let us write down the map explicitly, let f : σm → Lst and g : σn → Lst′ be cellular

maps from simplices of dimension m and n respectively. They correspond to presheaves

Cf and Cg respectively. Now we consider the map a ◦ (f × g) : σm × σn → Lt+t′ and its

associated presheaf Ca◦(f×g). σm × σn has a natural regular cell decomposition of the form

τm
′ × τn′

, where τm
′
and τn

′
are faces of σm and σn respectively. Then Ca◦(f×g)(τm

′ × τn′
) ∼=

(Cf(τm
′
) ⊗ C∗(τ

n′
)) ⊕ (C∗(τ

m′
) ⊗ Cf(τn

′
)), where C∗(τ

m′
) and C∗(τ

n′
) are cellular chain

complexes. Hence, we have proved that

Lemma 4.1.9. Let M and N be two Z/2l manifolds with maps f :M → Ls and g : N → Ls.

Let Cf and Cg be the associated presheves of Poincaré symmetric chains over M and N

respectively. Let Ca◦(f⊗g) be the presheaf associated to a ◦ (f ⊗ g). Then Ca◦(f⊗g)(M ⊗N) is

bordant to (Cf (M)⊗ C∗(N))⊕ (C∗(M)⊗ Cg(N))

The ls-classes in different components are connected by the additional structure.

Proposition 4.1.10.

a∗t,t′l
s
t+t′ = lst × 1 + 1× lst′
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Proof. Let M and N be Z/2l manifolds with maps f : M → Lst and g : N → Lst′ . By the

lemma above we know that Ca◦(f×g)(M×N) is bordant to (Cf (M)⊗C∗(N))⊕(C∗(M)⊗Cg(N)).

On one hand,

σs0(M ⊗N, a ◦ (f ⊗ g)) = ⟨LM⊗N · (f ⊗ g)∗a∗(lst+t′), [M ⊗N ]⟩

On the other hand,

σs0((Cf (M)⊗ C∗(N))⊕ (C∗(M)⊗ Cg(N))) = ⟨LM · f ∗lst , [M ]⟩ · ⟨LN , [N ]⟩

+⟨LM , [M ]⟩ · ⟨LN · g∗lst′ , [N ]⟩

By a similar argument we also have

Proposition 4.1.11.

a∗t l
s
t = t+ ls0

In particular,

Proposition 4.1.12.

lst,0 = t ∈ H0(Lst ;Z(2)) ≃ Z(2)

Now let M be a Z/2 manifold with a map f : M → Lst and let Cf be the associated

presheaf. Define

σs1(M, f) = σs1(Cf (M))− ⟨VMSq1VM · f ∗lst , [M ]⟩ ∈ Z/2

Then the product formula follows from the chain-level formula. That is,

Lemma 4.1.13. Let M and N be Z/2 manifolds with a map f :M → Lst . Then

σs1((M, f) ·N) = σs1(M, f) · χ2(N)

Therefore, we have
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Proposition 4.1.14. There exists a graded class

rst = rst,1 + rst,5 + · · · ∈ H4∗+1(Lst ;Z/2)

such that for any f :M → Lst

σs1(M, f) = ⟨V 2
M · f ∗rst , [M ]⟩ ∈ Z/2

where M is a Z/2 manifold.

With the same argument above, we have

Proposition 4.1.15.

a∗t r
s
t = rs0

Similarly to the quadratic case, we can pull back the classes to the characteristic classes

of presheaves of Poincaré symmetric chains.

Proposition 4.1.16. For any presheaf S of 0-connective Poincaré symmetric chains over X,

there exist graded characteristic classes

rs(S) = rs1 + rs5 + · · · ∈ H4∗+1(X;Z/2)

ls(S) = ls0 + ls4 + ls8 + · · · ∈ H4∗(X;Z(2))

which are invariant under bordism.

With the same proof as the quadratic case, we have that

Theorem 4.1.17. Localized at prime 2,

Ls ≃ K(Z, 0)×
∏
k>0

(K(Z(2), 4k)×K(Z/2, 4k − 3))

where the homotopy equivalence is given by the ls and rs classes.
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4.1.3 Normal L-spectrum

We have to notice that π∗(Ln) has 4-periodicity for ∗ ≥ 1 and for the lower degrees, π0(Ln) ∼= Z

and πi(Ln) = 0 for i < 0.

Since Ln is not connected, we let Lnt be the t-th component.

Again, we apply the argument of 4.1.1 and get that

Lemma 4.1.18. The Hurewicz map h : π2k+1(Ln) → H2k+1(Ln;Z) is an injection onto a

direct summand.

We will define the cohomology classes of Ln in the order of (4 ∗+3)-degree, 4∗-degree and

(4 ∗+1)-degree.

Let M be a Z/2 manifold with f :M → Ln and let (Df , Ef ) be the associated presheaf of

symmetric-quadratic chain pairs. Define

σn3 (M, f) = σn3 (Df (M), Ef (M))

The product formula is immediate, i.e.,

σn3 ((M, f) ·N) = σn3 (M, f) · χ2(N)

where N is a Z/2 manifold.

Theorem 4.1.19. There exists a graded class

knt = knt,3 + knt,7 + · · · ∈ H4∗+3(Lnt ;Z/2)

such that for any map f :M → Lnt

σn3 (M, f) = ⟨V 2
M · f ∗knt , [M ]⟩ ∈ Z/2

where M is a Z/2 manifold.

Next, let M be a Z/8 manifold with a map f :M → Lnt and let (Df , Ef ) be the associated

presheaf. Define

σn0 (M, f) = σn0 ((Df (M), Ef (M)))− j8⟨VMSq1VM · f ∗knt , [M ]⟩ ∈ Z/8
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where j8 : Z/2→ Z/8.

The following product formulae are directly proven by the chain-level formulae.

Lemma 4.1.20. Let M be a Z/p manifold and N be a Z/q manifold with a map f :M → Lnk .

(1) If p = 8 and q = 0, then

σn0 ((M, f) ·N) = σn0 (M, f) · Sign(N) ∈ Z/8

(2) If p = 2 and q = 2, then

σn0 (j8((M, f) ·N)) = σn0 (j8(M, f)) · Sign(N) ∈ 4 · Z/8

where j8 : Z/2→ Z/8.

(3) If p = 2 and q = 2, then

σn0 (δ((M, f) ·N)) = σn0 (δ(M, f)) · Sign(N) ∈ 4 · Z/8

Then we can deduce the existence of a Z/8 class.

Proposition 4.1.21. There exists a graded class

lnt = lnt,0 + lnt,4 + lnt,8 + · · · ∈ H4∗(Lnk ;Z/8)

such that for any map f :M → Lnt we have

σn0 (M, f) = ⟨LM · f ∗lnt , [M ]⟩ ∈ Z/8

where M is a Z/8 manifold.

Now let M be a Z/2 manifold again with a map f : M → Lnt and let (Df , Ef) be the

associated preheaf. Define

σn1 (M, f) = σn1 ((Df (M), Ef (M)))− ⟨VMSq1VM · f ∗ρ2l
n
t , [M ]⟩ ∈ Z/2

where ρ2 : Z/8→ Z/2.

Because of the chain-level product formula, we have
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Lemma 4.1.22. Let M and N be Z/2 manifolds with a map f :M → Lnk . Then

σn1 ((M, f) ·N) = σn1 (M, f) · χ2(N) ∈ Z/2

Consequently,

Proposition 4.1.23. There exists a graded class rnt = rnt,1+ r
n
t,5+ · · · ∈ H4∗+1(Lnt ;Z/2), such

that for any f :M → Lnt

σn1 (M, f) = ⟨V 2
M · f ∗rnt , [M ]⟩ ∈ Z/2

where M is a Z/2 manifold.

Ln has an additional structure like Ls, namely,

bt,t′ : Lnt × Lnt′ → Lnt+t′

It is like the symmetric case that the homotopy equivalence between different components

is also given by a composition of maps

bt : Ln0 = Ln0 × pt→ Ln0 × Lnt
b0,t−−→ Lnt

Then we have that

Proposition 4.1.24.

b∗tk
n
t = kn0

b∗t l
n
t = ρ8(t) + ln0

b∗t r
n
t = rn0

where ρ8 : Z(2) → Z/8.

In particular,

Proposition 4.1.25.

lnt,0 = ρ8(t) ∈ H0(Lnt ;Z/8) ≃ Z/8
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We can also formulate these classes in terms of characteristic classes for presheaves.

Proposition 4.1.26. For any presheaf N of 0-connective, 1-Poincaré normal chains over

X, there exist graded characteristic classes

rn(N ) = rn1 + rn5 + · · · ∈ H4∗+1(X;Z/2)

kn(N ) = kn3 + kn7 + · · · ∈ H4∗+3(X;Z/2)

ln(N ) = ln0 + ln4 + ln8 + · · · ∈ H4∗(X;Z/8)

which are invariant under bordism.

Like the case of quadratic and symmetric case, we also have that

Theorem 4.1.27. Localized at prime 2,

Ln ≃ K(Z, 0)×
∏
k>0

(K(Z/8, 4k)×K(Z/2, 4k − 3)×K(Z/2, 4k − 1))

where the homotopy equivalence is given by the classes ln, rn, kn.

4.2 Relations of Characteristic Classes

We show the relations of characteristic classes among different L-theories by the natural

fibration

Lq i−→ Ls p−→ Ln

One needs to be careful that the natural image of i is contained in Ls0.

Proposition 4.2.1.

i∗ls0 = 8lq

i∗rs0 = 0

p∗knt = 0

p∗lnt = ρ8l
s
t
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p∗rnt = rst

where ρ8 : Z(2) → Z/8.

Proof. Let M be a Z or Z/2k manifold.

First let f :M → Lq be a map and let Cq be the associated presheaf of quadratic chains.

Then

σs0(M, i ◦ f) = Sign(Cq(M)) = 8σq0(M, f) + 8⟨β(VMSq1VM · f ∗kq), [M ]⟩

The term 8⟨β(f ∗kqVMSq
1VM), [M ]⟩ vanishes since ⟨β(VMSq1VM · f ∗kq), [M ]⟩ is a 2-torsion.

Thus we proved the first equation.

The second equality is obvious since the de Rham invariant of a Poincaré quadratic chain

always vanishes.

Now let g :M → Lst be a map and let Ds be the associated presheaf of symmetric chains.

Notice that Ds(M) does not have the quadratic part as a symmetric-quadratic pair. Then

the third equation is trivial.

By definition, when k = 3,

σn0 (M, p ◦ g) = Sign(Ds(M)) = σs0(M, g) ∈ Z/8

which proves the fourth equation.

When k = 1.

σn1 (M, p ◦ g) = σn1 (Ds(M), 0)− ⟨VMSq1Vm · g∗p∗ρ2lnt , [M ]⟩

= σs1(Ds(M))− ⟨VMSq1Vm · g∗ρ2lst , [M ]⟩ = σs0(M, g)

where ρ2 means either Z(2) → Z/2 or Z/8→ Z/2.

Thus the fifth equation holds.

It comes to the relation of the classes of the quadratic and normal theories.

Let Lq(1) be the first space in the spectrum Lq. Lq(1) is also the delooping of Lq.
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Mimic the discussion of the space Lq. Let Mm be a Z or Z/2k manifold with a map

f :M → Lq(1) and let Cf the associated presheaf. Then Cf (M) is a Z/2k Poincaré quadratic

chain of dimension m− 1.

If k = 1, then define

σ̃q3 = σq2(Cf (M)) ∈ Z/2

Like the previous section, we have that

Proposition 4.2.2. There exists a graded class

k̃q = k̃q3 + k̃q7 + · · · ∈ H4∗+3(Lq(1);Z/2)

such that for any map f :M → Lq(1),

σ̃q3(M, f) = ⟨V 2
M · f ∗k̃q, [M ]⟩ ∈ Z/2

where M is a Z/2 manifold.

Next, define

σ̃q1(M, f) = σq0(Cf (M))− ⟨β(VMSq1VM · f ∗k̃q), [M ]⟩ ∈ Z or Z/2k

Proposition 4.2.3. There exists a graded class

l̃q = l̃q5 + l̃q9 + · · · ∈ H4∗+1(Lq(1);Z(2))

such that for any map f :M → Lq(1),

σ̃q1(M, f) = ⟨LM · f ∗l̃q, [M ]⟩ ∈ Z or Z/2k

where M is a Z or Z/2k manifold.

With the same argument as before,

Theorem 4.2.4. Localized at prime 2,

Lq(1) ≃
∏
k>0

(K(Z(2), 4k + 1)×K(Z/2, 4k − 1))

where the homotopy equivalence is given by the l̃q and k̃q classes.
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Consider the connecting map ∂t : Lnt → Lq(1).

Proposition 4.2.5.

∂∗t k̃
q = knt

∂∗t l̃
q = −βlnt

where β is the Z/8→ Z(2) Bockstein.

Proof. Let Mm be Z/2p manifold with a map f :M → Lnt and let (D, E) be the associated

presheaf of symmetric-quadratic pairs.

If p = 1, then σn3 (M, f) = σq2(E(M)) = σ̃q3(M,∂ ◦ f). Hence, the first equation holds.

If p = 0, then σ̃q1(M,∂ ◦ f) = σq0(E(M)) = 0, since Sign(E(M)) = 0.

If p = 3, then δE(M) as a Poincaré quadratic chain must be the boundary of some F when

m ≡ 1 (mod 4), namely −δE(M)→ F . Thus, σq0(E(M)) = 1
8
Sign(E(M)

⋃
8δE(M) 8F ) ∈ Z/2.

To define βlnt , we consider

σn0 (δD(M),−δE(M)) = Sign(δD(M)
⋃

−δE(M)

(−F )) ∈ Z/2

Since E(M)
⋃

8δE(M) 8δD(M) is the boundary of a Poincaré symmetic pair,

8 Sign(δD(M)) + Sign(E(M)) = 0

Then

σn0 (δD(M),−δE(M)) + σq0(E(M)) = 0

It is not hard to check that the modified terms in defining l-classes are the same. The case

for a general p follows from the p = 3 case. Therefore, the second equation also holds.

4.3 Coproducts of Characteristic Classes

In this section, we calculate the coproducts of the characteristic classes induced by the ring

structure or the module structure of the L-theories, that is,

ms
t,t′ : Lst × Lst′ → Lstt′
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mq,s
t : Lq × Lst → Lq

mn
t,t′ : Lnt × Lnt′ → Lntt′

Recall that for any two Z/nmanifoldsM andN there is a natural map ρ :M⊗N →M×N .

