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Abstract of the Dissertation
Degeneration techniques in complex geometry

by

Roberto Albesiano

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

In 2009, B. Berndtsson proved a theorem on the positivity of direct image bundles of
positive line bundles. Berndtsson’s theorem has been successfully used to give radically
new proofs of some fundamental theorems in the part of complex geometry often referred
to as L2 methods. Among these is a proof of the L2 extension theorem with sharp
estimates. This thesis is a step towards determining how much of the classical L2 theory
can be recovered by this technique. The main contribution is a new proof of a Skoda-type
L2 division theorem.
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Introduction

In a 2009 Annals of Mathematics article [4], B. Berndtsson proved two remarkable theo-

rems about the variation of Hilbert spaces of holomorphic sections of line bundles on a

family of complete Kähler manifolds. In very broad strokes, Berndtsson’s theorems say

that, given either a trivial family whose fiber is a bounded domain in a Stein manifold or

a smooth proper family, and a semi-positively curved line bundle L on the total space of

the family, the direct image (in this case locally trivial) has a metric with Nakano-positive

curvature.

More precisely, fix a domain Ω ⊂ Cm and consider the following two situations:

(1) X is a bounded domain in some Stein manifold and L → X is a holomorphic line

bundle, p : X × Ω → X is the projection to the first factor, e−ϕ is a metric for

p∗L → X × Ω that is smooth up to the vertical boundary of X × Ω. For each τ ∈ Ω,

define Hτ to be the Hilbert space of holomorphic sections of L⊗KX → X that are

L2-integrable with respect to the metric e−ϕτ obtained from the metric e−ϕ |X×{τ} after

the identification X ∼= X × {τ}. For each τ ∈ Ω the sub-spaces Hτ ⊆ H0(X,L⊗KX)

are independent of τ ∈ Ω, so they form a trivial infinite-rank vector bundle H → Ω,

with non-trivial metric given by the L2 inner product determined by e−ϕτ .

(2) X is Kähler, p : X → Ω is a proper holomorphic submersion with fiber Xτ over τ ∈ Ω,

and L → X is a holomorphic line bundle with a smooth Hermitian metric e−ϕ. For

each τ ∈ Ω, define Hτ to be the vector space of holomorphic sections of L|Xτ ⊗KXτ ,
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endowed with the L2 inner product induced by e−ϕ |p−1(τ). As a consequence of the

L2 extension theorem, the Hτ fit together to form a finite-rank vector bundle H → Ω

with metric given by the L2 inner product.

Then Berndtsson’s first and second theorems can be summarized as follows.

Theorem 1 ([4, Theorems 1.1 and 1.2]). In both situations (1) and (2), if e−ϕ has

(strictly) positive curvature, then the curvature of the metric induced on H → Ω by the

L2 inner product is (strictly) positive in the sense of Nakano.

In the trivial fibration case, the main idea is to realize H as a subbundle of the bundle L

of smooth L2-integrable sections. The curvature of L is easy to compute, and the curvature

of H is obtained from that of L by a formula of Griffiths for the curvature of subbundles.

The bound on the curvature of H is then a consequence of the Hörmander–Skoda Theorem

on the solution of the ∂̄-equation with L2 estimate.

Aside from the intrinsic beauty of Berndtsson’s results, Theorem 1 is particularly fas-

cinating because it can be used to obtain new proofs of some fundamental results in

complex analytic geometry; proofs that are based on the monotonicity of certain degen-

erations into situations in which the results are obvious, and that reveal an unexpected

underlying convexity. In fact, the full extent of the method is not yet known, and the

central goal of the present thesis is to better understand what can be accomplished with

Berndtsson’s method.

Remarkably, Berndtsson’s first theorem can be used to give degeneration-based proofs

of Suita’s conjecture [9, 7], of the L2 extension theorem with sharp constants [7], and of

the strong openness conjecture [5, 6, 41], while Berndtsson’s second theorem gives partial

evidence towards Griffiths’s conjecture on the existence of Griffiths-positive metrics on

ample vector bundles, and more generally provides ways of constructing Nakano-positive

metrics for vector bundles [4].
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The main contribution of our thesis is a new degeneration proof of the following classical

Skoda-type L2 division theorem. Let X be a Stein manifold and let E,G → X be

holomorphic line bundles with Hermitian metrics hE, hG, respectively. Fix holomorphic

sections h1, . . . , hr of E∗ ⊗G and 1 < α < r+1
r−1 . Given a section g of G⊗KX → X with

suitable L2 estimates, a natural question is whether we can find holomorphic sections

f1, . . . , fr of E ⊗ KX → X such that g = ∑r
i=1 hifi and having good L2 estimates.

Theorem 2 (L2 division [1]). Assume that the curvature of hE is bounded below by
α(r−1)
α(r−1)+1 times the curvature of hG, and that

∫
X

⟨hG, g ∧ ḡ⟩
(hG ⊗ h∗

E)(h, h̄)α(r−1)+1
< +∞.

Then there are holomorphic sections f1, . . . , fr of E ⊗ KX → X such that g = ∑r
i=1 hifi

and ∫
X

⟨hE, f ∧ f̄⟩
(hG ⊗ h∗

E)(h, h̄)α(r−1)
≤ r

α

α− 1

∫
X

⟨hG, g ∧ ḡ⟩
(hG ⊗ h∗

E)(h, h̄)α(r−1)+1
.

Skoda’s original theorem, which is stated for holomorphic functions and was motivated

as an L2 version of the corona problem, has many remarkable applications in algebraic

geometry such as Briançon–Skoda’s theorem [54], effective versions of the Nullstellensatz

[12, 33, 23], and Y.-T. Siu’s proof of deformation invariance of plurigenera [49] and

approach to finite generation of the canonical ring [50].

If the number of generators r is at most dimX + 1, Theorem 2 almost recovers the

classical line bundle version of Skoda’s L2 division theorem. We say “almost” because in

Theorem 2 we have ∥f∥2
E⊕r ≤ rα

α−1∥g∥2
G rather than Skoda’s estimate ∥f∥2

E⊕r ≤ α
α−1∥g∥2

G

(cf. Corollary 1.8). Still, even though stronger results are known, the intent is to emphasize

the technique used to prove Theorem 2: while the standard proof is based on functional

analysis and the Bochner–Kodaira–Nakano identity, we instead obtain Theorem 2 by a

degeneration argument based on Theorem 1.
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The general philosophy is inspired by B. Berndtsson and L. Lempert’s proof of the

L2 extension theorem, and by T. Ohsawa’s proof of a Skoda-type division theorem as a

corollary of the Ohsawa–Takegoshi L2 extension theorem. Ohsawa indeed remarks that

the division problem can be reformulated as an extension problem on the projectivizations

of the dual bundles (see [43], [44] and [45, Section 3.2]). It is thus natural to wonder

whether a Skoda-type theorem could be proved directly by a degeneration argument, and

the present work answers in the affirmative.

The major difficulty in the proof of Theorem 2 lies in defining the correct family of

metrics. The situation is complicated by the presence of some negatively curved terms, for

which one needs an improved version of some tools employed in [7]. The improvement can

in turn be used to generalize and simplify the proof of L2 extension given by Berndtsson

and Lempert.

Outline. Chapter 1 is a review of background material and of the classical L2 theory:

after recalling the notions of positivity for Hermitian metrics of holomorphic vector bundles,

we review L. Hörmander’s theorem on the solution of the ∂̄-equation and the classical

proofs of the L2 extension theorem and the L2 division theorem.

We present Berndtsson’s two theorems in Chapter 2. In particular, we recall the proof of

Berndtsson’s theorem for trivial fibrations (which is the one needed for degeneration-based

proofs), and explain how Berndtsson’s theorem for proper fibrations is used to give partial

evidence towards Griffiths’s conjecture on positive metrics on ample vector bundles. We

also show how a version of Berndtsson’s theorem on trivial fibrations can be obtained

from the L2 extension theorem with sharp constants.

Chapter 3 explains how the L2 extension theorem with sharp constants can be proved

from Berndtsson’s theorem on trivial fibrations via a degeneration argument. The proof is

a slight generalization and simplification of the argument of B. Berndtsson and L. Lempert.

In the same chapter we will also present a proof of the openness conjecture due to

B. Berndtsson, that is based on Theorem 1.
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Finally, the degeneration proof of Theorem 2 is explained in Chapter 4, following the

author’s work in [1].
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Chapter 1

Classical L2 theory

A very short survey of some fundamental results in the classical L2 theory of complex

geometry is presented. After recalling in Section 1.1 the various notions of positivity for

Hermitian metrics on vector bundles, in Section 1.2 we sketch the proof of H. Skoda’s

version of the fundamental theorem of L. Hörmander on the solution of the ∂̄-equation.

Then we present the classical proofs of the L2 extension theorem in Section 1.3, and of

the L2 division theorem in Section 1.4.

1.1 Notions of positivity

Let V → X be a holomorphic vector bundle, meaning that the projection map π : V → X

is holomorphic and that every point x ∈ X has a neighborhood U such that π−1(U) is

isomorphic to U × W , where W is a vector space with a smoothly varying Hermitian

inner product. If W has infinite dimension, we moreover assume that the inner products

are complete, i.e. that the fibers are Hilbert spaces. Fix a Hermitian metric g on X.

Let h be a Hermitian metric for V → X. The Chern connection ∇ for h is the unique

connection that is compatible with h and such that ∇0,1 = ∂̄. Its (1, 0)-part is thus given by

∂h(u, v) = h(∇1,0u, v) + h(u, ∂̄ v).
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The curvature of the Chern connection ∇ is the End(V )-valued (1, 1)-form Θ(h) defined by

Θ(h)α := (∇1,0 ∂̄+ ∂̄∇1,0)α.

Definition 1.1. We say that h has m-positive curvature in the sense of Demailly at a

point x ∈ X (and write Θ(h) >m 0) if there is c > 0 such that

h

Θ(h)
m∑
i=1

uj ⊗ ζj,
m∑
k=1

uk ⊗ ζk

 ≥ c
m∑

j,k=1
h(uj, uk)g(ζj, ζk)

for all u1 ⊗ ζ1, . . . , um ⊗ ζm ∈ Vx ⊗ T 1,0
X,x. In particular, Θ(h) (or just h, with an abuse

of notation) is said to be Griffiths-positive (Θ(h) >Griff 0) if it is 1-positive, and it is

said to be Nakano-positive (Θ(h) >Nak 0) if it is m-positive for all m, or equivalently for

m = min(rank V, dimX).

Clearly (m + 1)-positivity implies m-positivity, and thus Nakano-positivity implies

Griffiths-postivity. The notion of m-negativity can be defined analogously.

Let t = (t1, . . . , tn) be a system of local coordinates on an open chart U ⊆ X. Then

the Chern connection is the collection of operators ∇1,0
∂

∂tj

acting on smooth sections of

U × W defined by

∂tjh(u, v) = h

(
∇1,0

∂
∂tj

u, v

)
+ h

(
u, ∂t̄jv

)
,

and the curvature of the Chern connection is the End(V )-valued (1, 1)-form Θ(h) =∑n
j,k=1 Θjk̄ dtj ∧ dt̄k whose coefficients are the commutators Θjk̄ :=

[
∇1,0

∂
∂tj

, ∂t̄k

]
. Then h

is Griffiths-positive (at x ∈ X) if and only if there is c > 0 such that

n∑
j,k=1

hx(Θjk̄u, u)vj v̄k ≥ chx(u, u)|v|2

7



for all u ∈ Vx and v ∈ Cn, and h is Nakano-positive (at x ∈ X) if and only if there

is c > 0 such that

n∑
j,k=1

hx(Θjk̄uj, uk) ≥ c
n∑
j=1

hx(uj, uj)

for all n-tuples (u1, . . . , un) ∈ V ⊕n
x .

The dual bundle of V is the vector bundle V ∗ whose fiber V ∗
x is the Hilbert space dual

of Vx. Once a metric is fixed, the Riesz Representation Theorem gives a conjugate-linear

isometry R : V ∗ → V defined by ξ(u) = hx(u,Rξ) for all u ∈ Vx and ξ ∈ V ∗
x . Denoting

by Θ∗
jk̄

the coefficients of the curvature of the dual metric h∗ on V ∗, one then computes

n∑
j,k=1

h∗
x(Θ∗

jk̄ξj, ξk) = −
n∑

j,k=1
hx(Θjk̄(Rξk), (Rξj))

for all n-tuples (ξ1, . . . , ξn) ∈ V ∗⊕n
x . Therefore h has Griffiths-positive curvature if and only

if h∗ has Griffiths-negative curvature, but the same does not hold for Nakano-positivity

and Nakano-negativity, because the indices on the right-hand side are reversed.

Griffiths negativity has a useful characterization in terms of the plurisubharmonicity

of the logarithm of norms of sections.

Proposition 1.2. The following are equivalent for a Hermitian metric h for a holomorphic

vector bundle V → X:

(i) h is (strictly) Griffiths-negative,

(ii) log h(σ, σ) is a (strictly) plurisubharmonic function on X for all holomorphic sec-

tions σ of V → X,

(iii) h(σ, σ) is a (strictly) plurisubharmonic function on X for all holomorphic sections

σ of V → X,

(iv) log h(·, ·) is a (strictly) plurisubharmonic function on the total space V ,

(v) h(·, ·) is a (strictly) plurisubharmonic function on the total space V .

8



Proof. We compute

√
–1 ∂∂̄ log h(σ, σ) = − h(Θ(h)σ, σ)

h(σ, σ)

+ h(σ, σ)h(∇1,0σ,∇1,0σ) − h(∇1,0σ, σ) ∧ h(σ,∇1,0σ)
h(σ, σ)2 .

(1.1)

(i)⇔(ii) The second term of (1.1) is non-negative by the Cauchy–Schwarz inequality, so if h

is (strictly) Griffiths-negative, then log h(σ, σ) is (strictly) plurisubharmonic.

Conversely, we can assume that V is a trivial vector bundle (with non-trivial metric),

since the negativity of the curvature is a local property. Then given any vector

v ∈ Vx there is a holomorphic section σv of V → X such that σv(x) = v and

∇1,0σv(x) = 0. Plugging this into (1.1) we obtain

√
–1 ∂∂̄ log h(σv, σv) = −h(Θ(h)σv, σv)

h(σv, σv)
,

showing that if log h(σ, σ) is (strictly) plurisubharmonic for all sections σ of V → X,

then h has (strictly) negative curvature in the sense of Griffiths.

(ii)⇔(iii) Since the exponential function is strictly convex increasing, if log h(σ, σ) is (strictly)

plurisubharmonic then h(σ, σ) is (strictly) plurisubharmonic.

Conversely, assume that h(σ̃, σ̃) is plurisubharmonic for all holomorphic sections σ̃ of

V → X. Fix such a section σ and a disk D ⊂ X, and assume that log h(σ, σ)|∂D ≤

Φ|∂D for some harmonic function on D. Write Φ = 2ReF , where F is a holo-

morphic function on D. Taking exponentials we have h(σ, σ)|∂D ≤ | eF |2|∂D, i.e.

h(e−F σ, e−F σ)|∂D ≤ 1. Since h(σ̃, σ̃) is plurisubharmonic by assumption for all

sections σ̃, it follows that h(e−F σ, e−F σ) ≤ 1 on D, so that log h(σ, σ) ≤ Φ on D,

proving that log h(σ, σ) is plurisubharmonic.

9



(ii)⇒(iv) Assume (ii). Fix a point v in the total space V and a direction ζ in the tangent

space to V at v. We need to check that log h(·, ·) is subharmonic when restricted

to some curve C in the total space V tangent to ζ. If ζ projects to zero by the

bundle map V → X we can choose C to be contained in the fiber of v and use the

fact that the restriction of log h(·, ·) to any fiber is automatically plurisubharmonic.

If instead v does not project to the zero vector we can choose C contained in the

graph of some section σ of V → X, and then (iv) follows as before.

The converse follows directly from the fact that log h(σ, σ) being (strictly) plurisub-

harmonic function on X is equivalent to log h(·, ·) being subharmonic when restricted

to the graph of σ.

