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Abstract of the Dissertation
Understanding the Defining Ideal Through Cones

by

Karina Cho

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

We study the degrees in which the ideal of a smooth projective variety
over C is generated by cones. Our main results focus on the first nontrivial
case when the variety is a finite set of points in P2.
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Chapter 1

Introduction

The purpose of this dissertation is to study when the defining ideal of a
projective variety is generated by cones.

Let X ⊆ Pr be a smooth projective variety of dimension n and degree
d. Given an (r − n − 2)-plane Λ ⊆ Pr disjoint from X, let

CΛ(X) ⊆ Pr

denote the cone over X centered at Λ, which is a hypersurface of degree
d. This hypersurface is defined by a homogeneous polynomial cΛ(X) ∈ Sd,
where S = C[x0, . . . , xr] is the homogeneous coordinate ring of Pr. We call
cΛ(X) the cone polynomial over X centered at Λ. As Λ varies in Pr, one
can show that the cΛ(X) cut out X scheme-theoretically. It follows that if
Icone = IconeX ⊆ S is the ideal generated by the cone polynomials, then

Iconek = (IX)k for k ≫ 0. (�)

The motivating question of this dissertation is

Question: In what degrees k does (�) hold?

In particular, we focus on the first non-trivial case when X ⊆ P2 is a finite
set of points.
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One reason that this research question is interesting is that cones
give geometrically meaningful polynomials that eventually generate the
defining ideal of a projective variety. Understanding the equations defining
an abstract variety has been a major area of study in the last century, as
described in the survey of Lyubeznik [16]. Recent work in the intersection of
algebraic geometry and computational mathematics provides algorithms for
finding generators for the defining ideals in specific cases such as points [1],
smooth affine varieties [3], and parameterized subgroups in a toric variety
[24]. While cone polynomials cannot generate the parts of the defining ideal
in degrees less than the degree of the variety, they provide a natural way to
see some of the equations of IX geometrically, so it is interesting to know
how close cones come to generating the defining ideal.

Another motivation to study this problem is its relationship to bounds
on regularity. Following the results of Castelnuovo [4], Mumford [19] in-
troduced Castelnuovo-Mumford regularity, which gives an integer valued
cohomological measure of the algebraic complexity of a smooth variety
Y ⊆ P = Pr+1. Recent work [11, 21, 14, 13, 5, 22] in algebraic geometry,
commutative algebra, and computational mathematics studies bounds on
the regularity of various types of varieties. In practice, knowing for which
values of k the cohomology

H1(IY (k)) = 0 (�)

vanishes is key to bounding the Castelnuovo-Mumford regularity of Y . Let

X = Y ∩H ⊆ Pr

be a general hyperplane section of Y and consider the exact sequence

0 → IY (k) → IY (k + 1) → IX/Pr(k + 1) → 0.

By inducting on dimension, one can usually assume that H i(IY (k+1−i)) =

0 for i ≥ 3. Then, due to a result of Mumford (see Lemma 3.1.5), h1(IY (k))

is strictly decreasing as a function of k. In this case, the vanishing condition

2



(�) is equivalent to knowing the surjectivity of

H0(IY (k + 1)) → H0(IX/Pr(k + 1)).

The cone polynomials cΛ(X) ∈ H0(IX/Pr(d)) extend to hypersurfaces of
degree d in Pr+1 vanishing on Y . Thus, an answer to the research question
gives an effective bound for the desired surjectivity above.

Now that I have established the underlying motivation, I will discuss
the main focus of the dissertation, which is the case when X ⊆ P2 is a
finite set of d points. Prior work done by Fu and Nie [9] examines the ideal
generated by cone polynomials when X is a set of generic points. They
establish the that cone polynomials fail to generate IX in degree d when
d is odd.

Theorem (c.f. Theorems 3.2.2 and 3.2.3). Let X ⊆ P2 be a set of d generic
points. When d ≥ 3 is an odd integer with d ≡ 3 mod 4,

codim
(
Iconed ⊆ (IX)d

)
≥ 1.

When d ≥ 5 and d ≡ 1 mod 4,

codim
(
Iconed ⊆ (IX)d

)
≥ 2.

Their results follow a conjecture (see Conjecture 3.2.1) of Ilic that
the inequalities in the theorem above are equalities and when d is even,
cones generate all of (IX)d.

The main theorem of this dissertation is an answer to our research
question when X ⊆ P2 is a collinear set of points.

