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Abstract of the Dissertation

Tunnels, Wells, and Scalar Curvature

by

Paul Sweeney Jr.

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

The rigidity theorems of Llarull and of Marques–Neves show two different ways scalar

curvature can characterize the sphere and have associated stability conjectures. Here we

produce the first examples related to these stability conjectures. The first set of examples

demonstrate the necessity of including a condition on the minimum area of all minimal

surfaces to prevent bubbling along the sequence. The second set of examples constructs

sequences that do not converge in the Gromov–Hausdorff sense but do converge in the

volume-preserving intrinsic flat sense. In order to construct such sequences, we improve the

Gromov–Lawson Schoen–Yau tunnel construction so that one can attach tunnels or wells to

a manifold with scalar curvature bounded below and only decrease the scalar curvature by an

arbitrarily small amount. Moreover, we are able to generalize both the sewing construction of

Basilio, Dodziuk, and Sormani and the construction due to Basilio, Kazaras, and Sormani of

an intrinsic flat limit with no geodesics. Furthermore, using this technique, we build upon the

perturbative counterexamples of Brendle–Marques–Neves to Min-Oo’s Conjecture in order to

construct counterexamples that make advances on the theme expressed in a question asked

by Carlotto in 2021. These new counterexamples are non-perturbative in nature; moreover,

we also produce examples with more complicated topology.
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Chapter 1

Introduction

Riemannian geometry provides the mathematical language to discuss the shape and size of a
space. In particular, a Riemannian manifold (Mn, g) is a smooth n-manifold equipped with a
Riemannian metric g. Using the Riemannian metric g, one can define geometric concepts
such as length, area, and curvature. Over the decades, a main goal of Riemannian geometry
has been to understand how curvature controls the shape and size of a Riemannian manifold.
There are many different, but related, curvatures. The weakest of the well-known curvature
invariants is scalar curvature. For example, as opposed to other curvatures such as sectional
curvature and Ricci curvature, if the scalar curvature is bounded below by a positive constant
then the diameter of the Riemannian manifold is not necessarily bounded. Furthermore, a
fundamental result concerning positive scalar curvature is the tunnel construction of Gromov–
Lawson [28] and Schoen–Yau [52]. The result states if M is a smooth manifold that admits a
Riemannian metric with positive scalar curvature and N is a smooth manifold that can be
obtained from M by performing surgeries in codimension at least three then there exists a
metric on N with positive scalar curvature. In particular, this means if (Mn

i , gi), i = 1, 2, are
two Riemannian manifolds with positive scalar curvature then there exists a metric on the
connected sum M1#M2 with positive scalar curvature.

Having scalar curvature lower bounds appears to be a flexible condition; nonetheless,
lower bounds on scalar curvature have been shown to control the geometries that admit such
bounds. These types of results are usually called rigidity theorems and are often used to
characterize manifolds in Riemannian geometry. A typical rigidity theorem says that if a
Riemannian manifold satisfies some conditions, usually including a bound on curvature, then
it must be isometric to a specific model geometry. One can naturally formulate a stability
theorem from a rigidity theorem. A stability theorem says if the hypotheses of a rigidity
theorem are perturbed, then the manifolds that satisfy these hypotheses are quantitatively
close to the manifold characterized by the rigidity theorem. In this thesis, we are concerned
with rigidity theorems for spheres and hemispheres with lower bounds on scalar curvature.

1.1 Spheres with Larger Scalar Curvature

Two results that show how scalar curvature can characterize the sphere are the rigidity
theorems due to Llarull [43] and due to Marques and Neves [44]. These two rigidity theorems
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naturally give rise to stability conjectures.
First, let us recall Llarull’s theorem [43] which says that if there is a degree non-zero,

smooth, distance non-increasing map from a closed, smooth, connected, Riemannian, spin,
n-manifold,Mn, to the standard unit round n-sphere and the scalar curvature ofMn is greater
than or equal to n(n− 1), then the map is a Riemannian isometry. Gromov in [30] proposed
studying the stability question related to Llarull’s rigidity theorem by investigating sequences
of Riemannian manifolds Mn

j = (Mn
j , gj) with inf Rj → n(n − 1) and RadSn(Mj) → 1.

RadSn(M
n) is the maximal radius r of the n-sphere, Sn(r), such that Mn admits a distance

non-increasing map from Mn to Sn(r) of non-zero degree. Based on this, Sormani [54]
proposed the following stability conjecture. Before stating the conjecture, we recall the
following definition:

MinA(M, g) = inf{|Σ|g : Σ is a closed minimal hypersurface in M}.

Also, we will condense notation and set Mn
j = (Mn

j , gj) when we have a sequence of Rieman-
nian manifolds.

Conjecture 1.1.1. Suppose Mn
j = (Mn

j , gj), n ≥ 3, are closed smooth connected spin
Riemannian manifolds such that

Rj ≥ n(n− 1)− 1

j
, MinA(Mn

j ) ≥ A, diam
(
Mn

j

)
≤ D, vol

(
Mn

j

)
≤ V

where Rj is the scalar curvature of Mn
j . Furthermore, suppose there are smooth maps to the

standard unit round n-sphere
fj :M

n
j → Sn

which are 1-Lipschitz and deg fj ≠ 0. Then Mn
j converges in the VF-sense to the standard

unit round n-sphere.

We construct the first examples related to Conjecture 1.1.1. We demonstrate why a
condition preventing bubbling is required, and we investigate different modes of convergence.
In order to construct these examples, we prove an enhancement of the Gromov–Lawson
tunnel construction [28] (see also Schoen–Yau [53]) which retains control over the scalar
curvature. The example we produce is a sequence of manifolds each of which is two spheres
connected by a thin tunnel, which is related to Conjecture 1.1.1. This sequence converges
in the volume-preserving intrinsic flat (VF) sense to a disjoint union of two n-spheres (see
Figure 1.1). Moreover, the sequence shows without the lower bound on MinA then the
conclusion of Conjecture 1.1.1 fails to hold.

Theorem A. There exists a convergent sequence of Riemannian manifolds Mn
j = (Sn, gj),

n ≥ 3, with Mn
j

VF−−→M∞ such that

Rj ≥ n(n− 1)− 1

j
, diam (Mj) ≤ D, and vol (Mj) ≤ V,

for some constants D, V > 0. Furthermore, there are smooth degree one, 1-Lipschitz maps
fj : M

n
j → (Sn, grd) which converge to a 1-Lipschitz map f∞ : M∞ → (Sn, grd), and M∞ is

the disjoint union of two n-spheres.
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Figure 1.1: A sequence of spheres that converge in VF-sense to the disjoint union of two
spheres.

Sormani proposed the MinA condition in [56] to prevent bad limiting behavior, such as
bubbling and pinching, along the sequence. The motivation for such a condition comes from
the sewing construction of Basilio, Dodziuk, and Sormani [7]. This construction shows the
existence of a sequence of manifolds with positive scalar curvature, which has an intrinsic
flat (F) limit that does not have positive scalar curvature in some generalized sense. Other
sequences of positive scalar curvature manifolds have also been constructed ([8], [9]) whose
F -limits have undesirable properties. The key to the construction of these examples is the
ability to glue in tunnels with controlled geometry. In those examples, it is unknown if the
scalar curvature of the tunnel and of the resulting manifold can be kept close to the scalar
curvature of the manifold to which the tunnel is being glued. Therefore, these examples
may not satisfy the curvature condition in Conjecture 1.1.1. In Chapter 2, we prove two
main technical propositions, which are of independent interest. One of which allows us to get
quantitative control over the scalar curvature of the tunnel and of the resulting manifold. In
particular, we prove (Proposition 2.1.2):

Proposition. Let (Mn, g), n ≥ 3, be a Riemannian manifold with scalar curvature RM . Let
δ > 0 be small enough, j ∈ N, and d ≥ 0. If RM ≥ κ on two balls Bg(p, 2δ) and Bg(p

′, 2δ) in
(Mn, g), then we can construct a new complete Riemannian manifold P n, where we remove
two balls and glue cylindrical region (Tj, gj) diffeomorphic to Sn−1 × [0, 1],

P n =Mn \ (Bg(p, 2δ) ∪Bg(p
′, 2δ)) ⊔ Tj.

Furthermore, the following properties are satisfied:

i. The scalar curvature, Rj, of Tj satisfies Rj > κ− 1
j
.

ii. gj|E = g|E and gj|E′ = g|E′ where E = Bg(p, 2δ)\Bg(p, δ) and E
′ = Bg(p

′, 2δ)\Bg(p
′, δ)

are identified with subsets of P .

iii. There exists constant C > 0 independent of j and d such that

d ≤ diam (Tj) < C(δ + d) and vol (Tj) < C(δn + dδn−1).

iv. P has scalar curvature RP > κ− 1
j
.

3



We use this new way of attaching tunnels to manifolds that maintains control over
the scalar curvature to construct the sequence in Theorem A. Moreover, we can make a
similar example related to Marques–Neves’ rigidity theorem. The theorem of Marques–Neves
pertains to the three dimensional sphere and the min-max quantity width. Let us recall the
definition of width. Let g be a Riemannian metric on the 3-sphere and x4 : S3 ⊆ R4 → R
be the height function. For each t ∈ [−1, 1], let Σ′

t = {x ∈ S3 : x4 = t} and Λ′ be the
collection of all families {Σt} such that Σt = Ft(Σ

′
t) for some smooth one-parameter family

of diffeomorphisms Ft of the three sphere all of which are isotopic to the identity. The width
of (S3, g) is the following min-max quantity

width(S3, g) = inf
{Σt}∈Λ′

sup
t∈[−1,1]

|Σt|g,

where |Σ|g is the two dimensional Hausdorff measure of Σ.
The rigidity theorem of Marques–Neves [44] says if there is a Riemannian metric on

the 3-sphere with positive Ricci curvature, scalar curvature greater than or equal to 6, and
width(S3, g) ≥ 4π, then it is isometric to the standard unit round 3-sphere. This leads to the
following naive stability conjecture.

Conjecture 1.1.2. Suppose M3
j = (S3, gj) are homeomorphic spheres satisfying

Rj ≥ 6− 1

j
, width(M3

j ) ≥ 4π, diam
(
M3

j

)
≤ D, and vol

(
M3

j

)
≤ V

where Rj is the scalar curvature of M3
j . Then M3

j converges in the VF-sense to (S3, grd)
where grd is the Riemannian metric for the standard unit round 3-sphere.

In [49], Montezuma constructs Riemannian metrics gw, w > 0, on the 3-spheres such
that the scalar curvature is greater than or equal to 6 and the width(S3, gw) ≥ w. These
manifolds look like a tree of spheres. In particular, they are constructed based on a finite full
binary tree where the nodes are replaced with standard unit round 3-spheres and the edges
are replaced with Gromov–Lawson tunnels of positive scalar curvature. The width is shown
to be proportional to the depth of the tree. Finally, by taking one of these manifolds with
large enough width and scaling it, one achieves scalar curvature greater than or equal to 6 is
achieved. This example shows the failure of the rigidity statement of Marques–Neves and
Conjecture 1.1.2 when positive Ricci curvature is not assumed.

Below we construct another counterexample that refutes Conjecture 1.1.2 which is similar
to the example construct in Theorem A. By allowing the scalar curvature to be greater than
or equal to 6 − 1

j
, we are able to construct an example that is the connected sum of just

two 3-spheres. Moreover, we are able to give explicit bounds on the volume and diameter of
each manifold in the sequence. This counterexample is a sequence of spheres M3

j = (S3, gj)
that converges in the volume preserving intrinsic flat (VF) sense to the disjoint union of two
spheres. The M3

j are two spheres connected by a thin tunnel (see Figure 1.1), and the tunnel
gets increasingly thin along the sequence.

Theorem A′ (Counterexample to Conjecture 1.1.2). There exists a convergent sequence of

Riemannian manifolds M3
j = (S3, gj), with M

3
j

VF−−→M∞ such that

Rj ≥ 6− 1

j
, width(M3

j ) ≥ 4π, diam
(
M3

j

)
≤ D, and vol

(
M3

j

)
≤ V,
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for some constants D, V > 0, and M∞ is the disjoint union of two 3-spheres.

Therefore, something stronger than width is required for a stability conjecture related
to the rigidity theorem of Marques–Neves. A conjecture in [57] attributed to Marques and
Neves does hypothesize a stronger condition (see Conjecture 1.1.3 below). In particular, it
replaces the uniform lower bound on width with a uniform lower bound on MinA.

Since width is achieved by a minimal surface, we have that width(M3, g) ≥ MinA(M3, g).
Moreover, Marques–Neves show in [44] that if (S3, g) contains no stable minimal surfaces,
then we have that MinA(S3, g) = width(S3, g). Moreover, in the proof of Marques–Neves
rigidity theorem, they only use the hypothesis of positive Ricci curvature to ensure the
manifold contains no stable minimal embedded spheres. By [44, Appendix A], we see that if
both the scalar curvature of a 3-manifold is sufficiently close to 6 and MinA is sufficiently
close to 4π then the manifold contains no stable minimal embedded surfaces.

Conjecture 1.1.3. Suppose M3
j = (S3, gj) are homeomorphic spheres satisfying

Rj ≥ 6− 1

j
, MinA(M3

j ) ≥ 4π − 1

j
, diam

(
M3

j

)
≤ D, and vol

(
M3

j

)
≤ V

where Rj is the scalar curvature of M3
j . Then M3

j converges in the VF-sense to (S3, grd) the
standard unit round sphere.

The sequence of Riemannian manifolds constructed in Theorem A′ has MinA(Mn
j ) → 0

and so does not satisfy the hypotheses of Conjecture 1.1.3. Theorems A and A′ show the
necessity of including a hypothesis like the bound on MinA to prevent bubbling along the
sequence.

When studying a stability conjecture related to scalar curvature, one also often considers
examples similar to the example described by Ilmanen. Ilmanen first described this example
to demonstrate that a sequence of manifolds of positive scalar curvature need not converge in
the Gromov–Hausdorff (GH) sense. The example is a sequence of spheres with increasingly
many arbitrarily thin wells attached to them (see Figure 1.2). Sormani and Wenger [58,
Example A.7] showed, using their F-convergence for integral currents, that the Ilmanen
example converges in the F -sense. Over the past decade, Ilmanen-like examples have been
constructed in varying settings to demonstrate that GH-convergence is not the appropriate
convergence in which to ask stability conjectures related to scalar curvature ([2], [3], [37],
[38], [40], [41], [39], [50]). In these examples, it is unknown if one can attach a well and only
decrease the scalar curvature by a small amount; consequently, it was unknown if Ilmanen-like
examples could exist for Conjecture 1.1.1 and Conjecture 1.1.3.

Our other main technical proposition shows that one can attach a well to a manifold
with scalar curvature bounded below and only decrease the scalar curvature by an arbitrarily
small amount. Specifically, we show (Proposition 2.1.1):

Proposition. Let (Mn, g), n ≥ 3, be a Riemannian manifold with scalar curvature RM . Let
δ > 0 be small enough, j ∈ N, and d > 0. If RM ≥ κ on Bg(p, 2δ) a ball in (M, g), then we
can construct a well Wj = (Bg(p, 2δ), gj) and a new complete Riemannian manifold (Nn, h),

Nn =Mn, h|M\Bg(p,2δ) = g|M\Bg(p,2δ), h|Bg(p,2δ) = gj|Bg(p,2δ).

Furthermore, the following properties are satisfied:

5



i. The scalar curvature, Rj, of Wj satisfies Rj > κ− 1
j
.

ii. gj|E = g|E where E = Bg(p, 2δ) \Bg(p, δ) is identified with a subset of Wj.

iii. There exists constant C > 0 independent of j and d such that

d ≤ diam (Wj) < C(δ + d) and vol (Wj) < C(δn + dδn−1).

iv. N has scalar curvature RN > κ− 1
j
.