(iv)⇔(v) This is similar to [(ii)⇔(iii)] and is thus omitted.

We conclude this Section by a useful formula of P. Griffiths on the curvature of sub-

bundles. This formula will play a central role in the proof of Berndtsson’s first theorem

(Section 2.1).

Proposition 1.3 (Griffiths’s formula for the curvature of subbundles). Let E be

a holomorphic subbundle of a holomorphic bundle F over a complex manifold M . Fix

a metric h for F , endow E with the induced metric, and denote by π⊥ the orthogonal

projection of F to the orthogonal complement of E with respect to h. Then

h(ΘFu, v) = h(π⊥∇F1,0u, π⊥∇F1,0v) + h(ΘEu, v)

for any two sections u, v of E.

Proof. Let π : F → E be the projection of F to E. For any two sections u, v of E → M

we have

∂h(u, v) = h(∇F1,0u, v) + h(u, ∂̄ v) = h(π∇F1,0u, v) + h(u, ∂̄ v),

10



so that ∇E1,0 = π∇F1,0. Let ∂̄ π be defined by

∂̄(πσ) = (∂̄ π)σ + π(∂̄ σ)

and notice that (∂̄ π)u = 0 when u is a section of E → M . Then

ΘEu = [∇E1,0, ∂̄]u = π∇F1,0 ∂̄ u+ ∂̄(π∇F1,0u)

= πΘFu+ (∂̄ π)∇F1,0u = πΘFu+ (∂̄ π)π⊥∇F1,0u

= πΘFu− π ∂̄(π⊥∇F1,0u),

where the last line follows from differentiating ππ⊥ = 0. Therefore

h(ΘEu, v) = h(πΘFu, v) − h(π ∂̄(π⊥∇F1,0u), v)

= h(ΘFu, v) − h(∂̄(π⊥∇F1,0u), v)

= h(ΘFu, v) − h(π⊥∇F1,0u,∇F1,0v)

= h(ΘFu, v) − h(π⊥∇F1,0u, π⊥∇F1,0v),

proving Griffiths’s formula (the second to last equality holds by metric compatibility

because h(π⊥∇F1,0u, v) = 0, since v = πv).

1.2 The Hörmander–Skoda Theorem on the solution

of the ∂̄-equation

We now recall the following theorem on the solution of the ∂̄-equation. This theorem

is originally due to L. Hörmander [30, 31], and A. Andreotti and E. Vesentini [2]. Here

we present a version due to H. Skoda [51].

Theorem 1.4 (Hörmander–Skoda Theorem). Let X be a complete Kähler manifold

of complex dimension n, and let V → X be a holomorphic vector bundle. Fix p ≥ 0, q ≥ 1

and a not necessarily complete Kähler form ω. Assume that V has a Hermitian metric

11



h with whose operator A = Ap,qh,ω = [Θ(h),Λω] induced by curvature on V ⊗ Λp,pT ∗
X is

positively defined everywhere. Then for any V -valued (p, q)-form f such that ∂̄ f = 0 and

∫
X

⟨A−1f, f⟩h,ωωn < +∞

there is a V -valued (p, q − 1)-form u such that ∂̄ u = f and

∫
X

|u|2hωn ≤
∫
X

⟨A−1f, f⟩h,ωωn < +∞. (1.2)

We will just present the main idea and refer to Demailly [15, 20] for further details

and the complete proof.

Idea of the proof. First assume that ω is complete, then for any L2-integrable V -valued

(p, q) form σ with ∂̄ σ ∈ L2 and ∂̄
∗
σ ∈ L2 in the sense of distribution there is a sequence

of smooth forms σν with compact support and such that σν → σ, ∂̄ σν → ∂̄ σ, and

∂̄
∗
σν → ∂̄

∗
σ in L2. Consequently, the Bochner–Kodaira–Nakano Identity [10, 11, 32, 39]

implies that ∥∥∥∂̄ σ∥∥∥2
+
∥∥∥∂̄∗

σ
∥∥∥2

≥
∫
X

⟨Aσ, σ⟩h,ωωn (1.3)

holds for σ ∈ L2 with ∂̄ σ ∈ L2 and ∂̄
∗
σ ∈ L2.

Let Dp,q denote the set of smooth L2-integrable V -valued (p, q)-forms with compact

support. Fix v ∈ Dp,q and consider its decomposition v = v1 + v2 according to the

orthogonal decomposition

L2(X, V ⊗ Λp,qT ∗
X) = ker ∂̄⊕(ker ∂̄)⊥.

Since f, v1 ∈ ker ∂̄, by the Cauchy–Schwarz inequality we have

∣∣∣(f, v)L2
p,q

∣∣∣2 =
∣∣∣(f, v1)L2

p,q

∣∣∣2 ≤
∫
X

⟨A−1f, f⟩h,ωωn
∫
X

⟨Av1, v1⟩h,ωωn.

12



According to (1.3) the second integral can be estimated by

∫
X

⟨Av1, v1⟩h,ωωn ≤
∥∥∥∂̄ v1

∥∥∥2
+
∥∥∥∂̄∗

v1

∥∥∥2
=
∥∥∥∂̄∗

v1

∥∥∥2
=
∥∥∥∂̄∗

v
∥∥∥2
,

where the last equality follows from the fact that v2 ∈ (ker ∂̄)⊥ ⊂ ker ∂̄∗. Hence

∣∣∣(f, v)L2
p,q

∣∣∣2 ≤
(∫

X
⟨A−1f, f⟩h,ωωn

)∥∥∥∂̄∗
v
∥∥∥2

for every v ∈ Dp,q. As a consequence, we have a well-defined bounded linear functional

ℓ : ∂̄∗(Dp,q) −→ C

w = ∂̄
∗
v 7−→ (f, v)L2

p,q

whose norm is bounded by
(∫
X⟨A−1f, f⟩h,ωωn

)1/2
. Extending ℓ by 0 in ∂̄

∗(Dp,q)⊥ and

applying the Riesz Representation Theorem, we find an element u ∈ L2(X, V ⊗ Λp,qT ∗
X)

such that (v, f)L2
p,q

= (∂̄∗
v, u)L2

p,q−1
for all v ∈ L2(X, V ⊗ Λp,q−1T ∗

X) and

∫
X

|u|2hωn ≤
∫
X

⟨A−1f, f⟩h,ωωn.

Hence ∂̄ u = f in the sense of distributions and (1.2) is satisfied.

To pass to the case of ω not complete, one replaces ω by ωε := ω + εθ with θ complete;

we refer to Demailly for details [20].

The relevant case of Theorem 1.4 for the purposes of this thesis is (p, q) = (n, 1), and

in such setting the hypothesis on the metric is that h has Nakano-positive curvature. If

further V is a line bundle L with metric e−ϕ, then Theorem 1.4 says that, if
√

–1 ∂∂̄ ϕ > 0,

then for all L ⊗ KX-valued (0, 1)-forms f such that ∂̄ f = 0 and

∫
X

|f |2√–1 ∂∂̄ ϕ e−ϕ < +∞

13



there is a section u of L ⊗ KX such that ∂̄ u = f and

∫
X

|u|2 e−ϕ ≤
∫
X

|f |2√–1 ∂∂̄ ϕ e−ϕ .

1.3 The L2 extension theorem

In this section we explain the classical approach to the following extension problem. Let Z

be a complex submanifold of some given Stein manifold X of complex dimension n, and let

L → X be a sufficiently positive holomorphic line bundle. Given an L-valued holomorphic

(n, 0)-form f along Z with suitable L2 estimates, we want to find an L-valued holomorphic

(n, 0)-form F on X satisfying F |X = f and with good estimates on its L2 norm.

The first solution to the L2 extension theorem was obtained by T. Ohsawa and

K. Takegoshi in 1987 [46], albeit with a non-optimal estimate. In the years that followed,

many generalizations and improvements have been achieved, to name a few: extension of

top forms with values in vector bundles [36, 19], extension from submanifolds of higher

codimension [36, 19, 42], and L2 extension with optimal constant [8, 27].

For simplicity, here we present a statement of extension for line bundles from subman-

ifold of codimension 1.

Theorem 1.5 (L2 extension). Let X be a Stein manifold of complex dimension n, and let

Z ⊂ X be an analytic hypersurface. Let LZ → X be the holomorphic line bundle associated

to Z, with T ∈ H0(X,LZ) such that Z = (T = 0) and dT |Z generically non-zero. Assume

moreover that LZ carries a (singular) Hermitian metric e−λ such that e−λ |Z ̸≡ +∞ and

supX |T |2 e−λ ≤ 1. Let L → X be a line bundle with (singular) Hermitian metric e−φ

such that
√

–1 ∂∂̄ φ ≥ 0 and
√

–1 ∂∂̄ φ ≥ δ
√

–1 ∂∂̄ λ

for some δ > 0. Then for any holomorphic section f ∈ H0(Z,L|Z ⊗KZ) such that

∥f∥2
Z :=

∫
Z

|f |2 e−φ < +∞

14



there is a holomorphic section F ∈ H0(X,L⊗ LZ ⊗KX) such that F |Z = f ∧ dT and

∥F∥2
X :=

∫
X

|F |2 e−λ−φ ≤ π

(
1 + 1

δ

)∫
Z

|f |2 e−φ = π

(
1 + 1

δ

)
∥f∥2

Z .

The L2 extension theorem has several applications in complex analytic and algebraic

geometry; for instance Demailly’s approximation of singular Hermitian metrics [16, 18],

the proof of the strong openness conjecture by Q. Guan and X. Zhou [26], the proof

of the deformation invariance of plurigenera [49, 47], and generalizations of the Nadel

vanishing theorem [13]. It can also be used to prove the hard Lefschetz theorem for

pseudoeffective line bundles [22], and it is instrumental in various result related to Fujita’s

conjecture [3, 17].

The main idea for the classical proof of Theorem 1.5 is to obtain a smooth extension

and then correct it to a holomorphic one. Control on the norm of the extension is achieved

by means of twisted estimates. To simplify the exposition, we will give up obtaining the

optimal constant of Theorem 1.5, and we will mostly follow the ideas of [37]. See [8] and

[27] for the proof with the optimal constant.

Proof. Fix the section f to be extended. By some standard reductions (cf. Subsection

3.1.1), we can assume that Z is smooth and that X is a relatively compact domain in some

larger Stein manifold, to which all objects extend. We can also assume that the metrics

are smooth. Then, since X is Stein, we automatically have an extension F̃ with finite L2

norm, but we don’t have any control on the L2 norm of such solution (see Proposition 3.3

for a more detailed argument).

We will now modify F̃ to a smooth extension, and then correct this smooth extension

to a holomorphic one by solving a twisted ∂̄-equation. Let t ∈ (0, 1) and χ ∈ C∞
c ([0, 1))

with

0 ≤ χ ≤ 1, χ ≡ 1 on [0, t] and |χ′| ≤ 1 + t.

15



Set v := log(|T |2 e−λ), χε := χ(ev /ε2), and

αε := ∂̄(χεF̃ ) = 1
ε2χ

′(ev /ε2)F̃ ∧ ∂̄ ev = F̃ ∧ 2 ev/2

ε2 χ′(ev /ε2) ∂̄(ev/2).

Set also

ψν := φ+ log(ev +ν2) + λ+ ν2 ∂∂̄ ρ,

so that e−ψν is a metric for L ⊗ LZ . Here ρ is some bounded strictly plurisubharmonic

function to be specified later on. Then for all (L⊗LZ)-valued (n, 1)-forms u we estimate

|(u, αε)|2 =
∣∣∣∣∫
X

⟨u, αε⟩ω e−ψν

∣∣∣∣2 ≤
(∫

X
|⟨u, αε⟩| e−ψν

)2

=
∫

X

∣∣∣∣〈u, 2 ev/2

ε2 χ′(ev /ε2) ∂̄(ev/2)
〉∣∣∣∣ e−ψν

2

≤

1
δ

∫
X

∣∣∣∣∣∣ F̃ε2χ
′(ev /ε2)

∣∣∣∣∣∣
2

(ev +ε2)2

ε2 e−ϕ−λ

(δ ∫
X

∣∣∣∣〈u, ∂̄(ev/2)
〉∣∣∣∣2 4ε2

(ev +ε2)2 e−ψν

)

≤ Cεδ
∫
X

∣∣∣∣〈u, ∂̄(ev/2)
〉∣∣∣∣2 4ε2

(ev +ε2)2 e−ψν ,

(1.4)

where

Cε := 4(1 + t)2

δε2

∫
ev≤ε2

|F̃ |2 e−ϕ−λ

and the last inequality follows from |χ′| ≤ 1 + t and tε2 ≤ ev ≤ ε2 on the support of

χ′(ev /ε2). For later use notice that

lim sup
ε→0

Cε = 8π(1 + t)2

δ

∫
Z

|f |2 e−φ .

We now bound the last term in (1.4). We start by the following twisted Bochner–

Kodaira–Nakano estimate.
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Lemma 1.6. Let X be a bounded pseudoconvex domain in some ambient Stein manifold

Y of complex dimension n, and let H → Y be a holomorphic line bundle with smooth

Hermitian metric e−ψ. Fix a Kähler metric g on Y . Let τ and A be positive functions on

X, with τ ∈ C2(X). Then for all H-valued (n, 1)-forms in the domain of ∂̄ and of the

adjoint ∂̄∗
ψ the following inequality holds

∫
X

(τ + A)| ∂̄∗
ψ u|2 e−ψ +

∫
X
τ | ∂̄ u|2g e−ψ

≥
∫
X

(
τ ∂∂̄ ψ − ∂∂̄ τ − 1

A
∂τ ∧ ∂̄ τ

)
ij̄

gik̄uk̄g
jl̄ul̄ e−ψ .

The main idea for the proof of Lemma 1.6 is to apply the standard Bochner–Kodaira–

Nakano identity [10, 11, 32, 39] to the twisted metric τ e−ψ, dropping terms by positivity

and Cauchy–Schwarz inequality (see Lemma 2.1 in [37]).

We will apply Lemma 1.6 to H = L ⊗ LZ and e−ψ = e−ψν as defined above. Notice

that by the Poincaré–Lelong formula we have

√
–1 ∂∂̄ v = 2π[Z] −

√
–1 ∂∂̄ λ,

where [Z] denotes the current of integration along Z. Fix γ > 1 and define the function

a := γ − δ log(ev +ε2) = γ − δ log(|T |2 e−λ +ε2).

Then

− ∂∂̄ a = δ ∂∂̄ log(ev +ε2) = δ∂

 ∂̄ ev
ev +ε2

 = δ
ev

ev +ε2 ∂∂̄ v + δ
4ε2|∂ ev/2 |2

(ev +ε2)2

= δ
ev

ev +ε2 (2π[Z] − ∂∂̄ λ) + δ
4ε2|∂ ev/2 |2

(ev +ε2)2 = −δ ev
ev +ε2 ∂∂̄ λ+ δ

4ε2|∂ ev/2 |2

(ev +ε2)2 ,

where the last equality holds because [Z] is supported on Z, where ev = |T |2 e−λ vanishes.
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We now take τ = a + h ◦ a and A = (1+h′◦a)2

−h′′◦a , where h : [0,+∞) → (0,+∞) is a C2

function that will be specified later. For the moment, since τ and A are required to be

positive, we only note that we need h′ > −1 and h′′ < 0. Then we compute

− ∂∂̄ τ − 1
A
∂τ ∧ ∂̄ τ = −(1 + h ◦ a) ∂∂̄ a.

Recall that

ψν = φ+ log(ev +ν2) + λ+ ν2 ∂∂̄ ρ,

where we now specify ρ to be a bounded strictly plurisubharmonic function so that

√
–1 ∂∂̄ ρ+ 1 + δ

ev +ν2

√
–1 ∂∂̄ λ ≥ 0

for all 0 ≤ ν ≤ 1. Then

∂∂̄ ψν = ∂∂̄ φ+ ∂∂̄ λ− ev
ev +ν2 ∂∂̄ λ+ 4ν2 |∂ ev/2 |2

(ev +ν2)2 + ν2 ∂∂̄ ρ

≥ ∂∂̄ φ− ν2

ev +ν2 δ ∂∂̄ λ+ 4ν2 |∂ ev/2 |2

(ev +ν2)2 ≥ 0

and

∂∂̄ ψν − δ ∂∂̄ λ ≥ ∂∂̄ φ− δ

(
1 − ν2

δ(ev +ν2)

)
∂∂̄ λ ≥ 0.