Theorem (c.f. Theorem 4.1.8). When X ⊆ P2 is a set of d distinct collinear
points, Iconek = (IX)k if and only if k ≥ 2d− 2.

3



As the points X ⊆ P2 move around in the plane, the saturation degree
of Icone follows a semicontinuity property (i.e. it may jump up when X lies
in special geometric configurations). Then, our theorem for collinear points
gives an upper bound on the saturation degree of Icone for arbitrary finite
sets in P2 through a deformation argument.

Theorem (c.f. Theorem 4.2.5). Let X ⊆ P2 be a set of d distinct points.
If k ≥ 2d− 2, then Iconek = (IX)k.

One benefit of working with cone polynomials is that given a concrete
X ⊆ Pr, we can generate equations for cΛ(X) using computational software
and find the saturation degree of Icone. The final chapter of this dissertation
explores some interesting patterns that appear in experimental data gener-
ated in Macaulay2. Based on these data, I propose conjectures for how cone
polynomials behave when X is a finite set in higher projective spaces or a
curve in P3. I also discuss a potential explanation for the phenomenon ob-
served in the work of Fu and Nie regarding the cone polynomials generating
in degree d for even degrees only.

The dissertation is organized as follows: In Chapter 2, we discuss
relevant background material, including the theories of saturation and
Castelnuovo-Mumford regularity. We also dedicate a section to a theo-
rem of Macaulay that allows us to prove our main theorem for collinear
points. Chapter 3 introduces cone polynomials and outlines the prior work
on cone polynomials done by Fu and Nie [9]. It also establishes that cone
polynomials cut out any smooth projective variety scheme-theoretically and
a preliminary bound on the saturation degree of the cone ideal coming from
sheaf cohomology. Chapter 4 contains the proofs of the main results of the
dissertation regarding the saturation degree of the cone ideal for finite sets
in P2. Finally, we examine what experimental data suggests about cone
polynomials in higher dimensions in Chapter 5.
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Chapter 2

Background

I will survey the relevant background information in this chapter. A central
question in this dissertation revolves around the saturation degree of the
cone ideal for projective varieties, so Section 2.1 discusses the general theory
of saturation. In Section 2.2, I state a classical result of Macaulay that
provides a bound on the saturation degree for ideals whose saturation is
the irrelevant ideal, which will be applied to our study of cone polynomials.
Section 2.3 is an overview of the theory of regularity, which provides moti-
vation for the study of cone polynomials. Section 2.4 reviews some of the
basic properties of flat families of sheaves that will be used in our discussion
of how the cone degree behaves under degeneration of the base variety.

2.1 Saturation

2.1.1 Basic Definitions and Results

For ideals I, J of a commutative ring R, recall that their ideal quotient
(I : J) is the set

(I : J) = {r ∈ R|rJ ⊆ I}.

5



Definition 2.1.1. Let S = C[x0, . . . , xr] be the homogeneous coordinate
ring of Pr and m = (x0, . . . , xr) be the irrelevant ideal. The saturation of
an ideal J ⊆ S is

J sat :=
⋃
j

(I : mj)

= {f ∈ S|(x0, . . . , xr)
N · f ⊆ J for some N ≥ 0}.

We say that J is saturated if J = J sat.

In other words, J sat is the ideal of polynomials that multiply some
power of the irrelevant ideal into J .

Let’s show that the defining ideals of projective varieties are saturated.

Proposition 2.1.2. If IX ⊆ S is the homogeneous ideal of a (reduced)
projective variety X ⊆ Pr, then IX is a saturated ideal, i.e., IX = IsatX .

Proof. Note that IX ⊆ IsatX because the saturation of an ideal always con-
tains the original ideal. For the other direction, take f ∈ IsatX . Then there
exists an N ≥ 0 so that f · xN

0 , . . . , f · xN
r ∈ IX . If N = 0, then f ∈ I. If

N > 0, then we have that f ·xN
0 , . . . , f ·xN

r all vanish on X. Suppose to the
contrary that f ̸∈ IX , so there is some x ∈ X with f(x) ̸= 0. This means
that for all i, xi = 0, but then x = (0 : · · · : 0), which is not a point in Pr.
Thus, f ∈ IX .

Furthermore, every saturated ideal in S arises from a subscheme of Pr.

Proposition 2.1.3. Saturated ideals in S = C[x0, . . . , xr] correspond pre-
cisely to projective subschemes of Pr.