Using this, we are able to construct Ilmanen-like examples related to Conjecture 1.1.1
and Conjecture 1.1.3. In particular, we construct a sequence of spheres with scalar curvature
larger than n(n − 1) − 1

j
, volumes and diameters bounded, and smooth maps to the unit

round n-sphere which are 1-Lipschitz and deg fj ̸= 0. This sequence does not converge in
the GH-sense but does converge in the volume above distance below (V ADB) sense and the
VF -sense. Likewise, we are able to construct a sequence of spheres M3

j with scalar curvature
larger than 6− 1

j
, width larger than 4π, and volumes and diameters bounded that does not

converge in the GH-sense but does converge in the VADB-sense and the VF -sense. Therefore,
we can construct Ilmanen-like examples related to Conjecture 1.1.1 and Conjecture 1.1.3.
We, however, cannot verify that MinA stays uniformly bounded from below even though we
expect that it does.

Theorem B. There exists a convergent sequence of Riemannian manifolds Mn
j = (Sn, gj),

with Mn
j

VADB−−−→M∞ and Mn
j

VF−−→M∞ such that

Rj ≥ n(n− 1)− 1

j
, diam

(
Mn

j

)
≤ D, and vol

(
Mn

j

)
≤ V,

for some constants D, V > 0, and M∞ is the n-sphere. Furthermore, there are smooth degree
non-zero, 1-Lipschitz maps fj :M

n
j → (Sn, grd), and M∞ is the standard unit round n-sphere.

However, the sequence has no subsequence that converges in the GH-sense.

Theorem B′. There exists a convergent sequence of Riemannian manifolds M3
j = (S3, gj),

with M3
j

VADB−−−→M∞ and M3
j

VF−−→M∞ such that

Rj ≥ 6− 1

j
, width(M3

j ) ≥ 4π, diam
(
M3

j

)
≤ D, and vol

(
M3

j

)
≤ V,

for some constants D, V > 0, and M∞ is the standard unit round 3-sphere. However, the
sequence has no convergent subsequence in the GH-topology.

In [57, Remark 9.4], Sormani suggests that it is believable that someone can construct
a sequence of spheres with increasingly many increasingly thin wells which satisfy the
hypothesis of Conjecture 1.1.3. Theorem B′ partially answers this question by constructing
such a sequence that satisfies all the hypotheses of Conjecture 1.1.3 except the bound on
MinA.

6



Figure 1.2: A sequence of spheres with increasingly many thin wells that converges in the
VADB-sense and VF -sense to a sphere but has no convergent subsequence in the GH-topology

The main tools to prove the above theorems are new construction propositions which
are proved in Chapter 2. We adapt the bending argument of Gromov and Lawson in [28].
Originally, the construction in [28] was used to make tunnels of positive scalar curvature to
show, for example, that the connected sum of two manifolds with positive scalar curvature
carries a metric of positive scalar curvature. For 3-manifolds with constant positive sectional
curvature, Dodziuk, Basilio, and Sormani in [7] refined the construction to give control over
the volume and diameter of the tunnel while maintaining positive scalar curvature. Dodziuk
in [26] further refined the construction by replacing the positive sectional curvature condition
with positive scalar curvature and allowing for any dimension greater than or equal to three.
In Chapter 2, we construct wells and tunnels such that, if the scalar curvature of a manifold
is bounded below, then one can attach a well or tunnel and only decrease the lower bound by
an arbitrarily small amount while maintaining bounds on the diameter and volume.

The new well construction allows us to generalize the construction of Sormani and Wenger
[58, Example A.11] of a sequence of manifolds that converge in the F -sense to space that is
not precompact. In particular, we are able to construct a sequence of spheres with scalar
curvatures greater than κ ≥ 0, uniformly bounded diameters, and uniformly bounded volumes
such that the sequence converges in the VF-sense to a limit that is not precompact. To
construct the sequence we attach a sequence of increasingly thin wells to a sphere (see
Figure 1.3).

Theorem C. There exists a convergent sequence of Riemannian manifolds Mn
j = (Sn, gj),

n ≥ 3, with Mn
j

VF−−→M∞ such that

Rj ≥ κ, diam
(
Mn

j

)
≤ D, and vol

(
Mn

j

)
≤ V,

for some nonnegative constants κ,D, V , and M∞ is not precompact.

Figure 1.3: A sequence of spheres with increasingly many thin wells that converges in the
VF -sense to a limit which is not precompact.
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The new tunnel construction allows us to extend the sewing construction in [7] and
[9] to a more general setting. Basilio, Dodziuk, and Sormani [7] used sewing manifolds to
investigate the following question of Gromov which asks: What is the weakest notion of
convergence such that a sequence of Riemannian manifolds, Mn

j with scalar curvature Rj ≥ κ
subconverges to a limit M∞ which may not be a manifold but has scalar curvature greater
than κ in some suitably generalized sense? They were able to show that when κ = 0 there is
a sequence of Riemannian manifolds with non-negative scalar curvature whose limit fails to
have non-negative generalized scalar curvature defined as

wR(p0) := lim
r→0

6(n+ 2)
volEn B(0, r)−Hn(B(p0, r))

r2 · volEn B(0, r)
≥ 0 (1.1.1)

for the limit space.

Remark 1.1.4. For a Riemannian manifold (Mn, g) with scalar curvature R, wR(p) = R(p)
for all p ∈M .

We are able to provide a similar answer to Gromov’s question for any κ. In particular, for
any κ, there exists a sequence of increasingly tightly sewn manifolds all of which have scalar
curvature greater than κ. Furthermore, this sequence of increasingly tightly sewn manifolds
will converge in the F-sense to a pulled metric space (see [9, Section 2] for discussion of
such spaces) which fail to have generalized scalar curvature greater than or equal to κ at the
pulled point.

Theorem D. There exists a sequence of manifolds Mn
j = (Mn, gj) with scalar curvature

Rj ≥ κ− 1
j
which converges in the F-sense to a metric space M∞. Moreover, there is a point

p0 ∈M∞ such that

wR(p0) := lim
r→0

6(n+ 2)
volEn B(0, r)−Hn(B(p0, r))

r2 · volEn B(0, r)
= −∞ (1.1.2)

Lastly, the new tunnel construction allows us to generalize the construction of Basilio,
Kazaras, and Sormani [8]. They use long thin tunnels with positive scalar curvature to
construct a sequence of manifolds that converges in the F -sense to a space with no geodesics.
Similarly, for any κ > 0, we are able to construct a sequence of manifolds with scalar curvature
bounded below by κ whose limit is not a geodesic space.

Theorem E. There is a sequence of closed, oriented, Riemannian manifolds (Mn
j , gj), n ≥ 3,

with scalar curvature Rj > κ > 0 such that the corresponding integral current spaces converge
in the intrinsic flat sense to

M∞ =

(
N, dEn+1 ,

∫
N

)
,

where N is the round n-sphere of sectional curvature 2κ
n(n−1)

and dEn+1 is the Euclidean distance

induced from the standard embedding of N into En+1. Furthermore, N is not locally geodesic.
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Properties of Property of the Type of Does
Mj limit, M∞ convergence MinAj → 0?

Shows necessity of
MinA lower boundTheorem A Rj > n(n− 1)− 1

j

in Conjecture 1.1.1.
VF ,F Yes

Rj > 6− 1
j

Counterexample to
Theorem A′

width(Mj) ≥ 4π Conjecture 1.1.2.
VF ,F Yes

No GH-convergent
Theorem B Rj > n(n− 1)− 1

j subsequence.
VADB,VF ,F ?

Rj > 6− 1
j

No GH-convergent
Theorem B′

width(Mj) ≥ 4π subsequence.
VADB,VF ,F ?

Theorem C Rj > κ > 0 Not precompact. VF ,F ?
Generalized Scalar

Rj > κ
curvature is negativeTheorem D

(Rj > 0, [7])
infinity at a point.

F Yes

Rj > κ > 0 No two points are
Theorem E

(Rj > 0, [8]) connected by a geodesic.
F Yes

Table 1.1: Here we summarize the examples related to Conjecture 1.1.1 and Conjecture 1.1.3.

1.2 Hemispheres with Large Scalar Curvature

The positive mass theorem is a landmark result about the rigidity of certain metrics on
Rn. It has an analogous statement called Min-Oo’s conjecture which pertains to uniformly
positive scalar curvature and the hemisphere. First, let us recall the positive mass theorem.
It says: if an asymptotically flat Riemannian manifold has nonnegative scalar curvature,
then the mass of the manifold is nonnegative. Moreover, the mass is equal to zero if and
only if the manifold is isometric to Euclidean space. The positive mass theorem was first
proven for dimensions less than or equal to seven by Schoen and Yau [52] via minimal surface
techniques. Using spinors, Witten [61] proved the positive mass theorem in all dimensions
for spin manifolds. Over the years, there have been new proofs of the positive mass theorem
using varying techniques. In 2001, Huisken and Ilmanen [34] gave a proof of the positive
mass theorem by studying inverse mean curvature flow. More recently, Li [42] used Ricci
flow to prove the positive mass theorem. In dimension three, there are several recent proofs
of the positive mass theorem: Bray, Kazaras, Khuri and Stern [11] via levels sets harmonic
functions, Miao [45] via positive harmonic functions and capacity of sets, and Agostiniani,
Mazzieri, and Oronzio [1] via the Green’s function.

Other related rigidity phenomena, involving positive scalar curvature and minimal surfaces,
have been studied by Carlotto, Chodosh, and Eichmair [15]. For example, if (M3, g) is an
asymptotically flat three-dimensional manifold with nonnegative scalar curvature that contains
a complete non-compact embedded surface S which is a (component of the) boundary of some
properly embedded full-dimensional submanifold and is area-minimizing under compactly
supported deformations, then M is flat Euclidean space and S is a flat plane. Now, this result
should be compared with a special case of a localized gluing construction of Carlotto and
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Schoen [16]. For a nice discussion of the topic see the article of Chruściel [17]. The general
construction allows for localized solutions to the vacuum Einstein constraint equations and,
roughly, states that one can construct asymptotically flat initial data sets that have positive
ADM mass but are trivial outside a cone of a given angle. In particular, one can construct a
metric on R3 that is asymptotically flat, scalar flat, and is Euclidean on R2 × (0,∞), but is
not the Euclidean metric on R3.

One is naturally led to wonder: Can something analogous be said for negative scalar
curvature? The answer for negative curvature is that there are parallel results. For spin
manifolds, Min-Oo [47] gave the first a characterization of hyperbolic space in the context of
a positive mass theorem, which was later refined by Andersson and Dahl [6]. By combining
Chruściel and Herzlich [21] and Wang [60] the positive mass theorem for n-dimensional
asymptotically flat spin manifolds was established in the negative curvature setting. Without
the spin assumption, Andersson, Cai, and Galloway [5] prove a positive mass theorem for
n-dimensional manifolds with 3 ≤ n ≤ 7 with an additional hypothesis on the mass aspect
function. Also, Sakovich [51] used the Jang equation to prove the hyperbolic positive mass
theorem in dimension three. In [20], Chruściel and Delay showed the positive of mass for
asymptotically hyperbolic manifolds in any dimension via a gluing argument. Lastly, Huang,
Jang, and Martin [33] proved the rigidity case for the hyperbolic positive mass theorem. For
a history and a systematic presentation of these results see [14, Appendix C]. Moreover,
there is also a localized gluing construction in the negative curvature setting due to Chruściel
and Delay [18].

The story in the positive curvature setting differs from the other two. Recall that the
analogous statement for the positive mass theorem is known as Min-Oo’s Conjecture [48].
The conjecture states: if g is a smooth metric on the hemisphere Sn

+ such that the scalar
curvature, Rg, satisfies Rg ≥ n(n− 1), the induced metric on the boundary ∂Sn

+ agrees with
the standard unit round metric on Sn−1, and the boundary ∂Sn

+ is totally geodesic with
respect to g, then g is isometric to the standard unit round metric on Sn

+. Many special cases
of Min-Oo’s Conjecture are known to be true ([12], [31], [32]).

However, in [13], Brendle, Marques, and Neves construct counterexamples to Min-Oo’s
Conjecture using perturbative techniques. They perform two perturbations to the standard
unit round metric on Sn

+. First, they perturb so that scalar curvature is strictly larger than
n(n− 1) and the mean curvature of the boundary is positive. The second perturbation makes
the boundary totally geodesic while preserving the scalar curvature lower bound.

In light of the above gluing constructions for zero and negative curvature, Carlotto asks
in [14, Open Problem 3.16]: Can one design a novel class of counterexamples to Min-Oo’s
Conjecture based on a gluing scheme? More specifically, can one remove a neighborhood of
a point on the boundary of Sn

+ and then use a gluing scheme analogous to Corvino [23] or
Corvino-Schoen [25] (also see [16] [19]) to produce counterexamples to Min-Oo’s conjecture.

In [24], Corvino, Eichmair, and Miao produce different counterexamples to Min-Oo’s
conjecture. Their gluing scheme says that given two smooth compact Riemannian manifolds
(Mi, gi), i = 1, 2 of constant scalar curvature, κ, which contain two non-empty domains
Ui ⊂ Mi where gi are not V-static then one can construct a smooth metric on M1#M2

with constant scalar curvature κ. Using this gluing theorem, they glue 3-spheres near the
boundary of the perturbative counterexample constructed by Brendle, Marques, and Neves
in [13, Theorem 7]. The resulting manifold satisfies the hypotheses of Min-Oo’s Conjecture
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but can have arbitrarily large volume. Their gluing method, which is related to the gluing
methods in [22], [35], [36], has two parts. First they do a conformal deformation to construct
a neck connecting the two manifolds, and then they deform out of the conformal class to
preserve the initial metrics away from the gluing region.

The quantitative version of Gromov–Lawson Schoen–Yau tunnels ([28], [53]), proved below
Chapter 2, can be used to build upon the Brendle–Marques–Neves counterexamples [13] to
construct new and more extreme counterexamples to Min-Oo’s Conjecture. This construction
allows for the removal of some of the assumptions required in [24]. In particular, we show the
following:

Theorem F. Let D > 0, n ≥ 3, and let (Mn, g) be a Riemannian manifold such that the
scalar curvature, Rg, satisfies Rg > n(n−1). Define H = Sn

+ and ∂H = Σ. Then N =M#H
admits a metric g̃ such that:

• The scalar curvature, g̃, satisfies Rg̃ > n(n− 1) everywhere.

• The induced metric on Σ agrees with the standard unit round metric on Sn−1.

• Σ is totally geodesic with respect to g̃.

• diamg̃(N) ≥ D.

Remark 1.2.1. We note, as opposed to the construction in [24], the gluing scheme employed
here does not need the existence of non-V-static metrics on the manifolds that we glue together
and we do not need an open subset of constant scalar curvature to which to glue.

The following corollaries of Theorem F provide examples that make strides on the theme
present in Carlotto’s question by exploring the shape of manifolds that satisfy the geometric
hypothesis of Min-Oo’s Conjecture. Specifically, they show that these counterexamples can
look geometrically very different than the standard unit round hemisphere. The first corollary
shows we can have a counterexample with an arbitrarily large diameter.

Corollary 1. For any D > 0, there exists a metric g on Sn
+, n ≥ 3, such that the following

hold:

• The diameter of M = (Sn
+, g) satisfies diamg(Sn

+) ≥ D.

• The scalar curvature satisfies Rg > n(n− 1) everywhere.

• The induced metric on ∂M = Σ agrees with the standard unit round metric on Sn−1.

• Σ is totally geodesic with respect to g.

We are also are able to construct examples of arbitrarily large volumes.

Corollary 2. For any V > 0, there exists a metric g on Sn
+, n ≥ 3, such that the following

hold:

• The volume of M = (Sn
+, g) satisfies volg(Sn

+) ≥ V .

• The scalar curvature satisfies Rg > n(n− 1) everywhere.

11



• The induced metric on Σ agrees with the standard unit round metric on Sn−1.

• Σ is totally geodesic with respect to g.

Remark 1.2.2. In [24, Remark 6.4], Corvino, Eichmair, and Miao suggest one should be
able to construct similar examples using a gluing technique akin to the Gromov–Lawson tunnel
construction [28]. Corollary 2 rigorously proves this remark.

Remark 1.2.3. We note that for our construction we cannot glue near the boundary of the
counterexample in [13, Theorem 7] as they do in [24]; however, we can glue around any point
where the scalar curvature is strictly larger than n(n − 1) in [13, Theorem 7]. Moreover,
we can glue around any point in the counterexample constructed in [13, Corollary 6], in
particular, near the boundary.