Therefore

τ ∂∂̄ ψν − ∂∂̄ τ − 1
A
∂τ ∧ ∂̄ τ = (a+ h ◦ a)δ4ε2|∂ ev/2 |2

(ev/2 +ν2)2

+
(
τ − ev(1 + h′ ◦ a)

ev +ε2

)
∂∂̄ ψν

+ ev(1 + h′ ◦ a)
ev +ε2

(
∂∂̄ ψν − δ ∂∂̄ λ

)
.

Now we choose h(x) := 2 − x+ log(2 ex−1 −1), so that

1 + h′(x) = 2 ex−1

2 ex−1 −1 and − h′′(x) = 2 ex−1

(2 ex−1 −1)2 .
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Hence, since a+ h ◦ a ≥ a > 1 for ε > 0 sufficiently small, we have

τ − ev(1 + h′ ◦ a)
ev +ε2 ≥ 2 + log(2 ea−1 −1) − 2 ea−1

2 ea−1 −1 > 0

and

τ ∂∂̄ ψν − ∂∂̄ τ − 1
A
∂τ ∧ ∂̄ τ ≥ δ

4ε2|∂ ev/2 |2

(ev/2 +ν2)2 .

By Lemma 1.6 we then bound the last term in (1.4) by

δ
∫
X

∣∣∣∣〈u, ∂̄(ev/2)
〉∣∣∣∣2 4ε2

(ev +ε2)2 e−ψν ≤∥d∗u∥2
ψν

+∥Su∥2
ψν
,

where dβ := ∂̄
(√

τ + Aβ
)

and Su =
√
τ ∂̄ u are “twisted” ∂̄ operators. Note that S◦d = 0.

In this way we find that

|(u, αε)|2 ≤ Cε
(
∥d∗u∥2

ψν
+∥Su∥2

ψν

)

for all (L ⊗ LZ)-valued (n, 1)-forms u. Then by standard functional analysis, followed

by sending ν → 0 and a standard weak-∗ compactness diagonal sequence argument, we

obtain a smooth section βε of L⊗ LZ ⊗KX such that dβε = αε and

∫
X

|βε|2

|T |2
e−φ ≤ Cε.

Notice that the estimate forces βε|Z = 0.

Now set Fε := χεF̃ −
√
τ + Aβε. Then Fε|Z = F̃ |Z = f ∧ dT and

∫
X

|Fε|2 e−φ−λ ≤ o(1) +
∫
X

ev(τ + A) |βε|2

|T |2
e−φ

≤ o(1) + sup
X

(ev(τ + A))Cε

≤ o(1) + 4 eγ−1 Cε ≤
ε∼0

o(1) + 32π(1 + t)2 eγ−1

δ

∫
Z

|f |2 e−φ .
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Up to passing to subsequences, we can let ε → 0 and t → 0, again by Alaoglu’s Theorem

and dominated convergence. By the sub-mean-value property we also have that the L2

convergence of (a subsequence of) Fε implies pointwise convergence, and thus we have

F ∈ H0(X,L⊗ LZ ⊗KX) such that F |Z = f ∧ dT and

∫
X

|F |2 e−φ−λ ≤ 32π
δ

∫
Z

|f |2 e−φ,

completing the proof of Theorem 1.5 (with non-optimal constant; again, see [8] and [27]

for the proof with the optimal constant).

1.4 The L2 division theorem

Let X be a Stein manifold and fix holomorphic functions h1, . . . , hr on X. Given another

holomorphic function g with suitable L2 estimates, the division problem asks whether

one can find holomorphic functions f1, . . . , fr such that g = ∑r
j=1 hjfj and having good

L2 estimates.

A first solution to the division problem was found by H. Skoda in 1972 [52], and

subsequent work of Skoda and Demailly generalized the result to generically surjective

morphisms of vector bundles with sufficiently positive metrics [53, 15]. Here we present

the following version of Skoda’s division theorem, and its proof using classical L2 methods.

For the sake of simplicity, as well as similarity with Theorem 4.1, we only treat (n, 0)-forms;

see [15, Théorème 6.2] and [20, Section 11] for the general treatment of (n, k)-forms. See

also [56] for a different generalization of the L2 division theorem.

Theorem 1.7 (L2 division). Let X be a Stein manifold and let F,Q → X be holomorphic

vector bundles endowed with Hermitian metrics hF and hQ, respectively. Let also E → X

be a line bundle with metric e−ϕ. Fix h ∈ H0(X,F ∗ ⊗Q) and α > 1, and set

q := min(rankF − rankQ, dimX).
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Assume that Θ(hF ) ≥q 0 and

√
–1 ∂∂̄ ϕ ≥ αqΘ(det hQ).

Then, for any holomorphic section g ∈ H0(X,Q⊗ E ⊗KX) such that

∥g∥2
Q :=

∫
X

hQ(Hg, g) e−ϕ

det(hh∗)αq+1 < +∞,

there is a holomorphic section f ∈ H0(X,F ⊗ E ⊗KX) such that g = h⊗ f and

∥f∥2
F :=

∫
X

hF (f, f) e−ϕ

det(hh∗)αq ≤ α

α− 1∥g∥2
Q .

Here h∗ : Q → F is the adjoint of h with respect to hF and hQ, and H ∈ End(Q) is the

endomorphism of Q whose matrix is the transposed comatrix of hh∗.

By taking F to be the trivial vector bundle Cr and Q = G⊗E∗ we obtain the following

special case.

Corollary 1.8 (Skoda’s division theorem). Let X be a complete Kähler manifold

of complex dimension n and let E,G → X be holomorphic line bundles with (singular)

Hermitian metrics e−φ and e−ψ, respectively. Fix h = (h1, . . . , hr) ∈ H0(X, (E∗ ⊗ G)⊕r)

and α > 1. Let q := min(r − 1, n) and assume that

√
–1 ∂∂̄ φ ≥ αq

αq + 1
√

–1 ∂∂̄ ψ.

Then, for any holomorphic section g ∈ H0(X,G⊗KX) such that

∥g∥2
G :=

∫
X

|g|2 e−ψ

(|h|2 e−ψ+φ)αq+1 < +∞,

21



there is a holomorphic section f = (f1, . . . , fr) ∈ H0(X,E⊕r ⊗KX) such that

g = h
·

⊗ f := h1 ⊗ f1 + · · · + hr ⊗ fr

and

∥f∥2
E⊕r :=

∫
X

|f |2 e−φ

(|h|2 e−ψ+φ)αq ≤ α

α− 1∥g∥2
G .

For the proof of Theorem 1.7, we will follow the exposition of [20]. Theorem 1.7 is a

consequence of the following result.

Theorem 1.9. Let X be a Stein manifold and let F,Q → X be holomorphic vector

bundles. Let hF be a Hermitian metric for F , and denote by h̃ the induced metric on Q.

Fix h ∈ H0(X,F ∗ ⊗ Q) and α > 1. Let q := min(rankF − rankQ, dimX) and assume

that Θ(hF ) ≥q 0 and
√

–1 ∂∂̄ ϕ ≥ αqΘ(det h̃)

for some smooth metric e−ϕ of some holomorphic line bundle E → X. Then, for any

holomorphic section g ∈ H0(X,Q⊗ E ⊗KX) such that

∥g∥2
Q :=

∫
X
h̃(g, g) e−ϕ < +∞,

there is a holomorphic section f ∈ H0(X,F ⊗ E ⊗KX) such that g = h⊗ f and

∥f∥2
F :=

∫
X
hF (f, f) e−ϕ ≤ α

α− 1∥g∥2
Q .

Proof. Similar to the proof of L2 extension, the main idea is to first find a special smooth

solution and then correct it to a holomorphic one by adding a section of the kernel bundle.

To start, we reduce to the case of strict positivity of curvature: Since X is Stein, there

is a strictly plurisubharmonic smooth function η : X → [0,+∞). Then we can replace ϕ

with ϕ+ 1
j
η, so that the inequality on curvature is strict. If Theorem 1.9 is true for strict
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positivity, then for every j ∈ N we get fj ∈ H0(X,F ⊗E⊗KX) such that g = h⊗ fj and

∥∥∥fj∥∥∥2

F
≤ α

α− 1

∫
X
h̃(g, g) e−(ϕ+j−1η) ≤ α

α− 1∥g∥2
Q .

By the sub-mean-value property of |fj| and the smoothness of ϕ, the sequence {fj}j is

locally uniformly bounded, so that by a diagonal argument involving Montel’s theorem

we can replace {fj}j a subsequence (still denoted in the same way) that converges locally

uniformly to some section f ∈ H0(X,F ⊗ E ⊗KX) satisfying g = h⊗ f . Moreover, for

any j bigger than some fixed j0 we get

∫
X
hF (fj, fj) e−(ϕ+j−1

0 η) ≤
∫
X
hF (fj, fj) e−(ϕ+j−1η) ≤ α

α− 1∥g∥2
Q .

Then we have a further subsequence, still denoted {fj}j, that converges in L2(hF e−(ϕ+j−1
0 η)).

We can then continue inductively by choosing jk+1 > jk and taking further subsequences.

The diagonal subsequence then converges to f such that

f ∈
⋂
k≥0

L2(hF e−(ϕ+j−1
k
η)).

By the Monotone Convergence Theorem we conclude that

∥f∥2
F =

∫
X
hF (f, f) e−ϕ = lim

k→+∞

∫
X
hF (f, f) e−(ϕ+j−1

k
η) ≤ α

α− 1∥g∥2
Q ,

as wanted.

Second, by working on the complement of a divisor D ⊂ X containing the kernel

of h, we can assume that h is surjective. Indeed, X \ D is again Stein and, assuming

that Theorem 1.9 holds for h surjective, we obtain f̃ ∈ H0(X \ D,F ⊗ E ⊗ KX) such

that g|X\D = h|X\D ⊗ f̃ and
∥∥∥f̃∥∥∥2

F
≤ α

α−1∥g∥2
Q. By Riemann’s Removable Singularities
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Theorem, then f̃ extends to f ∈ H0(X,F ⊗ E ⊗ KX). Since X \ D is open and meets

every component of X, by the identity principle g = h⊗ f everywhere on X, and since

D has measure 0, one has
∥∥∥f̃∥∥∥2

F
≤ α

α−1∥g∥2
Q.

Assume then that the bound on the curvature of E is strict and that h is surjective.

Then the kernel kerh is a holomorphic vector subbundle of F . Let ι : kerh → F be the

inclusion morphism. Denote by ι∗ : F → kerh and h∗ : Q → F the adjoint morphisms

of ι and h, respectively, with respect to the metric hF and the metrics hF |kerh and h̃,

respectively.

Consider the smooth lifting h∗g of g to F . We aim to find f of the form f = h∗g + ιu

for some u ∈ L2(X, kerh⊗ E ⊗KX). For such an f we have

hF (f, f) e−ϕ = hF (h∗g, h∗g) e−ϕ +hF (ιu, ιu) e−ϕ = h̃(g, g) e−ϕ +hF |kerh(u, u) e−ϕ

at all points of X. Moreover since ∂̄ g = 0 we have

∂̄ f = ∂̄(h∗g) + ι(∂̄ u) = ι(− II∗ ∧g + ∂̄ u),

where II ∈ C∞(X, (kerh)∗ ⊗ Q ⊗ T ∗1,0
X ) is the second fundamental form of kerh into F

(see Lemma 10.2 in [20]). We then want to solve the equation ∂̄ u = − II∗ ∧g.

Let A := [Θ(hF |kerh),Λω] be the curvature operator induced on kerh ⊗ T 1,0
X by the

restriction of the metric hF to kerh. We want to apply Theorem 1.4 with datum the

(n, 1)-form − II∗ ∧g to get a solution u with

∥u∥2
F ≤

∫
X

⟨A−1(II∗ ∧g), (II∗ ∧g)⟩h̃,ω,

in order to obtain f such that

∥f∥2
F ≤

∫
X
h̃(g, g) +

∫
X

⟨A−1(II∗ ∧g), (II∗ ∧g)⟩h̃,ω.
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We thus have to check that A is positive definite.

Lemma 1.10. Under the assumptions of Theorem 1.9,

∣∣∣⟨II∗ ∧g, v⟩h,ω
∣∣∣2 < 1

α− 1 h̃x(g, g)⟨Av, v⟩h,ω

for all v ∈ kerhx ⊗ T 1,0
x .

Proof. We have

Θ(hF |kerh) ≥q

√
–1 II∗ ∧ II

and

Θ(det h̃) ≥ trQ
(√

–1 II ∧ II∗
)

= trkerh
(
−

√
–1 II∗ ∧ II

)
(see Lemma 10.2 in [20]). Moreover, since −

√
–1 II∗ ∧ II ≥Grif 0, we have

q trkerh
(
−

√
–1 II∗ ∧ II

)
⊗ Idkerh +

√
–1 II∗ ∧ II ≥q 0

(see Lemma 10.16 in [20]). By the hypotheses on curvature in Theorem 1.9, it then follows

that

Θ(hF |kerh) +
√

–1 ∂∂̄ ϕ Idkerh

>q Θ(hF |kerh) + αqΘ(det h̃) ⊗ Idkerh

≥q

√
–1 II∗ ∧ II +αq trkerh

(
−

√
–1 II∗ ∧ II

)
⊗ Idkerh

≥q −(α− 1)
√

–1 II∗ ∧ II

We therefore have

⟨Av, v⟩h,ω > (α− 1)⟨−
√

–1 II∗ ∧ II ∧Λωv, v⟩h,ω
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for all v ∈ kerh⊗ E ⊗ T ∗1,0
X . Fix a point x0 ∈ X and an orthonormal basis dz1, . . . , dzn

of T ∗1,0
x0 . Write

II =
n∑
j=1

dzj ⊗ IIj,

with IIj ∈ kerh∗
x0 ⊗Qx0 . The adjoint of

II∗ ∧ · =
n∑
j=1

dzj ∧ II∗
j ·

is the contraction II⌟ defined by

II⌟v =
n∑
j=1

∂

∂z̄j
⌟(IIj v) =

n∑
j=1

−
√

–1 dzj ∧ Λω(IIj v) = −
√

–1 II ∧ Λωv.

Consequently ⟨−
√

–1 II∗ ∧ II ∧Λωv, v⟩h̃,ω = ⟨II⌟v, II⌟v⟩h̃,ω and thus

|⟨II∗ ∧g, v⟩h,ω|2 = |⟨g, II⌟v⟩h̃,ω|2 ≤ h̃(g, g)⟨II⌟v, II⌟v⟩h̃,ω <
1

α− 1 h̃(g, g)⟨Av, v⟩h̃,ω,

proving the statement.

By Lemma 1.10, A is positive definite, so we can apply Theorem 1.4. Moreover, again

by Lemma 1.10 applied to v = A−1(II∗ ∧g), we also obtain

∥f∥2
F ≤ α

α− 1

∫
X
h̃(g, g),

proving Theorem 1.9.

Proof of Theorem 1.7. Let hQ be the given metric for Q and h̃ the metric induced by hF

on Q. Let h∗ : Q → F the adjoint morphism with respect to hF and hQ. Then, while

hh∗ = IdQ does not hold anymore, the map h∗(hh∗)−1 : Q → F is a section of h : F → Q

(in fact hh∗(hh∗)−1 = IdQ by construction) and is orthogonal to kerh. We then have

h̃(v, v) = hF
(
h∗(hh∗)−1v, h∗(hh∗)−1v

)
= hQ

(
(hh∗)−1v, v

)
= 1

det(hh∗)hQ(Hv, v),

26



where H ∈ End(Q) is the endomorphism of Q whose matrix is the transposed comatrix of

hh∗. Since we then have det h̃ = 1
det(hh∗) det hQ, in order for the hypothesis on curvature

of Theorem 1.7 to be satisfied, we replace the metric e−ϕ for E with the metric

e−ϕ̃ := 1
det(hh∗)αq e−ϕ,

so that

√
–1 ∂∂̄ ϕ̃ =

√
–1 ∂∂̄ ϕ+ αq

√
–1 ∂∂̄ log det(hh∗)

≥ αqΘ(hQ) + αq
√

–1 ∂∂̄ log det(hh∗) = αqΘ(h̃).