For any cohomology classes a ∈ H∗(M ;R), b ∈ H∗(N ;R), where R is a commutative ring,

define a⊗ b = ρ∗(a× b). We use the notation f ⊗ g :M ⊗N ρ−→M ×N f×g−−→ X × Y for any

two maps f :M → X, g : N → Y .

Recall that

Proposition 4.3.1. ([MS74, Proposition 3.1, Proposition 8.3])

LM⊗N = LM ⊗ LN

VM⊗NSq
1VM⊗N = V 2

M ⊗ VNSq1VN + VMSq
1VM ⊗ V 2

N

In particular,

V 2
M⊗N = V 2

M ⊗ V 2
N

Proposition 4.3.2.

(ms
t,t′)

∗lstt′ = lst × lst′

(ms
t,t′)

∗rstt′ = rst × lst′ + lst × rst′

Proof. The methods to prove the equations are the same. So we only give the proof for the

first one.

LetM and N be Z/2q manifolds with maps f :M → Lst and g : N → Lst′ . Let Cf and Cg be

the associated presheaves. Let Cf⊗g be the presheaf associated toms
t,t′ ◦(f⊗g) :M⊗N → Lstt′ .

By 3.2.3, Cf⊗g(M ⊗N) is bordant to Cf (M)⊗ Cg(N).

On the one hand,

σs0(M ⊗N,ms
t,t′ ◦ (f ⊗ g)) = Sign(Cf⊗g(M ⊗N)) = ⟨LM⊗N · (f ⊗ g)∗(ms

t,t′)
∗lstt′ , [M ⊗N ]⟩

On the other hand,

Sign(Cf⊗g(M ⊗N)) = Sign(Cf (M)) · Sign(Cg(N)) = ⟨LM · f ∗lst , [M ]⟩ · ⟨LN · g∗lst′ , [N ]⟩
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Hence, the first equation follows.

Proposition 4.3.3.

(mq,s
t )∗kq = kq × lst

(mq,s
t )∗lq = lq × lst + β(kq × rst )

where β is the Z/2→ Z(2) Bockstein.

Proof. The proof is like the previous proposition. We only focus on the second one with the

assumption that the first equation holds.

Let M and N be Z/2q manifolds with maps f :M → Lq and g : N → Lst and let Cf and

Cg be the associated presheaves. Again we also have the presheaf Cf⊗g.

On one hand,

σq0(M ⊗N,m
s,q
t ◦ (f ⊗ g)) = ⟨LM⊗N · (f ⊗ g)∗(mq,s

t )∗kq,M ⊗N⟩

On the other hand,

σq0(M ⊗N,m
s,q
t ◦ (f ⊗ g)) = σq0(Cf (M)⊗ Cg(N))

−⟨β(VM⊗NSq
1VM⊗N · (f ⊗ g)∗(mq,s

t )∗kq), [M ⊗N ]⟩

= σq0(Cf (M)) · σs0(Cg(N))

+jq(σ
q
2(δCf (M)) · σs1(Cg(N)) + σq2(Cf (M)) · σs1(δCg(N)))

−⟨β(VMSq1VM · f ∗kq), [M ]⟩ · ⟨LN · g∗lst , [N ]⟩

−⟨LM · βf ∗kq, [M ]⟩ · ⟨VNSq1VN · g∗lst , [N ]⟩

−⟨LM · f ∗kq, [M ]⟩ · ⟨β(VNSq1VN) · g∗lst , [N ]⟩

where jq : Z/2→ Z/2q.

Furthermore,

σq0(Cf (M)) · σs0(Cg(N)) = ⟨LM · f ∗lq + β(VMSq
1VM · f ∗kq), [M ]⟩ · ⟨LN · g∗lst , [N ]⟩

jq(σ
q
2(δCf (M)) · σs1(Cg(N))) = ⟨LM · βf ∗kq, [M ]⟩ · ⟨LN · g∗rst + VNSq

1VN · g∗lst , [N ]⟩
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σq2(Cf (M)) · σs1(δCg(N)) = ⟨LM · f ∗kq, [M ]⟩ · ⟨LN · βg∗rst + β(VNSq
1VN) · g∗lst , [N ]⟩

Carefully comparing all the terms, then the second equation holds.

There is a product structure on Lq defined by the tensor product of chains

mq : Lq × Lq 1×i−−→ Lq × Ls0
ms,q

0−−→ Lq

Then

Lemma 4.3.4. (1) (mq)∗kq = 0

(2) (mq)∗lq = 8 · lq × lq

The infinite loop structure on Lq induces an addition aq : Lq × Lq → Lq and an inversion

τ : Lq → Lq. Like the symmetric case, we have

Lemma 4.3.5.

a∗kq = 1× kq + kq × 1

a∗lq = 1× lq + lq × 1

τ ∗kq = kq

τ ∗lq = −lq

However, historically the product structure m̃q : Lq×Lq → Lq people used is another one,

namely, the Whitney sum of trivializations of bundles on G/TOP ≃ Lq, or equivalently, the

product of surgery problems M ×N → K × L.

The the product structures m̃q and mq are not the same, but we can reproduce m̃q by

the module structure mq,s.

First, define the map

i1 : Lq ≃ Lq × pt
i−→ Ls0 × pt→ Ls0 × Ls1

a−→ Ls1
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Then m̃q is indeed a composition of maps

Lq × Lq (i1×1)×(1×i1)×(1×1)−−−−−−−−−−−−→ (Ls1 × Lq)× (Lq × Ls1)× (Lq × Lq)
ms,q×mq,s×(τ◦mq)−−−−−−−−−−−→ Lq × Lq × Lq a−→ Lq

Then we reprove the coproducts of the characteristic classes of Lq in [RS71][MS74].

Corollary 4.3.6. ([RS71, p. 407];[MS74, p. 539 and Theorem 8.8])

(1)(m̃q)∗kq = 1× kq + kq × 1

(2)(m̃q)∗lq = 1× lq + lq × 1 + 8 · lq × lq

Lastly, let us calculate coproducts of the characteristic classes of Ln. Before we prove the

coproduct formulae, we need two lemmas.

Lemma 4.3.7. Let M be a Z/2 manifold with a map f : M → Lnt and let (Df , Ef) be the

associated presheaf of symmetric-quadratic pairs. Then

σn0,2(M, f) = ⟨V 2
M · f ∗ρ2l

n
t , [M ]⟩

where ρ2 : Z/8→ Z/2.

Proof. Recall the definition of σn0,2. Four copies 4M is a Z/8 manifold and

σn0,2(Df (M), Ef (M)) = σn0 (4(Df (M), Ef (M)))

Also,

σn0 (4M, 4f) = σn0 (4(D(M), E(M)))− j8⟨V4MSq1V4M · f ∗knt , 4[M ]⟩ ∈ 4Z/8 ≃ Z/2

Obviously,

⟨V4MSq1V4M · f ∗knt , 4[M ]⟩ = 4 · ⟨VMSq1VM · f ∗knt , [M ]⟩ = 0 ∈ Z/2

Hence, the equation holds.

For the same reason, we also have

89



Lemma 4.3.8. Let M be a Z/4 manifold with a map f : M → Lnt and let (Df , Ef) be the

associated presheaf of symmetric-quadratic pairs. Then

σn0,4(M, f) = ⟨ρ4LM · f ∗ρ4l
n
t , [M ]⟩

where ρ4 : Z/8→ Z/4.

Proposition 4.3.9. (mn
t,t′)

∗kntt′ = knt × ρ2lnt′ + ρ2l
n
t × knt′, where ρ2 : Z/8→ Z/2

Proof. Let M and N be Z/2 manifolds with maps f :M → Lnt and g : N → Lnt′ . Let (Df , Ef )

and (Dg, Eg) be the associated presheaves. There is also a presheaf (Df⊗g, Ef⊗g) associated to

mn
t,t′ ◦ (f ⊗ g).

Then

(Df⊗g(M), Ef⊗g(N)) = (Df (M), Ef (M))⊗ (Dg(N), Eg(N))

On one hand,

σn3 (M ⊗N,mn
t,t′ ◦ (f ⊗ g)) = ⟨V 2

M⊗N · (f ⊗ g)∗(mn
t,t′)

∗kntt′ , [M ⊗N ]⟩

On the other hand,

σn3 (M ⊗N,mn
t,t′ ◦ (f ⊗ g)) = σn0,2(Df (M), Ef (M)) · σn3 (Dg(N), Eg(N))

+σn3 (Df (M), Ef (M)) · σn0,2(Dg(N), Eg(N))

= ⟨V 2
M · f

ρ
2 l
n
t , [M ]⟩ · ⟨V 2

N · g∗knt′ , [N ]⟩

+⟨V 2
M · f ∗knt , [M ]⟩ · ⟨V 2

N · g∗ρ2lnt′ , [N ]⟩

To show the coproduct of the Z/8 class ln, we need the following lemma in [BM76].

Lemma 4.3.10. ([BM76, Lemma 9.3]) H∗(X × Y,Z/2k) is generated by the Hurewicz image

of the followings.

(1) j2k(f∗[M ] × g∗[N ]), where M and N are Z/2l manifolds with l ≤ k, f : M → X,

g : N → Y and j2k : Z/2l → Z/2k.
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(2) ρ2kδ(f∗[P ] × g∗[Q]), where P and Q are Z/2l manifolds with l < k, f : P → X,

g : Q→ Y , ρ2k : Z→ Z/2k.

Lemma 4.3.11. Let M and N be two Z/8 manifolds with maps f :M → Lnt and g : N → Lnt′.

Then

⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [M ⊗N ]⟩ =

⟨LM⊗N · (f ∗lnt ⊗ g∗lnt′), [M ⊗N ]⟩+ j8⟨V 2
M⊗N · (f ∗rnt ⊗ g∗knt′ + f ∗knt ⊗ g∗rnt′)), [M ⊗N ]⟩

where j8 : Z/2→ Z/8.

Proof. Let (Df , Ef ) and (Dg, Eg) be the associated presheaves. Let (Df⊗g, Ef⊗g) the presheaf

associated to mn
t,t′ ◦ (f ⊗ g).

On one hand,

σn0 (Df⊗g(M ⊗N), Ef⊗g(M ⊗N))

= ⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [M ⊗N ]⟩

+j8⟨VM⊗NSq
1VM⊗N · (f ⊗ g)∗(mn

t,t′)
∗kntt′ , [M ⊗N ]⟩

= ⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [M ⊗N ]⟩

+j8⟨(VMSq1VM ⊗ LN + LM ⊗ VNSq1VN) · (f ∗knt ⊗ g∗lnt′ + f ∗lnt ⊗ g∗knt′), [M ⊗N ]⟩

On the other hand,

σn0 (Df⊗g(M ⊗N), Ef⊗g(M ⊗N))

= σn0 (Df (M), Ef (M)) · σn0 (Dg(N), Eg(N)) + j8(σ
n
1 (Df (M), Ef (M)) · σn3 (Dg(N), Eg(N)))

+j8(σ
n
3 (Df (M), Ef (M)) · σn1 (Dg(N), Eg(N)))

= (⟨LM · f ∗lnt , [M ]⟩+ j8⟨VMSq1VM · f ∗knt , [M ]⟩)

·(⟨LN · g∗lnt′ , [N ]⟩+ j8⟨VNSq1VN · g∗knt′ , [N ]⟩)

+j8(⟨V 2
M · f ∗rnt , [M ]⟩+ ⟨VMSq1VM · f ∗lnt , [M ]⟩) · ⟨V 2

N · g∗knt′ , [N ]⟩

+j8⟨V 2
M · f ∗knt , [M ]⟩ · (⟨V 2

N · g∗rnt′ , [N ]⟩+ ⟨VNSq1VN · g∗lnt′ , [N ]⟩)
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Compare the terms carefully. Also notice that

j8⟨VMSq1VMf ∗knt , [M ]⟩ · j8⟨VNSq1VNg∗knt′ , [N ]⟩ = 0 ∈ Z/8

since 4× 4 = 0 ∈ Z/8. Then the equation follows.

We can prove the Z/2 and Z/4 cases by reducing to the Z/8 case. Notice that the j8-term

vanishes in these two cases.

Lemma 4.3.12. Let M and N be two Z/2 manifolds of dimension m and n with maps

f :M → Lnt and g : N → Lnt′. Then

⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗ρ2l
n
tt′ , [M ⊗N ]⟩ = ⟨LM⊗N · (f ∗ρ2l

n
t ⊗ g∗ρ2lnt′), [M ⊗N ]⟩

where ρ2 : Z/8→ Z/2.

Lemma 4.3.13. Let M and N be two Z/4 manifolds of dimension m and n with maps

f :M → Lnk and g : N → Lnl . Then

⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗ρ4l
n
tt′ , [M ⊗N ]⟩ = ⟨LM⊗N · (f ∗ρ4l

n
t ⊗ g∗ρ4lnt′), [M ⊗N ]⟩

where ρ4 : Z/8→ Z/4.

For the Bockstein case, we have

Lemma 4.3.14. Let M and N be two Z/8 manifolds with maps f :M → Lnt and g : N → Lnt′.

Then

⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [δ(M ⊗N)]⟩

= ⟨LM⊗N · f ∗lnt ⊗ g∗lnt′ , [δ(M ⊗N)]⟩+ j8⟨V 2
M⊗N · (f ∗rnt ⊗ g∗knt′ + f ∗knt ⊗ g∗rnt′), [δ(M ⊗N)]⟩

where j8 : Z/2→ Z/8.