Proof. Note that two projective subschemes are the same if and only if
they agree on all affine charts xi = 1. If I ⊆ S is an ideal, the restriction
I|xi

homogenizes to I(i) :=
⋃

j(I : xj
i ). If J ⊆ S is an ideal, then I|xi=1 =

J |xi=1 if and only if their rehomogenizations are equal to each other. Thus,
I and J define the same subscheme of Pr precisely when I(i) = J(i) for
all i; equivalently, when

⋂
i I(i) =

⋂
i J(i). Since

⋂
i I(i) = Isat, the claim

follows.
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Intuitively, an ideal and its saturation will agree in sufficiently high
degrees.

Proposition 2.1.4. For an ideal J ⊆ S = C[x0, . . . , xr],

(J sat)k = Jk for k ≫ 0.

Proof. In general, an ideal J ⊆ S is always contained in its saturation, so
it is sufficient to show that for k sufficiently large, any degree k element of
J sat is in J .

Since S is Noetherian, J sat is finitely generated. Suppose J sat =

(g1, . . . , gm) where deg gi = di. Then by definition of saturation, for each
i, there exists Ni ≥ 0 such that gi · mNi ⊆ J , i.e., for any homogeneous
polynomial fi of degree ≥ Ni, we have gifi ∈ J . Then, if M = max{Ni}
and deg fi ≥ M , gifi ∈ J .

Let k ≥ M +max{di} and h ∈ (J sat)k, so deg h = k and h =
∑

gifi

where the fi ∈ S are degree k− di ≥ M . Then for each i, gifi ∈ J , so since
J is closed under addition, h =

∑
gifi ∈ J as well.

Thus, it makes sense to study the smallest degree in which an ideal
agrees with its saturation.

Definition 2.1.5. The smallest integer k such that (J sat)k = Jk is called
the saturation degree sat. deg(J) of J .

Example 2.1.6. Let S = C[x0, x1, x2] and let J = (x2
0, x0x1, x0x2). Then

x0 ∈ J sat because x0 times any degree 1 monomial is in J while x1, x2 ̸∈ J sat

because J does not contain any power of those elements. Thus, J sat = (x0).
We have

(J sat)2 = span{x2
0, x0x1, x0x2} = J2,

so sat. deg(J) = 2.

In the example, we see that geometrically, J “cuts out" the line
L = {x0 = 0} even though J does not contain everything in the saturated
defining ideal IL. Let us introduce some language that will allow us to
discuss this principle in generality.
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Definition 2.1.7. A subvariety X ⊆ Pr is scheme-theoretically an
intersection of hypersurfaces H1, . . . , Hm if as sets,

X = H1 ∩ · · · ∩Hm,

and every x ∈ X has an affine open neighborhood U ⊆ Pr such that the ideal
IX∩U ⊆ C[U ] of X ∩ U ⊆ U is generated by the affine equations f1, . . . , fm

of H1, . . . , Hm.
If F1, . . . , Fm ∈ S define the hypersurfaces H1, . . . , Hm, we may also

say that the Fi scheme-theoretically cut out X.

Lemma 2.1.8. Let X ⊆ Pr be a subvariety with ideal sheaf IX ⊆ OP. Then
X is scheme-theoretically an intersection of hypersurfaces Hi if an only if
we have a surjective map of sheaves

⊕m
1 OPr(−di) IX 0

given by the homogeneous polynomials Fi defining the hypersurfaces Hi, with
degFi = di.

Proof. Suppose X is scheme-theoretically an intersection of the given hy-
persurfaces. Then for each x ∈ X, there exists an affine open neighborhood
U ⊆ Pr such that on U the ideal I(X ∩ U) is generated by the affine
equations fi of the hypersurfaces defined by Fi. Then the map of sheaves

ϕ : ⊕m
1 OPr(−di) → IX

given by the homogeneous Fi is surjective locally on the U , so ϕ is surjective
globally.

Conversely, if the surjective map of sheaves is given by the polynomials
Fi, then if fi is the local equation of Fi on U , any s ∈ IX∩U(U) is in the
image of ϕU . In other words, IX(U) is generated by f1, . . . , fm, so the
hypersurfaces defined by the fi scheme-theoretically cut out X.

Proposition 2.1.9. The hypersurfaces F1, . . . , Fm scheme-theoretically cut
out X precisely when (F1, . . . , Fm)

sat = I(X).

8



Proof. Suppose that the Fi scheme-theoretically cut out X. By Lemma
2.1.8, this is equivalent to the Fi defining a surjective map

⊕m
1 OPr(−di) → IX .