Theorem 1.7 is then obtained applying Theorem 1.9 to h̃ and e−ϕ̃.
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Chapter 2

Berndtsson’s positivity theorems

This Chapter is devoted to the two theorems of B. Berndtsson measuring the variation

of Hilbert spaces of holomorphic sections of line bundles over families of complete Kähler

manifolds (Theorem 1). The conclusion of both theorems is that if the line bundle is

positive then the Hilbert spaces of sections form a vector bundle and the metric induced

by the L2 inner product has Nakano-positive curvature.

The first theorem, explained in Section 2.1, deals with families of Hilbert spaces for a

single line bundle over a single Stein manifold, so that the only thing that is allowed to

vary is the metric for the line bundle. In spite of the simplicity of the setting Berndtsson’s

first theorem has several applications, among which are new and very different proofs of

L2 extension and division (see Section 3.1 and Chapter 4), and a proof of the openness

conjecture (Section 3.2).

The second theorem, recalled in Section 2.2, deals instead with families of compact

Kähler manifolds. The applications of this theorem point to different directions than the

first theorem, for instance giving a partial result towards P. Griffiths’s conjecture on the

existence of positively curved metrics on ample vector bundles.
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2.1 Berndtsson’s theorem for trivial fibrations

Let X be a Stein manifold and Ω a domain in Cm. Suppose X is relatively compact

in some ambient Stein manifold X̃, and let L → X̃ be a holomorphic line bundle. Let

p̃ : X̃ × Ω → X̃ be the projection on the first factor and e−ϕ̃ be a Hermitian metric

for p̃∗L → X̃ × Ω. We write p := p̃|X×Ω and e−ϕ := e−ϕ̃ |X×Ω. For each τ ∈ Ω, define

the Hilbert space

Hτ :=
{
f ∈ H0(X,L⊗KX)

∣∣∣∣ ∥f∥2
τ :=

∫
X

|f |2 e−ϕτ < +∞
}
,

where e−ϕτ is the restriction of e−ϕ to p∗L|X×{τ}.

Since the metric e−ϕ extends smoothly to X̃ × Ω, the subspaces Hτ ⊆ H0(X,L⊗KX)

are independent of τ , but have norms that vary with τ . If we fix o ∈ Ω and define

f̃(x, t) := f(x) for all f ∈ Ho then the map Ho×Ω ∋ (f, τ) 7→ f̃ ∈ H is a bijection, which

we declare to be holomorphic. Thus H → Ω has the structure of a trivial holomorphic

vector bundle, with a smooth non-trivial metric defined by the inner products on the

fibers Hτ , for τ ∈ Ω.

Theorem 2.1 (Berndtsson’s theorem for trivial fibrations [4, Theorem 1.1]). If e−ϕ

has (strictly) positive curvature, then the curvature of the L2 Hermitian metric induced

on H → Ω by e−ϕ is (strictly) positive in the sense of Nakano.

In particular H is Griffiths-(semi)positive, and thus we get the following convexity

corollary.

Corollary 2.2. Assume that e−ϕ is a possibly singular metric with (strictly) positive

curvature, and let ξ ̸≡ 0 be a holomorphic section of H∗ → Ω. Then the function

Ω ∋ τ 7−→ log∥ξτ∥2
τ,∗

29



is plurisubharmonic. In particular, τ 7→ log∥ξ∥2
τ,∗ is plurisubharmonic for any fixed non-

zero ξ ∈ H0(X,L⊗KX)∗ with finite L2-norm.

Proof. If the metric e−ϕ is smooth, the statement follows directly from Theorem 2.1 and

the characterization of Griffiths-(semi)negativity of Proposition 1.2.

Assume then that e−ϕ is singular and fix a section ξ of H∗ → X. Let e−ϕk be a sequence

of positive smooth Hermitian metrics for p̃∗L → X̃ × Ω increasing to e−ϕ (we can find

such a sequence by regularizing the potentials ϕ and possibly compensating the loss of

positivity by adding a small multiple of a positive strictly plurisubharmonic function,

which exists because X̃ is Stein). Denote by∥·∥k,τ the norm induced on Hτ by e−ϕk . Since

these metrics are smooth up to the boundary, for each k ∈ N the function

Ω ∋ τ 7−→ log∥ξτ∥2
k,τ,∗

is subharmonic. Moreover, since e−ϕk increases to e−ϕ, for each τ ∈ Ω the induced norms

∥f∥2
k,τ =

∫
X

|f |2 e−ϕk,τ

increase to ∥f∥2
τ , and thus the subharmonic functions

Ω ∋ τ 7−→ log∥ξτ∥2
k,τ,∗

decrease to the function

Ω ∋ τ 7−→ log∥ξτ∥2
τ,∗ ,

which is then subharmonic.

The proof of Theorem 2.1 is contained in the next two sections, and follows Berndtsson’s

original exposition [4].
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2.1.1 Proof of Theorem 2.1 in the strictly positive case

We first prove Theorem 2.1 assuming that the curvature of e−ϕ is strictly positive along

fibers, i.e.
√

–1 ∂∂̄X ϕτ > 0 for all τ ∈ Ω.

Let L → Ω be the bundle whose fiber over τ ∈ Ω are the L2-integrable sections of L

with respect to the metric e−ϕτ :

Lτ :=
{
f ∈ Γ(X,L⊗KX)

∣∣∣∣ ∫
X

|f |2 e−ϕτ < +∞
}
,

so that H is a trivial subbundle of the trivial bundle L, with metric induced by the

non-trivial L2 metric of L. Fix a chart U ⊆ Ω and local coordinates t1, . . . , tm centered

at τ ∈ U . The Chern connection of L is then ∇L1,0
∂

∂tj

= ∂tj − ϕj, where ϕj is the operator

of multiplication by the smooth function ∂tjϕ. Indeed, for any two local sections u, v of

L such that ∂tju and ∂tjv are also sections of L, one has

∫
X

(∇L1,0
∂

∂tj

u)v̄ e−ϕ = ∂tj

∫
X
uv̄ e−ϕ −

∫
X
u∂t̄jv

=
∫
X

(∂tju)v̄ e−ϕ +
∫
X
u∂tjv e−ϕ +

∫
X
uv̄(∂tjϕ) e−ϕ −

∫
X
u∂t̄jv

=
∫
X

(
∂tju− ϕju

)
v̄ e−ϕ .

Consequently, the curvature of L is a densely defined operator given by ΘL
jk̄

= ϕjk̄, so

that ΘL is the operator of multiplication by the Hessian of ϕ with respect to the base

variables t1, . . . , tm.

We now want to compute the curvature ΘH of the subbundle H from the curvature

ΘL of L. Fix smooth sections u1, . . . , um of H: these are smooth sections of L on the

total space of the fibration, and holomorphic along the fibers. Since the space of sections

u of H represented by holomorphic sections of p̃∗L → X̃ × Ω is dense in the space of

holomorphic sections of H, we can assume that ∂tkuj are also sections of H for all j, k.

To check the Nakano-(semi)positivity of the L2 metric induced on H, from Griffiths’s
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formula (Proposition 1.3) we need to estimate

m∑
j,k=1

∫
X

ΘH
jk̄ujūk e−ϕτ =

m∑
j,k=1

∫
X

ΘL
jk̄ujūk e−ϕτ −

∫
X

∣∣∣∣π⊥
τ

m∑
j=1

∇L1,0
tj uj

∣∣∣∣2 e−ϕτ

=
m∑

j,k=1

∫
X
ϕjk̄ujūk e−ϕτ −

∫
X

∣∣∣∣π⊥
τ

m∑
j=1

ϕjuj

∣∣∣∣2 e−ϕτ ,

(2.1)

where in this special setting π : L → H is the (fiberwise) Bergman projection, and

therefore π⊥
τ ∂tjuj = 0. Set w := π⊥

τ (∑m
j=1 ϕjuj), then

∂̄X w = ∂̄X
m∑
j=1

ϕjuj =
m∑
j=1

(∂̄X ϕj)uj,

where ∂̄X denotes the ∂̄ operator on X only. Note that ∂̄X uj = 0 since uj is holomorphic

along the fibers. Since by definition w is orthogonal to the holomorphic sections along

the fibers, it follows that w is the L2-minimal solution to the ∂̄ equation along the fiber.

Since we are assuming that
√

–1 ∂∂̄ ϕτ > 0, we can estimate the second term in (2.1)

by Hörmander–Skoda Theorem 1.4:

∫
X

∣∣∣∣π⊥
m∑
j=1

ϕjuj

∣∣∣∣2 e−ϕτ ≤
∫
X

∣∣∣∣ m∑
j=1

(∂̄X ϕj)uj
∣∣∣∣2√

–1 ∂∂̄X ϕτ

e−Φτ .

Choosing local coordinates z1, . . . , zn for X this becomes

∫
X

∣∣∣∣π⊥
m∑
j=1

ϕjuj

∣∣∣∣2 e−ϕτ ≤
∫
X

n∑
λ,µ=1

ϕλµ̄τ

 m∑
j=1

ϕjλuj

 m∑
k=1

ϕkµuk

 e−ϕτ ,

where ϕjλ = ∂2ϕ
∂tj∂zλ

and ϕλµ̄τ is the (λ, µ̄) entry of the inverse matrix of the complex Hessian

of ϕτ . This and (2.1) give

m∑
j,k=1

∫
X

ΘH
jk̄ujūk e−ϕτ ≥

∫
X

m∑
j,k=1

ϕjk̄ −
n∑

λ,µ=1
ϕλµ̄ϕjλϕkµ

ujūk e−ϕτ .
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To conclude, notice that

ϕjk̄ −
n∑

λ,µ=1
ϕλµ̄ϕjλϕkµ


j,k̄

is the Schur complement of the invertible block
√

–1 ∂∂̄X ϕ (the complex Hessian of ϕ along

the fiber) in the (semi)positive definite Hermitian matrix
√

–1 ∂∂̄ ϕ (the complex Hessian

of ϕ on the total space X×Ω), and thus it is (semi)positive definite by the following lemma.

Lemma 2.3. Let M =
[
A B
B† C

]
be a Hermitian symmetric matrix (i.e. M = M †). Assume

that M is (semi)positive definite and that A is invertible. Then the Schur complement

C −B†A−1B of the block C is also (semi)positive definite.

Proof. Since

 I 0

−B†A−1 I


A B

B† C


 I 0

−B†A−1 I


†

=

A 0

0 C −B†A−1B

 ,

if M is (semi)positive definite, then C −B†A−1B is (semi)positive definite.

2.1.2 The semipositive case

Assume now that
√

–1 ∂∂̄ ϕ ≥ 0. Since the ambient manifold X̃ is Stein, there is a strictly

plurisubharmonic smooth function η : X̃ → [0,∞), so that the metrics e−ϕ−εη have strictly

positive curvature along the fibers of X × Ω → Ω for all ε > 0. Then

m∑
j,k=1

∫
X

ΘH
ε,jk̄ujūk e−ϕτ −εη =

m∑
j,k=1

∫
X

(ϕjk̄ + εηjk̄)ujūk e−ϕτ −εη

−
∫
X

∣∣∣∣π⊥
ε,τ

m∑
j=1

(ϕj + εηj)uj
∣∣∣∣2 e−ϕτ −εη,

(2.2)
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and we know from Subsection 2.1.1 that this quantity is non-negative, since e−ϕ−εη is

strictly positively curved on the fibers. To conclude the proof of Theorem 2.1, we then

need to show that

lim
ε→0

m∑
j,k=1

∫
X

ΘH
ε,jk̄ujūk e−ϕτ −εη =

m∑
j,k=1

∫
X

ΘH
jk̄ujūk e−ϕτ .

Because of (2.2), it suffices to show that

lim
ε→0

∫
X

|π⊥
ε,τu|2 e−ϕτ −εη =

∫
X

|π⊥
τ u|2 e−ϕτ (2.3)

for any section u of L → X that is L2-integrable with respect to e−ϕ−εη (which is the

same as being L2-integrable with respect to the metric e−ϕ).

First recall that π⊥
τ u is the section of L → X that is nearest to u in the norm induced

by e−ϕ and such that

∫
X

(π⊥
τ u)h̄ e−ϕ = 0

for all L2-integrable holomorphic sections h ∈ H0(X,L). Similarly, π⊥
ε,τu is the section of

L → X that is nearest to u in the norm induced by e−ϕ−ετ and such that

∫
X

(e−εη π⊥
ε,τu)h̄ e−ϕ =

∫
X

(π⊥
ε,τu)h̄ e−ϕ−εη = 0 (2.4)

for all L2-integrable holomorphic sections h ∈ H0(X,L). Therefore

∥∥∥π⊥
τ u− u

∥∥∥ ≤
∥∥∥e−εη π⊥

ε,τu− u
∥∥∥

≤
∥∥∥e−εη(π⊥

ε,τu− u)
∥∥∥+

∥∥∥(1 − e−εη)u
∥∥∥

≤
∥∥∥π⊥

ε,τu− u
∥∥∥+ (eεM −1)∥u∥ ,
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where ∥·∥ denotes the L2-norm with respect to e−ϕ and M = supX η. Similarly

∥∥∥π⊥
ε,τu− u

∥∥∥
ε

≤ eεM
∥∥∥π⊥

τ u− u
∥∥∥
ε

+ (eεM −1)∥u∥ε ,

where ∥·∥ε denotes the L2-norm with respect to e−ϕ−εη. Since

∥∥∥π⊥
ε,τu− u

∥∥∥ ≤ eεM
∥∥∥π⊥

ε,τu− u
∥∥∥
ε

and ∥u∥ε ≤∥u∥ ,

it follows that

∥∥∥π⊥
τ u− u

∥∥∥− (eεM −1)∥u∥ ≤
∥∥∥π⊥

ε,τu− u
∥∥∥ ≤ e2εM

∥∥∥π⊥
τ u− u

∥∥∥+ eεM(eεM −1)∥u∥ ,

so that

lim
ε→0

∥∥∥π⊥
ε,τu− u

∥∥∥ =
∥∥∥π⊥

τ u− u
∥∥∥ . (2.5)

Since

π⊥
ε,τu = e−εη π⊥

ε,τu+ (1 − e−εη)π⊥
ε,τu

and ∥∥∥π⊥
ε,τ

∥∥∥2
≤ eεM

∥∥∥π⊥
ε,τu

∥∥∥2

ε
≤ eεM∥u∥2

ε ≤ eεM∥u∥2 ,

it follows that π⊥
ε,τu converges to some section v which is orthogonal to holomorphic

sections with respect to the norm induced by e−ϕ (recall that by (2.4) the term e−εη π⊥
ε,τu

is orthogonal to the L2-integrable holomorphic sections with respect to the inner product

induced by e−ϕ). By (2.5) we then conclude that v = π⊥
τ u, and thus (2.3) follows by

Lebesgue’s dominated convergence theorem, proving Theorem 2.1 in the semipositive case.
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2.1.3 Relation between the sharp L2 extension theorem and

Berndtsson’s first theorem

As we will see in Section 3.1, Berndtsson’s first theorem (or more precisely Corollary 2.2)

implies a version of the L2 extension theorem with sharp constants. The L2 extension

theorem with sharp constants (Theorem 1.5) in turn implies a stronger version of Corollary

2.2 in which the product manifold X × Ω is replaced by a more general Stein manifold

and the family of Hilbert spaces H → Ω does not need to be a vector bundle. We will

follow the presentation of Section 11.4 in [57].