Proof. As before, let (Df , Ef ) and (Dg, Eg) be the associated presheaves. Let (Df⊗g, Ef⊗g) the

presheaf associated to mn
t,t′ ◦ (f ⊗ g).
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On one hand,

σn0 (Dδ(f⊗g)(δ(M ⊗N)), Eδ(f⊗g)(δ(M ⊗N)))

= ⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [δ(M ⊗N)]⟩

+j8⟨VM⊗NSq
1VM⊗N · (f ⊗ g)∗(mn

t,t′)
∗kntt′ , [δ(M ⊗N)]⟩

= ⟨LM⊗N · (f ⊗ g)∗(mn
t,t′)

∗lntt′ , [δ(M ⊗N)]⟩

+j8⟨(VMSq1VM ⊗ V 2
N + V 2

M ⊗ VNSq1VN) · (f ∗knt ⊗ g∗lnt′ + f ∗lnt ⊗ g∗knt′), [δ(M ⊗N)]⟩

Notice that

[δ(M ⊗N)] = [δM ]⊗ [N ] + [M ]⊗ [δN ] ∈ Hm+n−1(M ⊗N ;Z/8)

On the other hand, by the chain-level product formula,

σn0 (Dδ(f⊗g)(δ(M ⊗N)), Eδ(f⊗g)(δ(M ⊗N)))

= σn0 (δ(Df (M), Ef (M))) · σn0 (Dg(N), Eg(N))

+σn0 (Df (M), Ef (M)) · σn0 (δ(Dg(N), Eg(N)))

+j8σ
n
3 (δ(Df (M), Ef (M))) · σn1 (ρ2(Dg(N), Eg(N)))

+j8σ
n
1 (ρ2(Df (M), Ef (M))) · σn3 (δ(Dg(N), Eg(N)))

+j8σ
n
3 (Df (M), Ef (M)) · σn1 (ρ2δ(Dg(N), Eg(N)))

+j8σ
n
1 (ρ2δ(Df (M), Ef (M))) · σn3 (Dg(N), Eg(N))

Carefully write each term in the form of cohomology classes and we can check that the

equation holds.

The Z/2 and Z/4 Bockstein cases reduce to the Z/8 Bockstein case as well. It follows

that

Proposition 4.3.15.

(mn
t,t′)

∗lntt′ = lnk × lnt′ + j8(r
n
t × knt′ + knt × rnt′)
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where j8 : Z/2→ Z/8.

In particular,

Proposition 4.3.16.

(mn
t,t′)

∗ρ4l
n
tt′ = ρ4l

n
t × ρ4lnt′

(mn
t,t′)

∗ρ2l
n
tt′ = ρ2l

n
t × ρ2lnt′

where ρ4 : Z/8→ Z/4 and ρ2 : Z/8→ Z/2.

Proposition 4.3.17.

(mn
t,t′)

∗rntt′ = ρ2l
n
t × rnt′ + rnt × ρ2lnt′

where ρ2 : Z/8→ Z/2.

Proof. Let M and N be Z/2 manifolds with maps f :M → Lnt and g : N → Lnt′ . Let (Df , Ef )

and (Dg, Eg) be the associated presheaves. Let (Df⊗g, Ef⊗g) be the presheaf associated to

mn
t,t′ ◦ (f ⊗ g).

On one hand,

σn1 (Df⊗g(M ⊗N), Ef⊗g(M ⊗N))

= ⟨V 2
M⊗N · (f ⊗ g)∗(mn

t,t′)
∗rntt′ , [M ⊗N ]⟩

+⟨VM⊗NSq
1VM⊗N · (f ⊗ g)∗(mn

k,l)
∗ρ2l

n
tt′ , [M ⊗N ]⟩

= ⟨V 2
M⊗N · (f ⊗ g)∗(mn

k,l)
∗rntt′ , [M ⊗N ]⟩

+⟨(VMSq1VM ⊗ V 2
N + V 2

M ⊗ VNSq1VN) · (f ∗ρ2l
n
t ⊗ g∗ρ2lnt′), [M ⊗N ]⟩

On the other hand,

σn1 (Df⊗g(M ⊗N), Ef⊗g(M ⊗N))

= σn0,2(Df (M), Ef (M)) · σn1 (Dg(N), Eg(N))

+σn1 (Df (M), Ef (M)) · σn0,2(Dg(N), Eg(N))

= ⟨V 2
M · f ∗ρ2l

n
t , [M ]⟩⟨V 2

N · g∗rnt′ + VNSq
1VN · g∗ρ2lnt′ , [N ]⟩)

+⟨V 2
M · f ∗rnt + VMSq

1VM · f ∗ρ2l
n
t , [M ]⟩ · ⟨V 2

N · g∗ρ2lnt′ , [N ]⟩
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4.4 Characteristic Classes of Bundle Theory

Because of the equivalence of Ranicki’s formulation and Wall’s formulation of L-groups, it is

quite obvious that the classes kq and lq of Lq are equivalent to the Kervaire class and the

l-class for the surgery space G/TOP .

Recall in the Chapter 2, there is a graded characteristic class lTOP ∈ H4∗(B;Z(2)) for any

TOP bundle over B. Moreover, there are graded characteristic classes lG ∈ H4∗(B;Z/8) and

kG ∈ H4∗+3(B;Z/2) for any spherical fibration over B. In the 2-local sense, the spherical

fibration has a TOP bundle structure if and only if the kG-class vanishes and the Z/8 class

lG has a Z(2) lifting. For 2-local TOP bundles, the Z/8 reduction of lTOP is lG.

In Chapter 2, we said that the bundle theory also has an integral description.

Theorem 4.4.1. ([LR87, Proposition 16.1]) Suppose X is a finite simplicial complex.

(1) A (k-1)-spherical fibration ν : X → BSG(k) has a canonical Ln-orientation Un(ν) :

T (ν)→ ΣkLn, where T (ν) is the Thom space of ν.

(2) A topological block bundle µ : X → BS̃TOP (k) has a canonical Ls-orientation

U s(µ) : T (µ)→ ΣkLs so that its Ln-reduction is Un(µ).

(3) A difference between any two stable topological bundle liftings µ, µ′ of the same spherical

fibration ν is represented by an element d(µ, µ′) ∈ (Lq)0(X).

Remark 4.4.2. The universal Ls-orientation U s : MS̃TOP (k)→ ΣkLs of the block bundle

theory induces a universal Ls-orientation U s : MSTOP (k) → ΣkLs for the (micro-)TOP

bundle theory, by the natural inclusion STOP (k) → S̃TOP (k). Moreover, in the stable

range STOP → S̃TOP is a homotopy equivalence ([RS70, Corollary 4.11]).

In this section, we prove that the localization at prime 2 of Levitt-Ranicki’s theory is

equivalent to Brumfiel-Morgan and Morgan-Sullivan’s theories [MS74][BM76]. That is, we
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will prove that the classes of Ls,Ln we constructed before correspond to the characteristic

classes defined in [MS74][BM76] under Levitt-Ranicki’ L-theory orientations.

Before doing that, let us briefly review how to construct the L-orientations Un and U s.

Let ξ → B be an oriented spherical fibration. Let D(ξ) be the corresponding disc bundle

(the mapping cylinder) and let Th(ξ) be the Thom space. In the singular simplicial complex

S(Th(ξ)), there is a subcomplex N(Th(ξ)) which consists of maps f : ∆n → Th(ξ) such that

f−1(D(ξ)) is an n-ad of normal spaces of dimension n−k with respect to the pullback bundle.

Notice that the inclusion map N(Th(ξ))→ S(Th(ξ)) is a homotopy equivalence. Then the

singular chains of n-ads of normal spaces induce a simplicial map N(Th(ξ))→ ΣkLn1 , which

is the canonical Ln-orientation.

In N(Th(ξ)), let T (Th(ξ)) be the subcomplex consisting of maps f : ∆n → Th(ξ) such

that f is Poincaré transversal, namely, f−1(D(ξ)) is an n-ad of Z-coefficient homology

Poincaré space of dimension n − k with the fundamental class induced from the normal

structure. Similarly, the singular chains of n-ads of homology Poincaré spaces induce a

simplicial map T (Th(ξ))→ Ls1.

There exists a TOP structure of ξ if and only ξ has a theory of transversality (see

Chapter 2 or [LM72]), if and only if there is a canonical homotopy inverse of the inclusion

T (Th(ξ))→ N(Th(ξ)) ([LR87, Theorem 1.11]). Furthermore, T (Th(ξ))→ Ls1 is the canonical

Ls-orientation.

Now it comes to the proof.

LetM be a Z/2q PLmanifold with a map f :M →MS̃TOP (h). Due to the transversality

theorem of topological manifolds ([FQ90, (9.6C)]), we can homotope f so that it is transversal

to the zero section over each simplex, i.e., for each simplex ∆n of M , f−1(BS̃TOP (h)) is an

n-ad of Z/2q topological manifolds of dimension n− h. The assembly of the n-ads is a Z/2

topological submanifold L of M .

By our construction,

Sign(L) = σs0(M,U s ◦ f) = ⟨LM · f ∗(U s)∗Σhls1, [M ]⟩
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Also,

Sign(L) = ⟨LM · f ∗(lTOP · U), [M ]⟩

where U ∈ H̃h(MS̃TOP (h)) is the universal Thom class and lTOP ∈ H4∗(BS̃TOP ;Z(2)) is

the class defined in[MS74].

After passage to the stable range, we have

Proposition 4.4.3.

(U s)∗ls1 = lTOP · U ∈ H̃4∗(MS̃TOP ;Z(2))

Proposition 4.4.4.

(U s)∗ls1 = lTOP · U ∈ H̃4∗(MS̃TOP ;Z(2))

Now let M be a Z/2 PL manifold. Then

dR(L) = σs1(M,U s ◦ f)

= ⟨V 2
M · f ∗(U s)∗Σhrs1, [M ]⟩+ ⟨VMSq1VM · f ∗(U s)∗ρ2Σ

hls1, [M ]⟩

= ⟨V 2
M · f ∗(U s)∗Σhrs1, [M ]⟩+ ⟨VMSq1VM · f ∗ρ2(l

TOP · U), [M ]⟩

Let τM be the tangent bundle of M and ν be the normal bundle of L ⊂M . Then

dR(L) = ⟨VLSq1VL, [L]⟩

= ⟨V 2
τM |L · f

∗(VνSq
1Vν), [L]⟩+ ⟨VτM |LSq

1VτM |L · f ∗Lν , [L]⟩

= ⟨LM · f ∗(V Sq1V · U), [M ]⟩+ ⟨VMSq1VM · f ∗ρ2(l
TOP · U), [M ]⟩

Hence,

Proposition 4.4.5.

(U s)∗rs1 = V Sq1V · U ∈ H̃4∗+1(MS̃TOP ;Z/2)

In particular, (U s)∗rs1,1 = 0.
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Next, let us get to the characteristic classes of spherical fibrations.

Now let M be a Z/2q manifold of dimension m+ h with a map f :M →MSG(h). By a

slight homotopy we can assume that f is transversal to the spherical fibration S(ESG(h)) ⊂

MSG(h) and let I = f−1(D(ESG(h))).

Embed M in a sphere DN+m+h, where there is a Z/2q-action on the boundary SN+m+h

so that ∂M =
⋃

2q δM is equivariantly embedded in SN+m+h. Consider the corresponding

Pontryagin-Thom construction F : DN+m+h → MSG(h) ∧MSPL(N). Let N(M) be the

tubular neighborhood of M in DN+m+h such that the preimage of the disc bundle in the

MSPL(N) is N(M) under F . Since MSG(h)∧MSPL(N) ≃M(D(ESG(h))×ESPL(N))

is again the Thom space of some spherical fibration, the preimage of the total disc bundle in

MSG(h) ∧MSPL(N) is the restriction N(M)|I .

Let UMSG(h) ∈ H̃h(MSG(h);Z) and UMSG(h)∧MSPL(N) ∈ H̃h+N (MSG(h)∧MSPL(N);Z)

both be the Thom class. Let x = [M ] ∩ UMSG(h) ∈ Hm(I, I
⋂
∂M ;Z) and y = [DN+m+h] ∩

UMSG(h)∧MSPL(N) ∈ Hm(N(M)|I , N(M)|I⋂ ∂M ;Z). Then x and y induce Z/2q symmetric

structures on C∗(I) and C∗(N(M)|I) respectively. But the natural inclusion I → N(M)|I

induces a chain homotopy equivalence between the two Z/2q symmetric chains.

Brumfiel-Morgan’s obstruction for cobording f to be Poincaré transversal is their ob-

struction class for F : SN+m+h →MSG(h) ∧MSPL(N) (see Chapter 2). The obstruction

is equivalent to whether C∗(N(M)|I) ≃ C∗(I) satisfies Z/2q Poincaré duality. By Ranicki’s

miracle lemma 2.1.10, it is equivalent to the bordism class of ∂C∗(I) in L
q
m−1(Z,Z/2q) (for

the quadratic structure on ∂C∗(I), see [Ran81, Proposition 7.4.1]).

On the other hand, associated to the composition map Un ◦ f , there is a presheaf (Df , Ef )

of Poincaré symmetric-quadratic pair over M , whose assembly is exactly (Cm−∗(I), ∂C∗(I)).

When m ≡ 2 (mod 2), the bordism class of ∂C∗(I) in L
q
m−1 is determined by the Kervaire

invariant σn3 (Df , Ef ). Hence, we may assume that M is a Z/2 manifold.

Also the construction of kG ∈ H4∗+3(BSG;Z/2) in [BM76, Theorem 5.4]. Then
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Proposition 4.4.6.

(Un)∗kn1 = kG · U ∈ H̃4∗+3(MSG;Z/2)

Recall the construction of lG in [BM76, Section 8]. Let M be a Z/8 manifold. When the

map f : M → MSG(h) is Poincaré transversal, i.e., the preimage I is a presheaf of ads of

Z/8 homology Poincaré spaces over M . Then

Sign(I) = ⟨LM · f ∗(lG · U), [M ]⟩+ j8⟨VMSq1VM · f ∗(kG · U), [M ]⟩ ∈ Z/8

where j8 : Z/2→ Z/8.

We also know that

Sign(I) = σn0 (Df (M), Ef (M)) + j8⟨VMSq1VM · f ∗(Un)∗Σhkn1 , [M ]⟩

= ⟨LM · f ∗(Un)∗Σhln1 , [M ]⟩+ j8⟨VMSq1VM · f ∗(kG · U), [M ]⟩

Hence, under the assumption of Poincaré transversality for f ,

⟨LMf ∗(lG · U), [M ]⟩ = ⟨LMf ∗(Un)∗Σhln1 , [M ]⟩

Recall from Chapter 2 that [BM76, p. 61] constructed a map a : Kh+4 →MSG(h) for a

Z/2 manifold Kh+4 = Sh+3 × I/(x, 0) ∼ (−x, 1) such that

(1) the Kervaire obstruction to the Poincaré transversality of a|δK is 1 ∈ Z/2;

(2) ⟨a∗(V 2 · U), [K]⟩ = 0 ∈ Z/2, where V is the sum of even Wu classes.