By applying Serre Vanishing to the kernel of this map, after twisting the
sheaves up by OP(k), this map will be surjective on H0 for k ≫ 0.

Suppose f ∈ IX and pick k sufficiently large and greater than deg f .
Let N = k−deg f and M ∈ S be any monomial of degree N , so that Mf ∈
H0(IX(k)). Then surjectivity of the map implies that Mf ∈ (F1, . . . , Fm),
so f ∈ J sat.

Conversely, if (F1, . . . , Fm)
sat ⊊ IX , we use an analogous argument to

show that the Fi cannot scheme-theoretically cut out X.

2.1.2 Examples of Non-saturated Ideals

In this subsection, we present an extended example of constructing polyno-
mials that cut out a variety scheme-theoretically while the ideal that they
generate is non-saturated, which exemplifies that such ideals arise easily
in nature.

We will start by establishing that if X ⊆ Pr is a smooth subvariety
and we have polynomials that scheme-theoretically cut out X, we only need
r + 1 general C-linear combinations.

Proposition 2.1.10. Let L′ be a line bundle on a smooth variety P ′ of
dimension n which is generated by its global sections. Then it is generated
by n+ 1 general sections.

Proof. Take a general section σ0 ∈ Γ(L′, P ′) and let Z1 = {σ0 = 0} ⊆ P ′

be the zero locus, so every component Z1,i of Z1 has dimension n− 1. For
each i, pick a point x1, i ∈ Z1,i. Since L′ is globally generated, there exists
sections s1,i ∈ Γ(L′, P ′) such that s1,i ̸= 0. Then, there is a section σ1 which
is a C−linear combination of the s1,i such that σ1(x1,i) ̸= 0 for all i. Thus,

9



σ does not vanish on any component of Z1, so the zero locus

Z2 = {x ∈ P ′|σ0 = σ1 = 0} ⊆ Z1 ⊆ P ′

is pure codimension 2 in P ′. Continue inductively until we have chosen
sections σ0, . . . , σn−1 such that the common zero locus

Zn−1 = {x ∈ P ′|σ0 = · · · = σn−1 = 0} ⊆ P ′

is pure codimension n in P ′. Since P ′ is dimension n, that means that Zn−1

is a finite set of points in P ′. Then, there is a section σn ∈ Γ(L′, P ′) that is
nonzero for all points of Zn−1, so the common zero locus

{x ∈ P ′|σ0 = · · · = σn = 0} = ∅.

Then, for any point x ∈ P ′, there must exist a section σj among the
σ0, . . . , σn such that σj(x) ̸= 0, which means that L′ is globally generated
by the n+ 1 sections σ0, . . . , σn.

Lemma 2.1.11. Let X ⊆ P be a smooth subvariety of a smooth variety
P . Let µ : P ′ → P be the blow up of P along X and E be the exceptional
divisor of µ. Then µ∗(OP ′(−E)) = IX .

Proof. By Zariski’s Main Theorem, µ∗(OP ′)
∼−→ OP and µ∗(OE)

∼−→ IX are
isomorphisms. The inclusion E ⊆ P ′ gives rise to the exact sequence

0 OP ′(−E) OP ′ OE 0 .

Then, taking the pushforward of this sequence through µ gives a left exact
sequence

0 µ∗(OP ′(−E)) OP OX 0 .

Since X ⊆ P , the map OP → OX is surjective, so the sequence is also right
exact. Hence, µ∗(OP ′(−E)) = IX .

10



Proposition 2.1.12. If a smooth variety X ⊆ Pr is scheme-theoretically
cut out by hypersurfaces of degree d, then it is cut out by r + 1 of them.

Proof. If X is cut out by hypersurfaces of degree d, then then we have
sections s0, . . . , sm ∈ H0(OPr(d)⊗ IX). Let P ′ be the blow up of Pr along
X and E ⊂ P ′ be the exceptional divisor. Then, pulling back the sections
through µ gives

s′0, . . . , s
′
m ∈ H0(µ∗(OPr(d))⊗ µ∗(IX)).

By Lemma 2.1.11, µ∗(OPr(d))⊗ µ∗(IX)) = µ∗(OPr(d))⊗OPr(−E), which is
a line bundle L′ on Pr. Since pullback is right exact, the s′i globally generate
L′. By Proposition 2.1.10, L′ is generated by r + 1 general sections.