We want to emphasize that in Theorem F that the only restriction on M is that it
admits a metric with scalar curvature strictly larger than n(n − 1). In particular, any
closed Riemannian manifold that admits positive scalar curvature can be connected to a
counterexample of Min-Oo’s Conjecture. Therefore, we obtain new counterexamples with
non-trivial topology. For example:

Corollary 3. Let p, q, n ∈ N such that n ≥ 3 and p+ q = n. Then there exists a metric g on
M = Sn

+#(Sp × Sq) with the following properties:

• The scalar curvature satisfies Rg > n(n− 1) everywhere.

• The induced metric on ∂M = Σ agrees with the standard unit round metric on Sn−1.

• Σ is totally geodesic with respect to g.

Corvino, Eichmair, and Miao are able to obtain counterexamples to Min-Oo’s Conjecture
with a non-trivial fundamental group by gluing a counterexample of Min-Oo’s Conjecture
to S1 × Sn−1 or Sn/Γ where Γ is a finite subgroup of SO(n+ 1). Corollary 3 highlights that
many more topologies can be produced.

We note that the result of Corollary 3 can be viewed as a 0-surgery on Sn
+ ∪ (Sp × Sq).

Moreover, the original construction of Gromov–Lawson [28] works for surgeries in codimension
greater than or equal to three. Therefore, one may wonder if the connect sum procedure in
[57] can be extended to surgeries in codimension greater than or equal to three. We prove an
analogous statement in Chapter 2, which may be of independent interest. As a result, we get
the following statement about more topologies:

Theorem G. Let Mn be a manifold obtained by performing a surgery in codimension greater
than or equal to three on Sn

+. There exists a metric g on M such that

• The scalar curvature, g, satisfies Rg > n(n− 1) everywhere.

• The induced metric on ∂M agrees with the standard unit round metric on Sn−1.

• ∂M is totally geodesic with respect to g.
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In [13, Theorem 7], Brendle, Marques, and Neves construct a metric g on the n-hemisphere,
n ≥ 3, with the following properties: the scalar curvature is at least n(n − 1) everywhere,
there exists a point where the scalar curvature is strictly larger than n(n− 1), and the metric
agrees with the standard unit round metric on Sn

+ in a neighborhood of the boundary. They
showed that this metric can be used to construct a metric on RPn, n ≥ 3, that has analogous
properties as the one on the hemisphere. We would like to point out that if we view g as
a metric on an n-ball we can produce analogous metrics on any lens space by making the
appropriate identifications on the boundary.

Theorem H. Let n ≥ 3. Then for any n-dimensional lens space Ln there exists a metric g
such that (Ln, g) has the following properties:

• The scalar curvature satisfies Rg ≥ n(n− 1).

• There exists a point p ∈ L such that Rg(p) > n(n− 1).

• The metric g agrees with the standard unit round metric in a neighborhood of the equator
in L.

Related to the work of Brendle, Marques, and Neves is the following rigidity result of
Miao and Tam [46] for hemispheres. Let grd denote the standard unit round metric on Sn

+.
Their theorem states: if g is a metric on Sn

+ such that the scalar curvature satisfies Rg ≥ Rgrd ,
the mean curvature of the boundary satisfies Hg ≥ Hgrd , g = grd on the boundary, the volume
satisfies Vg ≥ Vgrd , and g is sufficiently close to grd in the C2 norm, then g is isometric to
grd. We note that the theorem of Miao and Tam is false without the perturbative hypothesis.
The first example showing this was constructed in [24]. We note that Corollary 2 gives an
alternative construction showing the need for the C2-closeness in [46].

Moreover, we construct the following example which should be compared with Corollary 2
and the rigidity result of Miao and Tam.

Theorem I. For all 0 < ϵ < 1
100

and D > 0. There exists a metric g on Sn
+ with the following

properties:

• The scalar curvature satisfies Rg > n(n− 1).

• The mean curvature on ∂Sn
+ satisfies Hg > 0.

• The induced metric on ∂Sn
+ is the standard unit round metric on Sn−1.

• The volume satisfies
1

2
ωn ≤ volg(Sn

+) ≤
1

2
ωn + ϵ,

where ωn is the volume of the standard unit round n-sphere.

• The diameter satisfies diamg(Sn
+) > D.

By relaxing the condition on the curvature on the boundary from totally geodesic to
Hg > 0, we construct examples that are related to the result of Miao and Tam while keeping
the volume arbitrarily close to the volume of the standard unit round Sn

+. Moreover, from
the proof of Theorem I one can see that outside a set of arbitrarily small volume the metric
g is a small perturbation of the standard unit round metric on Sn

+.
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1.3 Background

In this section, we will review different types of convergences for Riemannian manifolds.

1.3.1 Gromov–Hausdorff Convergence

Here we will review the Gromov–Hausdorff distance between two metric spaces. Gromov
defined this distance between two metric spaces by generalizing the concept of Hausdorff
distance between two subsets of a metric space. We refer the reader to [29] for further details.

The Gromov–Hausdorff distance between two metric spaces (X1, d1) and (X2, d2) is

dGH((X1, d1), (X2, d2)) = inf
Z
{dZH(ϕ1(X1), ϕ2(X2))}

where the infimum is taken over all complete metric spaces (Z, dZ) and all distance preserving
maps ϕi : Xi → Z. We say that a metric spaces (Xj, dj) converge in the GH-sense to a metric
space (X∞, d∞) if

dGH((Xj, dj), (X∞, d∞)) → 0

We note that the GH-distance naturally defines a distance between Riemannian manifolds
since one can naturally assign a distance function to a Riemannian manifold via the metric.

Gromov, in the following theorem, characterizes when a sequence of compact metric
spaces contains a subsequence that converges in the GH-sense.

Theorem 1.3.1. For a sequence of compact metric spaces (Xj, dj) such that diam (Xj) <
D <∞, the following are equivalent:

i. There exists a convergent subsequence.

ii. There is a function N1 : (0, α) → (0,∞) such that Capj(ϵ) ≤ N1(ϵ)

iii. There is a function N2 : (0, α) → (0,∞) such that Covj(ϵ) ≤ N2(ϵ), where

Capj(ϵ) = maximum number of disjoint
ϵ

2
-balls in Xj,

Covj(ϵ) = minimum number of ϵ-balls it takes to cover Xj.

1.3.2 Intrinsic Flat Convergence

In this section we will review Sormani-Wenger intrinsic flat distance between two integral
current spaces. Sormani and Wenger [58] defined intrinsic flat distance, which generalizes the
notion of flat distance for currents in Euclidean space. To do so they used Ambrosio and
Kirchheim’s generalization of Federer and Fleming’s integral currents to metric spaces. We
refer the reader to [4] for further details about currents in arbitrary metric spaces and to [58]
for further details about integral current spaces and intrinsic flat distance.

Let (Z, dZ) be a complete metric space. Denote by Lip(Z) and Lipb(Z) the set of real-
valued Lipschitz functions on Z and the set of bounded real-valued Lipschitz functions on
Z.
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Definition 1.3.2 ([4], Definition 3.1). We say a multilinear functional

T : Lipb(Z)× [Lip(Z)]m → R

on a complete metric space (Z, d) is an m-dimensional current if it satisfies the following
properties.

i. Locality: T (f, π1, . . . , πm) = 0 if there exists and i such that πi is constant on a
neighborhood of {f ̸= 0}.

ii. Continuity: T is continuous with respect to pointwise convergence of πi such that
Lip(πi) ≤ 1.

iii. Finite mass: there exists a finite Borel measure µ on X such that

|T (f, π1, . . . , πm)| ≤
m∏
i=1

Lip(πi)

∫
Z

|f |dµ (1.3.1)

for any (f, π1, . . . , πm).

We call the minimal measure satisfying (1.3.1) the mass measure of T and denote it ||T ||.
We can now define many concepts related to a current. M(T ) = ||T ||(Z) is defined to be the
mass of T and the canonical set of a m-current T on Z is

set(T ) =

{
p ∈ Z

∣∣∣ lim inf
r→0

||T ||(B(p, r))

rm
> 0

}
.

The boundary of a current T is defined as ∂T : Lipb(X)× [Lip(X)]m−1 → R, where

∂T (f, π1, . . . , πm−1) = T (1, f, π1, . . . , πm−1).

Given a Lipschitz map ϕ : Z → Z ′, we can pushforward a current T on Z to a current ϕ#T
on Z ′ by defining

ϕ#T (f, π1, . . . , πm) = T (f ◦ ϕ, f ◦ π1, . . . , f ◦ πm).

A standard example of an m-current on Z is given by

ϕ#[[θ]](f, π1, . . . , πm) =

∫
A

(θ ◦ ϕ)(f ◦ ϕ)d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ),

where ϕ : Rm → Z is bi-Lipschitz and θ ∈ L1(A,Z). We say that an m-current on Z is
integer rectifiable if there is a countable collection of bi-Lipschitz maps ϕi : Ai → X where
Ai ⊂ Rm is precompact Borel measurable with pairwise disjoint images and weight functions
θi ∈ L1(Ai,Z) such that

T =
∞∑
i=1

ϕi#[[θi]].
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Moreover, we say an integer rectifiable current whose boundary is also integer rectifiable is
an integral current. We denote the space of integral m-currents on Z as Im(Z). The flat
distance between two integral currents T1, T2 ∈ I(Z) is

dZF (T1, T2) = inf{M(U) +M(V ) | U ∈ Im(X), V ∈ Im+1(X), T2 − T1 = U + ∂V }.

We say that the triple (X, d, T ) is an integral current space if (X, d) is a metric space,
T ∈ Im(X̄) where X̄ is the completion of X, and set(T ) = X. The intrinsic flat (F) distance
between two integral current spaces (X1, d1, T1) and (X2, d2, T2) is

dF((X1, d1, T1), (X2, d2, T2)) = inf
Z
{dZF (ϕ1#T1, ϕ2#T2)}

where the infimum is taken over all complete metric spaces (Z, dZ) and isometric embeddings
ϕ1 : (X̄1, d1) → (Z, dZ) and ϕ2 : (X̄2, d2) → (Z, dZ). We note that if (X1, d1, T1) and
(X2, d2, T2) are precompact integral current spaces such that

dF((X1, d1, T1), (X2, d2, T2)) = 0

then there is a current preserving isometry between (X1, d1, T1) and (X2, d2, T2), i.e., there
exists an isometry f : X1 → X2 whose extension f̄ : X̄1 → X̄2 pushes forward the current:
f̄#T1 = T2. We say a sequence of (Xj, dj, Tj) precompact integral current spaces converges to
(X∞, d∞, T∞) in the F -sense if

dF((Xj, dj, Tj), (X∞, d∞, T∞)) → 0.

If, in addition, M(Ti) → M(T∞), then we say (Xj, dj, Tj) converges to (X∞, d∞, T∞) in the
voulme preserving intrinsic flat (VF) sense. We note that we can view compact Riemannian
manifolds (Mn, g) as precompact integral current spaces (Mn, dg,

∫
Mn dvolg), where dg is the

natural distance function on the Riemannian manifold and integration over the manifold,∫
Mn dvolg, can be viewed as an integral current. Moreover, M(Mn) = vol (Mn). Lakzian
and Sormani in [38] were able to estimate the intrinsic distance between two diffeomorphic
manifolds:

Theorem 1.3.3. Suppose Mn
1 = (Mn, g1) and Mn

2 = (Mn, g2) are oriented precompact
Riemannian manifolds with diffeomorphic subregions Uj ⊂ Mn

j and diffeomorphisms ψj :
U → Uj such that for all v ∈ TU we have

1

(1 + ϵ)2
ψ∗
1g1(v, v) < ψ∗

2g2(v, v) < (1 + ϵ)2ψ∗
1g1(v, v).

We define the following quantities

i. DUj
= sup{diamMj

(W ) : W is a component of Uj}.

ii. Define a to be a number such that a > arccos(1+ϵ)−1

π
max{DU1 , DU2}.

iii. λ = supx,y∈U |dM1 (ψ1(x), ψ1(y))− dM2 (ψ2(x), ψ2(y)) |.
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iv. h =
√
λ
(
max{DU1 , DU2}+ λ

4

)
.

v. h̄ = max
{
h,

√
ϵ2 + 2ϵDU1 ,

√
ϵ2 + 2ϵDU2

}
.

Then the intrinsic flat distance between Mn
1 and Mn

2 is bounded:

dF(M1,M2) ≤
(
2h̄+ a

)
(volm(U1) + volm(U2) + volm−1(∂U1) + volm−1(∂U2))

+ volm(M1 \ U1) + volm(M2 \ U2).

Moreover, Sormani [55] proves the following Arzela-Ascoli theorem in the setting of
F -convergence.

Theorem 1.3.4. Fix L > 0. Suppose Mj = (Xj, dj, Tj) are integral current spaces for

j ∈ {1, 2, . . . ,∞} and Mj
F−→ M∞ and Fj : Xj → W are L-Lipschitz maps into a compact

metric space W , then a subsequence converges to an L-Lipschitz map F∞ : X∞ → W .
Specifically, there exists isometric embeddings of the subsequence ϕj : Xj → Z, such that
dZF (ϕj#Tj, ϕ∞#T∞) → 0 and for any sequence pj ∈ Xj converging to p ∈ X∞,

dZ(ϕj(pj), ϕ∞(p)) → 0,

one has converging images
dW (Fj(pj), F∞(p)) → 0.

1.3.3 Volume Above Distance Below Convergence

Allen, Perales, and Sormani in [3] introduced a new notion of convergence of manifolds
called volume above distance below (VADB) convergence. It is based on the volume-distance
rigidity theorem which states that if there is a C1-diffeomorphism F : M → N between
two Riemannian manifolds which is also distance non-increasing then vol (N) ≤ vol (M);
moreover, in case of equality the manifolds are isometric.

Definition 1.3.5. A sequence of Riemannian manifolds without boundary Mn
j = (Mn, gj)

converge in the VADB-sense to a Riemannian manifold Mn
∞ = (Mn, g∞) if

i. vol (Mn
j ) → vol (Mn

∞).

ii. diam (Mn
j ) ≤ D.

iii. There exists a C1-diffeomorphisms Ψj :M
n
∞ →Mn

j such that for all p, q ∈Mn
∞ we have

dj(Ψj(p),Ψj(q)) ≥ d∞(p, q).

We also record the following lemma from [3] which says that the above condition on the
distance functions in the definition of VADB-convergence can be converted into a condition
on Riemannian metrics.
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Lemma 1.3.6. Let Mn
1 = (Mn, g1) and Mn

0 = (Mn, g0) be Riemannian manifolds and
F :Mn

1 →Mn
0 be a C1-diffeomorphism. Then

g0(dF (v), dF (v)) ≤ g1(v, v) for all v ∈ TMn
1

if and only if
d0(F (p), F (q)) ≤ d1(p, q) for all p, q ∈Mn

1 .

Finally, we record the following theorem from [3] which describes the relationship between
VADB-convergence and VF -convergence.

Theorem 1.3.7. If Mn
j = (Mn, gj) and M

n
∞ = (Mn, g∞) are compact oriented Riemannian

manifolds such that Mn
j

VADB−−−→Mn
∞ then Mn

j
VF−−→Mn

∞.
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Chapter 2

Quantitative Surgery

In this chapter, we prove the main new technical propositions: Proposition 2.1.1 (Wells
and Tunnels), Proposition 2.1.2 (Wells and Tunnels), Proposition 2.2.1 (Surgery in Higher
Codimensions). These are an improvement of the constructions of Gromov–Lawson [28],
Basilio, Dodziuk, Sormani [7], and Dodziuk [26]. We construct wells and tunnels and get
control over the volume and diameter while keeping the scalar curvature close to the scalar
curvature of the manifold to which we are attaching the well. Proposition 2.1.1 (Wells and
Tunnels) allows us to remove a ball from a Riemannian manifold M with scalar curvature
RM ≥ κ and glue in a well to create a new Riemannian manifold N ; moreover, M and N will
be isometric away from the gluing and the scalar curvature RN of N will satisfy RN ≥ κ−ϵ for
arbitrarily small ϵ. Proposition 2.1.2 (Wells and Tunnels) allows the analogous construction
for connecting two manifolds with a tunnel. Therefore, given a Riemannian manifold M with
RM ≥ κ we can remove two balls and glue in a tunnel to create a Riemannian manifold P
with RP ≥ κ− ϵ for arbitrarily small ϵ. As expressed by Gromov–Lawson in [28] the higher
surgery result is very similar to connect sum construction and so we are able to show in
Proposition 2.2.1 (Surgery in Higher Codimensions) that if (M, g) is a Riemannian manifold
with scalar curvature at least κ then any manifold obtain from M by a codimension at least
three surgery admits a metric with scalar curvature greater than κ− ϵ for any ϵ small enough.