We are left to prove that the assembled Z/2 symmetric-quadratic Poincaré chain pair

(Da(K), Ea(K)) is bordant to the chosen (D′
0, E

′
0) in the previous chapter. It suffices to prove

that σn0 (K, a) = 0 = σn0 (D
′
0, E

′
0) since σ

q
2(Ea(K)) = σq2(E

′
0) = 1.

Let N be a Z/2 manifold of dimension congruent to h′ + 3 modulo 4 together with a

map b : N → MSG(h′) such that it has nonvanishing Kervaire obstruction to Poincaré

transversality, i.e., σn3 (N, b) = 1 ∈ Z/2. Due to the product formulae of Ln∗ (Z,Z/2), it suffices

that the Kervaire obstruction for cobording the following map to Poincaré transversality

vanishes

K ⊗N a⊗b−−→MSG(h)×MSG(h′)
∆−→MSG(h+ h′)
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Recall the coproduct formula for kG in [BM76, p. 9.2]

∆∗(kG · U) = (kG · U)× (V 2 · U) + (V 2 · U)× (kG · U)

Then

σn3 (K ⊗N,∆ ◦ (a⊗ b)) = ⟨V 2
K⊗N · (a⊗ b)∗(∆)∗(kG · U), [K ⊗N ]⟩

= ⟨(V 2
K ⊗ V 2

N) · (a∗(V 2 · U)⊗ b∗(kG · U)), [K ⊗N ]⟩

= ⟨a∗(V 2 · U), [K]⟩ · ⟨V 2
N · b∗(kG · U), [N ]⟩ = 0

But

σn3 (K ⊗N,∆ ◦ (a⊗ b)) = σn0 (K, a) · σn3 (N, b)

Hence, σn0 (K, a) = 0 = σn0 (D
′
0, E

′
0).

Recall from Chapter 2 and [BM76, p. 61] that, for a non Poincaré transversal f , the key

step to define lG ∈ H4∗(BSG;Z/8) is to subtract the bordism class [K, a] · [CP m−4
2 ] from

[M, f ] as a modification, which is exactly the same modification as what we did in the chain

level. Then

Proposition 4.4.7.

(Un)∗ln1 = lG · U ∈ H̃4∗(MSG;Z/8)

Recall from [BM76, 8.1(ii)1] that ρ2l
G = V 2. Hence,

Corollary 4.4.8.

ρ2(U
n)∗ln1 = V 2 · U ∈ H̃4∗(MSG;Z/2)

Finally, We prove that rn1 corresponds to V Sq1V ∈ H4∗+1(BSG;Z/2).

Let M be a Z/2 manifold. First assume that (M, f : M → MSG(h)) is Poincaré

transversal. Then I is a presheaf of Z/2 homology Poincaré spaces over M . The presheaf is

assembled to a Z/2 Poincaré space L. The preimage of ESG(h) is a spherical fibration of L

which induces a normal structure compatible with the Poincaré duality.
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Then

dR(L) = ⟨VLSq1VL, [L]⟩

= ⟨V 2
M · f ∗(V Sq1V · U), [M ]⟩+ ⟨VMSq1VM · f ∗(V 2 · U), [M ]⟩

So, under the assumption of Poincaré transversality for f ,

⟨V 2
M · f ∗(V Sq1V · U), [M ]⟩ = ⟨V 2

M · f ∗(Un)∗rn1 , [M ]⟩

For the general case, there exists a Z/2 manifold P of dimension h + 5 with a map

b : P →MSG(h) such that

⟨b∗β(lG · U), [P ]⟩ = 1 ∈ Z/2

where β is the Z/2 → Z(2) Bockstein. It means that the map b does not admit Poincaré

transversality.

We can assume that the associated presheaf (Db, Eb) has vanishing σn1 . Otherwise, note

that the de Rham invariant of the Wu manifold SU(3)/SO(3) is 1. Then we may subtract

[P, b] by a map Sh+5 →MSTOP (h) which is the Thom-Pontryagin construction associated

to the Wu manifold SU(3)/SO(3).

Lemma 4.4.9.

⟨V 2
P · b∗(V Sq1V · U), [P ]⟩ = ⟨V 2

P · f ∗(Un)∗rn1 , [P ]⟩ ∈ Z/2

Proof. Considering the definition of σn1 and the assumption that σn1 (Db, Eb) = 0, it suffices to

prove that

⟨V 2
P · b∗(V Sq1V · U), [P ]⟩+ ⟨VPSq1VP · b∗(V 2 · U), [P ]⟩ = 0

According to [BM76], there exists a map c : Sh
′+3 →MSG(h′) such that

⟨c∗(kG · U), [Sh′+3]⟩ = 1

Also recall the coproduct formula of lG ([BM76, p. 9.1]), i.e.,

∆∗(lG · U) = (lG · U)× (lG · U) + j8((k
G · U)× (V Sq1V · U) + (V Sq1V · U)× (kG · U))
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where j8 : Z/2→ Z/8.

Considering the product formulae for Ln∗ (Z,Z/8), we have

0 = σn0 (Db⊗c(P ⊗ Sh
′+3), Eb⊗c(P ⊗ Sh

′+3))

= ⟨LP⊗Sh′+3 · (b⊗ c)∗(lG · U), [P ⊗ Sh
′+3]⟩

+j8⟨VP⊗Sh′+3Sq1VP⊗Sh′+3 · (b⊗ c)∗(kG · U), P ⊗ Sh
′+3]⟩

= ⟨(LP ⊗ 1) · (b∗(lG · U)⊗ c∗(lG · U)), [P ⊗ Sh′+3]⟩

+j8⟨(V 2
P ⊗ 1) · (b∗(kG · U)⊗ c∗(V Sq1V · U)), , [P ⊗ Sh′+3]⟩

+j8⟨(V 2
P ⊗ 1) · (b∗(V Sq1V · U)⊗ c∗(kG · U)), [P ⊗ Sh′+3]⟩

+j8⟨(V 2
P ⊗ 1 + VPSq

1VP ⊗ 1)

·(b∗(kG · U)⊗ c∗(V 2 · U) + b∗(V 2 · U)⊗ c∗(kG · U)), [P ⊗ Sh′+3]⟩

= j8(⟨V 2
P · b∗(V Sq1V · U), [P ]⟩+ ⟨VPSq1VP · b∗(V 2 · U), [P ]⟩)

If f :M →MSG(h) is not Poincaré transversal, modify it by the map

b⊗ pt : P ⊗ CP 2i →MSG(h)

when the dimension of M is m = h+ 4i+ 1, so that the new map is coborded to be Poincaré

transversal. Therefore,

Proposition 4.4.10.

(Un)∗rn1 = V Sq1V · U ∈ H̃4∗+1(MSG;Z/2)

In particular, (Un)∗rn1,1 = 0.

All the above propositions complete the proof of the prime 2 part of 1.1.2.
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4.5 L-theory at Odd Primes

To complete the story, let us briefly consider the odd-prime localization of L-theories and the

bundle theory at odd primes.

Since the homotopy groups of Ln0 have only 2-primary torsion, the odd-localization of Ln

is simply homotopy equivalent to Z.

Sullivan ([Sul09, p. 218]) proved that, localized at odd primes, G/PL is homotopy

equivalent to BSO. Since G/PL and G/TOP are differed by a Z/2 twisting, Lq ≃ G/TOP

is also homotopy equivalent to BSO. Therefore, the same is true for Ls.

However, we want to use the Poincaré chain description of L-theory to reprove the same

result. Logically, the reproof is essentially the same as Sullivan’s proof, which is based on the

a priori invariant method for K-theory.

In the rest of this section, we only consider Ls. The first goal is to construct an H-space

map σsodd : Ls1 → BSO⊗
(odd), where the superscript ⊗ means that the product structure on

BSO⊗ is induced by the tensor product of vector bundles.

LetM be a Z or Z/n manifold with a map f :M → Ls1. Let Cf be the associated presheaf.

Define

σsodd(M, f) = σs0(Cf (M)) ∈ Z or Z/n

Then the product formula of σsodd holds, i.e.,

σsodd((M, f) · (N, g)) = σsodd(M, f) · σsodd(N, g)

where N is another Z or Z/n manifold with a map g : N → Ls1

In particular, we get a map

σsodd : ΩSO
∗ (Ls1)⊗ΩSO

∗
Z(odd) → Z(odd)

where ΩSO(∗)→ Z(odd) is the signature map.

Under the same argument as [MM79, Lemma 4.26], σsodd induces a map σsodd : Ls1 →

BSO⊗
(odd). The proof of the following lemma is essentially the same as that of [MM79, Lemma

4.27]
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Lemma 4.5.1.

ph(σsodd) = ls1 ⊗Q ∈ H∗(Ls1;Q)

Proof. Let Mm be a closed manifold with a map f :M4m → Ls1. Suppose M is embedded in

some sphere S4(m+N). Then consider the diagram

M Ls1 ×BSO(4N)

S4(m+N) (Ls1)+ ∧MSO(4N) BSO(odd) ∧BSO(odd) BSO(odd)

f×νM

σs
odd∧∆ ⊗

Let g : S4(m+N) → BSO(odd) be the composition of the lower horizontal arrows. Then

σsodd(M, f) = ⟨g∗ ph, [S4(m+N)]⟩ = ⟨f ∗ ph(σsodd) · LM · UνM , [S4(m+N)]⟩

= ⟨f ∗ ph(σsodd) · LM , [M ]⟩

On the other hand,

σsodd(M,F ) = σs0(Cf (M)) = ⟨LM · f ∗ls1, [M ]⟩

It remains to show that σs(odd) induces an isomorphism of homotopy group. Take a

generator f : S4n → Ls0 of π4n(Ls1) so that the signature of the assembly of the associated

presheaf is 1. Then

1 = σsodd(S
4n) = ⟨LS4n · f ∗ls1, [S

4n]⟩ = ⟨f ∗ ph(σsodd), [S
4n]⟩

So f ◦ σsodd : S4n → BSO(odd) is also a generator of π4n(BSO(odd))

Theorem 4.5.2. Localized at odd primes, there is an H-space homotopy equivalence

σsodd : Ls1 → BSO⊗
(odd)

Proof. We already proved the homotopy equivalence. Note that the chain-level tensor product

makes the restriction of the multiplicative structure of Ls to Ls1. The map σsodd is an H-space

map since ph(σsodd) = ls1 ⊗Q is multiplicative.
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Remark 4.5.3. The result was also proven by Taylor and Williams ([TW79, p. 192])

We can also restate the theorem in terms of presheaves.

Proposition 4.5.4. For any presheaf S of 0-connective Poincaré symmetric chains over X,

there exists an odd-prime real K-theory characteristic class γs(S) ∈ K̃O(X)(odd), which is

invariant under bordism.

Analogously,

Proposition 4.5.5. For any presheaf Q of 0-connective Poincaré quadratic chains over X,

there exists an odd-prime real K-theory characteristic class γq(Q) ∈ K̃O(X)(odd), which is

invariant under bordism.

With considerations of the L-theory orientations for spherical fibrations and TOP bundles,

we reprove the following, which is also the odd-prime part of 1.1.2.

Corollary 4.5.6. ([Sul09, Theorem 6.5]) Localized at odd primes, the obstruction for lifting

a spherical fibration to a TOP bundle is the existence of a real K-theory orientation.
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Chapter 5

Branched Covering and Profinite

Completion

We generalize Artin-Mazur’s comparison theorem (which they called the generalized Riemann

existence theorem) in this chapter. Vaguely speaking, Artin-Mazur proved that the profinite

completion of a complex variety can be built from all of its étale morphisms (for a precise

statement, see Chapter 2). We want to see what is a good geometric analogue of this theorem.

We need to find appropriate replacements of varieties and étale morphisms, for which

we use pseudomanifolds and branched coverings. Then we prove an anagolous statement

like Artin-Mazur: the profinite completion of a pseudomanifold can be built from all of its

branched coverings.

5.1 Pseudomanifold and Branched Covering

5.1.1 Simplicial Pseudomanifold

Definition 5.1.1. A piecewise linear pseudomanifold X of dimension n is a compact polyhe-

dron such that it has some finite triangulation satisfying that

(1) each simplex is a face of some n-simplex;
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(2) each (n− 1)-simplex is the face of precisely two n-simplices.

Call a pseudomanifold X normal if the link of each i-simplex is connected for i < n− 1.

Let X be a pseudomanifold of dimension n with a given triangulation T . Let T ′ be

the barycentric subdivision of T . Each simplex of T ′ is uniquely represented by a sequence

(σ0, σ1, · · · , σk), where each σi is a simplex of T and each σi+1 is a face of σi.

An i-dimensional dual cone Ci(σn−i) of a simplex σn−i ∈ T is defined by the union of all

the closed simplices in T ′ like (σ0, σ1, · · · , σk = σn−i).

The link L(σn−i) of σn−i is the subcomplex consisting of the simplices (σ0, σ1, · · · , σk ̸=

σn−i) in Ci(σn−i).

The i-skeleton of X is the union of all simplices of dimension at most i and the i-coskeleton

of X is the union of all dual cones of dimension at most i.

Notice that the i-skeleton intersects the (n− i)-coskeleton transversally.

It is obvious that the link of each codimension 1 simplex is S0 and the link of each

codimension 2 simplex is a finite number of S1.

Proposition 5.1.1. The link of a simplex in a pseudomanifold is also a pseudomanifold.

Proof. Let τn−i be a simplex of the triangulation T of X. The proposition is obvious for

i = 1. So let us assume i ≥ 2.

Obviously, each simplex in the link of L(τ) is contained in some (i − 1)-dimensional

simplex of T ′ like (σn0 , σ
n−1
1 , · · · , σn−i+1

i−1 ), where τ is a face of σn−i+1
i−1 .

Consider an (i− 2)-simplex (σ0, σ1, · · · , σi−2) of L(τ). Either σ0 is some n-simplex αn of

X or σ0 is some (n− 1)-simplex βn−1.

For the first case, (σ0, σ1, · · · , σi−2) = (αn, · · · , αn−j, αn−j−2, · · · , αn−i+1) for some j.

Since αn−j−2 is contained in only two faces of αn−j , (σ0, σ1, · · · , σi−2) is also contained in two

simplices of L(τ).

For the second case, (σ0, σ1, · · · , σi−2) = (βn−1, · · · , βn−i+1). Because X is a pseudoman-

ifold, βn−1 is the face of two simplicies in T . So (σ0, σ1, · · · , σi−2) is also contained in two
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simplices of L(τ).