Let X be a Kähler manifold of complex dimension m + n, and let T : X → Ω be

a holomorphic submersion to a domain Ω in Cm. For every τ ∈ Ω, we will denote by

Xτ := T−1(τ) the fiber of T over τ . Let L → X be a holomorphic line bundle with

Hermitian metric e−φ, and as before, for each τ ∈ Ω, define the Hilbert space

Hτ :=
{
f ∈ H0(Xτ , L|Xτ ⊗KXτ )

∣∣∣∣∣ ∥f∥2
τ :=

∫
Xτ

|f |2 e−ϕτ < +∞
}
, (2.6)

where e−ϕτ is the restriction of e−ϕ to p∗L|Xτ .

The family of Hilbert spaces H → Ω is in general not locally trivial, but we can still

define sections as follows.

Definition 2.4. A section f of H → Ω is a section Ff of L ⊗ KX/Ω → X such that

fτ := Ff|Xτ ∈ Hτ for all τ ∈ Ω (here KX/Ω denotes the relative canonical bundle). The

section f is said to be holomorphic if Ff is holomorphic.

Similarly, we can define a notion of dual fibration and of section of the dual fibration.

Definition 2.5. The dual of H → Ω is the fibration H∗ → Ω where H∗
τ is the dual

Hilbert space of Hτ , with the usual dual norm

∥ξ∥τ,∗ := sup
f∈Hτ \{0}

|⟨ξ, f⟩|
∥ξ∥τ

.
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A section of H∗ → Ω is a map ξ : H → C such that ξτ := ξ|Xτ ∈ H∗
τ for all τ ∈ Ω. The

section ξ of H∗ → Ω is said to be holomorphic if the function

Ω ∋ τ 7−→ ⟨ξτ , Ff⟩ ∈ C

is holomorphic for every holomorphic section f of H → Ω.

To prove (the generalization of) Corollary 2.2, it suffices to assume that Ω is the unit

disk D ⊂ C.

Theorem 2.6. Let X be a Stein manifold, and let T : X → D be a holomorphic sub-

mersion. Let L → X be a holomorphic line bundle with Hermitian metric e−φ, and let

H → D be the Hilbert space fibration defined by (2.6). If
√

–1 ∂∂̄ φ ≥ 0, then the function

D ∋ τ 7−→ log∥ξτ∥2
τ,∗

is subharmonic for all holomorphic sections ξ of H∗ → D.

Proof. The dual norm explicitly writes as

∥ξτ∥2
τ,∗ = sup

f∈Hτ

|⟨ξτ , f⟩|2∫
Xτ

|f |2 e−φ .

We want to check that τ 7→ log∥ξτ∥2
τ,∗ satisfies the sub-mean-value inequality. Fix τ0 ∈ D

and ε > 0 so that

Dε(τ0) :=
{
τ ∈ C

∣∣∣ |τ − τ0| < ε
}

⊂⊂ D.

Set X(ε) := T−1(Dε(τ0)) and T̃ := T−τ0
ε

∈ O(X). Let f0 ∈ Hτ0 be the section realizing

the supremum in ∥ξτ0∥τ0,∗. By Theorem 1.5 there is a minimal-norm holomorphic section

F0 of L|X(ε) → X(ε) such that

F0|Xτ0
= εf0 ∧ dT̃ = f0 ∧ dT and

∫
X(ε)

|F0|2 e−φ ≤ πε2
∫
Xτ0

|f0|2 e−φ
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(here the line bundle LZ is trivial, and so we choose e−λ = 1 and we can send δ → +∞).

Let fτ be defined by F0|Xτ = fτ ∧dT (so that f is a holomorphic section of L⊗KX/D over

X(ε)). Notice that fτ might not be integrable for all τ ∈ Dε(τ0), but it must be integrable

for all τ outside a measure zero subset of Dε(τ0), because F0 has finite L2 norm. Hence

log∥ξτ0∥2
τ0,∗ = log |⟨ξτ0 , f0⟩|2 − log

∫
Xτ0

|f0|2 e−φ

≤ log |⟨ξτ0 , f0⟩|2 − log
(

1
πε2

∫
X(ε)

|F0|2 e−φ
)

= log |⟨ξτ0 , f0⟩|2 − log
 1
πε2

∫
τ∈Dε(τ0)

(∫
Xτ

|fτ |2 e−φ
)

dT ∧ dT̄


≤ log |⟨ξτ0 , f0⟩|2 − 1
πε2

∫
τ∈Dε(τ0)

log
(∫

Xτ

|fτ |2 e−φ
)

dT ∧ dT̄

≤ 1
πε2

∫
τ∈Dε(τ0)

(
log |⟨ξτ , fτ ⟩|2 − log

∫
Xτ

|fτ |2 e−φ
)

dT ∧ dT̄

≤ 1
VoldT∧dT̄ (Dε(τ0))

∫
τ∈Dε(τ0)

log∥ξτ∥2
τ,∗ dT ∧ dT̄ ,

where the second inequality follows from the concavity of the logarithm, the third from

the holomorphicity of τ 7→ ⟨ξτ , fτ ⟩, and the last from the definition of the dual norm.

This proves Theorem 2.6.

2.2 Berndtsson’s theorem for proper fibrations

Theorem 2.1 has an analogue for holomorphic fibrations with compact fibers. Consider a

smooth holomorphic submersion p : X → Y of complex manifolds X and Y of dimensions

n + m and m, respectively, and assume that the fibers Xt := p−1(t) are compact. Let

L → X a holomorphic line bundle with a smooth metric e−ϕ of non-negative curvature,

and consider the family of vector spaces Ht := H0(Xt, L|Xt ⊗KXt). Since the differential

of p is surjective at all points of X, the canonical bundle of the fibers is identified with the

restriction of the canonical bundle of the total space: KXt ≃ KX |Xt . Since L has a metric

of semipositive curvature, by this identification and by a variant of the Ohsawa–Takegoshi
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Extension Theorem [4, Theorem 8.1] it follows that any global holomorphic section of

L ⊗ KXt over Xt extends to a holomorphic section of L ⊗ KXs over Xs with s close to

t. Starting from a basis of Ht we therefore get a local holomorphic frame for H, so that

H has a natural holomorphic vector bundle structure.

Since the fibers are compact any element σ ∈ Ht is automatically L2, and we thus

obtain a metric for H → Y by setting ∥σ∥2
t :=

∫
Xt

|σ|2 e−ϕ.

Theorem 2.7 (Berndtsson’s theorem for proper fibrations [4, Theorem 1.2]). If

the total space X is Kähler and e−ϕ has (strictly) positive curvature then the curvature of

the L2 Hermitian metric induced on H → Y by e−ϕ is (strictly) positive in the sense of

Nakano.

Berndtsson’s proof of Theorem 2.7 is quite different from the proof of Theorem 2.1

since he had not “been able to find a natural complex structure on the space of all (not

necessarily holomorphic) (n, 0)-forms, extending the complex structure on” H. Instead,

he computes “directly the Chern connection of the bundle E itself, and compute[s] the

curvature from there, much as one proves Griffiths’s formula”. Recent work of D. Varolin

[58] and P. Upadrashta [55] develop a theory of families of Hilbert spaces that might not

form a vector bundle but nonetheless behave like one, and for which one has a reasonable

notion of curvature. By the study of such objects, called Berndtsson–Lempert–Szőke fields,

one obtains a proof of Theorem 2.7 that is basically identical to the proof of Theorem

2.1 [58], as well an analogue of Theorem 2.7 when the fibers are smoothly bounded

pseudoconvex domains [55].

We end this Section by a nice application of Theorem 2.7 to bundles of projective spaces.

Let V be a holomorphic vector bundle of rank r < +∞ over a complex manifold Y , and

consider the bundle P (V ∗) → Y whose fiber at each point t ∈ Y is the space of lines in V ∗
t .

A famous conjecture of Griffiths [25] is that, if the hyperplane line bundle O(1) → P (V ∗)

has a smooth Hermitian metric of positive curvature (i.e. V is Hartshorne-ample [28]),

then V has a Hermitian metric with Griffiths-positive curvature.

39



Denote by Sm(V ) the mth symmetric power of V . Applying Theorem 2.7 to the fibration

X := P (V ∗) → Y and the line bundles O(l) → P (V ∗), one obtains the following.

Theorem 2.8 ([4, Theorem 1.3]). Let V be a holomorphic vector bundle of finite rank

over a complex Kähler manifold. If V is ample in the sense of Hartshorne then for any

m ∈ N the bundle Sm(V ) ⊗ detV has a Hermitian metric with strictly positive curvature

in the sense of Nakano.

In particular, V ⊗ detV has a metric with Nakano-positive curvature, providing partial

evidence towards Griffiths conjecture. Indeed, it is a theorem of Demailly and Skoda

that, if h is a metric of Griffiths-positive curvature, then h⊗ deth is a metric of Nakano-

positive curvature [14], and in fact Sm(V ) ⊗ detV also has a Nakano-positive metric and

a dual-Nakano-positive metric [35].

40



Chapter 3

A degeneration proof of the L2

extension theorem and of the

openness conjecture

Berndtsson’s theorem for trivial fibrations (Theorem 2.1) can be used to provide new

proofs of variants of the classical L2-theorems we saw in Chapter 1. We present in Section

3.1 the Berndtsson–Lempert proof of the L2 extension theorem, and in Section 3.2 a

degeneration-based proof due to Berndtsson of the openness conjecture.

3.1 The L2 extension theorem, revisited

In this Section we will prove the following slight generalization of Berndtsson and Lempert

L2-extension result [7]. We will follow [1].

Theorem 3.1 (L2 extension). Let X be a Stein manifold and Z ⊂ X an analytic

hypersurface. Let LZ → X be the holomorphic line bundle associated to Z, with T ∈

H0(X,LZ) such that Z = (T = 0) and dT |Z generically non-zero. Assume moreover that
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LZ carries a (singular) Hermitian metric e−λ such that e−λ |Z ̸≡ +∞ and

sup
X

|T |2 e−λ ≤ 1.

Let L → X be a holomorphic line bundle with (singular) Hermitian metric e−φ such that

√
–1 ∂∂̄ φ ≥ −

√
–1 ∂∂̄ λ and

√
–1 ∂∂̄ φ ≥ δ

√
–1 ∂∂̄ λ

for some δ > 0. Then for any holomorphic section f ∈ H0(Z,L|Z ⊗KZ) such that

∥f∥2
Z :=

∫
Z

|f |2 e−φ < +∞

there is a holomorphic section F ∈ H0(X,L⊗ LZ ⊗KX) such that F |Z = f ∧ dT and

∥F∥2
X :=

∫
X

|F |2 e−λ−φ ≤ π

(
1 + 1

δ

)∫
Z

|f |2 e−φ = π

(
1 + 1

δ

)
∥f∥2

Z .

We emphasize that the sole difference between this last statement and the full L2

extension theorem (Theorem 1.5) is that here we require


√

–1 ∂∂̄ φ ≥ −
√

–1 ∂∂̄ λ
√

–1 ∂∂̄ φ ≥ δ
√

–1 ∂∂̄ λ
(3.1)

instead of the weaker


√
–1 ∂∂̄ φ ≥ 0

√
–1 ∂∂̄ φ ≥ δ

√
–1 ∂∂̄ λ

.

In particular, the two conditions are clearly the same when
√

–1 ∂∂̄ λ ≥ 0, and in this

case Theorem 3.1 recovers the hyperplane case of [7, Theorem 3.8].
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Following [1], we present here a slightly simplified variant of the proof given by Berndts-

son and Lempert. As in [7], the main idea is that near Z any extension is nearly optimal

and easy to estimate. By introducing a positively-curved family of metrics that “collapses”

X to Z, Berndtsson’s first theorem (or, more precisely, Corollary 2.2) implies that one

can control the norm of the optimal extension on X by the norm of the optimal extension

to the small neighborhood of Z.

3.1.1 Preliminary reductions

Since the constants of Theorem 3.1 are universal, we can make some standard reductions.

First, as the singularities of Z are of codimension at least one in Z, they are contained in

a hypersurface H of X not containing Z. Then we can reduce to the case of smooth Z

(and dT |Z ̸≡ 0) by solving the problem for Z \H ⊂ X \H and then extending the solution

to X. Indeed, X \H is again a Stein manifold and if we assume that Theorem 3.1 holds

for Z smooth then we obtain f̃ ∈ H0(X \H,L⊗LZ ⊗KX) such that F̃ |Z\H = f ∧ dT and

∫
X\H

|F̃ |2 e−λ−φ ≤ π

(
1 + 1

δ

)∫
Z\H

|f |2 e−φ = π

(
1 + 1

δ

)
∥f∥2

Z < +∞.

Hence, by Riemann’s removable singularities theorem, F̃ extends to F ∈ H0(X,L⊗LZ ⊗

KX). As H has measure zero,

∫
X\H

|F̃ |2 e−λ−φ =
∫
X

|F̃ |2 e−λ−φ ≤ π

(
1 + 1

δ

)
∥f∥2

Z

and, because F |Z and f ∧ dT coincide on the open set Z \ H, we have F |Z = f ∧ dT

everywhere on Z, solving the division problem.

Remark 3.2. The same argument proves Theorem 3.1 when X is essentially Stein and

Z ⊆ X is an essentially Stein hypersurface, given that it has been proved for Stein

manifolds. Recall that a manifold X is essentially Stein if there is an analytic set D such

that X \D is Stein. For instance, projective manifolds are essentially Stein.
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We can also assume that X is a relatively compact domain in some larger Stein man-

ifold and that the metrics involved are smooth. Moreover, perhaps after shrinking X

further, we can assume that Z meets the boundary of X transversely and that the section

f ∈ H0(Z,L ⊗ KZ) to be extended is holomorphic up to the boundary of Z. If the

result is proved under these assumptions, then the universality of the bounds yields the

general case by standard weak-∗ compactness theorems, Lebesgue-type limit theorems

and approximation results for singular Hermitian metrics on Stein manifolds (see the

first paragraph in Section 3 of [7]).

3.1.2 Dual formulation of the extension problem

Fix a section f ∈ H0(Z,L|Z ⊗KZ) to be extended. We can assume that f is holomorphic

up to the boundary of Z by the remarks just made in Subsection 3.1.1.

Proposition 3.3. There exists F ∈ H0(X,L ⊗ LZ ⊗ KX) such that F |Z = f ∧ dT and

∥F∥2
X < +∞.

Proof. Since X is a relatively compact domain in a Stein manifold and the metrics are

smooth, any extension F in the ambient manifold will restrict to an extension on X with

finite L2-norm. Hence it suffices to show that for a Stein manifold X there is an extension,

without any requirement on its L2 norm.

Let IZ ⊆ OX be the coherent ideal sheaf of germs of holomorphic functions vanishing

at the points of Z. Twisting the short exact sequence

0 −→ IZ −→OX −→OZ −→ 0

by the line bundle L ⊗ LZ ⊗ KX and using the adjunction formula we obtain the short

exact sequence of coherent sheaves

0 −→ IZ(L⊗ LZ ⊗KX) −→OX(L⊗ LZ ⊗KX) −→OZ(L|Z ⊗KZ) −→ 0.
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From the induced long exact sequence in cohomology we then get

H0(X,L⊗ LZ ⊗KX) −→H0(Z,L|Z ⊗KZ) −→H1(X, IZ(L⊗ LZ ⊗KX)) = 0,

where the equality is a consequence of Cartan’s Theorem B. Therefore

H0(X,L⊗ LZ ⊗KX) −→H0(Z,L|Z ⊗KZ)

is surjective, meaning that for any f ∈ H0(Z,L|Z ⊗KZ) we can find F ∈ H0(X,L⊗LZ ⊗

KX) such that F |Z = f ∧ dT , as wanted.

Since there is an extension f with finite L2-norm, there is a (unique) extension F̃ with

minimal L2-norm. To prove Theorem 3.1 we shall estimate
∥∥∥F̃∥∥∥

X
.

Lemma 3.4. Let F ∈ H0(X,L⊗ LZ ⊗KX) be any extension with finite L2-norm. Then

the extension F̃ with minimal L2-norm has norm

∥∥∥F̃∥∥∥2

X
= sup

g∈C∞
c (Z,L|Z⊗KZ)

|ξg(F )|2∥∥∥ξg∥∥∥2

∗

,

where ∥·∥∗ is the norm for the dual Hilbert space (L2 ∩H0(X,L⊗ LZ ⊗KX))∗ and

ξg(s) := (σ, g)Z =
∫
Z
σḡ e−φ,

with s|Z = σ ∧ dT .