2.1 Wells and Tunnels

In this section, we prove the main new technical propositions: Proposition 2.1.1 (Wells and
Tunnels) and Proposition 2.1.2 (Wells and Tunnels). In particular we show,

Proposition 2.1.1 (Constructing Wells). Let (Mn, g), n ≥ 3, be a Riemannian manifold
with scalar curvature RM . Let δ > 0 be small enough, j ∈ N, and d > 0. If RM ≥ κ
on Bg(p, 2δ) a ball in (M, g), then we can construct a well Wj = (Bg(p, 2δ), gj) and a new
complete Riemannian manifold (Nn, h),

Nn =Mn, h|M\Bg(p,2δ) = g|M\Bg(p,2δ), h|Bg(p,2δ) = gj|Bg(p,2δ).

Furthermore, the following properties are satisfied:

i. The scalar curvature, Rj, of Wj satisfies Rj > κ− 1
j
.
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ii. gj|E = g|E where E = Bg(p, 2δ) \Bg(p, δ) is identified with a subset of Wj.

iii. There exists constant C > 0 independent of j and d such that

d ≤ diam (Wj) < C(δ + d) and vol (Wj) < C(δn + dδn−1).

iv. N has scalar curvature RN > κ− 1
j
.

Proposition 2.1.2 (Constructing Tunnels). Let (Mn, g), n ≥ 3, be a Riemannian manifold
with scalar curvature RM . Let j ∈ N and d ≥ 0 and let δ > 0 be small enough depending
only on g. If RM ≥ κ on two balls Bg(p, 2δ) and Bg(p

′, 2δ) in (Mn, g), then we can construct
a new complete Riemannian manifold P n, where we remove two balls and glue cylindrical
region (Tj, gj) diffeomorphic to Sn−1 × [0, 1],

P n =Mn \ (Bg(p, 2δ) ∪Bg(p
′, 2δ)) ⊔ Tj.

Furthermore, the following properties are satisfied:

i. The scalar curvature, Rj, of Tj satisfies Rj > κ− 1
j
.

ii. gj|E = g|E and gj|E′ = g|E′ where E = Bg(p, 2δ)\Bg(p, δ) and E
′ = Bg(p

′, 2δ)\Bg(p
′, δ)

are identified with subsets of P .

iii. There exists constant C > 0 independent of j and d such that

d ≤ diam (Tj) < C(δ + d) and vol (Tj) < C(δn + dδn−1).

iv. P has scalar curvature RP > κ− 1
j
.

We adapt the proof from [26]. The well and tunnel will be constructed as a codimension
one submanifold. The submanifold will be defined by a curve, and this curve will control the
geometry of the submanifold. First, we show how the curve defines the submanifold and how
it affects its geometry. Second, we carefully construct the curve so that the submanifold will
inherit the desired properties.

In particular, the construction will follow the following outline. First, we will describe
how, given a curve, we can define a submanifold and write the scalar curvature in terms of
quantities related to the curve. Second, we carefully construct a C1-curve, γ, which will be
used to define a submanifold that is the precursor to a well or a tunnel. Third, we adjust the
construction of γ so the resulting manifold will be a well. Fourth, we describe the smoothing
procedure to make γ a C∞-curve. Fifth, we construct a well and check it has the desired
properties. Sixth, we perform the analogous steps to construct a tunnel with the desired
properties.

The main difficulty of this construction is the second step where one constructs the curve.
Let’s quickly recall how the previous constructions ([7], [26], and [28]) of the curve were shown.
Gromov and Lawson construct a curve that bends from a vertical line segment to a horizontal
line and they ensure the way the bending happens preserves positive scalar curvature. In
dimension three and positive sectional curvature, Basilio, Dodziuk, and Sormani refine this
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construction of the curve to be more explicit than the proof given in [28] and in doing so obtain
control over the volume and diameter of the curve they construct. Dodziuk then further
demonstrates that the explicit construction in [7] can be extended to any dimension and
positive scalar curvature. Here, we take the next natural step on this theme and demonstrate
that a curve can be constructed while only decreasing the lower bound on the scalar curvature
by an arbitrarily small amount and maintaining control over the volume and diameter. In
addition, we also round off the end of the curve to construct a well.

In order to show this improvement on these constructions we make key observations about
the scalar curvature calculation (2.1.1) (cf. [26, Equation (4)], [28, Equation (1)]) and the
corresponding Lemma 2.1.5 (cf. [26, Lemma 3.1], [28, pg. 428]). We use these observations
to construct tunnels whose scalar curvature is decreased by an arbitrarily small amount.
Unlike previous constructions, we additionally construct wells. Altogether, this leads to
technical differences in the construction near the beginning and end of the corresponding
curve. Moreover, we are able to ensure that wells do not contain any closed minimal surfaces.
The observations, in addition to the well construction, are vital for our ability to produce the
manifolds that pertain to the main results of this work.

2.1.1 A Submanifold Defined by a Curve

Let (Mn, g) be a compact Riemannian manifold with scalar curvature RM ≥ κ. Let δ > 0
and B = B(p, 2δ) be a geodesic ball in M . Consider the Riemannian product (X, gX) =
(R×B, dt2 + dr2 + gr). Let ρ ∈ B be a geodesic radius from p to ∂B and define S = R× ρ,
which is a total geodesic submanifold of R×B with coordinates (t, r). Let γ be a smooth curve
in S to be determined later. Finally, let Σ = {(y, q) ∈ X : (y, ||q||g) ∈ γ} be a submanifold
of (X, gX) with the induced metric, where || · ||g is the distance from p to q with respect
to g. Note that we can identify S with a strip in R2. Now we want to calculate the scalar
curvature of Σ. To do so we will need the following lemma from [26]:

Lemma 2.1.3. The principal curvatures of the hypersurface Sn−1(ϵ) in B are each of the
form 1

−ϵ
+O(ϵ) for small ϵ. Furthermore, let gϵ be the induced metric on Sn−1(ϵ) and let grd,ϵ

be the round metric of curvature 1
ϵ2
. Then, as ϵ→ 0, 1

ϵ2
gϵ → 1

ϵ2
grd,ϵ = grd in the C2 topology,

moreover, ||grd − 1
ϵ2
gϵ|| ≤ ϵ2.

Remark 2.1.4. The above lemma is written with the convention that the second fundamental
form is A(X, Y ) = g(∇XY,N) and N is the outward pointing normal.

Now to calculate the scalar curvature of Σ, fix q ∈ Σ∩S. Let e1, . . . , en be an orthonormal
basis of of Tq(Σ) where e1 is tangent to γ. Note that the for points in Σ ∩ S the normal ν to
Σ in X is the same as the normal to γ in S.

From the Gauss equations:

RX(X, Y, Z, U) = RΣ(X, Y, Z, U)− A(X,U)A(Y, Z) + A(X,Z)A(Y, U)

we see
KΣ

ij = KX
ij + λiλj.
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where λi are principal curvatures corresponding to ei and K
Σ
ij and KX

ij are the respective
sectional curvatures. We note that λ1 = k where k is the geodesic curvature of γ. For
i = 2, . . . , n we see by Lemma 2.1.3

λi = ⟨∇eiei, ν⟩
= ⟨∇eiei, cos θ∂t + sin θ∂r⟩
= cos θ⟨∇eiei, ∂t⟩+ sin θ⟨∇eiei, ∂r⟩
= sin θ⟨∇eiei, ∂r⟩

=

(
1

−r
+O(r)

)
sin θ,

where θ is the angle that between ν and the t-axis. Now note that

KX
1j = RX(ej, e1, e1, ej) = RX(ej, cos θ∂r, cos θ∂r, ej) = cos2 θKM

∂r,j.

For i ̸= 1 and j ̸= 1
KX

ij = RX(ej, ei, ei, ej) = KM
i,j .

Since
RΣ =

∑
i ̸=j

KΣ
ij

we see

RΣ = RM − 2RicM (∂r, ∂r) sin
2 θ

+ (n− 2)(n− 1)

(
1

r2
+O(1)

)
sin2 θ

− (n− 1)

(
1

r
+O(r)

)
k sin θ.

(2.1.1)

2.1.2 Constructing the Curve

The construction of the curve that will define the well W and the construction of the curve
that will define the tunnel T are very similar. First, we will construct a curve that will define
a submanifold Σ, which can be thought of as the precursor to a well or a tunnel.

We want to construct a curve γ so that the resulting manifold Σ has RΣ > κ− 1
j
for any

j ∈ N. We will first construct γ as a piecewise curve of circular arcs and then smooth the
curve. To do this, we will prescribe the geodesic curvature k(s) of γ, and by Theorem 6.7 in
[27], we know that k(s) determines γ. The unit tangent vector to γ and the curvature are
given by

dγ

ds
= (sin θ,− cos θ) and k =

dθ

ds
.

Therefore, if γ(s) is defined for s ≤ s′ and k(s) is given for s ≥ s′ we have γ(s) = (t(s), r(s))
where
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θ(s) = θ(s′) +

∫ s

s′
k(u)du

t(s) = t(s′) +

∫ s

s′
sin θ(u)du

r(s) = r(s′)−
∫ s

s′
cos θ(u)du.

(2.1.2)

Now, we begin the construction of γ. Fix j ∈ N. Let δ0 < δ and let (0, δ0) be a point in
the (t, r)-plane. Next, define the initial segment of γ as the line segment from (0, 2δ + δ0) to
(0, δ0) for s ∈ [−2δ, 0]. Define the next segment to be an arc of a circle of curvature k0 = 1
that is tangent to r-axis at (0, δ0) and let γ run from 0 to s0 ≤ δ0

2
where s0 is chosen so that

RΣ > κ− 1
j
and that sin θ(s0)

8r(s0)
< 1 for all s ≤ s0. We note that s0 exists since θ(0) = 0 and by

the scalar curvature formula (2.1.1). Next, we prove a lemma that gives a condition on γ
that controls the scalar curvature.

Lemma 2.1.5. If δ0 is small enough and if

sin θ(s)

4r(s)
> k(s) for s ≥ s0, (2.1.3)

then RΣ > κ.

Proof. By (2.1.1) we see if k ≤ 0 then

RΣ = RM − 2RicM (∂r, ∂r) sin
2 θ

+ (n− 2)(n− 1)

(
1

r2
+O(1)

)
sin2 θ

− (n− 1)

(
1

r
+O(r)

)
k sin θ.

(2.1.4)

and so the third and fourth terms will be nonnegative. By taking δ0 > r small enough, the
third and fourth terms will dominate the second term so RΣ > κ.

Now, if k > 0, then by rewriting the right-hand side of (2.1.1) we get

RΣ =
(n− 2)(n− 1)

2r2
sin2 θ +

(
(n− 2)(n− 1)

2r2
− 2RicM (∂r, ∂r) +O(1)

)
sin2 θ

+
−2(n− 1)k

r
sin θ +

(
(n− 1)

r
−O(r)

)
k sin θ

+RM ,

(2.1.5)

so second and fourth terms will be positive by taking δ0 > r is small enough and by assumption
we have

sin θ

4r
> k
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which implies
(n− 2)(n− 1)

2r2
sin2 θ +

−2(n− 1)k

r
sin θ > 0,

and so RΣ > κ. ⊓⊔

Thus, as we continue to construct γ, we will ensure that (2.1.3) is satisfied. We will now

extend γ by a circular arc of curvature k1 = sin θ(s0)
8r(s0)

on [s0, s1] where s1 − s0 = r0
2
, where

r(s0) = r0. Let θ(s0) = θ0. By (2.1.2), we have first that sin θ(s) is increasing and r(s) is
decreasing and so on [s0, s1]

sin θ(s)

4r(s)
>

sin θ0
4r0

>
sin θ0
8r0

= k1.

Second, we see that γ does not cross the t-axis because s1 − s0 =
r0
2
, and third we have

θ(s1)− θ0 = k1(s1 − s0) =
sin θ0
8r0

r0
2

=
sin θ0
16

.

Now we proceed inductively. Define:

si = si−1 +∆si, ∆si =
ri−1

2
, ri = r(si), θi = θ(si), ki =

sin θi−1

8ri−1

.

As θ(s) is increasing we have that θi − θi−1 =
sin θi−1

16
> sin θ0

16
and so

θi ≥ θ0 + i
sin θ0
16

.

Therefore, θi grows without bound so define m to be such that θm−1 < sin−1
(
12
13

)
≤ θm.

Redefine sm so that θm := sin−1
(
12
13

)
= θ̄. Note that ∆sm ≤ rm−1

2
.

Now extend again by one circular arc. To do this we need to define km+1 > 0 and
sm+1 = sm + ∆sm+1. We add a circular arc until θm+1 = π

2
. By the definition of θ̄, there

exists a km+1 such that 1− sin θ̄ < km+1
17rm
18

< sin θ̄
9

and by (2.1.2) we know

rm+1 = rm −
∫ sm+1

sm

cos θ(u)du

= rm −
∫ sm+1

sm

cos (sm + km+1(u− sm)) du

= rm − 1

km+1

(sin θm+1 − sin θm)

= rm − 1

km+1

(
1− sin θ̄

)
>
rm
18
.

and km+1 <
sin θ̄
4rm

.

Remark 2.1.6. Up until this point the curve γ works for both the construction of a well
and a tunnel. However, from here on the construction of γ differs slightly for the well and
the tunnel. We will continue now with the construction of the well and discuss the tunnel
construction later in Subsection 2.1.6.
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2.1.3 Adjusting the Curve to Construct a Well

Now we will refine our construction of γ in order to construct a well. We want to extend by a
line with a negative slope of length d > 0 and not have γ cross the t-axis. By the intermediate
value theorem there exists an ŝ ∈ (sm, sm+1) such that θ(ŝ) = θ̂ where{

max
{
θ̄, cos−1

(
rm+1

2

)}
< θ̂ < π

2
if d ≤ 1

max
{
θ̄, cos−1

(
rm+1

2d

)}
< θ̂ < π

2
if d > 1

(2.1.6)

since θm+1 =
π
2
.

Redefine sm+1 such that sm+1 = ŝ and θm+1 = θ̂. Extend γ to [sm+1, sm+1 + d] by setting
k = 0 on [sm+1, sm+1 + d]. Furthermore, note that by (2.1.2) we have θ(u) ≡ θm+1 on that
interval and

r(sm+1 + d) = rm+1 −
∫ rm+1+d

rm+1

cos θ(u)du

= rm+1 − d cos θm+1

≥ rm+1 −
rm+1

2
> 0.

Let sm+1 + d = sm+2 and θ(sm+1 + d) = θm+2. We now extend on [sm+2, sm+3] by a small
circular arc of negative geodesic curvature such that θ(sm+3) = 0. Take

km+3 <
−2 sin θm+2

rm+2

.

Since,

θ(s) = θm+2 +

∫ s

sm+2

km+3du = θm+2 + km+3(s− sm+2).

we have

r(sm+3) = rm+2 −
∫ sm+3

sm+2

cos θ(u)du

rm+3 = rm+2 −
1

km+3

(sin θm+3 − sin θm+2)

rm+3 = rm+2 +
1

km+3

sin θm+2

> 0.

We can extend γ on [sm+3, sm+4] by a vertical straight line by setting km+4 = 0, where
sm+4 is chosen so that r(sm+4) = 0.