Let B be a subpolyhedron of a pseudomanifold X. Let C(B,X) be the union of simplices

in T ′ disjoint from B. Notice that C(B,X) is also the union of dual cones which are disjoint

from B.

Lemma 5.1.2. X −B contracts to C(B,X).

Proof. Do induction on the dimension of dual cones, as follows. Let CT (i) be the i-coskeleton

of T . Suppose that X −B contracts to CT (i−1) −B already. Consider an i-dimensional dual

cone Ci(σ). If it does not intersect B, then Ci ⊂ C(B,X). Otherwise, σ is a simplex of B

and the intersection Ci(σ)
⋂
B consists of the intersections like Ci(σ)

⋂
τ , where τ ranges

over simplices of B that contains σ. Then Ci(σ)
⋂
B is a cone of L(σ)

⋂
B. Contract Ci(σ)

minus the cone point along the radial direction of the cone. Then Ci(σ)
⋂
B minus the

cone point contracts to L(σ)
⋂
B and the complement of Ci(σ)

⋂
B in Ci(σ) contracts to

L(σ)−B.

In particular,

Corollary 5.1.3. The complement of i-skeleton contracts to (n− i− 1)-coskeleton.

On the other hand, let D be a full subcomplex of T ′ consisting of dual cones. Let S(D,X)

be the union of simplicies of T that do not intersect D. Notice that each simplex is a cone

over its boundary with the cone point its barycenter and the barycentric subdivision respects

the cone structure. Apply the same argument for the skeletons and we get

Lemma 5.1.4. X −D contracts to S(D,X).

Corollary 5.1.5. The complement of i-coskeleton contracts to (n− i− 1)-skeleton.

Definition 5.1.2. A compact polyhedron X is a pseudomanifold of dimension n with

boundary ∂X if there exists a finite triangulation such that

(1) each simplex is a face of some n-simplex;
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(2) each (n− 1)-simplex is the face of at most two n-simplices.

(3) ∂X is the union of all (n− 1)-simplicies that are not common faces of two n-simplices;

(4) ∂X is a pseudomanifold of dimension (n− 1).

Call X − ∂X the interior of X.

Similarly, we can also define dual cones and links for a pseudomanifold with boundary.

Proposition 5.1.6. The link of a simplex σ of codimension at least 2 in a pseudomanifold

X with boundary is either a pseudomanifold with boundary if σ ⊂ ∂X, or a pseudomanifold

otherwise.

The proof is analogous to that of 5.1.1.

Likewise, 5.1.4 and 5.1.2 also hold for pseudomanifolds with boundary.

Recall the definition of regular neighborhoods. Let B be a full subcomplex of some

triangulation T of Xn. Define a regular neighborhood N(B,X) of B by X − C(X,B).

Indeed, N(B,X) consists of all closed dual cones that have nonempty intersetion with B.

Lemma 5.1.7. N(B,X) is a pseudomanifold with boundary of dimension n, where ∂N(B,X)

consists of the dual cones in N(B,X) that do not intersect B, namely, ∂N(B,X) =

N(B,X)
⋂
C(B,X). In particular, ∂N(B,X) = ∅ iff B = X.

Proof. Each simplex of N(B,X) is contained in some n-simplex, since N(B,X) is made of

dual cones and each of them is contained in the dual cone of a vertex of B.

Each (n− 1)-simplex in N(B,X) is contained in either an n dual cone or an (n− 1) dual

cone in N(B,X). For the first case, the (n− 1)-simplex must be contained in two n-simplices

and it intersects B at the cone point. For the second case, it suffices that each (n− 1) dual

cone of N(B,X) is contained in one or two n-dual cones. A (n− 1) dual cone must be the

dual cone of some 1-simplex of T . This 1-simplex is either in B or not in B. If it is in B, then

the (n− 1) dual cone is contained in the two n-dual cones of the boundary of the 1-simplex

and the (n− 1) dual cone is not in ∂N(B,X). Otherwise, one vertex of the 1-simplex is in B
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and the other vertex is not because B is full in T . Then the (n− 1) dual cone is contained in

one n dual cone in B and it is in ∂N(B,X).

The argument in the proof also shows that

Lemma 5.1.8. If B ̸= X and B is full, then C(B,X) is also a pseudomanifold with boundary

∂N(B,X).

Lemma 5.1.9. If B is full in X and B ̸= X, then ∂N(B,X) is collared both in N(B,X)

and C(B,X).

Proof. Due to the compactness, it suffices that ∂N(B,X) is locally collared in both N(B,X)

and C(B,X) ([RS72, Theorem 2.25]). Any point x ∈ ∂N(B,X) is contained in the interior

of some simplex σi of T . Since B is full, σi has some vertices in B and the other vertices are

not in B. Let α be the maximal face of σi contained in B and let β be the maximal face of σi

that does not intersect B. Then σi is the join α ∗ β. Hence a neighborhood of x in ∂N(B,X)

is isomorphic to α× β × C(σi) and the join product gives the collaring of α× β × C(σi) in

both N(B,X) and C(B,X).

5.1.2 Branched Covering

Definition 5.1.3. Let X and Y be pseudomanifolds. A k-fold branched covering map consists

of a piecewise linear map f : Y → X and a closed sub-polyhedron B ⊂ Y of codimension at

least 2 such that the restriction map Y −B → X − f(B) is a k-fold covering map.

The sub-polyhedron B ⊂ Y is called the branched locus and Y −B is called the unbranched

part for the branched covering.

Example 5.1.10. The identity map X → X with an arbitrary sub-polyhedron B ⊂ X of

codimension at least 2 is a branched covering map.
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Proposition 5.1.11. Let X be a pseudomanifold. Let V be a closed sub-polyhedron of

codimension at least 2. Let f1 : Y1 → X − V be a finite covering map. Then there exists a

branched covering map f : Y → X extending f1 with the branched locus f−1(V ).

Moreover, among all the branched covering maps satisfying the property above, there is

an initial one f : Y → X extending f1, in the sense that for any other branched covering

map f ′ : Y ′ → X extending f1 there is a 1-fold branched covering map g : Y → Y ′ such that

f = g ◦ f ′.

Proof. Give X a triangulation such that V is a subcomplex. We may assume the codimension

of V is 2 because for other cases the argument is the same. We will inductively construct the

initial branched covering f : Y → X.

Let Vk be the (n− k)-skeleton of V , where n is the dimension of X. Suppose we already

construct the ‘initial’ branched covering fk−1 : Yk−1 → X − Vk−1 for for some k > 1.

Let {σn−ki } be the set of all (n− k)-simplices of V . For each σn−ki , its link is a disjoint

union of connected polyhedra
⊔
l Lil. For each Lil, the preimage f−1

k−1(Lil) is a disjoint union of

connected polyhedra
⊔
j L

′
ilj . Then take the union of Yk−1 with Int(σn−kilj )×C(L′

ilj) for all i, l, j,

where C(L′
ilj) is the cone of L′

ilj. Let Yk be the union and extend fk−1 to fk : Yk → X − Vk

by mapping each Int(σn−kilj ) onto Int(σn−ki ).

Definition 5.1.4. Call such an initial branched covering map f : Y → X in 5.1.11 a normal

branched covering map.

Remark 5.1.12. With the same notation as in the proof, notice that the restricted map

L′
ilj → Lil between components of links is also a normal branched covering. In particular,

when k = 2, each link component Lil is piecewise linear homeomorphic to S1 and the restricted

map L′
ilj → Lil is a finite covering map of S1.

Definition 5.1.5. Let X be a pseudomanifold. Define the étale site Sét(X) of X as follows.

On the category level, the objects are normal branched covering maps (f,B), while a morphism

(f,B)→ (f ′, B′) consists of a commutative diagram such that B′ ⊂ ϕ(B) and (ϕ,B) is also
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a normal branched covering map

Y Y ′

X

ϕ

f
f ′

A covering of (f : Y → X,B) is a finite collection of morphisms {ϕi : (Yi, fi, Bi) →

(Y, f, B)}i∈I such that
⋃
i ϕi(Yi −Bi) = Y −B.

Remark 5.1.13. 5.1.11 implies that Sét(X) admits all finite limits. Obviously, Sét(X) also

has all finite coproducts and Sét(X) is connected if X is connected. Sét(X) is also locally

connected.

5.2 Riemann Existence Theorem for Pseudomanifold

In this section, we generalize Artin-Mazur’s comparison theorem (or generalized Riemann

existence theorem) for complex varieties to the case for pseudomanifolds. More explicitly, the

Theorem 1.1.3 is the following.

Theorem 5.2.1. (Generalized Riemann existence theorem for pseudomanifolds)

If X is a pointed connected pseudomanifold, then Xét is isomorphic to the profinite

completion of X in the category Pro(H0).

We will complete the proof in this section.

Lemma 5.2.2. Let K∗ be a hypercovering of Sét(X). Then π(K∗) is an object of CH0, i.e.,

its homotopy group πnπ(K∗) is a finite group for each n.

Proof. The homotopy group πnπ(K∗) for some fixed n is not affected by a change of skeletons

of degree above n+2. Hence, we may assume K∗ is isomorphic to its n+2-skeleton Skn+2(K∗).

Then there are only finitely many connected normal branched coverings over X in K∗. Let

us remove the union of all branched loci from X. Let X ′ be the complement. Consider the

restriction of branched covering maps on the preimages of X ′ and they are all finite covering

maps of X ′.
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Let G be the fundamental groups of X ′ and let Ĝ be the profinite completion of G.

Consider the preimage of the basepoint in X ′. We get a hypercovering H∗ of the site Fin(Ĝ)

of finite continuous Ĝ-sets. Notice that each connected component of Ki corresponds to

a connected component of Fin(Ĝ). Hence, π(K∗) = π(H∗). Then the lemma follows from

2.2.24.

Let Scl(X) be the site of open subsets of X. To establish a map between Scl(X) and

Sét(X), we need a common refinement. Let S′(X) be the site consisting of finite covering

maps onto some open subset of X. Then we have morphisms of pointed sites

Scl(X)← S′(X)
f−→ Sét(X)

Notice that each covering of S ′(X) is dominated by a covering of Scl(X), i.e., we can

find an open cover {Ui} on V for a finite covering map f : V → Ṽ such that the restriction

f to each Ui is a homeomorphism. Hence, π(S′(X)) → π(Scl(X)) → Sing(X) is a weak

equivalence of pro-spaces.

Let G be a finite group. Any principal bundle G with fiber G over π(Sét(X)) is also a

principal bundle over S′(X). So it induces a homomorphism π1(X)→ G. On the other hand,

the kernel of any homomorphism π1(X)→ G corresponds to a finite covering space X ′ of X.

So the pullback principal G-bundle on X ′ his trivial bundle. It gives a principal bundle G′

with fiber G over π(Sét(X)). Due to 2.2.21, we get that

Lemma 5.2.3. There is a natural bijection between Hom(π1X,G) and Hom(π1π(Sét(X)), G)

for any finite group G.

Thus,

Corollary 5.2.4. (Comparison of Fundamental Groups)

π̂1X ≃ π1π(Sét(X))

Let A be a finite abelian group. Let A be a locally constant sheaf with stalk A on Sét(X),

which induces a local system Ã on X.
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Proposition 5.2.5. (Comparison of Cohomologies)

For any q, Hq(X; Ã) ≃ Hq(Sét(X);A).

Proof. We use the same symbol Ã to represent the induced locally constant sheaf on S′(X).

Consider the Leray spectral sequence

Hq(Sét(X), Rrf∗Ã)⇒ Hq+r(S′(X), Ã)

Then the goal is to show that Rrf∗Ã = 0 for all r ≥ 1.

Notice that the sheaf Rrf∗Ã over Sét(X) is induced by the presheaf which associates to

each normal branched covering map (Y → X,B) the abelian group Hr(Y −B; Ã). Thus, we

are left with the following statement.

Lemma 5.2.6. For any normal branched covering (Y → X,B) and for any element t of

Hr(Y − B; Ã) with r ≥ 1, there exists a covering {Yi → Y,Bi} in Sét(X) such that the

pullback of t vanishes in Hr(Yi −Bi; Ã) for each i.

Proof. Since Ã is a sheaf of finite abelian groups, we can pass to a finite covering space of X

such that Ã is a constant sheaf. So we will assume that Ã is a constant sheaf over S′(X).

When r = 1, an element t ∈ H1(Y −B; Ã) represents a homomorphism π1(Y −B)→ A.

Take the covering space of Y −B corresponding to the kernel of the homomorphism. It is a

finite covering space and the pullback of t to the covering space is zero. We use 5.1.11 to

complete it to be a normal branched covering over Y .

When r > 1, it suffices to find a finite open cover {Vi} of Y −B satisfying that

(1) each Vi is a K(Gi, 1) space, where each Gi has enough finite index subgroups, i.e., for

any d > 0 there is some subgroup N of Gi such that d divides the index of N ;

(2) Y −B − Vi is a codimension at least 2 subpolyhedron of Y .

There is some finite covering space Ṽi → Vi of degree ni for each i so that the order of t

divides ni. Then t = 0 when pulled back to Ṽi. Use 5.1.11 again to complete it to a branched

covering map Yi → Y .
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The claim can be deduced from the following two lemmas.

Lemma 5.2.7. Any pseudomanifold Y admits a finite open cover {Vi} such that each Y − Vi

is a codimension 2 closed subpolyhedron of Y and each Vi is homotopy equivalent to a finite

graph.

Proof. Give Y a finite triangulation. Let B0 be the codimension 2 skeleton in Y and let

V0 = Y −B0.

Now consider the barycentric subdivision of the triangulation of Y with respect to a

choice of barycenters. Let B1 be the codimension 2 coskeleton in Y and V1 = Y −B1. Then

B0 and B1 intersects transversally and their intersection is a codimension 4 subpolyheadron.

Choose a second set of barycenters, disjoint from the first set, such that the dual cones of

the second subdivision intersects the dual cones of the first subdivision transversally. Set B2

to be codimension 2 coskeleton of the second barycentric subdivision in Y and let V2 = Y −B2.

Then the intersection of B0, B1, B2 is a codimension 6 subpolyheadron.

Keep doing this. After finite steps the intersection of Bi’s is empty.

5.1.4 and 5.1.2 shows that each Vi is either homotopy equivalent to the 1-skeleton or

1-coskeleton of Y .