Proof. We start by proving that

∥∥∥F̃∥∥∥2

X
= sup

ξ∈Ann(IZ)

|ξ(F )|2

∥ξ∥2
∗
,

where IZ is the subset of L2-integrable holomorphic sections of L⊗ LZ ⊗KX → X that

vanish along Z, and Ann(IZ) is the subspace of all functionals on (L2∩H0(X,L⊗LZ⊗KX))

that vanish on IZ . Notice that ξ(F ) is independent of the choice of the extension F .
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We claim that F̃ ⊥ IZ . Indeed, if k ∈ IZ then F̃ + εk is an extension of f for all ε ∈ C,

and since F̃ is the extension with minimal L2 norm the function

C ∋ ε−→
∥∥∥F̃ + εk

∥∥∥2

X
=
∥∥∥F̃∥∥∥2

X
+ 2Re[(F̃ , k)Xε] +O(|ε|2)

has a minimum at ε = 0, so that (F̃ , k)X = 0.

Observe now that ξg(k) = 0 for all k ∈ IZ and that conversely, if s|Z = σ ∧ dT and

ξg(s) = 0 for all f then σ = 0. Therefore {ξg | g ∈ C∞
c (Z,L|Z ⊗KZ)} is dense in Ann(IZ)

and we may thus restrict to the elements ξg when computing the supremum.

By Lemma 3.4

∥∥∥F̃∥∥∥2

X
= sup

g∈C∞
c (Z,L|Z⊗KZ)

|ξg(F )|2∥∥∥ξg∥∥∥2

∗

= sup
g∈C∞

c (Z,L|Z⊗KZ)

|(f,Pg)Z |2∥∥∥ξg∥∥∥2

∗

≤∥f∥2
Z sup
g∈C∞

c (Z,L|Z⊗KZ)

∥Pg∥2
Z∥∥∥ξg∥∥∥2

∗

,

where

P : L2(Z,L|Z ⊗KZ) −→L2 ∩H0(Z,L|Z ⊗KZ)

denotes the Bergman projection. Therefore, to prove Theorem 3.1 it suffices to prove that

∥Pg∥2
Z ≤ π

(
1 + 1

δ

)∥∥∥ξg∥∥∥2

∗
(3.2)

for all g ∈ C∞
c (Z,L|Z ⊗ KZ).

3.1.3 A calculus lemma

We now establish the following lemma, which plays a key role in the proofs of both

Theorem 3.1 and Theorem 2. The result is a slight modification of Lemma 3.4 in [7].
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Lemma 3.5. Let ν : (−∞, 0] → R+ be an absolutely continuous increasing function such

that

lim
t→−∞

e−Bt ν(t) = A < +∞

for some B > 0. Then, for all p > B,

lim
t→−∞

e−Bt
∫ 0

t
e−p(s−t) dν(s) = AB

p−B
.

Remark 3.6. In contrast to Lemma 3.4 in [7], we do not require ν to be bounded above

by A eBt for all t < 0. This weakened hypothesis allows us to obtain the more precise

estimates needed for Theorem 3.1 and Theorem 4.1.

Proof. Integrating by parts one gets

e−Bt
∫ 0

t
e−p(s−t) dν(s) = e(p−B)t

∫ 0

t
e−ps dν(s)

= e(p−B)t
[
ν(0) − e−pt ν(t) + p

∫ 0

t
e−ps ν(s) ds

]
.

By the assumptions we have

lim
t→−∞

e(p−B)t
(
ν(0) − e−pt ν(t)

)
= −A.

Moreover, for any ε > 0 there is tε < 0 such that (A− ε) eBt ≤ ν(t) ≤ (A+ ε) eBt for all

t ≤ tε. Then

∫ 0

t
e−ps ν(s) ds ≤

∫ 0

tε
e−ps ν(s) ds+ (A+ ε)

∫ tε

t
e−(p−B)s ds

≤ Cε + A+ ε

p−B

(
e−(p−B)t − e−(p−B)tε

)
= C ′

ε + A+ ε

p−B
e−(p−B)t

and similarly ∫ 0

t
e−ps ν(s) ds ≥ C ′′

ε + A− ε

p−B
e−(p−B)t,
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so that
A− ε

p−B
≤ lim

t→−∞
e(p−B)t

∫ 0

t
e−ps ν(s) ds ≤ A+ ε

p−B
.

Since this holds for all ε > 0 we conclude that

lim
t→−∞

e(p−B)t p
∫ 0

t
e−ps ν(s) ds = Ap

p−B

and then

lim
t→−∞

e−Bt
∫ 0

t
e−p(s−t) dν(s) = −A+ Ap

p−B
= AB

p−B
,

as wanted.

3.1.4 The family of metrics

We now define a family of metrics for L ⊗ LZ → X parametrized by

τ ∈ L := {z ∈ C | Re z < 0}

by introducing a weight χτ that “collapses” X onto Z:

χτ := max(log |T |2 − λ− Re τ, 0).

Since this function only depends on Re τ =: t, in the following we will write χτ = χt.

Notice that χ0 = 0 since |T |2 e−λ ≤ 1, and that χt ∼ −t when t → −∞ at all points

not in Z.

We also obtain a corresponding family of metrics hτ for L ⊗ LZ → X by setting

hτ := e−Re τ e−φ−λ e−(1+δ)χτ ,
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and a family of norms for sections s ∈ H0(X,L ⊗ LZ ⊗ KX) given by

∥s∥2
τ := e−Re τ

∫
X

|s|2 e−φ−λ e−(1+δ)χτ .

We will denote by ∥·∥τ,∗ the induced dual norms on linear functionals on L2 ∩H0(X,L⊗

LZ ⊗KX), and interpret hτ as a metric h for pr∗
X(L⊗ LZ) → X × L. Notice that h has

non-negative curvature by the hypotheses of Theorem 3.1.

Remark 3.7. Compared to the metrics used in [7], the multiplicative constant in front of

χt is the fixed value 1 + δ and thus we will not be able to send it to infinity. Rather than

being a problem, this feature and Lemma 3.5 are what keep the curvature of h under

control without assuming that
√

–1 ∂∂̄ λ ≥ 0 (see also [40, 41] for similar observations).

As for χτ = χt, since the metrics and norms only depend on t = Re τ , with a slight

abuse of notation we will often write ht and ∥·∥t instead of hτ and ∥·∥τ .

We now look at the extrema of the family. Clearly one has ∥s∥2
0 =∥s∥2

X . To study the

other extremum t → −∞, fix t < 0 and consider the set At of points in X for which

the maximum in χt is attained by 0:

At :=
{
x ∈ X

∣∣∣ |T (x)|2 e−λ ≤ et
}
.

We then write

∥s∥2
t = e−t

∫
At

|s|2 e−φ−λ + e−t
∫
X\At

|s|2 e−φ−λ
(

et
|T |2 e−λ

)1+δ

and proceed to estimate the two summands as t → −∞.

Notice first that the set At collapses to Z as t → −∞. More precisely, At asymptotically

resembles a tube about Z whose radius-squared around each z ∈ Z is asymptotic to
et

| dT (z)|2 e−λ . Write s|Z =: σ ∧ dT . Then

lim
t→−∞

e−t
∫
At

|s|2 e−φ−λ = π
∫
Z

|σ|2 e−φ . (3.3)
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The second integral can be rewritten as

e−t
∫ 0

t
e−(1+δ)(t̃−t) dνs(t̃), with νs(t) :=

∫
At

|s|2 e−φ−λ .

The function νs is clearly positive increasing and satisfies limt→−∞ e−t νs(t) = π
∫
Z |σ|2 e−φ.

Moreover, it is absolutely continuous by the Fundamental Theorem of Calculus for

Lebesgue integrals (see for instance Theorem 3.35 in [24]). Then Lemma 3.5 gives

lim
t→−∞

e−t
∫ 0

t
e−(1+δ)(t̃−t) dνs(t̃) = π

δ

∫
Z

|σ|2 e−φ .

All in all one gets

lim
t→−∞

∥s∥2
t = π

(
1 + 1

δ

)∫
Z

|σ|2 e−φ . (3.4)

3.1.5 Monotonicity of the family of dual norms and end of the

proof

Now that we have a metric h for pr∗
X(L ⊗ LZ) → X × L with non-negative curvature,

Berndtsson’s Theorem gives the required estimate.

Lemma 3.8. The function (−∞, 0] ∋ t 7→ log
∥∥∥ξg∥∥∥ is non-decreasing. In particular,

∥∥∥ξg∥∥∥2

∗
=
∥∥∥ξg∥∥∥2

0,∗
≥
∥∥∥ξg∥∥∥2

t,∗
for all t ≤ 0

Proof. We first claim that supτ∈L

∥∥∥ξg∥∥∥2

τ,∗
= supt≤0

∥∥∥ξg∥∥∥2

t,∗
< +∞. In fact, it suffices to

check that
∥∥∥ξg∥∥∥2

t,∗
is uniformly bounded for all t sufficiently negative. Let

Cg :=
∫
Z

|g|2 e−φ < +∞.
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Recall that g has compact support in Z. Then

∥∥∥ξg∥∥∥2

t,∗
= sup

∥s∥t=1

∣∣∣∣∫
Z
σḡ e−φ

∣∣∣∣2 ≤ Cg sup
∥s∥t=1

∫
Z

|σ|2 e−φ .

By (3.3) one gets

∫
Z

|σ|2 e−φ ≤ 2
π

e−t
∫
At

|s|2 e−φ−λ ≤ 2
π

e−t
∫
X

|s|2 e−φ−λ e−(1+δ)χt ,

so that
∥∥∥ξg∥∥∥2

t,∗
≤ 2Cg

π
.

Next consider the trivial fibration X×L → L and the line bundle pr∗
X(L⊗LZ) → X×L

with metric h. As already noted, h has non-negative curvature by the hypotheses of Theo-

rem 3.1. Then Corollary 2.2 to Berndtsson’s Theorem 2.1 implies that L ∋ τ 7→ log
∥∥∥ξg∥∥∥

τ,∗

is subharmonic. Since
∥∥∥ξg∥∥∥

τ,∗
only depends on t = Re τ , it follows that t 7→ log

∥∥∥ξg∥∥∥
t,∗

is con-

vex on (−∞, 0). If this map decreased anywhere on (−∞, 0), then by convexity we would

have limt→−∞ log
∥∥∥ξg∥∥∥

t,∗
= +∞, contradicting the uniform boundedness of log

∥∥∥ξg∥∥∥
t,∗

.

To conclude the proof of Theorem 3.1, let s ∈ H0(X,L⊗LZ ⊗KX) be any finite-norm

extension of Pg (so that s|Z = Pg ∧ dT ). Then by (3.4)

lim
t→−∞

∥∥∥ξg∥∥∥2

t,∗
≥ lim

t→−∞

1
∥s∥2

t

∣∣∣∣∫
Z

|Pg|2 e−φ
∣∣∣∣2 = lim

t→−∞

∥Pg∥4
Z

∥s∥2
t

≥ δ

π(1 + δ)∥Pg∥2
Z ,

so that by Lemma 3.8 one has

∥Pg∥2
Z ≤ π

(
1 + 1

δ

)
lim
t→−∞

∥∥∥ξg∥∥∥2

t,∗
≤ π

(
1 + 1

δ

)∥∥∥ξg∥∥∥2

∗
,

i.e. we have proved (3.2) and hence Theorem 3.1.

3.1.6 Remarks on extension in higher codimension

When the subvariety Z has codimension k higher than 1, the adjoint formulation does

not fit the extension problem as well as in the hypersurface case of Theorem 3.1.
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A special context in which formulating extension in terms of canonical sections makes

sense is the setting of the Ohsawa–Takegoshi–Manivel Theorem [36, 19]. Assume that

Z is cut out by a holomorphic section T of some holomorphic vector bundle E → X

of rank k and that T is generically transverse to the zero section of E. This means

that we know a priori that the normal bundle of Zreg in X extends to the vector bundle

E → X, and thus we have the adjunction formula (KX ⊗ detE)|Z = KZ . Assume also

that supX h(T, T̄ ) ≤ 1 for some metric h for E → X.

Then everything goes through in the same way as Theorem 3.1, up to replacing LZ

with detE and adapting the curvature assumptions. Explicitly, assume that

√
–1 ∂∂̄ φ ≥

√
–1 ∂∂̄ log deth

and
√

–1 ∂∂̄ φ ≥
√

–1 ∂∂̄ log deth− (k + δ)
√

–1 ∂∂̄ log h(T, T̄ ).

Then for every holomorphic section f ∈ H0(Z,L|Z ⊗ KZ) such that

∫
Z

|f |2 e−φ < +∞

there is a holomorphic section F ∈ H0(X,L⊗detE⊗KX) such that F |Z = f∧det(dT ) and

∫
X

|F |2 e−φ+log deth ≤ σk

(
1 + k

δ

)∫
Z

|f |2 e−φ,

where σk := πk/k! is the volume of the unit ball in real dimension 2k. Here the weight is

the function χτ := max
(
log h(T, T̄ ) − Re τ, 0

)
and the family of metrics is

e−kRe τ e−φ+log deth e−(k+δ)χτ .

Notice that this recovers Theorem 3.1 with E = LZ and h = e−λ.
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Unfortunately in general we cannot assume that Z is cut out by a section of some

vector bundle. In such case no clear analogue of adjunction is available and thus the

non-adjoint formulation is preferable.

Theorem 3.9 (non-adjoint L2 extension). Let X be a Stein manifold with Kähler

form ω and let ρ : X → [−∞, 0] be such that

log dist2
Z −β ≤ ρ ≤ log dist2

Z +α

for some smooth function β on X and some constant α (so that Z = {ρ = −∞}). Fix

δ > 0, let L → X be a holomorphic line bundle with metric e−φ, and assume that

√
–1 ∂∂̄ φ+ Ricω ≥ 0,

√
–1 ∂∂̄ φ+ Ricω +(k + δ)

√
–1 ∂∂̄ ρ ≥ 0.

Then for every holomorphic section f ∈ H0(Z,L|Z) such that

∥f∥2
Z :=

∫
Z

|f |2 e−φ+kβ dVZ < +∞

there is a holomorphic section F ∈ H0(X,L) such that F |Z = f and

∥F∥2
X :=

∫
Z

|F |2 e−φ dVX ≤ σk

(
1 + k

δ

)
∥f∥2

Z .

By taking X to be a pseudoconvex domain D ⊂ Cn, ρ = G − ψ, φ = ϕ − kψ and

β = B + ψ one obtains Theorem 3.8 in [7] (without the assumption that G and ψ are

plurisubharmonic).

The argument is the same as the one for Theorem 3.1, except that the functionals

ξg are now

ξg(s) :=
∫
Z
sḡ e−φ+kβ dVZ
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and the weights are χτ := max(ρ − Re τ, 0). Then the family of norms becomes

∥s∥2
t := e−kt

∫
X

|s|2 e−φ e−(k+δ)χt dVX .

Clearly ∥s∥2
0 = ∥s∥2

X . For the other end of the family, let At := {φ < t}, then

∥s∥2
t = e−kt

∫
At

|s|2 e−φ dVX + e−kt
∫
X\At

|s|2 e−φ e−(k+δ)(ρ−t) dVX .

Since the set At is asymptotic to a tube around Z whose radius-squared is bounded above

by et+β, it follows that

lim
t→−∞

e−kt
∫
At

|s|2 e−φ dVX ≤ σk

∫
Z

|s|2 e−φ+kβ dVZ

and, by Lemma 3.5,

lim
t→−∞

e−kt
∫
X\At

|s|2 e−φ e−(k+δ)(ρ−t) dVX ≤ kσk
δ

∫
Z

|s|2 e−φ+kβ dVZ .

All in all

lim
t→−∞

e−kt
∫
X

|s|2 e−φ e−(k+δ)χt dVX ≤ σk

(
1 + k

δ

)∫
Z

|s|2 e−φ+kβ dVZ ,

which is what is needed to prove Theorem 3.9.