Since γ is parameterized by arclength, we note that a bound on sm+4 is a bound on
arclength. In following lemmas, we prove an upper bound for sm+4.
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Lemma 2.1.7. There exists a constant 0 < C1 < 1 independent of j and d such that
ri
ri−1

≤ C1

for 1 ≤ i ≤ m− 1

Proof. By (2.1.2) and by the mean value theorem we have

ri = ri−1 −
∫ si

si−1

cos θ(u)du = ri−1 −∆si cos ξi = ri−1

(
1− cos ξi

2

)
for some ξi ∈ [si−1, si]. Recalling that θ̄ ≥ ξi for 1 ≤ i ≤ m− 1 we see that

ri
ri−1

≤ 1− cos θ̄

2
=

21

26
.

⊓⊔

Lemma 2.1.8. There is a constant C2 independent of j and d such that sm+4 ≤ C2δ0 + d
which implies that the length of γ is bounded by C2δ0 + d.

Proof. We recall for 1 ≤ i ≤ m, ∆si ≤ ri−1

2
so

sm = 2δ − δ0 + s0 +∆s1 + · · ·+∆sm

≤ 2δ + s0 +
1

2
(r0 + r1 + · · ·+ rm−1)

≤ 2δ + s0 +
r0
2

(
1 + C1 + · · ·+ Cm−1

1

)
≤ 3δ +

δ0
2

(
1

1− C1

)
≤ 28

5
δ

(2.1.7)

Now, we note that by (2.1.2) and (2.1.6):

∆sm+1 ≤
1

km+1

(π
2
− θ̄
)
< rm

π
2
− θ̄

1− sin θ̄
≤

π
2
− θ̄

1− sin θ̄
δ0 = 13

(
π

2
− sin−1

(
12

13

))
δ0.

By (2.1.2), we have that
θm+3 = θm+2 + km+3∆sm+3.

Therefore,

∆sm+3 =
θm+2

−km+3

≤ 2rm+2θm+2

sin θm+2

≤ π

sin θ̄
δ0 =

13π

12
δ0 (2.1.8)

because θm+2 ≤ π
2
, rm+2 < δ0, and θ̄ < θm+2.

By construction,
∆sm+2 = d and ∆sm+4 ≤ δ0.

Thus,

sm+4 = s0 +∆s1 + · · ·+∆sm +∆sm+1 +∆sm+2 +∆sm+3 +∆sm+4

≤ C2δ + d.

⊓⊔
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2.1.4 Smoothing the Curve that Defines the Well

So far we have constructed k(s) as a piecewise constant function, k
∣∣
(si,si+1]

= ki+1 for

i = 1, . . . ,m − 1 and ki < ki+1 and km+1 < km. The resulting curve γ is C1 and piecewise
C∞.

We begin the smoothing of γ by first smoothing out k(s) on [0, sm+3]. Let g ∈ C∞(R)
be a smooth function so that g is 0 if s < 0, 1 if s > 1, and strictly increasing on [0, 1]. Let

h(x) = g(1− x) and H =
∫ 1

0
h(x)dx. Let k̃(s) be the smooth function defined by

k̃(s) =



0 s ∈ [−2δ, 0]

g
(
s
α

)
s ∈ [0, α]

1 s ∈ [α, s0 − α]

(1− k1)h
(

s−(s0−α))
α

)
+ k1 s ∈ [s0 − α, s0]

k1 s ∈ [s0, s1]

(ki+1 − ki) g
(
s−si
α

)
+ ki s ∈ [si, si + α]

ki+1 s ∈ [si + α, si+1]

h
(
s−sm

α

)
s ∈ [sm, sm + α]

km+1 s ∈ [sm + α, sm+1]

km+1h
(
s−sm+1

α

)
s ∈ [sm+1, sm+1 + α]

0 s ∈ [sm+1 + α, sm+2]

−km+3h
(
s−sm+2

α

)
+ km+3 s ∈ [sm+2, sm+2 + α]

km+3 s ∈ [sm+2 + α, sm+3],

where 1 ≤ i ≤ m.
We note that α is the same for each i and that its value will be determined later.

Now let θ̃ be the angle function associated to k̃. By (2.1.2) we see that the smooth curve
γ̃(s) = (t̃(s), r̃(s)) defined by k̃(s) will converge uniformly to γ on

[
δ0
2
, sm+3

]
as α goes to

zero. Also, θ̃ will converge uniformly to θ as α goes to zero. Therefore, take α small enough
such that θ̃(sm+1) satisfies (2.1.6); therefore, we will still extend by a line with a negative
slope.

Note

θ̃(sm+2 + α) = θ̃(sm+2) +

∫ sm+2+α

sm+2

−km+3h

(
u− sm+2

α

)
+ km+3du

= θ̃(sm+2) + αkm+3(1−H)

> 0.

By the smoothing process, θ̃(sm+3) may no longer be greater than 0. We will now fix that.
If θ̃(sm+3) ≤ 0 pick a s∗ ∈ (sm+2 + α, sm+3] such that 0 < θ̃(s∗) < α which exists by the
intermediate value theorem.

If θ̃(sm+3) > 0, we can redefine sm+3 as sm+3 +
θ̃(sm+2)
−km+3

so that θ̃(sm+3) = 0. By the

intermediate value theorem, pick a s∗ ∈ (sm+2 + α, sm+3] such that 0 < θ̃(s∗) < α.
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Redefine sm+3 in either case as sm+3 = s∗ and note 0 < θ̃(s∗) < α. On [sm+3, sm+3 + 2β]
define

k̃(s) =

{
−km+3g

(
s−sm+3

β

)
+ km+3 s ∈ [sm+3, sm+3 + β]

0 s ∈ [sm+3 + β, sm+3 + 2β],

where β = θ̃(sm+3)
−km+3(1−H)

so that ∫ sm+3+β

sm+3

k̃(s)ds = −θ̃(sm+3).

This makes θ̃(sm+3 + 2β) = 0.
By (2.1.2) we see that the smooth curve γ̃(s) = (t̃(s), r̃(s)) defined by k̃(s) will converge

uniformly to γ on [−2δ, sm+3] as α goes to zero. Also, θ̃ will converge uniformly to θ as α
goes to zero; moreover, as α goes to zero so does β. Finally, take α small enough so that
r̃(sm+3 + 2β) > 0. Extend the line segment at the end of γ̃ on [sm+3 + 2β, L] where L is
defined so that r̃(L) = 0. Note that |L− (sm+3 + 2β)| < δ0.

2.1.5 Attaching the Well

We have constructed a smooth curve γ̃ on [−2δ, L] that begins and ends as a vertical line
segment. Define

W̃j = {(y, q) ∈ X : (y, ||q||M) ∈ γ̃}

and let gj be the induced metric, i.e., g̃j = ι̃∗j(dt
2 + g) where ι̃j : W̄j → R×B is the inclusion

map.

Lemma 2.1.9. For small enough α we will show that γ̃ satisfies RW̃j ≥ κ− 1
j
on [−2δ, L].

Also the length γ̃ is bounded by C3δ + d.

Proof. By construction γ̃ is parameterized by arclength so by Lemma 2.1.8 length of γ̃ is
bounded by C3δ0 + d.

On [−2δ, 0], we have that

RW̃j = RM − 2RicM (∂r̃, ∂r̃) sin
2 θ̃ + (n− 2)(n− 1)

(
1

r̃2
+O(1)

)
sin2 θ̃

− (n− 1)

(
1

r̃
+O(r)

)
k̃ sin θ̃

= RM

> κ− 1

j
.
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On [0, s0], we have that k1 < 1 because of our choice of s0 and the construction.

RW̃j = RM − 2RicM (∂r̃, ∂r̃) sin
2 θ̃ + (n− 2)(n− 1)

(
1

r̃2
+O(1)

)
sin2 θ̃

− (n− 1)

(
1

r̃
+O(r)

)
k̃ sin θ̃

≥ κ− 2RicM (∂r̃, ∂r̃) sin
2 θ̃ + (n− 2)(n− 1)

(
1

r̃2
+O(1)

)
sin2 θ̃

− (n− 1)

(
1

r̃
+O(r)

)
sin θ̃

> κ− 1

j
.

since for small enough α we have that θ̃ is uniformly close to θ and r̃ is uniformly close to r.
On [s0, s1] we have that k̃(s) = k1 and so

sin θ̃(s)

4r̃(s)
− k̃(s) > 0

for small enough α.
On [si, si+1] for 1 ≤ i ≤ m− 1, we have that

sin θ̃(s)

4r̃(s)
− k̃(s) =

(
sin θ̃(s)

4r̃(s)
− ki+1

)
+
(
ki+1 − k̃(s)

)
and so for small enough α we have the the first term is positive since sin θ(s)

4r(s)
> k(s) and the

second term is positive by construction.

On [sm, sm+1], recall km > km+1 and that sin θ̃(s)
4r̃(s)

is non-decreasing therefore we have that

sin θ̃(s)

4r̃(s)
≥ sin θ̃(sm)

4r̃(sm)
> km ≥ k̃(s).

On [sm+1, sm+2], we have that

sin θ̃(s)

4r̃(s)
≥ sin θ̃(sm+1)

4r̃(sm+1)
> km+1 > k̃(s).

We have the first inequality since sin θ̃(s)
4r̃(s)

is non-decreasing. The second inequality was already

verified above. The third inequality holds since by construction km+1 > k̃(s).
On [sm+2, L], we have by construction that k̃(s) is non-positive so

sin θ̃(s)

4r̃(s)
≥ k̃(s).

Therefore, by Lemma 2.1.5 we have shown RW̃j > κ− 1
j
on [−2δ, L]. ⊓⊔
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Next we will prove the diameter and volume bounds for the well, but before we prove
those bounds, we need to recall the following fact.

Proposition 2.1.10. Let B(p, r) be a geodesic ball of radius r in a closed Riemannian
manifold (Mn, g). Then there exists constants C, r0 depending on g such that for any p and
for all r ≤ r0 we have

volg(B(p, r)) ≤ Crn

volg(∂B(p, r)) ≤ Crn−1.
(2.1.9)

Lemma 2.1.11. There is a constant C(g) independent of j, d such that diameter diam (W̃j)
and volume vol (W̃j) of W̃j satisfy

d ≤ diam (W̃j) < C(δ + d) and vol (W̃j) < C(δn + dδn−1).

Proof. Let p, q ∈ W̃j be two points and let x be the point at the tip of W̃j , i.e., corresponding
to γ̃(L). By the triangle inequality and Lemma 2.1.3 we have

dgj(p, q) ≤ dgj(p, x) + dgj(x, q) ≤ length(γ̃) + length(γ̃) ≤ C(δ + d).

By construction we have d ≤ diam (W ). Therefore, d ≤ diam (W ) < C(δ + d).
By possibly taking δ smaller, we have by Lemma 2.1.9 and Proposition 2.1.10 that

vol (W̃j) =

∫ L

−δ0
2

|∂B(p, r(s))|g̃jds ≤
∫ L

−δ0
2

Cδn−1ds ≤ C(δn + δn−1d).

⊓⊔

Lemma 2.1.12. (W̃j, g̃j) is isometric to Wj = (Bg(p, 2δ), gj = dF 2
j + g) and Wj attaches

smoothly to M .

Proof. Let B = Bg(p, 2δ) and recall that ||q||g is the distance from q to p in B. Consider
the function Fj : B → R, Fj(q) = t̃ (r̃−1(||q||g)). By construction t̃ is smooth and r̃′(s) < 0
so r̃−1 is smooth. Moreover, ||q|| is smooth away from p. Thus, away from p, F is smooth.
In a neighborhood of p we have by construction that (t̃(s), r̃(s)) is a vertical line segment
so in that neighborhood t̃ ◦ r̃−1 ≡ const and so Fj is smooth everywhere. Furthermore, by
construction, we have that

g̃j|E = g|E where E = Bg(p, 2δ) \Bg(p, δ).

Let Γj = {(t, p) ∈ X : Fj(p) = t}. Note that Γj ⊂ X and that Γj = W̃j. Let
g′j = (ι′j)

∗(dt2 + g) where ι′j : W̃j → R × B is the inclusion map ι′j(t, p) = (t, p). Let

idj : Γj → W̃j be the identity map and conclude that g′j = g̃j. Consider the diffeomorphism
Φj : B → Γj where Φj(q) 7→ (Fj(q), q). And so

Φ∗
jg

′
j = Φ∗((ι′j)

∗g′j) = dF 2
j + g.

⊓⊔

30



And this completes the construction of N from Proposition 2.1.1 (Constructing Wells).
Before moving to the tunnel construction we would like to record a lemma which shows there
are no minimal surfaces in W̃j:

Lemma 2.1.13. There exist no closed minimal surfaces in (W̃j, g̃j).

Proof. We will show that W̃j is foliated by negative mean curvature hypersurfaces and so by
the maximum principle does not contain any closed minimal surfaces. Recall

W̃j =
{
(y, q) ∈ X : (y, ||q||M) ∈ γ̃ = (t̃(s), r̃(s))

}
and that the metric on X is gX = dt2 + dr2 + gr and W̃j has the induced metric. We note
that W̃j is foliated by r̃(s) = const hypersurfaces. Note that the second fundamental form is
A(X, Y ) = g(∇XY,N) where N is the outward normal.

In particular, we note that for gr the outward normal is ∂r and −∂s is the outward
normal for gr(s). Therefore, we have the second fundamental form of these hypersurfaces, by
Lemma 2.1.3, is

∂sgr̃(s) =

(
1

r̃(s)
+O(r̃(s))

)
(r̃′(s)) < 0.

We conclude that the mean curvatureHr̃(s) < 0 since by the construction 1
r̃(s)

is the dominating

term and r̃′(s) < 0 with respect to the outward normal. Therefore, W̃j is foliated by
hypersurfaces with strictly negative mean curvature. ⊓⊔

2.1.6 Constructing a Tunnel

We will pick up the construction of the tunnel from Remark 2.1.6. Let γ be as it is before
Remark 2.1.6. The same smoothing procedure as above can be used to smooth γ into a
smooth curve. We will abuse notation and call this smoothed-out curve γ̃ as well.

Let g ∈ C∞(R) be the smooth function so that g is 0 if s < 0, 1 if s > 1, and strictly

increasing on [0, 1]. Let h(x) = g(1−x) and H =
∫ 1

0
h(x)dx. Let k̃(s) be the smooth function

defined by

k̃(s) =



g
(
s
α

)
s ∈

[
− δ0

2
, α
]

1 s ∈ [α, s0 − α]

(1− k1)h
(
s−s0
α

)
+ k1 s ∈ [s0 − α, s0]

k1 s ∈ [s0, s1]

(ki+1 − ki) g
(
s−si
α

)
+ ki s ∈ [si, si + α]

ki+1 s ∈ [si + α, si+1]

where 1 ≤ i ≤ m.
Note that θ̃(sm+1) could no longer equal π

2
by the smoothing process. We fix that now.

We note that θ̃(s) converges uniformly to θ(s) as α goes to zero. Take α be small enough
such that θ̃(sm + α) < π

2
.

We want θ̃(sm+1) <
π
2
. Therefore, if not, then θ̃(sm+1) ≥ π

2
. Pick a s∗ ∈ (sm + α, sm+1]

such that π
2
− α < θ̃(s∗) < π

2
which exists by the intermediate value theorem and redefine

sm+1 = s∗.
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Let sm+2 = sm+1 + 2β. On [sm+1, sm+2], define

k̃(s) =

{
−km+1g

(
s−sm+1

β

)
+ km+1 s ∈ [sm+1, sm+1 + β]

0 s ∈ [sm+1 + β, sm+2],

where β =
π
2
−θ̃(sm+1)

−km+1(1−H)
so that ∫ sm+1+β

sm+1

k̃(s)ds =
π

2
− θ̃(sm+1).

Thus, θ̃(s) = π
2
for all s ∈ [sm+1 + β, sm+2]. Moreover, we have finished smoothing γ to γ̃.

Define a half tunnel Aj = {(y, q) ∈ X : (y, ||q||g) ∈ γ̃} with the induced metric. Later, we
will glue two half tunnels together to make a tunnel Tj. In the following lemma, we record
properties of Aj whose proofs are analogous to the ones above.

Lemma 2.1.14. There is a constant C independent of j such that (Aj, hj) satisfies the
following

i. The scalar curvature Rj of Aj satisfies Rj > κ− 1
j
.

ii. diam (Aj) < C(δ).

iii. vol (Aj) < C(δn).

iv. Aj smoothly attaches to M \Bg(p, 2δ)

v. The new manifold (M \Bg(p, 2δ)) ⊔ Aj is a manifold with boundary.