Lemma 5.2.8. Let Y be a pseudomanifold of dimension n and let B be a codimension at

least 2 closed subpolyhedron of Y . Then there exists a finite open cover {Vi} of Y −B such

that each Y −B − Vi is a codimension 2 closed subpolyhedron of Y and each Vi is homotopy

equivalent to a finite graph.

Proof. Assume that B ̸= ∅ and give Y a triangulation so that B is a full subcomplex.

With the same notation as before, we have proved that both C(B, Y ) and N(B, Y ) are

pseudomanifolds of dimension n with a common boundary ∂N(B, Y ).
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Let B0 be the union of ∂N(B, Y ) and the codimension 2 skeleton of C(B, Y ). Let

V0 = C(B, Y )−B0. 5.1.2 implies that V0 contracts to the union of 1-dimensional coskeletons

whose interiors have empty intersection with ∂N(B, Y ).

Let A1 be the codimension 2 coskeleton of C(Y,B). Let B1 = A1

⋃
∂N(B, Y ) and let

V1 = C(B, Y ) − B1. We have shown that ∂N(B, Y ) is collared in C(B, Y ). With the

same argument, the pair A1

⋂
∂N(B, Y ) is also collared in A1. Hence the pair (C(B, Y ), V1)

contracts, along the collar, to a subspace pair which is piecewise linear homeomorphic to

(C(B, Y ), C(B, Y ) − A1). 5.1.4 implies that C(B, Y ) − A1 contracts to the 1 skeleton of

C(B, Y ).

Now apply the same argument as the previous proof. We can vary the barycenters of Y ′

to create finitely many Bi’s so that the intersection of Bi’s is empty. Let Vi = Y ′ −Bi.

It suffices to prove that Y −B is piecewise-linear isomorphic to C(B, Y )− ∂N(B, Y ) and

then the proof is completed. One can keep taking barycentric subdivision and get a sequence

of regular neighborhoods N(B, Y ) = N0(B, Y ) ⊃ N1(B, Y ) ⊃ . . . and a sequence of the

closure of the complement C(B, Y ) = C0(B, Y ) ⊂ C1(B, Y ) ⊂ . . . . Let ∂Ni(B, Y )× [−1, 0]

be a collar in Ci(B, Y ) and ∂Ni(B, Y )×[0, 1] be a collar in Ni(B, Y ). We may assume any pair

of collars in i and i+1 is disjoint. Using [RS72, Theorem 3.8], there is a sequence of piecewise

linear isomorphism fi : Y → Y , such that fi fixes Ni+1(Y,B) − ∂Ni+1(B, Y ) × [0, 1] and

Ci(Y,B)− ∂Ni(B, Y )× [−1, 0] and fi maps Ni(B, Y )× [−1, 0] onto Ci+1(Y,B)− (Ci(Y,B)−

∂Ni(B, Y )× [−1, 0]). One can further modify inductively on each fi such that the composition

fi fixes fi−1◦· · ·◦f0 : ∂N(B, Y )× [−1,− 1
2i
]. Then the map · · ·◦fi◦· · ·◦f0 gives the piecewise-

linear isomorphism C(B, Y )− ∂N(B, Y )→ Y −B, since the image any point becomes stable

after some finite compositions.

Finally, let us finish the proof of the main theorem.

Proof of Theorem 5.2.1. With the previous lemmas and 2.2.22, we have proved that the

morphism of sites Scl(X) ← S′(X)
f−→ Sét(X) induces a C-equivalence between Xét and X,
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i.e., a weak equivalence between Xét and X̂. It remains to prove that the sites Scl(X) and

Sét(X) are both of local dimension at most n, where n is the dimension of X. This is obvious

for the site Scl(X).

Now let (f : Y → X,B) be any normal branched covering map and let A be a locally

constant sheaf on Sét(X) with stalk an finite abelian group A. It is equivalent to a local

system Ã on X. We have shown that Rrf∗Ã = 0 for r positive. The Leray spectral sequence

implies that H∗
Sét(X)((Y,B);A) ∼= H∗

S′(X)((Y,B); Ã). But H∗
S′(X)((Y,B); Ã) ∼= H∗(Y −B; Ã).

So it is 0 for degree larger than n.
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Chapter 6

Galois Symmetry on Simply

Connected Topological Manifolds

In this chapter, we study the Galois symmetry on the underlying topological manifold

structures of smooth complex varieties defined over Q. Although the result was stated and

known by Sullivan before 1970 ([Sul71][Sul09, p. 271]), it does no harm to write down the

full proof for a precise statement carefully. In the last section, we would like to share some

ideas of our ongoing project on giving a geometric interpretation of this known result for the

Galois symmetry.

6.1 Simply Connected Profinite Manifold Structure

6.1.1 Simply Connected p-adic Poincaré Space

In this section, we define simply connected Poincaré spaces in the p-adic profinite complete

sense.

Definition 6.1.1. A connected space X is p-adic simply connected if π̂1(X)p = 0. A p-adic

simply connected space X is p-complete and of finite p-type if π̂1(X)p = 0 and each homotopy

group πi(X) is a finitely generated Ẑp-module.
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Recall that there is a canonical spherical fibration on each Poincaré finite complex, which

is also called the Spivak normal fibration ([Spi67, Theorem A]). We will use the normal

spherical fibrations to define p-adic Poincaré Spaces.

Also recall that the classifying space for the oriented Ŝn−1
p-fibration theory is the p-adic

profinite completion B̂SG(n)p of BSG(n) ([Sul09, Theorem 4.2]), that is, any p-adic spherical

fibration Ŝn−1
p → S(γ)

X−→ corresponds to a map X
γ−→ B̂SG(n)p unique up to homotopy.

We still call the mapping cone Th(γ) of γ the Thom space of the p-adic spherical fibration.

Definition 6.1.2. A connected, p-adic simply connected, p-complete, of finite p-type space X

is p-adic normal of dimension m if it has a p-adic stable spherical fibration γ : X → B̂SG(n)p

and a map f : ŜN+m
p → Th(γ), where Th(γ) is the Thom space of γ.

The map f induces a class [X]p ∈ Hm(X; Ẑp) by the Thom isomorphism [X]p =

f∗[ŜN+m
p] ∩ Uγ, where Uγ is the Thom class of γ (with coefficient Ẑp).

Definition 6.1.3. A p-adic normal space X is p-adic Poincaré if

− ∩ [X]p : H
m−∗(X; Ẑp)

∼=−→ H∗(X; Ẑp)

In this case the p-adic normal structure is also called the p-adic Spivak normal fibration over

X.

For the p-adic case, there is an analogous relation between the existence of a normal

spherical fibration and homological Poincaré duality, like [Spi67].

Let X be a p-adic simply connected, finite simplicial complex. Then the p-adic completion

X̂p is obviously p-complete and of finite p-type.

Proposition 6.1.1. With the same assumption like above. If there is a class [X]p ∈ Hm(X; Ẑp)

such that −∩ [X]p : H
m−∗(X; Ẑp)

∼=−→ H∗(X; Ẑp), then X̂p has a p-adic Spivak normal fibration,

which is compatible with the cap product.

Proof. X can be embedded into an Euclidean space Rm+N with N large enough. Let W be a

regular neighborhood of X and then W is a smooth manifold with boundary ∂W . Then the
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inclusion X → W is a homotopy equivalence. By general position arguments, if N is large

enough (N ≥ 3), then π1(∂W ) ∼= π1(W ) = 0.

W is homotopy equivalent to X. Notice two isomorphisms

− ∩ [W,∂W ] : Hm+N−∗(W,∂W ; Ẑp)→ H∗(W ; Ẑp)

− ∩ [X]p : H
m−∗(X; Ẑp)

≃−→ H∗(X; Ẑp)

There exists U ∈ HN(W ; Ẑp) such that U ∩ [W,∂W ] = [X]p and

− ∪ U : H∗(W ; Ẑp)→ H∗+N(W,∂W ; Ẑp)

is an isomorphism.

With the same argument of [Bro72, Lemma I.4.3], the homotopy fiber of the map ∂̂W p →

Ŵp is a p-adic simply connected homology sphere with coefficient Ẑp. Hence, the homotopy

fiber is homotopy equivalent to ŜN−1
p . The p-adic spherical fibration ∂̂W p → Ŵp ≃ X̂p and

the natural quotient map Ŝm+N
p → Ŵp/∂̂W p form the data of the p-adic Spivak normal

fibration.

Proposition 6.1.2. If X is a simply connected finite simplicial complex with a Z/p-coefficient

Poincaré duality induced by some class [X]Z/p ∈ Hm(X;Z/p), then X̂p is a p-adic Poincaré

space.

Proof. It is similar to the previous one with the replacement of coefficient Ẑp by Z/p. Again

embed X in an Euclidean space and take a regular neighborhoodW of X. Then the homotopy

fiber of the map ∂̂W p → Ŵp is a simply connected homology sphere with coefficient Z/p, hence

it is also a p-adic sphere. Then the p-adic spherical fibration ∂̂W p → Ŵp ≃ X̂p and Ŝm+N
p →

Ŵp/∂̂W p induce a class [X]p ∈ Hm(X; Ẑp) so that its Z/p reduction is [X]Z/p. Finally, the

Z/p-coefficient Poincaré duality implies the Ẑp-coefficient Poincaré duality by the Bockstein

spectral sequence, namely, the Poincaré duality map Cm−∗(X;Z/p)→ C∗(X;Z/p) induces

an isomorphism of the Bockstein spectral sequences of two chain complexes Cm−∗(X; Ẑp) and

C∗(X; Ẑp).
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6.1.2 Manifold Structure at Odd Primes

The definition of p-adic completion of the structure set is based on the ideas of Sullivan in

[Sul09][Sul71].

Let p be an odd prime. Recall from the previous chapters that Ĝ/TOP p ≃ B̂SO⊗
p. We

propose the following definition.

Definition 6.1.4. Let X be a p-adic simply connected, p-adic Poincaré space of dimension

m ≥ 5. Call X a p-adic formal manifold if its p-adic Spivak normal fibration γ has a K̂Op

orientation

∆X : Th(γ)→ B̂SO⊗
p

The Qp-coefficient Pontryagin character of ∆X induces the Qp-coefficient L-genus of X

by LX · Uγ = ph(∆X), where Uγ is the Thom class of γ.

Definition 6.1.5. Let X be a p-adic simply connected p-adic formal manifold of dimension

m ≥ 5. A p-adic homotopy manifold structure over X is a pair (ϕ, β) consisting of a map

ϕ : X → B̂SO⊗
p and an element β ∈ Ẑ×

p such that

⟨ph(ϕ) · ph(∆X)

Uγ
, [X]p⟩ = β

m
2 ⟨ph(∆X)

Uγ
, [X]p⟩

if dimension m is divisible by 4.

Remark 6.1.3. The appearance of β ∈ Ẑ×
p in the definition is due to the ambiguity of the

fundamental class [X]p induced by some multiplicative unit in Ẑp. For the future construction

of abelianized Galois action on p-adic manifold structures, the term β is necessary.

Definition 6.1.6. Define the p-adic structure set STOP (X)∧p over a simply connected p-adic

formal manifold X of dimension m ≥ 5 by the set of all p-adic homotopy manifold structures

over X.

Example 6.1.4. Let M be a p-adic simply connected topological manifold of dimension

m ≥ 5. Then M is obviously a p-adic formal manifold, namely, p-adic completion of M
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together with the p-adic information for whyM is a manifold specify a p-adic formal manifold.

Furthermore, any p-adic homotopy equivalence from another topological manifold N →M is

a p-adic homotopy manifold structure over M .

Next, we construct the abelianized Galois action Ẑ×
p on STOP (X)∧p .

Definition 6.1.7. Let X be a p-adic simply connected, p-adic formal manifold of dimension

m ≥ 5. Define the abelianized Galois action Ẑ×
p at prime p on the p-adic structure set

STOP (X)∧p by

(σp)∗ : S
TOP (X)∧p → STOP (X)∧p

(ϕ, β)→ (ψσ
−1
p ϕ · ψ

σ−1
p ∆X

∆X

, βσ−1
p )

where σp ∈ Ẑ×
p .

6.1.3 Manifold Structure at Prime 2

In the footnote of [Sul09, p. 258], Sullivan had some discussions of the 2-adic case. We

complete his discussions in this section.

From the previous chapters, there are characteristic classes kG ∈ H4∗+3(X;Z/2) and

lG ∈ H4∗(X;Z/8) for a 2-adic spherical fibration γ : X → ̂BSG(N)2, such that kG and βlG

obstruct the existence of 2-adic topological bundle structure on γ, where β is the Z/8→ Ẑ2

Bockstein.

Definition 6.1.8. Let X be a 2-adic simply connected, 2-adic Poincaré space of dimension

m ≥ 5. Call X a 2-adic formal manifold if the characteristic class kG of its 2-adic Spivak

normal fibration vanishes and the Z/8-class lG has a lifting LX ∈ H4∗(X; Ẑ2).

Definition 6.1.9. Let X be a 2-adic simply connected, 2-adic formal manifold of dimension

m ≥ 5. A 2-adic homotopy manifold structure over X is a pair (l, k) consisting of graded

classes l ∈ H4∗(X; Ẑ2) and k ∈ H4∗+2(X;Z/2), where we exclude the degree m class.
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Remark 6.1.5. The surgery obstruction for any homotopy equivalence maps between manifolds

M → N vanishes, which indicates the necessity to exclude the degree m class. One can also

view 2.1.3 as an alternatively equivalent reason.

Definition 6.1.10. Define the 2-adic structure set STOP (X)∧2 over a simply connected 2-adic

formal manifold X of dimension m ≥ 5 by the set of all 2-adic homotopy manifold structures

over X.

Example 6.1.6. Like the odd prime case. If M is a 2-adic simply connected topological

manifold of dimension m ≥ 5, then M is a 2-adic formal manifold. Moreover, any 2-adic

homotopy equivalence from another topological manifold N → M is a 2-adic homotopy

manifold structure over M .

Next, we construct the abelianized Galois action on STOP (X)∧2 .

Notice that there is a compatible Adams operation on the ordinary cohomology. Namely,

let (σp)p ∈
∏

p Ẑ×
p represent the abelianization of σ ∈ Gal(Q/Q). Define the cohomological

Adams operation ψσH on H2n(−; Ẑp) by multiplication with (σp)
n.