3.2 The openness conjecture

Let X be a complex manifold of dimension n and let φ be a plurisubharmonic function

on X. Introduced by A. Nadel in [38], the multiplier ideal sheaf of φ is defined to be

the subsheaf I(φ) ⊆ OX of germs of holomorphic functions f ∈ Ox such that |f |2 e−φ is

locally integrable near x ∈ X (see also [34]). Define I+(φ) := ⋃
ε>0 I((1 + ε)φ).
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In [20], Demailly conjectured that I(φ) = I+(φ) for any plurisubharmonic function φ on

X. In 2015, Q. Guan and X. Zhou proved Demailly’s strong openness conjecture [26] by

using a version of the Ohsawa–Takegoshi L2 extension theorem for subvarieties. Shortly

after, P. H. Hiep obtained the same result using the standard Ohsawa–Takegoshi Theorem

and induction on dimension [29]. Recently X. Wang and T. T. H. Nguyen have been able

to use Berndtsson’s first theorem to prove the full openness conjecture by using Lemma

3.11 below to give a bound on the maximal local integrability exponent [41]. Here we

present an earlier argument of Berndtsson [5, 6] that proves the weaker Demailly–Kollár

openness conjecture [21] using Berndtsson’s first theorem on direct images (Theorem 2.1).

Theorem 3.10. Let φ be a plurisubharmonic function in the unit ball B ⊂ Cn with φ ≤ 0.

Assume that ∫
B

e−φ dV < +∞

then there is p > 1 such that ∫
B/2

e−pφ dV < +∞.

Moreover, p can be taken so that

p ≥ 1 + δn∫
B e−φ dV ,

where δn depends only on the dimension n.

Proof. Let A2(B, µ) be the space of holomorphic functions on the unit ball B that are

L2-integrable with respect to the measure µ. For any t ≥ 0 define φt := max(φ + t, 0).

Notice that φ0 = 0 and 0 ≤ φt ≤ t. Fix q > 1 and define a new norm on A2(B, dV ) by

setting

∥h∥2
t :=

∫
B

|h|2 e−qφt dV
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(here dV denotes the standard Lebesgue measure). For p < q we have

∥h∥2
t ≤

∫
B

|h|2 e−pφt dV ≤ e−pt
∫
B

|h|2 e−pφ dV ,

so that ∥h∥2
t decreases like e−pt when h ∈ A2(B, e−pφ dV ).

Lemma 3.11. For any 0 < p < q we have

∫
B

|h|2 e−pφ = p

(
1 − p

q

)∫ +∞

0
ept∥h∥2

t dt+
(

1 − p

q

)
∥h∥2

0

for all h ∈ H2(B, dV ).

Proof. We first compute that for any x < 0 we have

∫ +∞

0
ept e−qmax(x+t,0) dt =

∫ −x

0
ept dt+ e−qx

∫ +∞

−x
e(p−q)t dt

= e−px −1
p

− e−qx e−(p−q)x

p− q
= q

p(q − p) e−px −1
p
,

so that

e−px = p

(
1 − p

q

)∫ +∞

0
ept e−qmax(x+t,0) dt+

(
1 − p

q

)
.

Then ∫
B

|h|2 e−pφ = p

(
1 − p

q

)∫ +∞

0
ept∥h∥2

t dt+
(

1 − p

q

)
∥h∥2

0 ,

as claimed.

According to Lemma 3.11, to prove Theorem 3.10 we therefore need to estimate∫+∞
0 ept∥h∥2

t dt, which is the motivation for the next statement.

Lemma 3.12. Let H0 be a separable Hilbert space equipped with a family of equivalent

Hilbert norms ∥·∥t, where t ≥ 0. Assume this family defines a positively-curved Hermitian

metric on the trivial bundle H0 × Ω → Ω, where Ω := {τ ∈ C | t := Re τ ≥ 0} is the right
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half-plane. Let H be the subspace of elements h ∈ H0 such that

∥h∥2 :=
∫ +∞

0
et∥h∥t dt < +∞.

Then for any h ∈ H0, ε > 0, and t > ε−1 there is an element ht ∈ H0 such that

∥h− ht∥2
0 ≤ 2ε∥h∥ (3.5)

and

∥ht∥2
t ≤ e−(1+ε)t∥h∥2

0 . (3.6)

Proof. Since the norms are equivalent, for every t ≥ 0 there is a bounded linear operator

Tt on H0 such that ⟨u, v⟩ = ⟨Ttu, v⟩0. By the spectral theorem (see for instance Theorem

VII.3 and its immediate corollary in [48]) there is a finite measure space (X,µ), bounded

functions λt : X → R, and a unitary transformation U : H0 → L2(X, dµ) such that

∥h∥0 =
∫
X

|Uh|2 dµ

and

∥h∥t =
∫
X

|Uh|2 e−tλt dµ

for all t ≥ 0. Fix ε > 0. We define

ht := U−1({χλt>1}+ε Uh),

where χ{λt>1+ε} is the characteristic function of the set {λt > 1 + ε} ⊂ X. Then

∥ht∥2
t =

∫
λt>1+ε

|Uh|2 e−tλt dµ ≤ e−(1+ε)t
∫
X

|Uh|2 dµ = e−(1+ε)t∥h∥2
0 ,
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satisfying (3.6). To prove (3.5), for each fixed t ≥ 0 we compare ∥·∥t with the flat metric

∥·∥s,t, defined for 0 ≤ s ≤ t by

∥h∥2
s,t :=

∫
X

|Uh|2 e−sλt dµ.

Notice that ∥·∥0,t =∥·∥0 and ∥·∥t,t =∥·∥t, and moreover ∥·∥s,t is flat in the sense that any

h ∈ H0 (thought as a vector in the fiber H0 × {t0} of the trivial bundle H0 × Ω → Ω) can

be extended as h̃ζ := U−1(e(ζ−t0)λt/2 Uh) so that
∥∥∥h̃ζ∥∥∥Re ζ,t

is constant and h̃t0 = h.

We now claim that, since ∥·∥s,t induces a flat metric and coincides with ∥·∥s for s = 0

and s = t, and since ∥·∥t induces a positively curved metric

∥·∥s ≥∥·∥s,t for all 0 ≤ s ≤ t. (3.7)

This follows by the convexity of the dual norms: ∥·∥∗,Reσ is negatively curved and coincides

with the flat norm ∥·∥∗,Reσ,t when σ = 0 and Reσ = t, so the convex function s 7→∥·∥∗,s

sits below the function s 7→ ∥·∥∗,s,t for all 0 ≤ s = Reσ ≤ t. Hence ∥·∥s ≥ ∥·∥s,t for all

0 ≤ s ≤ t, as wanted.

Going back to (3.5), since h− ht and ht are orthogonal for the scalar product defined

by ∥·∥s,t and by (3.7) we have

∫ t

0
es∥h− ht∥2

s,t ds ≤
∫ t

0
es∥h∥2

s,t ds ≤
∫ t

0
es∥h∥2

s ds.

By definition h− ht = U−1(χ{λt<1+ε}Uh), so

∥h− ht∥2
s,t =

∫
λt<1+ε

|Uh|2 e−sλt dµ ≥ e−s(1+ε)∥h∥2
0 ,

and thus

∫ t

0
es∥h− ht∥2

s,t ds ≥∥h− hs∥2
0

∫ t

0
e−sε ds = 1 − e−εt

ε
∥h− hs∥2

0 .
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Restricting to t ≥ ε−1 and putting everything together, we obtain

∥h− hs∥2
0 ≤ 2ε

∫ t

0
es∥h∥2

s ds ≤ 2ε∥h∥2 ,

proving (3.5) and Lemma 3.12.

With our choice of ∥·∥t, by Lemma 3.11 for p = 1 we have

∥h∥2 =
∫ +∞

0
et∥h∥t dt = q

q − 1

∫
B

|h|2 e−φ dV −∥h∥2
0 ,

and in particular

∥1∥2 = q

q − 1

∫
B

e−φ dV − Vol(B) < +∞

(recall that φ0 = 0). Since φ is plurisubharmonic, by Berndtsson’s theorem for trivial

fibrations (Theorem 2.1) the family of norms ∥·∥t defines a positively-curved Hermitian

metric on the trivial bundle A2(B, dV ) × Ω → Ω. Then we can apply Lemma 3.12 to

h = 1: for any ε > 0 and t > ε−1 we get a holomorphic function ht on the unit ball B

such that ∫
B

|ht − 1|2 dV ≤ 2ε
(

q

q − 1

∫
B

e−φ dV − Vol(B)
)

and ∫
B

|ht|2 e−qφt dV ≤ Vol(B) e−(1+ε)t .

Observe now that by the sub-mean-value property there is a constant δn > 0, depending

only on the dimension of B, such that supB/2 |g| ≤ 1
2 whenever g is holomorphic in B and∫

B |g|2 dV ≤ δn. Therefore, choosing ε small enough, we can assume that supB/2 |ht−1| ≤
1
2 , and thus |ht| ≥ 1

2 on B/2. Hence

∫
B/2

e−qφt dV ≤ 4
∫
B

|ht|2 e−qφt dV = 4∥ht∥2
t ≤ 4 Vol(B) e−(1+ε)t .
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By taking for instance p ≤ 1 + ε
2 , we have

ept
∫
B/2

e−qφt dV ≤ 4 Vol(B) ept−(1+ε)t ≤ 4 Vol(B) e− ε
2 t,

so that

∫ +∞

0
ept
∫
B/2

e−qφt dt ≤
∫ 1

ε

0
ept
∫
B/2

e−qφt dt+ 4 Vol(B)
∫ +∞

1
ε

e− ε
2 t dt =: C < +∞.

Applying Lemma 3.11 with B replaced by B/2, h = 1, and p ≤ min
(
q, 1 + ε

2

)
we then

obtain ∫
B/2

e−pφ ≤
(

1 − p

q

) (
pC + Vol(B)

)
< +∞,

proving Theorem 3.10.
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Chapter 4

A degeneration proof of a

Skoda-type L2 division theorem

In this Chapter we present the degeneration-based proof of Theorem 2. For the reader’s con-

venience, we state the following slightly more concretely formulated version of Theorem 2.

Theorem 4.1 (L2 division). Let X be a Stein manifold and let E,G → X be holo-

morphic line bundles with (singular) Hermitian metrics e−φ and e−ψ, respectively. Fix

h = (h1, . . . , hr) ∈ H0(X, (E∗ ⊗G)⊕r) and 1 < α < r+1
r−1 . Assume that

√
–1 ∂∂̄ φ ≥ α(r − 1)

α(r − 1) + 1
√

–1 ∂∂̄ ψ.

Then for any holomorphic section g ∈ H0(X,G⊗KX) such that

∥g∥2
G :=

∫
X

|g|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 < +∞

there is a holomorphic section f = (f1, . . . , fr) ∈ H0(X,E⊕r ⊗KX) such that

g = h
·

⊗ f := h1 ⊗ f1 + · · · + hr ⊗ fr

61



and

∥f∥2
E⊕r :=

∫
X

|f |2 e−φ

(|h|2 e−ψ+φ)α(r−1)

≤ r
α

α− 1

∫
X

|g|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 = r
α

α− 1∥g∥2
G .

The main idea is to look at all possible linear combinations v1 ⊗ f1(x) + · · · + vr ⊗ fr(x).

Then one constructs a positively curved family of metrics that at one extreme “localizes”

the problem at the point of interest v = h(x) and at the other extreme retrieves the

usual L2-norm for f . Near h(x) the optimal solution to the division problem is “trivial”;

for instance, if h(x) = (h1(x), 0, . . . , 0), one takes f(x) = (g(x)h1(x)−1, 0, . . . , 0). The

positivity of the direct image bundle [4] then implies that one can control ∥f∥E⊕r by the

norm of the trivial solution near h(x). The proof follows the author’s work in [1].

4.1 Preliminary reductions

No base locus. We may assume that the sections h1, . . . , hr have no common zeros.

Indeed, let D be the zero-set of hr. Then X \ D is again Stein and h|X\D has no

zeros. Assuming that Theorem 4.1 holds if {h1 = · · · = hr = 0} = ∅, we obtain

f̃ ∈ H0(X \ D, (E⊕r ⊗ KX)|X\D) such that

g|X\D = h|X\D
·

⊗ f̃

and ∫
X\D

|f̃ |2 e−φ

(|h|2 e−ψ+φ)α(r−1) ≤ r
α

α− 1∥g∥2
G < +∞.

As h is bounded on any bounded chart U ⊂⊂ X,

∫
U\D

|f̃ |2 e−φ ≤ C
∫
U\D

|f̃ |2 e−φ

(|h|2 e−ψ+φ)α(r−1) ≤ Cr
α

α− 1∥g∥2
G < +∞,
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where C > 0 depends on U , h and α(r−1). Hence, by Riemann’s Removable Singularities

Theorem, f̃ extends to f ∈ H0(X,E⊕r ⊗ KX). As D has measure 0,

∫
X

|f |2 e−φ

(|h|2 e−ψ+φ)α(r−1) =
∫
X\D

|f̃ |2 e−φ

(|h|2 e−ψ+φ)α(r−1) ≤ r
α

α− 1∥g∥2
G < +∞,

and because h
·

⊗ f and g coincide on the open set X \D we have h
·

⊗ f = g everywhere

on X, solving the division problem.

As in Remark 3.2, the same argument proves Theorem 4.1 when X is essentially Stein,

given that it has been proved for Stein manifolds.

X bounded pseudoconvex. As in the proof of the L2 extension theorem, we can

reduce X to a relatively compact domain in some larger Stein manifold. We say that

sections extend up to the boundary of X if they extend to a neighborhood of X in the

ambient Stein manifold. We can also assume that ω and E,G extend to the ambient

manifold and that the metrics e−φ and e−ψ are smooth. If the result is proved under

these assumptions then the universality of the bounds yields the general case by standard

weak-∗ compactness theorems, Lebesgue-type limit theorems and approximation results

for singular Hermitian metrics on Stein manifolds.

4.2 Dual formulation of the division problem

Fix a section g ∈ H0(X,G⊗KX) to be divided. We may assume, possibly after shrinking

X, that g is holomorphic up to the boundary of X. Let γ : E⊕r ⊗ KX → G ⊗ KX

be defined by

γ(e1, . . . , er) := h1 ⊗ e1 + · · · + hr ⊗ er.

63



Proposition 4.2. There exists f = (f1, . . . , fr) ∈ H0(X,E⊕r ⊗KX) such that

g = h1 ⊗ f1 + · · · + hr ⊗ fr = h
·

⊗ f

and

∥f∥2
E⊕r < +∞.

Proof. Since X is a relatively compact domain in a Stein manifold, any solution f in the

ambient manifold will restrict to a solution on X with finite L2-norm. Hence, it suffices

to show that for a Stein manifold X there is a not-necessarily-L2 solution of the division

problem.

As the h1, . . . , hr have no common zeros, the map γ is a surjective morphism of vector

bundles and thus we have the short exact sequence of vector bundles

0 −→ ker γ −→ E⊕r ⊗KX −→ G⊗KX −→ 0.

The induced sequence in cohomology then yields

0 → H0(X, ker γ) → H0(X,E⊕r ⊗KX) → H0(X,G⊗KX) → H1(X, ker γ) = 0,

where equality is a consequence of Cartan’s Theorem B. Hence, the map induced by γ in

cohomology is surjective, meaning that for any g ∈ H0(X,G⊗KX) we can find

f = (f1, . . . , fr) ∈ H0(X,E⊕r ⊗KX)

such that

g = γ ◦ f = h1 ⊗ f1 + · · · + hr ⊗ fr,

proving the statement.
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Since there is a solution f of the division problem with finite L2-norm, there is a

(unique) solution f̃ with minimal L2-norm. To prove Theorem 4.1 it then suffices to

estimate
∥∥∥f̃∥∥∥

E⊕r
.