We have constructed half of a tunnel, Aj. We now wish to modify the metric at the end
of Aj so that it is a product metric of a round sphere and an interval. We follow the same
procedure as [26]. Let a = t(sm+1 + β), b = t(sm+2), and c = r(sm+2). We note that, by
construction, the induced metric on {(q, y) ∈ X : a ≤ t ≤ b} is h0 = gc + dt2, where gc is the
induced metric on Sn−1(c). Let h1 = c2grd + dt2 where grd is the round metric on the unit

round sphere. Let ϕ(t) = ψ
(

t−a
η

)
where ψ(u) is a smooth function on [0, 1] vanishing near

zero, increasing to 1 at u = 3
4
and equal to 1 for u > 3

4
. Define the metric h for t ∈ [a, b] as

h(q, y) = gc(q, y) + ϕ(t)
(
c2grd − gc

)
+ dt2.

This metric transitions smoothly between h0 and h1. Note

h− h0 = ϕ(t)
(
c2grd − gc

)
= ϕ(t)c2

(
grd −

1

c2
gc

)
and that the first and second derivatives of ϕ(t) are O(η−1) and O(η−2), respectively. So
by Lemma 2.1.3, we have that the second derivatives of h− h0 are O(η2). Therefore, for η
small enough, the scalar curvature of h is close to the scalar curvature of h0 which, again by
Lemma 2.1.3, has scalar curvature larger than κ− 1

j
for small enough η. Therefore, we have
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changed the metric at the end of Aj so that it looks like c2grd + dt2. Thus, given another
ball Bg(p

′, 2δ) on M we can construct A′
j with a metric at the one end that it looks like

c2grd + dt2 with the same c by making the same choices in the construction as we did for Aj.
Now we can immediately glue a cylinder, ([0, d]× Sn−1, dt2 + c2grd), connecting A

′
j to Aj and

so construct the tunnel Tj between ∂Bg(p
′, 2δ) and ∂Bg(p, 2δ).

We note that the diameter and volume of the cylinder ([0, d] × Sn−1, dt2 + gSn−1) are
bounded by d and C(n)dδn−1, respectively, where C(n) is a constant that only depends on
the dimension. Therefore, we can conclude that diam(Tj) and vol(Tj) satisfy the bounds in
Proposition 2.1.2. Therefore, this completes the construction for Proposition 2.1.2.

2.2 Surgery in Higher Codimensions

Now, we prove a technical proposition, which is a Gromov–Lawson type surgery construction
in codimension three or larger with a quantitative lower bound on the scalar curvature. As
expressed by Gromov–Lawson in [28] the higher surgery result is very similar to connect
sum construction. Therefore, the proof will combine the improved connect sum (tunnel)
construction above and the proof in [28] (cf. [59]). In particular, we show

Proposition 2.2.1 (Surgery construction). Let κ ∈ R. Let (Mn, g), n ≥ 3, be a Riemannian
manifold with scalar curvature satisfying RM ≥ κ. Let Nn be a smooth manifold that can
be obtained from M by performing surgeries in codimension greater than or equal to three.
Then for any δ > 0 small enough, there exists a metric ḡ on N such that the scalar curvature
satisfies RN > κ− δ.

We will construct a curve γ in S, which we recall can be identified with a strip in R2, in
order to prove Proposition 2.2.1 in a manner similar to Proposition 2.1.2. Let us describe the
analogous set up we have here.

Let (Mn, g) be a Riemannian manifold with scalar curvature RM ≥ κ. Let p = n − q
and let Sp be an embedded sphere in M with a trivial normal bundle N . Let ν1, . . . , νq
be a global orthonormal sections of N . Note N is diffeomorphic to Sp × Rq via the map
(u, v) 7→ (u, x1, . . . , xq) where v =

∑
xj(νj)u. Now define r : Sp × Rq, r(u, v) = ||x|| and

T (s) := Sp × Bq(s) = {(u, v) ∈ Sp × Rq : r(v) ≤ s}. Choose δ > 0 small enough so that
the exponential map exp : N → M is an embedding on T (δ) ⊂ N . Lift the metric via the
exponential map to T (δ) and call this metric g. Therefore, r is then the distance function
to Sp × {0} in T (δ). Also, curves of the form {u} × ℓ where ℓ is a geodesic ray in Bq(δ)
emanating form the origin, are geodesics in T (δ).

Let γ be a smooth curve in S and consider the submanifold

Σ = {t, u, v) : (t, r(v)) ∈ γ}

of (R× T (δ), dt2 + g). Endow Σ with the induced Riemannian metric gγ . For brevity we will
suppress the δ and refer to T (δ) as T from here on out. Now we want to calculate the scalar
curvature of Σ.

We note that submanifolds of the form S = R× ({u} × ℓ) of R× T are totally geodesic.
Now to calculate the scalar curvature of Σ, fix w ∈ Σ ∩ S. Let e1, . . . , en be an orthonormal
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basis of of Tw(Σ) where e1 is tangent to γ and e2, . . . , eq is tangent to ∂Bq. Note that the for
points in Σ ∩ S the normal ν to Σ in R× T (δ) is the same as the normal to γ in S.

By similar calculations as Section 2.1.1 we have that λ1 = k where k is the geodesic
curvature of γ. For i = 2, . . . , q we see by Lemma 2.1.3

λi = ⟨∇eiei, ν⟩ = ⟨∇eiei, cos θ∂t + sin θ∂r⟩ = cos θ⟨∇eiei, ∂t⟩+ sin θ⟨∇eiei, ∂r⟩

= sin θ⟨∇eiei, ∂r⟩ =
(

1

−r
+O(r)

)
sin θ,

where θ is the angle that between ν and the t-axis. And for (q + 1), . . . , n we have

λi = ⟨∇eiei, ν, ⟩ = ⟨∇eiei, cos θ∂t + sin θ∂r⟩ = cos θ⟨∇eiei, ∂t⟩+ sin θ⟨∇eiei, ∂r⟩
= sin θ⟨∇eiei, ∂r⟩ = O(1) sin θ.

Therefore, we see analogous to Section 2.1.1 we see,

RΣ = RM − 2Ric(∂r, ∂r) sin
2 θ + (q − 2)(q − 1)

(
1

r2
+O(1)

)
sin2 θ

− (q − 1)

(
1

r
+O(r)

)
k sin θ.

(2.2.1)

Now we can take the desired curve γ to be the curve from Section 2.1.6, in particular this
is the curve that was used to construct half tunnels.

Therefore, we have now constructed a Riemannian metric, gγ, on Σ which smoothly
attaches to M \ T . Let P be the Riemannian manifold defined as P = (M \ T )⊔Σ and with
a slight abuse of notation we will let gγ be the metric on all of P . Note that by construction
P is a smooth manifold with boundary, which satisfies RP > κ− δ. Now we want to find a
homotopy, {ht}, through metrics with scalar curvature strictly greater than κ− δ, from the
induced metric on ∂P to gp1 + gq−1

a on Sp × Sq−1 where gmτ is the standard round metric on
Sm of radius τ . Moreover, take a < δ small enough so the scalar curvature is strictly larger
than κ− δ. Then one can construct a metric ds2 + hs on the collar, C = [0, 1]× Sp × Sq−1,
such that at h0 is the induced metric on ∂P and at h1 is a product metric gp1 + gq−1

a on
Sp × Sq−1. Finally, we can glue in Bp+1 × Sq−1 with the product metric of the metric on the
round hemisphere and the round metric on the sphere to complete the surgery. We handle
these two steps in the next lemmas.

The following two lemmas were first proved in [28] (cf. [59]) in the setting of positive
scalar curvature. Here we upgrade these lemmas to our setting.

Lemma 2.2.2. Let g∂P be the induced metric on ∂P from gγ. There exists a homotopy
through Riemannian metrics with scalar curvature strictly larger than κ− δ to the product
metric gp1 + gq−1

a .

Proof. We follow the proof of [59]. Let g∂P be the induced metric on ∂P from gγ, recall
r(L) < δ, and set η = r(L). Let π : N → Sp be the normal bundle to the embedded Sp in
M . The Levi-Civita connection on M , with respect to gγ, gives rise to a normal connection
on the total space of the normal bundle and so also a horizontal distribution H on the total
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space of N . Equip the fibers of N with the metric ĝ = hη, where hη is the Riemannian metric
on the q-ball that arises from the upper hemisphere of a round q-sphere of radius η. Now
consider the Riemannian submersion π : (N , g̃) → (Sp, ǧ) where ǧ = g∂P and g̃ is the unique
submersion metric arising from ĝ, ǧ, and H. Now we want to restrict this metric g̃ to the
sphere bundle, Sp × Sq−1(η), and by a slight abuse of notation we will call this restricted
metric g̃. We note that g̃ restricted to Sq−1

η is gq−1
η , i.e., the round metric on the (q−1)-sphere

of radius η.
Now by Lemma 2.1.3 (cf. [59, Lemma 3.9]) we have that g∂P converges to g̃ as η → 0.

Therefore for small η, there is a homotopy from g∂P to g̃ through metrics with scalar curvature
strictly greater than κ− δ. Now we want to construct a homotopy from g̃ to the product of
two round spheres. Viewing g̃ as a submersion metric and applying O’Neill’s formula [10,
Chapter 9] we have the following equation for scalar curvature:

R̃ = Ř ◦ π + R̂− |A|2 − |T |2 − |n|2 − 2δ̌(n).

T is a tensor that measures the obstruction to the bundle having totally geodesic fibers. By
construction, the fibers are totally geodesic so T = 0 and n is the mean curvature vector
and so vanishes when T vanishes. A is O’Neill’s integrability tensor and it measures the
integrability of the horizontal distribution, i.e., when A vanishes the horizontal distribution
is integrable. Therefore, we have

R̃ = Ř ◦ π + R̂− |A|2

We can deform g̃ through Riemannian submersions to one with a base metric gp1 while keeping
scalar curvature larger than κ− δ. This can be done because the deformation occurs on a
compact interval and we can shrink η to make R̂ arbitrarily large. We just need to ensure
that when we shrink η that the |A| term does not grow. This follows from the canonical
variation formula [10, Chapter 9] which states that if shrinks the fiber metric by t then the
scalar curvature of the new submersion metric R̃t satisfies

R̃t = Ř ◦ π +
1

t
R̂− t|A|2

Finally, we can perform another linear homotopy through Riemannian submersions to the
standard product metric gp1 + gq−1

η , i.e., where |A| = 0. Again we can shrink η if necessary in
order to preserve the scalar curvature bound. ⊓⊔

Lemma 2.2.3. Let {ht} be a family of Riemannian metrics on a closed manifoldM . Consider
the Riemannian manifold ([0, c] ×M,ds2 + hf(s)) where f : R → R is a smooth function.
Then at p = (t, q) ∈ R×M we have

R[0,c]×M = Rf(t) +O((f ′(t))2 + f ′′(t))

where R[0,c]×M and Rf(t) are the scalar curvatures of ([0, c]×M,dt2 + hf(t)) and (M,hf(t)),
respectively.

Proof. Let e1, . . . , en+1 be an orthonormal basis of the tangent space Tp(R×M) where e1 is
tangent to the R factor. We now compute the sectional curvatures. Let 2 ≤ i, j ≤ n+ 1 and
note that Aij = ⟨∇eie1, ej⟩ = O(f ′(t)) so by the Gauss-Codazzi equations we have

K
[0,c]×M
i,j = R

[0,c]×M
jiij = R

f(t)
ijji − AiiAjj + A2

ij = RM
ijji +O((f ′(t))2).
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Now we must compute K
[0,c]×M
1,j for 2 ≤ j ≤ n+ 1.

K
[0,c]×M
1,j = R

[0,c]×M
j11j = ∂jΓ11,j − ∂1Γj1,j + hml

f(t)Γj1,mΓ1j,l − hml
f(t)Γ11,mΓjj,l

= O((f ′(t))2 + f ′′(t))

And so we can now compute

R[0,c]×M = 2
∑
i<j

K
[0,c]×M
ij = 2K

[0,c]×M
1j + 2

∑
1<i<j

K
[0,c]×M
ij = Rf(t) +O((f ′(t))2 + f ′′(t))

⊓⊔

If we take f(s) = s
c
in Lemma 2.2.3 and ht to be the homotopy from Lemma 2.2.2 then

by compactness we can find a large enough c such that the metric dt2 + h t
c
on the collar

C has scalar curvature larger than κ− δ and transitions from the induced metric on ∂P to
gp1 + gq−1

a . Thus completing the construction of (N, ḡ).
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Chapter 3

Constructing Manifolds

3.1 Manifolds with Shrinking Tunnels

In this section, we will use Proposition 2.1.2 (Wells and Tunnels) to construct sequences of
manifolds with thinner and thinner long tunnels. Furthermore, we will prove Theorems A
and A′.

We will need first the following preliminary results.

Proposition 3.1.1. There exists a sequence of rotationally symmetric manifolds Mj =
(Sn, gj), n ≥ 3, such that Mj satisfies

Rj ≥ n(n− 1)− 1

j
, diam (Mj) ≤ D, and vol (Mj) ≤ V,

for some constants 0 < D, V and converges to M∞ which is the disjoint union of two
n-spheres.

Proof. We will construct the Mj as the connected sum of two standard unit round n-
spheres for which the tunnel that connects the two spheres gets skinnier as j increases. By
Proposition 2.1.2, we can remove a geodesic ball from both of the spheres and then construct
a tunnel Tj connecting the two spheres. Let (N, h) = (N ′, h′) = (Sn, grd). Let j ∈ N, j ≥ 10,
d = 30. Define

Bj := Bh

(
p,

2

j

)
⊂ N, and B′ := Bh′

(
p′,

2

j

)
⊂ N ′

where Bj and B′
j are geodesic balls in N,N ′ respectively. By Proposition 2.1.2, we can

construct a tunnel Tj connecting ∂Bj to ∂B
′
j and the resulting manifold Mj will have the

following properties:

i. Mj =
(
(N ⊔N ′) \

(
Bj ∪B′

j

))
⊔ Tj

ii. Rj ≥ n(n− 1)− 1
j
.

iii. Mj \ Tj is isometric to (N \Bj) ⊔ (N ′ \B′
j).
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iv. diam (Mj) ≤ 4π + 30,

2 volgrd (S
n)− volh (Bj)− volh′ (B′

j) ≤ vol (Mj) ≤ 2 volgrd (S
n) + volgj (Tj),

and
lim
j→∞

volh (Bj) = lim
j→∞

volh′ (B′
j) = lim

j→∞
volgj (Tj) = 0.

In particular, limj→∞ vol (Mj) = 2 volgrd (Sn).

By Theorem 1.3.3, we have the intrinsic flat distance between Mj and N ⊔N ′ is

dF(Mj, N1 ⊔N2) ≲
1

j

(
volgrd(Sn) + volgrd(S

n−1)
)
+ volh (Bj) + volh′ (B′

j) + volgj (Tj).

As j → ∞, we that volh (Bj), volh′ (B′
j), and volgj (Tj) go to zero. Therefore, we conclude

that Mj converges to N ⊔N ′ in the VF sense. ⊓⊔

Remark 3.1.2. We have explicit bounds for D and V in Proposition 3.1.1 (and so also
Theorems A and A′). From above we see D ≤ 2π + 30 and V ≤ 4π2 + 1

10
.

Remark 3.1.3. From the construction in Proposition 2.1.2 (Wells and Tunnels) we see that
Mn

j = ([0, Dj ]× Sn−1, gj) defined above is rotationally symmetric. Moreover, near {0} × Sn−1

and {Dj} × Sn−1, we have that Mn
j is isometric to the standard unit round n-sphere. In

particular, the metric takes the form gj = dt2 + sin2(ρj(t))gSn−1 where Dj is the diameter of
Mj and for ρj : [0, Dj] → [0,∞) is a smooth function with the following properties. Recall
γ̃j = (t̃j(s), r̃j(s)) to be the curve define in Lemma 2.1.14 that defines the half tunnel Aj.
Then

ρ(t) =

{
r̂(t), t ∈

[
0, 1

2
Dj

]
r̂(D − t), t ∈

[
1
2
Dj, Dj

] and r̂(t) =

π − t, t ∈
[
0, π − 2

j

]
r̃(t+ (δ − π)), t ∈

[
π − 2

j
, 1
2
D
]
.