Definition 6.1.11. Let X be a 2-adic simply connected 2-adic formal manifold of dimension

m ≥ 5. Define the abelianized Galois action Ẑ×
2 at prime 2 on the 2-adic structure set

STOP (X)∧2 by a map

(σ2)∗ : S
TOP (X)∧2 → STOP (X)∧2

so that

(1 + 8 · (σ2)∗l) · LX = (1 + 8 · ψσ
−1
2
H l) · ψσ

−1
2
H LX

(σ2)∗k = k + k
σ−1
2
X

where k
σ−1
2
X is defined as follows.

Remark 6.1.7. The change of l was already suggested by Sullivan in [Sul71], which agrees

with our definition.
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One consequence of the Adams conjecture is that the map B̂U2
ψσ2−1−−−−→ B̂U2 factors

through Ĝ/U2 naturally. Hence we have a map

fσ2 : B̂U2 → Ĝ/U2 → Ĝ/TOP 2

Define kσ2 = f ∗
σ2
kq, where kq ∈ H4∗+2((G/TOP )∧2 ;Z/2) ∼= H4∗+2((Lq))∧2 ;Z/2) is the Kervaire

class defined previously.

Since kσ2 is a combination of Stiefel-Whitney classes, it is also defined for spherical

fibrations, i.e., kσ2 ∈ H4∗+2( ̂BSG(N)2;Z/2).

Let γ : X → ̂BSG(N)2 be the Spivak normal fibration and define kσ2X = γ∗kσ2 ∈

H4∗+2(X;Z/2).

In fact, there is an algorithm to calculate the graded class kσ2 .

Lemma 6.1.8. (Additivity of kσ2)

Let ∆ : B̂U2 × B̂U2 → B̂U2 be the H-space product induced by the Whitney sum. Then

∆∗kσ2 = kσ2 × 1 + 1× kσ2.

Proof. Let α ∈ Gal(Q/Q) be the element so that its abelianization is σ =
∏

p σp ∈ Ẑ× ∼=∏
p Ẑ×

p .

We only consider the case when σp = 1 except for p ̸= 2 and σ2 is an actual integer.

It suffices that the induced map fσ : B̂U → Ĝ/U induced by the Adams conjecture is an

H-space map.

Recall that ψσ : B̂U2 → B̂U2 is the stablization of the étale homotopy equivalence

induced the algebraic isomorphism α : Grn(CN)→ Grn(CN) for some Galois automorphism

α ∈ Gal(Q/Q). After passing N to ∞, we have α : B̂U(n)→ B̂U(n).

Notice that the unstable Whitney sum ∆ : B̂U(n) × B̂U(m) → ̂BU(n+m) respects

the Galois action, since it is induced from the algebraic map Grn(CN) × Grm(CM)r →

Grn+m(CN+M).

The proof of the Adams conjecture in [Sul09, p. 158] is deduced from two facts (indeed,

one needs to unravel the mathematical diagrams in terms of the inertia lemma [Sul09, p. 99]).
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The first fact is that BU(n − 1) → BU(n) is the universal spherical fibration of a rank n

vector bundle. The second is that the following diagram commutes.

̂BU(n− 1) ̂BU(n− 1)

B̂U(n) B̂U(n)

α

α

Now consider the diagram

̂BU(n+m− 1) ̂BU(n+m− 1)

̂BU(n+m) ̂BU(n+m)

α

α

It suffices that the pullback of this diagram along the H-space map ∆ : B̂U(n)× B̂U(m)→

̂BU(n+m) is equivalent, up to homotopy, to the following diagram, where p1, p2 are the

projection of B̂U(n)× B̂U(m) onto the two factors and ∗ is the fiberwise join product.

p∗1
̂BU(n− 1) ∗ p∗2 ̂BU(m− 1) p∗1

̂BU(n− 1) ∗ p∗2 ̂BU(m− 1)

B̂U(n)× B̂U(m) B̂U(n)× B̂U(m)

α∗α

α

It is left to prove that the following diagram commutes

p∗1
̂BU(n− 1) ∗ p∗2 ̂BU(m− 1) p∗1

̂BU(n− 1) ∗ p∗2 ̂BU(m− 1)

̂BU(n+m− 1) ̂BU(n+m− 1)

α∗α

α

(6.1.1)

Indeed, the map p∗1
̂BU(n− 1) ∗ p∗2 ̂BU(m− 1) → ̂BU(n+m− 1) is realized by a map

p∗1BU(n− 1) ∗ p∗2BU(m− 1)→ BU(n+m− 1) as follows. Each element of BU(n− 1) can be

uniquely written as a pair of subspaces V n−1
1 ⊂ V n

2 in C∞ and the map BU(n− 1)→ BU(n)

takes V n−1
1 ⊂ V n

2 to V2. Now take an element Wm−1
1 ⊂ Wm

2 in BU(m− 1). Let V ⊥ be the

perpendicular 1-dimensional complementary of V n−1
1 ⊂ V n

2 and the same for W⊥. There

is a unit circle {(eiϕ, 0) ∈ V ⊥ ⊕W⊥} in V ⊥. Similarly {(0, eiϕ)} in W⊥. There is a family
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of 1-dimensional subspaces {Ct}t∈I in V ⊥ ⊕W⊥ whose unit circles are {(teiϕ,
√
1− t2eiϕ)}.

Notice that p∗1BU(n − 1) ∗ p∗2BU(m− 1) (over BU(n)× BU(m)) is a quotient of BU(n −

1)×BU(m− 1)× I. So the map p∗1BU(n− 1) ∗ p∗2BU(m− 1)→ BU(n+m− 1) is induced

by BU(n− 1)×BU(m− 1)× I → BU(n+m− 1), which maps (V n−1
1 ⊂ V n

2 ,W
m−1
1 ⊂ Wm

2 )

to (V1 ⊕W1 ⊕ Ct) ⊂ (V2 ⊕W2).

Moreover, the map BU(n− 1)×BU(m− 1)× I → BU(n+m− 1) is homotopic to the

stablization of a map f : Grn−1(CN )×Grm−1(CM )× I → Grm+n−1(CN+M+2) with a similar

construction like above. Notice that CN+M+2 = C2 ⊕ CN ⊕ CM . There are two unit circles

in the axes of C2, namely {(eiϕ, 0)} and {(0, eiϕ)}. Then there is a family of 1-dimensional

subspaces {C′
t}t∈I of C2, whose unit circles are {(teiϕ,

√
1− t2eiϕ)}. Given a subspace V n−1

in CN and a subspace Wm−1 in CM , ft(V,W ) = C′
t ⊕ V ⊕W in CN+M+2.

Indeed, the map f : Grn−1(CN )×Grm−1(CM )× I → Grm+n−1(CN+M+2) can be extended

to a map Grn−1(CN)×Grm−1(CM)×Gr1(C2)→ Grm+n−1(CN+M+2) induced by the direct

sum of subspaces. Under the Gr1(C2) ∼= CP 1, we embed I as the half real line [0,∞] in CP 1.

Since Grn−1(CN )×Grm−1(CM )×CP 1 → Grm+n−1(CN+M+2) is an algebraic map defined

over Z, we have the following commutative diagram

̂BU(n− 1)× ̂BU(m− 1)× ĈP 1 ̂BU(n− 1)× ̂BU(m− 1)× ĈP 1

̂BU(n+m− 1) ̂BU(n+m− 1)

α×α×α

α

However, notice that the map α on ĈP 1 is in fact homotopic to the completion of the

map z → zσ on CP 1, since the homotopy classes of self homotopy equivalences of ĈP 1 is

determined by the induced group homomorphism on H2(ĈP 1; Ẑ).

But under the embedding [0,∞] ⊂ CP 1, the restriction of the map z → zσ to [0,∞] is

homotopy equivalent the identity map. Hence, we get the following commutative diagram

̂BU(n− 1)× ̂BU(m− 1)× I ̂BU(n− 1)× ̂BU(m− 1)× I

̂BU(n+m− 1) ̂BU(n+m− 1)

α×α×1

α
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Passing to the quotient of the spaces in the upper horizontal arrow, it is exactly the diagram

6.1.1.

Example 6.1.9. The calculation of the class kσ2 on the stable normal bundle νCPN of CPN

with N even was also suggested by Sullivan in the footnote of [Sul09, p. 258]. The additivity

of kσ2 implies that kσ2CPN = kσ2(TCPN) = kσ2(νCPN ).

Let α ∈ Gal(Q/Q) be the element with its abelianization σ ∈ Ẑ×. Further assume that σ

is represented by an integer.

The Galois automprhism α on CP 1 is profinitely homotopy equivalent to the map

[x0, x1] → [xσ0 , x
σ
1 ] ([Sul09, Proposition 5.3]). Any homotopy class of self étale homotopy

equivalence of CPN is determined by a map onH2((ĈPN ; Ẑ). Hence, the Galois automorphism

α on ĈPN is homotopic to the map fσ([x0, · · · , xN ]) = [xσ0 , · · · , xσN ] (also see [Sul09, Corollary

5.4]). Let fσ2 be the 2-adic part of fσ, namely, fσ2([x0, · · · , xN ]) = [xσ20 , · · · , xσ2N ]

As in [Sul96, Theorem 9], the element in STOP (CPN) is determined by the ‘splitting

invariants’ on the submanifolds CP n for n = 1, 2, · · · , N − 1. As a result, the associated

Kervaire class kσ2 is determined by the 2-adic Kervaire invariant of fσ2 on CP n for n odd

and n ≥ 3, namely, the Kervaire invariant is ⟨kσ2 ,CP n⟩.

Since the transversal preimage of CP n can be made into a complete intersection of

several degree σ2 hypersurfaces, by Lefschetz’s theorem we know that Hi(f
−1
σ2

(CP n);Z/2)→

Hi(CP n;Z/2) is an isomorphism for i ̸= n. [Woo75][Woo79][Bro79] show that the Kervaire

invariant of a complete intersection V k in a complex projective space obstructs to finding

a symplectic basis αi for Hk(V ;Z/2) such that V can be written as the connected sum of

a manifold with the same homology like CP k and several Sk × Sk indexed by αi. So their

Kervaire invariant of f−1
σ2

(CP n) is exactly the Kervaire invariant for the map fσ2 , namely,

the obstruction to finding some surgery process on f−1
σ2

(CP n) such that its Z/2-homology is

isomorphic to that of CP n.

When n ≠ 3, 7, the Kervaire invariant of f−1
σ2

(CP n) is the modified Legendre symbol
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valued in Z/2, i.e.,

⟨kσ2CPN , [CP n]⟩ = K(fσ2|f−1
σ2

(CPn)) =

(
2

σ2

)
=


0 if σ2 ≡ ±1 (mod 8)

1 if σ2 ≡ ±3 (mod 8)

Hence, if ω ∈ H2(CPN ;Z/2) is the generator, then the n-th component of kσ2CPN is
(

2
σ2

)
ωn.

When n = 3, 7, the Kervaire invariant vanishes.

For n = 1, we need to use an alternative definition for the Kervaire invariant. One can

homotope the map fσ2 such that f−1
σ2

(CP 1−pt) = f−1
σ2

(CP 1)−pt. Let ν be the normal bundle

of CP 1 in CPN . Choose a framing on ν|CP 1−pt, namely, a map CP 1 − pt→ SO(2N − 2). It

induces a framing on f−1
σ2

(CP 1)− pt, namely, f−1
σ2

(CP 1)− pt→ CP 1 − pt→ SO(2N − 2).

We need to check whether the framed manifold f−1
σ2

(CP 1) − pt is 0 or not in the almost

framed bordism group P2. Notice that ν has a complex structure, so we can choose a framing

which factors through SU(N − 1), i.e., CP 1 − pt → SU(N − 1) → SO(2N − 2). So the

framing on f−1
σ2

(CP 1) also factors through SU(N − 1). However, π1(SU(N − 1)) = 0, so the

framing on f−1
σ2

(CP 1) has no twisting. That is, the Kervaire invariant on f−1
σ2

(CP 1) is 0. So

we proved that ⟨kσ2CPN , [CP 1]⟩ = 0.

Let γ be the universal complex line bundle on CP 2N . Notice that the normal bundle

νCP 2N is isomorphic to (2N + 1)γ∗, where γ∗ is the complex dual of γ. The additivity of kσ2

implies that kσ2CP 2N = kσ2(γ). In particular, kσ2(γ) is irrelavant to N and we can let N tend

to infinity.

Let x1, x2, · · · (of degree 2) be the roots of the Stiefel-Whitney classes induced from

BU(1)×BU(1)× · · · → BU . Again, by the additivity of kσ2 class, we can write

kσ2 = kσ21 (x1 + x2 + · · · ) + kσ23 (x31 + x32 + . . . ) + . . .

where each kσ2i ∈ Z/2 can be calculated by the previous example. That is,

kσ22i+1 =


(

2
σ2

)
if 2i+ 1 ̸= 1, 3, 7

0 if 2i+ 1 = 1, 3, 7
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6.1.4 Étale Manifold Structure Set

We define étale formal manifolds and their structure sets by splitting the information to

different primes.

Definition 6.1.12. A connected space X is profinite simply connected if π̂1(X) = 0. A

profinitely simply connected space X is profinite complete and of étale finite type if each

homotopy group πi(X) is isomorphic to the direct sum of a finitely generated free Ẑ-module

and a finite abelian group.

Definition 6.1.13. A profinite simply connected, profinite complete and of étale finite type

space X is étale normal of dimension m if it has a profinite complete stable spherical fibration

γ : X → B̂G(N) and a map f : ŜN+m → Th(γ).

Analogously, the map f induces a class [̂X] ∈ Hm(X; Ẑ) by [̂X] = f∗[ŜN+m] ∩ Uγ, where

Uγ is the Thom class.

Definition 6.1.14. A profinite simply connected, étale normal space X is étale Poincaré if

− ∩ [̂X] : Hm−∗(X; Ẑ)
∼=−→ H∗(X; Ẑ)

In this case the étale normal structure is also called the étale Spivak normal fibration over X.

Proposition 6.1.10. A profinite simply connected, étale Poincaré space X is p-adic Poincaré

for each prime p.

Proof. X has Poincaré duality with coefficient Ẑ/pẐ ≃ Z/p. Hence it is a Z/p-cofficient

Poincaré space whose Z/p fundamental class is induced from [̂X]. Then apply 6.1.2.

Definition 6.1.15. Let X be a profinite simply connected étale Poincaré space of dimension

m ≥ 5. Call X an étale formal manifold if it is a p-adic formal manifold for each prime p.