Lemma 4.3. Let f ∈ H0(X,E⊕r ⊗ KX) be any solution to the division problem with

finite L2-norm. Then the solution f̃ with minimal L2-norm has norm

∥∥∥f̃∥∥∥2

E⊕r
= sup

ξ∈AnnH0(X,ker γ)

|ξ(f)|2

∥ξ∥2
∗
,

where∥·∥∗ is the norm for the dual Hilbert space H0(X,E⊕r⊗KX)∗ and AnnH0(X, ker γ) is

the annihilator of H0(X, ker γ), i.e. the set of all linear functionals on H0(X,E⊕r ⊗KX)

that vanish on H0(X, ker γ). Moreover, one can restrict the supremum to functionals

ξη ∈ H0(X,E⊕r ⊗KX)∗ of the form

ξη(f) := (γ ◦ f, η)G =
∫
X

(h
·

⊗ f)η̄ e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 ,

for η ∈ C∞
c (X,G⊗KX) (smooth compactly supported sections of G⊗KX).

Proof. Note first that the supremum is independent of the choice of the arbitrary L2

solution f . Indeed, if ξ ∈ AnnH0(X, ker γ) and γ ◦ f = γ ◦ f ′ = g, then by linearity

f − f ′ ∈ H0(X, ker γ), so that ξ(f) = ξ(f ′).

Next, we claim that f̃ ⊥ H0(X, ker γ). Indeed, if k ∈ H0(X, ker γ), then γ◦(f̃+εk) = g

for all ε ∈ C. As f̃ is the minimal norm solution,

C ∋ ε 7−→
∥∥∥f̃ + εk

∥∥∥2

E⊕r
=
∥∥∥f̃∥∥∥2

E⊕r
+ 2Re[(f̃ , k)E⊕rε] +O(|ε|2)

has minimum at ε = 0 (here (·, ·)E⊕r denotes the L2 inner product on E⊕r ⊗KX). Hence

(f̃ , k)E⊕r = 0.

Finally, notice that if k ∈ H0(X, ker γ) then

ξη(k) = (γ ◦ k, η)G = 0,
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i.e. ξη ∈ AnnH0(X, ker γ). Conversely, if

0 = ξη(f) = (γ ◦ f, η)G

for all η ∈ C∞
c (X,G⊗KX), then γ ◦ f = 0. Hence

{
ξη | η ∈ C∞

c (X,G⊗KX)
}

⊆ AnnH0(X, ker γ)

is dense, so we may restrict to elements ξη when computing the supremum.

By Lemma 4.3

∥∥∥f̃∥∥∥2

E⊕r
= sup

η∈C∞
c (X,G⊗KX)

|(γ ◦ f, η)|2∥∥∥ξη∥∥∥2

∗

= sup
η∈C∞

c (X,G⊗KX)

|(g,Pη)|2∥∥∥ξη∥∥∥2

∗

≤∥g∥2
G sup
η∈C∞

c (X,G⊗KX)

∥Pη∥2
G∥∥∥ξη∥∥∥2

∗

,

(4.1)

where

P : L2(X,G⊗KX) −→ H0(X,G⊗KX) ∩ L2(X,G⊗KX)

denotes the Bergman projection. Therefore, to prove Theorem 4.1 it suffices to prove that

∥Pη∥2
G ≤ r

α

α− 1
∥∥∥ξη∥∥∥2

∗

for all η ∈ C∞
c (X,G ⊗ KX).

4.3 The degenerating family of norms

Instead of working directly on the vector bundle E⊕r ⊗ KX → X, we lift everything

to the line bundle

L := pr∗
X(E ⊗KX) ⊗ pr∗

Pr−1 OPr−1(1) −→ X × Pr−1,
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where OPr−1(1) is the hyperplane bundle of Pr−1 and prX , prPr−1 are the projections of

X × Pr−1 on X, Pr−1 respectively. Explicitly, fix once for all coordinates v1, . . . , vr for Cr

(descending to the homogeneous coordinates [v1 : · · · : vr] for Pr−1) and declare the lift of

a section s ∈ H0(X,E⊕r ⊗ KX) to be the section ŝ ∈ H0(X × Pr−1, L) defined by

ŝ(x, [v]) := v∗ · s(x) = v∗
1s1(x) + · · · + v∗

rsr(x) ∈ H0(X × Pr−1, L), (4.2)

where v∗
1, . . . , v

∗
r are the dual coordinates of v1, . . . , vr of Cr.

Notice that the lift is a bijective map, since all sections of L are of the form (4.2).

We can then lift the functionals ξη ∈ H0(X,E⊕r ⊗ KX)∗ of Lemma 4.3 to functionals

ξ̂η ∈ H0(X × Pr−1, L)∗ defined as ξ̂η(ŝ) := ξη(s) for all ŝ ∈ H0(X × Pr−1, L).

Remark 4.4. One can interpret the lifted section ŝ by thinking of the projective space Pr−1

as parametrizing all possible choices of linear combinations (up to scaling). Hence, the

value of the section ŝ at (x, [v]) can be thought of (tautologically) as the linear combination

parametrized by v of the entries of the vector s(x). What follows is essentially a procedure

to “single out” the linear combination given by [h(x)] (the equivalence class of h(x) in

Pr−1).

Next, we define a family of metrics for L → X × Pr−1, parametrized by

τ ∈ L := {z ∈ C | Re z < 0}.

Toward this end, let

χτ (x, v) := max
(
log(|v|2|h(x)|2 − |v · h(x)|2) e−ψ+φ −Re τ, log |v|2|h(x)|2 e−ψ+φ

)

and, for σ ∈ L(x,[v]), set

hτ (σ, σ̄)(x,[v]) := r!
πr−1 e−(r−1)Re τ |σ|2 e−φ

|v|2
(
|v|2 e−χτ

)α(r−1)
.
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Note that whether the maximum defining χτ is attained by the first or the second entry

is independent of the choice of the representative v of [v] ∈ Pr−1, and that the weight

|v|2 e−χτ is a well-defined function on X × Pr−1. Notice also that χτ depends only on

t := Re τ (as does hτ ), so in the following we will write χt (and ht) instead.

Remark 4.5. As we shall soon see, the choice of χt is motivated as follows. For t = 0, the

maximum is realized by the second entry, so that

(|v|2 e−χt)α(r−1) = 1
(|h(x)|2 e−ψ+φ)α(r−1) ,

providing the weighting by the norm of h in ∥·∥E⊕r . On the other hand, as t → −∞, the

function

|v|2 e−χt = 1
(|h(x)|2 e−ψ+φ)α(r−1) min

 et

1 − |v·h(x)|2
|v|2|h(x)|2

, 1


gets very small at all v ∈ Pr−1 that are not “sufficiently aligned” with h(x). The precise

sense of this statement will be more evident in Section 4.4, but for the moment note that

1 − |v·h(x)|2
|v|2|h(x)|2 constitutes a measurement of the angle between v and h(x).

The family of metrics hτ induces the family of L2-norms

∥σ∥2
τ := r!

πr−1 e−(r−1)Re τ
∫
X×Pr−1

|σ|2 e−φ

|v|2
(
|v|2 e−χτ

)α(r−1)
∧ dV FS,

where dV FS is the (fixed) Fubini–Study volume form of Pr−1.

We interpret the family hτ as a metric h for the pull-back of L on X × Pr−1 × L, and

we claim that sum of the curvature of h and the Ricci curvature is non-negative. To start,

e−φ−α(r−1)χ is non-negatively curved: e−φ−α(r−1)(−ψ+φ) contributes semipositively by the

hypothesis on curvature of Theorem 4.1, and by Lagrange’s identity we have

log
(
|v|2|h(x)|2 − |v · h(x)|2

)
= log

∑
1≤i<j≤r

|hi(x)vj − hj(x)vi|2,
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which is (locally) plurisubharmonic, being the logarithm of a sum of norms squared of

(locally) holomorphic functions (likewise for the right-hand side of the maximum). This

leaves us to check that the negativity coming from the factor (|v|2)α(r−1)−1 is compensated

for by the Ricci curvature coming from the Fubini–Study volume form: in fact, in local

coordinates we can write 1
|v|2 |v|2α(r−1) dV FS as dV (z)

(1+|z|2)r+1−α(r−1) (where dV (z) is the standard

Euclidean volume form), which is positively curved for α < r+1
r−1 .

4.4 Extrema of the family of norms

We now investigate the behavior of the family of norms ∥·∥t at t = 0 and as t → −∞.

At the t = 0 extreme we have χ0(x, v) = log
(
|v|2|h(x)|2 e−ψ+φ

)
, so that

∥ŝ∥2
0 = r!

πr−1

∫
X×Pr−1

|v · s|2 e−φ

|v|2
∧ dV FS

(|h|2 e−ψ+φ)α(r−1)

=
∫
X

|s|2 e−φ

(|h|2 e−ψ+φ)α(r−1) =∥s∥2
E⊕r ,

(4.3)

which recovers the norm-squared of s before the lifting. Consequently, for t = 0, lifting

functionals also preserves norms:

∥∥∥ξ̂η∥∥∥0,∗
= sup

ŝ∈H0(X×Pr−1,L)

|ξ̂η(ŝ)|
∥ŝ∥0

= sup
s∈H0(X,E⊕r⊗KX)

|ξη(s)|
∥s∥E⊕r

=
∥∥∥ξη∥∥∥∗

.

To study the other extreme of the family, i.e. t → −∞, fix x ∈ X and let At,x be the

set of v ∈ Pr−1 such that the maximum in χt is achieved by the second entry, i.e.

At,x =
{
v ∈ Pr−1

∣∣∣∣∣ 1 − |v · h(x)|2
|v|2|h(x)|2 < et

}
.

By choosing homogeneous coordinates so that v1 is parallel to h(x) (which is not 0 since

we are assuming that the hi’s have no common zeros), and by choosing local coordinates

so that v1 = 1, one sees that At,x is a ball of real dimension 2r − 2, centered at [h(x)]

(the origin, in local coordinates) and of radius
√

et

1−et ∼
t→−∞

et/2.
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We can then split ∥ŝ∥2
t into two summands:

∥ŝ∥2
t =

∫
X

It,s(x) +
∫
X

IIt,s(x),

where

It,s(x) := r!
πr−1

e−(r−1)t

(|h|2 e−ψ+φ)α(r−1)

∫
At,x

|v · s(x)|2 e−φ

|v|2
∧ dV FS

and

IIt,s(x) := r!
πr−1

e−(r−1)t

(|h|2 e−ψ+φ)α(r−1)

∫
Pr−1\At,x

|v · s(x)|2 e−φ eα(r−1)t

|v|2
(

1 − |v·h|2
|v|2|h|2

)α(r−1) ∧ dV FS .

For the first term we get

lim
t→−∞

It,s(x) = r
|h

·
⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 , (4.4)

since asymptotically

∫
At,x

|v · s(x)|2 e−φ

|v|2
∧ dV FS ∼

t→−∞

πr−1

(r − 1)! e(r−1)t |h
·

⊗ s|2 e−φ

|h|2
.

For the second

IIt,s(x) = e−(r−1)t
∫ 0

t
e−α(r−1)(t̃−t) dνx,s(t̃),

with

νx,s(t) := r!
πr−1

1
(|h|2 e−ψ+φ)α(r−1)

∫
At,x

|v · s|2 e−φ

|v|2
∧ dV FS = e(r−1)t It,s(x).
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The function νx,s is increasing and positive, and is absolutely continuous by the Fundamen-

tal Theorem of Calculus for Lebesgue integrals [24, Theorem 3.35]. Moreover, by (4.4),

lim
t→−∞

e−(r−1)t νx,s(t) = r
|h

·
⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 .

Hence, by Lemma 3.5,

lim
t→−∞

IIt,s(x) = r
|h

·
⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1
r − 1

α(r − 1) − (r − 1) . (4.5)

All together

lim
t→−∞

∥ŝ∥2
t = r

α

α− 1

∫
X

|h
·

⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 = r
α

α− 1

∥∥∥∥h ·
⊗ s

∥∥∥∥2

G
, (4.6)

retrieving (a multiple of) the norm-squared of the image h
·

⊗ s of s.

4.5 Monotonicity of the family of dual norms and

end of the proof

Now that we have a metric h for (the pull-back of) L on X × Pr−1 × L with positive

enough curvature, Berndtsson’s Theorem 2.1 gives the core step of the argument. Fix

η ∈ C∞
c (X,G ⊗ KX).

Lemma 4.6. The function

(−∞, 0] −→ R

t 7−→ log
∥∥∥ξ̂η∥∥∥2

t,∗

is non-decreasing. In particular,

∥∥∥ξη∥∥∥2

∗
=
∥∥∥ξ̂η∥∥∥2

0,∗
≥
∥∥∥ξ̂η∥∥∥2

t,∗
for all t ≤ 0.
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Proof. Step 1. We first prove that supτ∈L

∥∥∥ξ̂η∥∥∥2

τ,∗
< +∞. Once more,

∥∥∥ξ̂η∥∥∥2

τ,∗
only depends

on Re τ =: t, so it suffices to prove that
∥∥∥ξ̂η∥∥∥2

t,∗
is uniformly bounded for all t sufficiently

negative. Let

Cη :=
∫
X

|η|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 < +∞,

then

∥∥∥ξ̂η∥∥∥2

t,∗
= sup

∥ŝ∥2
t =1

∣∣∣∣∣∣∣
∫
X

(h
·

⊗ s)η̄ e−ψ

(|h|2 e−ψ+φ)α(r−1)+1

∣∣∣∣∣∣∣
2

≤ Cη sup
∥ŝ∥2

t =1

∫
X

|h
·

⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 .

By (4.4), if t is sufficiently negative,

|h
·

⊗ s|2 e−ψ

(|h|2 e−ψ+φ)α(r−1)+1 ≤ 2
r

It,s(x)

in the sense of top forms, so that

∥∥∥ξ̂η∥∥∥2

t,∗
≤ 2Cη

r
sup

∥ŝ∥2
t =1

∫
X

It,s(x) ≤ 2Cη
r

< +∞,

as wanted.

Step 2. Consider now the trivial fibration (X × Pr−1) × L prL−→ L. We have already

checked at the end of Section 4.3 that the curvature of h, seen as a metric for pr∗
X×Pr−1 L →

(X×Pr−1)×L, plus the Ricci curvature coming from the Fubini–Study volume form is non-

negative on the total space X ×Pr−1 ×L. Then Corollary 2.2 implies that τ 7→ log
∥∥∥ξ̂η∥∥∥2

τ,∗

is subharmonic in L. Since
∥∥∥ξ̂η∥∥∥

τ,∗
only depends on t = Re τ , it follows that t 7→ log

∥∥∥ξ̂η∥∥∥2

t,∗

is convex on (−∞, 0). If this map decreases anywhere on (−∞, 0), then by convexity we

would have limt→−∞ log
∥∥∥ξ̂η∥∥∥2

t,∗
= +∞, contradicting the uniform boundedness of

∥∥∥ξ̂η∥∥∥2

t,∗

obtained in Step 1. Hence the statement follows.
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Let now s ∈ H0(X, (E ⊗ KX)⊕r) be any solution of h
·

⊗ s = Pη (such s exists with

bounded L2-norm by the same argument of Proposition 4.2). Then by (4.6) and Lemma

4.6 we have

∥∥∥ξη∥∥∥2

∗
=
∥∥∥ξ̂η∥∥∥2

0,∗
≥ lim

t→−∞

∥∥∥ξ̂η∥∥∥2

t,∗

≥ lim
t→−∞

1
∥ŝ∥2

t

∣∣∣∣∣∣∣
∫
X

(h
·

⊗ s)Pη e−ψ

(|h|2 e−ψ+φ)α(r−1)+1

∣∣∣∣∣∣∣
2

= lim
t→−∞

∥Pη∥4
G

∥ŝ∥2
t

= α− 1
αr

∥Pη∥2
G

for all η ∈ C∞
c (X,G⊗KX). Hence, by (4.1), we conclude that the minimal-norm solution

f̃ to the division problem h
·

⊗ f = g has norm

∥∥∥f̃∥∥∥2

E⊕r
≤∥g∥2

G sup
η∈C0

c (X,G⊗KX)

∥Pη∥2
G∥∥∥ξη∥∥∥2

∗

≤ r
α

α− 1∥g∥2
G ,

proving Theorem 4.1.
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