We will now construct smooth 1-Lipschitz maps Fj :M
n
j → (Sn, grd). But first, we need

the following result based on the mollification in [48, Section 3]. Since our lemma varies
slightly from what is stated in [48] we provide an analogous proof.

Lemma 3.1.4. Let h : R → R be an L-Lipschitz continuous function such that

h(t) =

{
h+(t), t ∈ (0,∞)

h−(t), t ∈ (−∞, 0),

where h+ and h− are smooth functions. Then for small enough ϵ > 0 there exists a function
hϵ : R → R such that

||hϵ(t)− h(t)||C2 ≲ ϵ2, h′ϵ(t) ≤ sup{h′(t) : t ∈ R \ {0}}, and |h′ϵ(t)| ≤ L.
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Proof. Let 0 < ϵ0 < 1. We will restrict our attention to (−ϵ0, ϵ0). Let φ ∈ C∞
c ([−1, 1]) be

the standard mollifier in R such that

0 ≤ φ ≤ 1 and

∫ 1

−1

φ(t)dt = 1.

Let σ(t) ∈ C∞
c

([
−1

2
, 1
2

])
be another bump function such that

0 ≤ σ(t) ≤ 1

100
for t ∈ R,

σ(t) =
1

100
for |t| < 1

4
,

0 < σ(t) ≤ 1

100
for

1

4
< |t| < 1

2
.

Let 0 < ϵ < 1
10
ϵ0. Define σϵ(t) = ϵ3σ

(
t
ϵ

)
. Moreover, define

hδ(t) =

∫
R
h(t− σδ(t)s)φ(s)ds, t ∈ (−ϵ0, ϵ0)

=

{∫
R h(s) ·

1
σδ(t)

φ
(

t−s
σδ(t)

)
ds, σδ(t) > 0

h(t), σδ(t) = 0.

(3.1.1)

Now we want to compute h′δ(s). For |t| > ϵ3

100
,

h′ϵ(t) =
d

dt

∫
R
h(t− σϵ(t)s)φ(s)ds

=

∫
R
h′(t− σϵ(t)s)

(
1− sϵ2σ′

(
t

ϵ

))
φ(s)ds.
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For |t| < ϵ
4
,

h′δ(t) =
d

dt

∫
R
h(s) · 1

σϵ(t)
φ

(
t− s

σϵ(t)

)
ds

=

∫
R
h(s) · d

dt

(
1

σϵ(t)
φ

(
t− s

σϵ(t)

))
ds

=

∫
R
h(s) · d

dt

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

= (−1) ·
∫
R
h(s) · d

ds

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

= (−1) ·
∫ 0

−∞
h−(s) ·

d

ds

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

+ (−1) ·
∫ ∞

0

h+(s) ·
d

ds

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

=

∫ 0

−∞
h′−(s) ·

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

+

∫ ∞

0

h′+(s) ·
(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

=

∫
R
h′(s) ·

(
100

ϵ3
φ

(
100(t− s)

ϵ3

))
ds

=

∫
R
h′(t− σϵ(t)s)φ(s)ds.

Now note for |t| < ϵ
4
that σϵ is a constant function; therefore, for all t ∈ (−ϵ0, ϵ0)

h′ϵ(t) =

∫
R
h′(t− σϵ(t)s)

(
1− sϵ2σ′

(
t

ϵ

))
φ(s)ds. (3.1.2)

By (3.1.1) and (3.1.2) we have

||hϵ(t)− h(t)||u ≤
∫
R
||h(t− σϵ(t)s)− h(t)||uφ(s)ds

≲ ϵ3.

and

||h′ϵ(t)− h′(t)||u ≤
∫
R
||h′(t− σϵ(t)s)− h′(t)||uφ(s)ds

+

∫
R

∣∣∣∣∣∣∣∣h′(t− σϵ(t)s)sϵ
2σ′
(
t

ϵ

)∣∣∣∣∣∣∣∣
u

φ(s)ds

≲ ϵ3 + ϵ2
∫
R

∣∣∣∣∣∣∣∣h′(t− σϵ(t)s)σ
′
(
t

ϵ

)∣∣∣∣∣∣∣∣
u

φ(s)ds

≲ ϵ2.
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Lastly, note that

|h′ϵ(t)| =
∫
R
|h′(t− σϵ(t)s)|

∣∣∣∣(1− sϵ2σ′
(
t

ϵ

))∣∣∣∣ |φ(s)|ds
≤ L

∫
R

(
1− sϵ2σ′

(
t

ϵ

))
(φ(s))ds

= L

(
1− ϵ2σ′

(
t

ϵ

)∫
R
sφ(s)ds

)
≤ L,

where the first inequality follows if ϵ is small enough and the last inequality follows since
sφ(s) is an odd function. Moreover, redoing this computation without the absolute values
shows that h′ϵ(t) ≤ sup{h′(t) : t ∈ R \ {0}}. ⊓⊔

Now we are ready to construct smooth 1-Lipschitz maps Fj :M
n
j → (Sn, grd).

Lemma 3.1.5. There exists a function Fj :M
n
j → Sn that is a 1-Lipschitz diffeomorphism

with degFj ̸= 0

Proof. First define a decreasing 1-Lipschitz function fj : [0, Dj] → [0, π].

fj(t) =

{
π − t, t ∈ [0, tj]

aj(t− tj) + bj, t ∈ [tj, Dj],

where aj =
−π+tj
Dj−tj

, bj = π − tj, and tj is chosen so that fj(tj) =
1
10
ρ
(
1
2
Dj

)
. Note ρ

(
1
2
Dj

)
is

the radius of the cylindrical part of the tunnel which is also the minimum that ρj(t) attains
on
[
π
2
, Dj − π

2

]
.

By Lemma 3.1.4, we can smooth fj to fj,ϵ by choosing ϵ small enough. And so define
Fj,ϵ(t, θ) = (fj,ϵ(t), θ). Since f ′

j,ϵ(t) < 0 and fj,ϵ is a bijection, we have that Fj,ϵ is a
diffeomorphism. We want to show that for all v ∈ TMj

F ∗
j,ϵgrd(v, v) ≤ gj(v, v).

Note that
F ∗
j,ϵgrd =

(
f ′
j,ϵ(t)

)2
dt2 + sin2(fj,ϵ(t))gSn−1 .

and
gj = dt2 + sin2(ρj(t))gSn−1 .

First by (2.1.2) and Lemma 3.1.4 we know that |f ′
j,ϵ(t)| ≤ 1 for all t. Now we will show that

sin2(fj,ϵ(t)) ≤ sin2(ρj(t)).
On [0, π − tj − 20ϵ] we have by (2.1.2) that

ρj(t) = π −
∫ t

0

cos (θj(u)) du ≥ π − t = fj(t) = fj,ϵ(t).
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On [π − tj − 20ϵ, π − tj] we have

ρj(t) = π −
∫ t

0

cos (θj(u)) du > π − t = fj(t)

and so for small enough ϵ, we have that fj,ϵ(t) will also satisfy this inequality.
On

[
π − tj, Dj − π

2

]
, we have that fj(t) ≤ 1

10
ρ
(
1
2
Dj

)
and that 1

10
ρ
(
1
2
Dj

)
< ρj(t) ≤ π

2
.

Therefore, sin2(fj(t)) ≤ sin2(ρj(t)) on
[
0, Dj − π

2

]
.

Lastly on
[
Dj − π

2
, Dj

]
we have the following: ρj(t) = π −Dj + t and fj,ϵ(t) = fj(t) =

aj(t− tj) + bj by the construction. Moreover,

−fj(t) + π ≥ ρj(t)

since if we define ψj(t) = ρj(t)+fj(t)−π, then we see that ψ′(t) ≥ 0 and ψ(Dj) = 0. We also
note on

[
Dj − π

2
, Dj

]
that π

2
≤ −fj(t) + π ≤ π and π

2
≤ ρj(t) ≤ π. Therefore, we conclude

that sin2(fj,ϵ(t)) = sin2(−fj,ϵ(t) + π) ≤ sin2(ρj(t)) on
[
Dj − π

2
, Dj

]
.

Thus, for all v ∈ TMj we have

F ∗
j,ϵgrd(v, v) ≤ gj(v, v),

which implies
ℓSn (Fj,ϵ ◦ c) ≤ ℓMj

(c)

where c : [0, 1] → (Sn, grd) is a path connecting p and q. This implies that

dSn (Fj,ϵ(p), Fj,ϵ(q)) ≤ dMj
(p, q).

Thus, we have that Fj,ϵ is 1-Lipschitz. Moreover, degFj,ϵ ̸= 0 since Fj,ϵ is a diffeomorphism.
⊓⊔

Lemma 3.1.6. Let (S3, g1), (S3, g2) be 3-spheres such that there exists a diffeomorphism
F : (S3, g1) → (S3, g2) that is 1-Lipschitz and is isotopic to the identity then

width(S3, g2) ≤ width(S3, g1).

Proof. By the definition of width for any δ > 0 there exists {Σt} such that

sup
t

|Σt|1 < width(S3, g1) + δ;

therefore,
width(S3, g2) ≤ sup

t
|F (Σt)|2 ≤ sup

t
|Σt|1 ≤ width(S3, g1) + δ

where the first inequality follows since F (Σt) ∈ Λ′ and the second inequality follows since F
is 1-Lipschitz. ⊓⊔

Proof of Theorem A. Let Mj be as in Proposition 3.1.1; therefore, Mn
j → M∞ where M∞

is the disjoint union of two spheres. Let Fj : Mn
j → Sn be as in Lemma 3.1.5. Then by

Arzela-Ascoli Theorem 1.3.4 there is a subsequence Fjk that converges to a 1-Lipschitz map

F∞ :M∞ → Sn.

This map is not a Riemannian isometry since Sn is connected and N ⊔N ′ is not. ⊓⊔
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Proof of Theorem A′. Let M3
j be as in Proposition 3.1.1; therefore, M3

j →M∞ in VF -sense
where M∞ is the disjoint union of two spheres. Let Fj :M

3
j → Sn be as in Lemma 3.1.5 and

define F̃j(r, θ) = Fj(Dj − r, θ). Consider the diffeomorphism

Φ : [0, Dj]× S2 → [0, π]× S2, Φ(r, θ) =

(
π

Dj

r, θ

)
Note that Φ is an isometry between ([0, Dj]× Sn−1,Φ∗(dr2 + sin2(r)gSn−1)) and
([0, π]× Sn−1, dr2 + sin2(r)gSn−1). And now consider

(Φ−1 ◦ F̃j)(r, θ) =

(
Dj

π
fj(Dj − r), θ

)
.

This map is a 1-Lipschitz orientation preserving diffeomorphism from Mn
j to the round

n-sphere and Φ−1 ◦ Fj is isotopic to the identity. Therefore, by Lemma 3.1.6 we have that
width(M3

j ) ≥ 4π. ⊓⊔

3.2 Manifolds with Many Wells

In this section, we will use Proposition 2.1.1 (Wells and Tunnels) to construct sequences of
manifolds with many wells. Furthermore, we will prove Theorems B and A′.

Theorem 3.2.1. Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 3 with
scalar curvature R ≥ κ. Then there exists a sequence of Riemannian manifolds Mn

j = (Mn, gj)
such that Rj ≥ κ− 1

j
and Mn

j converge in the VADB-sense and VF-sense to Mn but has no
convergent subsequence in the GH-topology.

Proof. Define

Xj =
{
(B(pji , δj), g)

}j
i=1

to be a collection of disjoint geodesic balls in Mn where 0 < δj <
1
j
is chosen small enough so

that by Proposition 2.1.1 we replace each B(pji , δj) with the well Wi,j = (B(pji , δj), gj) such
that the scalar curvature of each of the wells satisfies Rj > κ− 1

j
. Moreover, choose d = 1

2
in

Proposition 2.1.1 so that diam(Wi,j) ≥ 1
2
. Call the resulting manifold Mn

j = (Mn, gj). Now
we note that

lim
j→∞

volj (M
n
j ) = lim

j→∞
volg (M

n)−
j∑

i=1

volg (B(pji , δj)) +

j∑
i=1

volj (Wi,j).

Thus, by Proposition 2.1.1 and Proposition 2.1.10

lim
j→∞

volg (M
n)− jCδnj ≤ lim

j→∞
volj (M

n
j ) ≤ lim

j→∞
volg (M

n) + Cj

(
δnj +

δn−1
j

2

)
.

and so
lim
j→∞

volj (M
n
j ) = volg (M

n).
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Also by Proposition 2.1.1 and the triangle inequality, we have that

diam
(
Mn

j

)
≤ diam ((Mn, g)) + 2 diam (Wj) ≤ diam ((Mn, g)) + 2

(
C +

1

2

)
.

so the diameters are uniformly bounded.
Consider the identity map id : (Mn, gj) → (Mn, g). Denote id∗gj = gj. Now by

construction and Lemma 2.1.12 we have for any p ∈ Wi,j that

g(v, v) ≤ gj(v, v) for all v ∈ TpM

because gj = dF 2
j + g and if p /∈ Wi,j then g(v, v) = gj(v, v) for all v ∈ TpM .

Therefore, Mn
j converges to (Mn, g) in the VADB-sense and by Theorem 1.3.7 we have

that Mn
j converges to (Mn, g) in the VF -sense.

Fix ϵ0 <
1
4
. Note that ϵ0 is less than the diameter of the wells and recall pji are the tip of

the wells. Therefore, B(pji , ϵ0) ⊂Mn
j are disjoint. Therefore,

j < Covj(ϵ0)

and so as j → ∞ we have Covj(ϵ0) → ∞ so by Theorem 1.3.1 that Mj does not converge in
the GH-sense.

⊓⊔

Proof of Theorem B. Consider the round n-sphere (Sn, grd). By Theorem 3.2.1 we see that
there exists a sequence Mj = (Sn, gj) with scalar curvature Rj ≥ n(n − 1) − 1

j
such that

Mj → (S3, grd) in the V ADB and VF-sense but has no convergent subsequence in the
GH-topology. Furthermore, the identity map id : (Sn, gj) → (Sn, grd) is smooth 1-Lipschitz
diffeomorphism. ⊓⊔

Proof of Theorem B′. Consider the round 3-sphere (S3, grd). By Theorem 3.2.1 we see that
there exists a sequence (S3, gj) with scalar curvature Rj ≥ 6− 1

j
such that (S3, gj) → (S3, grd) in

the V ADB and VF -sense but has no convergent subsequence in the GH-topology. Moreover,
the identity map id : (S3, gj) → (S3, grd) is 1-Lipschitz and by Lemma 3.1.6 we have that
width(S3, gj) ≥ 4π. ⊓⊔

Proof of Theorem C. Let κ > 0 and let (Mn, g) be the round sphere of sectional curvature
2κ

n(n−1)
. Let {pj}∞j=1 ⊂ Mn be a sequence of points on a geodesic converging to a point p∞.

Define
{B(pj, δj)}∞j=1

to be a collection of disjoint geodesic balls in Mn where 0 < δj <
1
2j

is chosen small enough
so that by Proposition 2.1.1 there exists a well Wj = (B(pj, δj), gj) such that the scalar

curvature of each of the wells satisfies Rj > 2κ
(
1− 1

10j

)
> κ. Let {dj}∞j=1 ⊂ [2, 10] be a

strictly increasing sequence of positive numbers, and choose d = dj in Proposition 2.1.1 so
that diam(Wj) ≥ dj. Now define Mn

i to be the Riemannian obtained by replacing the first i
balls with the corresponding first i wells, i.e.,

Mn
i =

(
Mn \

i⋃
j=1

B(pj, δj)

)
⊔

i⋃
j=1

Wj.
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We note thatMn
i has scalar curvature strictly larger than κ. We also have by Proposition 2.1.1

that
diam(Mn

i ) ≤ 25C

and

vol(Mn
i ) ≤ vol(Mn) +

∞∑
j=1

vol(Wj)

≤ vol(Mn) + C

(
∞∑
j=1

1

2nj
+ 10

∞∑
j=1

1

2(n−1)j

)
≤ vol(Mn) + 11C.