Remark 6.1.11. Recall from the previous chapters, the condition for an étale homotopy

manifold is equivalent to the lifting of the L̂n-orientation of γ to some L̂s-orientation.
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Definition 6.1.16. Let X be a profinite simply connected, étale formal manifold of dimension

m ≥ 5. An étale homotopy manifold structure over X consists of a p-adic homotopy manifold

structure over X for each prime p.

Remark 6.1.12. An étale homotopy manifold structure over X is equivalent to an element of

[X, L̂q] ≃
∏

p[X, L̂
q
p].

Then we can define the étale structure set STOP (X)∧ over a profinite simply connected,

étale formal manifold X of dimension m ≥ 5 by
∏

p S
TOP (X)∧p . There is an abelianized

Galois group Ẑ× ≃
∏

p Ẑ×
p action on STOP (X)∧ by acting on the corresponding prime factor.

6.2 Galois Symmetry on Varieties

In the previous section, we have defined the p-adic structure set in the simply connected case.

In this section, we apply the previous discussions to study the Galois symmetry on varieties.

Let X be a smooth complete variety defined over Q. Let us fix a choice of transcendental

basis of C over Q. Then the Galois group Gal(Q/Q) has an embedding into Gal(C/Q).

In this way, the Galois group Gal(Q/Q) acts on the underlying topological manifold

structures of {Xσ
C}σ∈Gal(Q/Q). In this section we study how to formulate the result in the

language of étale structure set and then give a proof .

Let Y be a smooth complete variety defined over Q. Let f : X → Y be an algebraic

map over Q which induces an étale homotopy equivalence. For simplicity, we assume YC is

profinite simply connected. Then f represents an element in both STOP (YC)
∧
p and STOP (YC)

∧.

Call such an element algebraic.

An element σ ∈ Gal(Q/Q) takes f : X → Y to Xσ σ−→ X
f−→ Y in the structure set. This

gives a Galois action on the algebraic elements of STOP (YC)
∧
p and STOP (YC)

∧. We will prove

the following theorem for the rest of this section.

Theorem 6.2.1. Let Y be a smooth complete connected variety defined over Q such that

πét
1 (Y ) = 0 and Y has complex dimension at least 3. Then the Galois action Gal(Q/Q) on
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the algebraic elements in STOP (YC)
∧
p agrees with the abelianized Galois action we defined in

the previous section, for any prime p.

As a corollary, we get the Theorem 1.1.4, which is also stated in [Sul09, p. 271].

Corollary 6.2.2. The Galois action Gal(Q/Q) on the algebraic elements in STOP (YC)
∧ is

an abelianized action and this action can be extended to the whole structure set.

The proof is based on the following lemma.

Lemma 6.2.3. The Galois action on a smooth complex variety defined over Q is compatible

with the abelianized Galois action on the tangent bundle. That is, the following diagram

commutes up to homotopy

X̂C B̂U

X̂σ
C B̂U

TXC

σ−1 ψσ−1

TXσ
C

where σ ∈ Gal(Q/Q), X is a smooth variety over Q and the tangent bundle map is the

tangent bundle map for the analytification of the complex varieties.

Proof. We use the idea in [DS75] to give a proof. Consider the associated Stiefel bundle

STX of TX over X. Namely, let the total space STXC = EmbC(TXC, X × CN) consisting

of fiberwise embeddings TXC → X × CN for some large N . Indeed, one can make this

construction over Q, namely, let STX = EmbQ(TX,X × QN
). The bundle STX is also

a Q-variety and the map STX → X is an algebraic bundle. Its fiber is indeed the Stiefel

variety Vn,N consisting of all n-frames in QN
.

Then we have a map STX → Grn(Q
N
), which maps an embedding TxX → QN

to its

image. This is also an algebraic map over Q.

Then we get a zig-zag of algebraic maps of varieties X ← STX → Grn(Q
N
). When

passing to C, the left arrow is homotopically highly connected when N is large enough. When

N tends to infinity, the zig-zag gives an analytically continuous map XC → BGL(n,C), which

is indeed the classifying map of the tangent bundle TXC. Since each map is defined over Q,
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the ziz-zag of maps commutes with the Galois action. Let n→∞ and the lemma is proven,

since passing to profinite completion and the stable range σ becomes the modified Adams

operation ψσ.

Corollary 6.2.4. With the same notation as above, the following diagram also commutes up

to homotopy

X̂C B̂U

X̂σ
C B̂U

νXC

σ−1 ψσ−1

νXσ
C

where νXC and νXσ
C
both mean the stable inverse bundles of the corresponding tangent bundles.

Proof of Theorem 6.2.1. Let f : X → Y be an algebraic element in STOP (YC)
∧
p .

Since YC is simply connected, ŶC ≃
∏

p ŶCp and we can split f̂ : X̂C → ŶC to a product of

maps f̂p : X̂Cp → ŶCp and split the diagram in the previous lemma to different primes.

Assume the abelianization of σ is
∏

p σp ∈
∏

p Ẑ×
p ≃ Ẑ×.

Let γY be the Spivak normal spherical fibration γY : Y → BSG and let γ̂Y p be its p-adic

completion. Similarly, we also have γX and γ̂Xp. Notice that γ̂Xp = f̂p ◦ γ̂Y p.

(1) Case I: p is an odd prime.

Let ∆X : Th(γ̂Xp)→ B̂SO⊗
p be the p-adic manifold structure underlying XC. Similarly,

we also have ∆Y . Then the element (ϕ, β) in the structure set of Y representing f̂p is deduced

from (f̂−1
p )∗∆X = ϕ ·∆Y .

Recall from [Sul09, Theorem 6.5] that B̂SPLp is equivalent to the classifying space

BK̂Op
SG of spherical fibrations with K̂Op orientations. Since TOP/PL ≃ K(Z/2, 3) ([KS77,

p. 251]), ̂BSTOP p is also homotopy equivalent to BK̂Op
SG. The Adams conjecture says

that the Galois action on B̂Up fixes the underlying B̂SGp. The Galois action on B̂Up also

extends to ̂BSTOP p via the Galois action on the orientation K̂Op ([Sul09, Theorem 6.7]).
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Consider the diagram

X̂Cp B̂Up
̂BSTOP p

X̂σ
Cp B̂Up

̂BSTOP p

νXC

σ−1 ψσ−1
p σ−1

p

νXσ
C

Then the underlying p-adic manifold structure data ∆Xσ of Xσ
C is pulled back along σ−1

to ψσ
−1
p ∆X over XC.

An implication of the Adams conjecture is that ̂BSTOP p
σ−1
p −1−−−−→ ̂BSTOP p canonically

factors as the following composition of maps ̂BSTOP p

g
σ−1
p−−−→ Ĝ/TOP p → ̂BSTOP p.

Then the representation (ϕ′, β′) ∈ STOP (YC)
∧
p of f̂p ◦ σ : X̂σ

Cp → ŶCp is calculated by the

following equation and the Pontryagin character.

ϕ′ ·∆Y = ((f̂p ◦ σ)−1)∗∆Xσ = (f̂−1
p )∗ψσ

−1
p ∆X = ψσ

−1
p (ϕ ·∆Y )

It is exactly the definition of abelianized Galois action on STOP (YC)
∧
p .

(2) Case II: p = 2.

Let (l, k) ∈ STOP (YC)
∧
2 represent f̂2. Let LX , LY be the 2-adic L-genus of XC, YC respec-

tively. Then by definition (f̂−1
2 )∗LX = (1 + 8l) · LY .

By the odd prime case, we know that

(σ−1)∗LXσ = ph(σ−1∆Xσ) = ph(ψσ
−1

∆X) = ψσ
−1

H LX

We lift it to the 2-adic case then we get that (σ−1)∗LXσ = ψ
σ−1
2
H LX .

Also by the Adams conjecture, the map X̂C2 → B̂U2
ψσ−1

−−−→ B̂U2 gives a map X̂C2 →

B̂U2

g
σ−1
2−−−→ Ĝ/U2 → Ĝ/TOP 2, which precisely corresponds to X̂σ

C → X̂C.

The representation (l′, k′) ∈ STOP (YC)
∧
2 of f̂2 ◦ σ is calculated as follows.

(1 + 8l′)LY = ((f̂2 ◦ σ)−1)∗LXσ
C
= (f̂−1

2 )∗ψ
σ−1
2
H LX = ψ

σ−1
2
H ((f̂−1

2 )∗LX) = ψ
σ−1
2
H ((1 + 8l) · LY )

This is exactly the abelianized Galois action on the l-classes.

For k′, the k-class kσ
−1

Y for the map Ŷ σ
C

σ−→ ŶC is given by ŶC2 → B̂U2

g
σ−1
2−−−→ Ĝ/U2 →

Ĝ/TOP 2.
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Now consider the commutative diagram

Xσ X

Y σ Y

σ

fσ f

σ

Let (lσ, kσ) be the representation of fσ in STOP (Y σ
C )

∧
2 . Then k

σ = σ∗k.

Hence, k′ is also the k-class for the map σ ◦ f̂σ : X̂σ
C → ŶC. Then

k′ = kσ
−1

Y + (σ−1)∗kσ = kσ
−1

Y + k

which agrees with the abelianized Galois action on the k-class.

6.3 Conjectures and Questions

It seems very mysterious that the Galois action discussed above is abelianized. We propose

the following question.

Question 6.3.1. What is a geometric reason for the Galois action on the algebraic elements

of a profinite structure set to be an abelianized action?

In this section, we suggest an approach together with some conjectures for this question.

We hope to complete this part of discussions in future studies.

Recall that an étale morphism f : U → X for a smooth complex variety X can always be

completed to an algebraic branched covering map f ′ : U ′ → X.

For simplicity, let us assume that the branched locus Bf of f ′ has complex codimension 1.

Bf has finitely many components B1, . . . , Bk. Around each component Bi, pick a base point

xi in the complement of Bf . Take a small loop γi in the complement based at xi around Bi.

The conjugate class of βi is independent of the choice of xi. Choose a basepoint x in X −Bf .

For each i choose a path δi in X −Bf connecting x and xi. Conjugate γi by δi and then we

get a set of elements {γ′i} in π1(X −Bf , x).

Assume that π1(X) = 0. By the Seifert-van Kampen theorem, the conjugate classes of

γ′1, . . . , γ
′
k actually generate π1(X −Bf ). Then the image S(f) of π1(X −Bf )→ Sd induced
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by the étale morphism f : U → X is generated by the classes of αi = f∗(γ
′
i) conjugated by

π1(X −Bf). The classes of α1, . . . , αk are independent of the choice of basepoints and the

choice of paths δi.

Note that the permutation information is not algebraic, since it uses the transcendental

topology of X. However, choosing basepoints in this discussion makes the statement more

complicated.

Question 6.3.2. Is there a basepoint-free discussion of the permutation information for a

branched covering?

Conjecture 6.3.3. The fundamental groupoid language will give an answer.

Hence, for the étale site Sét(X), each object f1 : U → X is not only an étale morphism,

but also contains the permutation data {α1, . . . , αk}. Given two étale morphisms f1 : U1 → X

and f2 : U2 → X, a morphism between them in the category Sét(X) is realized by some ’etale

morphism g : U2 → U1. How does g induce an morphism between the permutation data

{α1,1, . . . , α1,k} of f1 and {α2,1, . . . , α2,l} of f2?

Notice that the branched locus Bf1 is a subvariety of the branched locus Bf2 . So the

components B1, . . . , Bk of Bf1 form a subset of those of Bf2 . The components of Bf2 must

be B1, . . . , Bk, . . . , Bl for some l ≥ k. Assume that f1 has a degree d and f2 has degree

nd, where n is the degree of g. Then the permutation group has a natural quotient map

ψd,nd : Snd → Sd induced by the modulo d quotient map {1, . . . , nd} → {1, . . . d}.

Then g induces the correspondence ψd,nd(α2,1) = α1,1, . . . , ψd,nd(α2,k) = α1,k. In this way,

we get a category S(X) which is isomorphic to Sét(X), where the objects are

(U → X, the conjugate classes of {α1, . . . , αk})

where U → X is an étale morphism and α1, . . . , αk are the induced permutation data. The

morphisms are defined like above.

Notice that for a Galois morphism σ : Xσ → X, each étale morphism f : U → X is pulled

back to an étale morphism fσ : Uσ → Xσ. However, the conjugate class of the pullback of
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permutations {α1, . . . , αk} for f might be different from the permutations {ασ1 , . . . , ασk} for

fσ, since permutations are transcendental information rather than algebraic information.

Define an abstract category SP (X), whose objects are

(B, π1(X −B)→ Sd, the conjugate classes of {α1, . . . , αk})

where B is a codimension 2 subvariety of X with components B1, . . . , Bk, {α1, . . . αk} are

permutations in Sd and the conjugation is induced by the image of π1(X−B)→ Sd, such that

the conjugate classes of {α1, . . . αk} generate the image of π1(X −B)→ Sd. The morphisms

in SP (X) are defined like those in S(X). SP (X) is a category larger than S(X) since only

part of the permutations can be realized by an actual étale morphism over X.

Define an automophism of SP (X) by an isomorphic functor F : SP (X)→ SP (X) such

that an object (B, π1(X −B)→ Sd, the conjugate classes of {α1, . . . , αk}) is mapped to an

object with the same B and the same π1(X −B)→ Sd.

Conjecture 6.3.4. There is a natural homomorphism from Gal(Q/Q) to the automophisms

of SP (X).

Remark 6.3.5. This conjecture seems not possible. So we suggest to find an appropriated

subcategory of SP (X) such that to realize this homomorphism in the conjecture.

Recall the definition of Grothendieck’s dessins d’enfants (e.g., see [Gro85][Sch94]).

Conjecture 6.3.6. Grothendieck’s dessins d’enfants is equivalent to part of our homomor-

phism for X = P 1.

Grothendieck and many other mathematicians proved that the homomorphism from

Gal(Q/Q) to the automorphism group of dessins d’enfants is injective. It is natural to ask

whether the same result is true in our formulation.

Question 6.3.7. Is the homomorphism from Gal(Q/Q) to the automophism group of SP (X)

injective for any simply connected smooth variety X defined over Q?
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Finally, we conjecture the following.

Conjecture 6.3.8. There is a concrete context showing that the homomorphism we defined

above agrees with the abelianized Galois action on the profinite structure sets.

We do not know a concrete approach for this conjecture yet, but it seems that the class

field theory and Sullivan’s proof of Adams conjecture should help.
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