Now we will define M∞ to be

M∞ =

(
Mn \

∞⋃
j=1

B(pj, δj)

)
⊔

∞⋃
j=1

Wj

with its induced length metric and natural current structure T∞. Therefore, we have that
vol(Mn

i ) → vol(M∞). Note that M∞ is noncompact since it contains infinitely many disjoint
balls of radius 1.

We will show that Mn
i converges to M∞ in an analogous way to [58, Example A.11]. Let

ϵi = dMn(pi, p∞) and note that if B̃i = B(p∞, ϵi − δi), then there is an isometry, φ : Vi → V ′
i

where Ui =Mn
i \ B̃i ⊂Mi and U

′
i ⊂M∞. By [58, Lemma A.2], there exists a metric space Z

such that

dZF (M
n
i ,M∞) ≤ vol(Mn

i \ Ui) + vol(M∞ \ U ′
i)

+ vol(Ui)
(√

2 diamMn
i
(∂Ui) diamMn

i
(Ui) + diamMn

i
(∂Ui)

)
+ vol(U ′

i)
(√

2 diamMn
i
(∂U ′

i) diamMn
i
(U ′

i) + diamMn
i
(∂U ′

i)
)
.

We note that

vol(Mn
i \ Ui) ≤ π(ϵi − δi)

n, vol(M∞ \ U ′
i) ≤ C

(
∞∑
j=i

1

2nj
+ 10

∞∑
j=i

1

2(n−1)j

)
.

Also, diam(∂Ui) and diam(∂U ′
i) converge to zero. Therefore, the right-hand side of the

inequality above goes to zero as i→ ∞. We conclude then that Mn
i converges to M∞ in the

VF -sense. ⊓⊔

3.3 Sewing Manifolds

We are able to generalize the sewing examples of Basilio, Dodziuk, and Sormani found in
[7] and [9]. There are two methods of sewing developed in [9]. Method I generalizes the
curve sewing construction of [7]. Here we will extend the construction using Proposition 2.1.2
(Wells and Tunnels). We start with Method I which says that given a fixed manifold one can
tightly sew a compact region to a point.
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Proposition 3.3.1. Let (Mn, g) be a complete Riemannian manifold, and A0 ⊂M a compact
subset with an even number of points pi ∈ A0, i = 1, . . . , n with pairwise disjoint balls B(pi, 2δ)
with scalar curvature greater than κ. For small enough δ > 0, define Aδ := Tδ(A0) and

A′
δ = Aδ \

(
n⋃

i=1

B(pi, δ)

)
⊔

n
2⋃

i=1

Ti

where Ti are tunnels as in Proposition 2.1.2 (Wells and Tunnels) connecting ∂B(p2j+1, δ) and
∂B(p2j+2, δ) for j = 0, 1, . . . , n

2
− 1. Then given any ϵ, shrinking δ further, if necessary, we

may create a new complete Riemannian manifold, (Nn, h),

Nn = (Mn \ Aδ) ⊔ A′
δ

satisfying
vol (Aδ)− ϵ ≤ vol (A′

δ) ≤ vol (Aδ) + ϵ

and
vol (M)− ϵ ≤ vol (N) ≤ vol (M) + ϵ

If, in addition, M has scalar curvature, RM ≥ κ, then N has scalar curvature, RN ≥ κ− ϵ.
If ∂M ̸= ∅, the balls avoid the boundary and ∂M is isometric to ∂N .

Proof. The proof follows from the proof of [7, Proposition 3.1] while using Proposition 2.1.2
(Wells and Tunnels) and Proposition 2.1.10. ⊓⊔

Proposition 3.3.2. Let (Mn, g) be a complete Riemannian manifold and A0 ⊂M . Let Aa =
Ta(A0) be a tubular neighborhood of A0. Assume that there is an a > 0 such that Aa has scalar
curvature greater than κ. Let r ∈ (0, a). Given ϵ > 0, there exists δ = δ(A0, κ, r, ϵ) ∈ (0, r)
and there exists even n = n̄(n̄− 1) depending on A0, κ, ϵ, and r and points p1, . . . , pn ∈ A0

with B(pi, δ) pairwise disjoint such that we can “sew the region tightly” to create a new
complete Riemannian manifold (Nn, h),

N = (M \ Ar) ⊔ A′
r,

as in Proposition 3.3.1, with

A′
δ = Aδ \

(
2n⋃
i=1

B(pi, δ)

)
⊔

n−1⋃
j=0

T2j+1.

Moreover,
vol (A′

r) ≤ vol (Ar) + ϵ

and
vol (N) ≤ vol (M) + ϵ

and there is a constant c > 0 such that

diam (A′
r) ≤ cr.

If M has scalar curvature RM ≥ κ, then N has scalar curvature RN ≥ κ− ϵ. If ∂M ̸= ∅, the
balls avoid the boundary, and ∂M is isometric to ∂N .
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Proof. The proof follows from the proof of [9, Proposition 3.6] while using Propositions 2.1.2,
3.3.1, and Lemma 2.1.3. ⊓⊔

These statements allow us to construct sequences of manifolds with scalar curvature
greater than κ which converge to a pulled metric space in a similar manner as in [9]. We
recall the following definition from [9].

Definition 3.3.3. Let (Mn, g) be a Riemannian manifold with a compact set A0 ⊂ M
with tubular neighborhood Aa = Ta(A0) satisfying the hypotheses of Proposition 3.3.2.
We can construct its sequence of increasingly tightly sewn manifolds, (Nn

j , gj), by applying
Proposition 3.3.2 taking ϵ = ϵj → 0, n = nj → ∞, and δ = δj → 0 to create each sewn
manifold Nn = Nn

j and the edited regions A′
δ = A′

δj
which we simply denote A′

j. Since these
sequences Nj are created using Proposition 3.3.2, they have scalar curvature greater than
κ− ϵj when M has scalar curvature greater than κ and ∂Nj = ∂M whenever ∂M ̸= ∅.

Theorem 3.3.4. The sequence Nj, as in Definition 3.3.3 assuming Mn is compact and A0

is a compact embedded submanifold of dimension 1 to n, converges in the Gromov–Hausdorff
sense and the intrinsic flat sense to N∞, which is a metric space created by pulling the region
A0 to a point. If, in addition, Hn−1(A0) = 0 then Nj also converges in the metric measure
sense to N∞.

Proof. The proof follows from the proof of [9, Theorem 3.8] while using Proposition 3.3.2. ⊓⊔

Now we can prove Theorem D.

Proof of Theorem D. Let S be a compact space form of dimension n and constant curvature
κ

n(n−1)
and Σm be a constant curvature m-dimensional sphere, 1 ≤ m ≤ n− 1. We note that

there exists an embedding of Σm into S. Let (Nn
j , gj) be a sequence of manifolds constructed

from S sewn along an embedded Σm with δ = δj → 0 as in Proposition 3.3.2 and the scalar
curvature Rj ≥ κ− 1

j
. Then by Theorem 3.3.4 we have

Nj
mGH−−−→ N∞ and Nj

F−→ N∞

where N∞ is the metric space created by taking S and pulling a Σm to a point. Moreover, at
the pulled point p0 ∈ N∞ we have

wR(p0) = lim
r→0

6(n+ 2)
volEn B(0, r)−Hn(B(p0, r))

r2 · volEn B(0, r)
= −∞.

We can see this because

volN∞ (B(p0, r)) = Hn
N∞(B(p0, r)) = Hn

N∞(B(p0, r) \ {p0}) = Hn
Snκ(Tr(S

m)).

Moreover, there is a constant C(n,m, κ) such that

lim
r→0

Hn
Snκ(Tr(Σ

m))

Crn−m
= 1.

We conclude that

wR(p0) = lim
r→0

6(n+ 2)
ωnr

n − Crn−m

ωnrn+2
= −∞.

⊓⊔
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Moreover, using Proposition 2.1.2 we can extend Method II for sewing manifolds in [9]
to the setting where scalar curvature is bounded below. In Method II, given a sequence of
Riemannian manifolds whose limit is a Riemannian manifold, then one can create a new
sequence where the sewing occurs along the sequence.

Theorem 3.3.5. Let Mn
j be a sequence of compact Riemannian manifolds each with a

compact region Aj,0 ⊂M3
j with tubular neighborhood, Aj, with scalar curvature greater than

κ satisfying the hypotheses of Proposition 3.3.2. We assume Mn
j converge in the biLipschitz

sense to Mn
∞ and the regions Aj,0 converge to a compact set A∞,0 ⊂ Mn

∞ in the sense that
there exists biLipschitz maps

ψj :M
n
j →Mn

∞

such that
Lj = log (Lip(ψj)) + log

(
Lip

(
ψ−1
j

))
→ 0

and ψj(Aj,0) = A∞,0. Then there exists δj → 0 and applying Proposition 3.3.2 to Mn =Mn
j

to sew the regions A0 = Aj,0 with δ = δj, to obtain sewn manifolds Nn = Nn
j , we obtain a

sequence Nn
j such that

Nn
j

GH−−→ N∞ and Nn
j

F−→ N∞,0,

where N̄∞,0 = N∞ and N∞ is the metric space created by taking Mn
∞ and pulling the region

A∞,0 to a point.
Moreover, if the regions Aj,0 satisfy Hn(Aj,0) = 0, then the sequence Nn

j also converges in
the metric measure sense

Nn
j

mGH−−−→ N∞.

Proof. The proof follows from the proof of [9, Theorem 5.1] while using Proposition 3.3.2
and Theorem 3.3.4 ⊓⊔

3.4 Intrinsic Flat Limit with No Geodesics

We are able to generalize the result of Basilio, Kazaras, and Sormani from [8] which shows
the intrinsic flat limit of Riemannian manifolds need not be geodesically complete. This
follows from Proposition 2.1.2 (Wells and Tunnels) and the pipe-filling technique [8, Theorem
3.1]. In particular:

Theorem 3.4.1. There is a sequence of closed, oriented, Riemannian manifolds (Mn
j , gj),

n ≥ 3, such that the corresponding integral current spaces converge in the intrinsic flat sense
to

M∞ =

(
N, dEn+1 ,

∫
N

)
,

where N is the round n-sphere of section curvature 2κ
n(n−1)

and dEn+1 is the Euclidean distance

induced from the standard embedding of N into En+1. Moreover, Mj may be chosen so that

Rj, the scalar curvature of Mj, satisfies R
j ≥ 2κ

(
1− 1

10j

)
> κ. Moreover, M∞ is not a

length space and is not locally geodesically complete.
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3.5 Novel Min-Oo Counterexamples

In this section, we use quantitative surgery to construct non-perturbative counterexamples to
Min-Oo’s Conjecture; moreover, we construct counterexamples with more complex topology.
But first, we need the following statement of the counterexample of Min-Oo’s Conjecture
constructed by Brendle, Marques, and Neves.

Theorem 3.5.1 ([13], Corollary 6). Let n ≥ 3. There exists a Riemannian metric g on the
hemisphere Sn

+ with the following properties:

i. The scalar curvature, Rg, satisfies Rg > n(n− 1).

ii. At each point on ∂Sn
+, g = grd, where grd is the standard unit round metric on Sn

+.

iii. The boundary ∂Sn
+ is totally geodesic with respect to g.

Now we are ready to prove our main result.

Proof of Theorem F. Let n ≥ 3. Let (Mn, g) be a Riemannian manifold such that the
scalar curvature, Rg, satisfies Rg > n(n− 1). Let (Sn

+, ḡ) be the Riemannian manifold from
Theorem 3.5.1. Choose d ≥ D and j large enough in Proposition 2.1.2 so that the constructed
metric on M#Sn

+ satisfies the conditions in Theorem F. ⊓⊔

Proof of Corollary 1. Let n ≥ 3. In Theorem F, take (Mn, g) to be
(
Sn, gn1

2

)
where gn1

2

is the

round metric on Sn of radius 1
2
. ⊓⊔

Proof of Corollary 2. By Proposition 2.1.2, for any n ∈ N one can construct a metric g on
M = #m

i=1Sn that has scalar curvature strictly larger than n(n − 1) and whose volume is
larger than

⌊
m
2

⌋
ωn, where ωn is the volume of Sn with its standard unit round metric. Choose

m larger enough so that volg(M) > V . Now by Theorem F, one can obtain a metric on Sn
+

satisfying the conditions of Corollary 2 ⊓⊔

Proof of Corollary 3. Let n ≥ 3 and p+ q = n. In Theorem F, take (Mn, g) to be (Sp×Sq, h)
where h is a metric on Sp × Sq of scalar curvature strictly larger than n(n− 1). In particular,
one can choose h = 1

2(n(n−1))
(gp1 + gq1) where g

m
r is the standard round metric on Sm of radius

r. ⊓⊔

Proof of Theorem G. Let n ≥ 3 and take (Mn, g) in Proposition 2.2.1 to be the manifold
from Theorem 3.5.1. ⊓⊔

3.6 Manifold with Volume Constraint and Scalar

Curvature greater than n(n− 1)

In this section, we construct examples that are related to the result of Miao and Tam [46]
while keeping the volume arbitrarily close to the volume of the standard unit round Sn

+.
Moreover, from the proof of Theorem I one can see outside a set of arbitrarily small volume
the metric g is a small perturbation of the standard unit round metric on Sn

+.

49



Proof of Theorem I. Recall that gn1 is the standard unit round metric on Sn. By [13, Corollary
15] there exists a smooth function u : Sn

+ → R and a smooth vector field X on Sn
+ such that

for all t small enough we have that the metric

g(t) = gn1 + tLXg
n
1 +

1

2(n− 1)
t2ugn1

has scalar curvature strictly greater than n(n− 1), the mean curvature of the boundary is
strictly positive, and g(t) = gn−1

1 on ∂Sn
+.

Fix 0 < ϵ < 1
100

and D > 0. Now choose t0 small enough so that

| volgn1 (S
n
+)− volg(t0)(Sn

+)| < ωnϵ
n,

where ωn is the volume of the n-sphere and the scalar curvature of g(t0) is strictly larger
than n(n− 1). Now using Proposition 2.1.2 we can construct a metric on Sn

+ that satisfies
the conditions of Theorem I by constructing a metric g on Sn

+#Sn.
In particular, in the setting of Proposition 2.1.2, we consider M1 = (Sn

+, g(t0)) and M2 =
(Sn, gn10ϵ). Let B1 = Bg(t0)(p, 2δ) ⊂ M1 and B2 = Bgn10ϵ

(p′, 2δ) ⊂ M2. In Proposition 2.1.2,

choose d > D and j such that min
(
RM1 − 1

j
, RM2 − 1

j

)
> n(n − 1). Finally, choose δ > 0

such that 200δ < ϵ and dδn−1 < ϵn−1.
Thus, the metric g on Sn

+#Sn has scalar curvature strictly larger than n(n − 1) and∣∣volg(t0)(Sn
+)− volg(t0)(Sn

+ \B1)
∣∣ < ωnϵ

n. Note

volg(Sn
+#Sn) = volg(t0)(Sn

+ \B1) + vol(T ) + volgn10ϵ(S
n \B2).

and ∣∣volgn1 (Sn
+)− volg(t0)(Sn

+ \B1)
∣∣ < 2ωnϵ

n.

Thus,

volgn1 (S
n
+) ≤ volg(t0)(Sn

+ \B1) + 2ωnϵ
n

≤ volg(t0)(Sn
+ \B1) + vol(T ) + (10n − 1)ωnϵ

n

≤ volg(Sn
+#Sn)

= volg(t0)(Sn
+ \B1) + vol(T ) + volgn10ϵ(S

n \B2)

≤ volgn1 (S
n
+) + 2ωnϵ

n + C(δn + dδn−1) + ωn10
nϵn,

where in final inequality we use (ii) from Proposition 2.1.2 to estimate vol(T ). Therefore, by
our choice of δ and the fact ϵ < 1 we that

1

2
ωn ≤ volg(Sn

+#Sn) ≤ 1

2
ωn + (2C + (2 + 10n)ωn)ϵ

n−1.

⊓⊔
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