This Proposition allows us to use the dimension of the ambient space
to bound the number of generators needed to scheme-theoretically cut out
a variety. Now we can use this to obtain non-saturated ideals.

Example 2.1.13 (Non-saturated ideals of curves by quadratic polynomials).
In this example, we construct examples of non-saturated ideals generated
by quadratic polynomials which scheme-theoretically cut out a curve.

Let C be a smooth curve of genus g, degree d ≥ 2g+2, and L be a line
bundle of degree d on C. Then L is very ample by Corollary IV.3.2 in [12]
and normally generated (cf. [20]) so it defines an embedding C ↪→ Pr where
r = d− g such that C is projectively normal. Castelnuovo (cf. [2]) shows
that C is a scheme-theoretic intersection of quadrics, and by Proposition
2.1.12, C ⊆ Pd−g is scheme-theoretically cut out by d− g + 1 quadrics. To
find out how many quadrics pass through C, consider the exact sequence
of sheaves

0 IC/Pr(2) OPr(2) OC(2) 0.

By the Riemann-Roch Theorem,

h0(OC(2)) = 2d− g + 1.

11



Since C is projectively normal, the sequence above is exact on global sections,
so

h0(IC/Pr(2)) = h0(OPr(2))− h0(OC(2))

=

(
r + 2

2

)
− (2d− g + 1)

=

(
d− g + 2

2

)
− (2d− g + 1),

which is quadratic in d. Thus, since the number d−g+1 ≤ d+1
2

of quadratic
polynomials needed to scheme theoretically cut out C is linear in d, the
ideal that they generate is very non-saturated.

2.2 Macaulay’s Theorem

Given a homogeneous ideal J ⊆ S, there are some cases in which we can
bound the saturation degree of J given the degrees of the generators of
J . When the polynomials defining J have no common zeroes, we have the
following classical result of Macaulay [17].

Theorem 2.2.1. (Macaulay’s Theorem) Let S = C[x0, . . . , xm]. Sup-
pose F0, . . . , Fp ∈ S are homogeneous polynomials of degrees d0 ≥ · · · ≥ dp

respectively with no common zeroes in Pm. Let J =
(
F0, . . . , Fp

)
. Then

Jk = Sk for k ≥ d0 + · · ·+ dm −m,

and the inequality is sharp when p = m.

In terms of saturation, Macaulay’s Theorem says that the saturation
degree of J is (

∑
di)−m when the number of polynomials is the dimension

of the projective space plus one and otherwise it is an upper bound on the
saturation degree.

12



Example 2.2.2. Here is a case in which the conclusion of Macaulay’s
theorem is apparent. Consider the monomials Xd0

0 , . . . , Xdm
m ∈ S and the

ideal J that they generate. The highest order monomial that is not contained
in J is Xd0−1

0 ·· · ··Xdm−1
m , which is of degree (

∑
di)−m−1. Then J contains

all monomials of all strictly larger degrees.

The proof of Macaulay’s Theorem involves the Koszul complex, which
I will briefly review.

Definition 2.2.3. Given homogeneous polynomials F0, . . . , Fp with degFi =

di, let U = ⊕p
i=0OP(−di) so that the Fi define a map of sheaves

U
ϵ−→ OP.

The Koszul complex K(F0, . . . , Fp) determined by the Fi is

0 → OP(−
∑

di) → ΛpU → · · · → Λ2U → U → OP → 0

where ΛiU → Λi−1U is given by the composition

ΛiU ↪→ Λi−1U ⊗ U
id⊗ϵ−−→ Λi−1U.

The Koszul complex detects regular sequences in the local case, as
described in the following Proposition.

Proposition 2.2.4 (Theorem A2.49 in [7]). Let F0, . . . , Fp be a sequence
of elements in the maximal ideal of the local ring (S,m). Then F0, . . . , Fp

forms a regular sequence if and only if Hp(K(F0, . . . , Fp)) = 0, in which
case the Koszul complex is the minimal free resolution of IX , where X =

V (F0, . . . , Fp).

In particular, if the Fi have no common zeroes, the Koszul complex
they determine is globally exact.

When using the Koszul complex, we will often split it into short exact
sequences and study the cohomology. The cohomology of line bundles on
projective space is useful in studying which twists of an ideal sheaf have
vanishing 0th cohomology.

13



Proposition 2.2.5 (Cohomology of Pm, cf Theorem 5.1 in [12]). Let k be
a non-negative integer. Then

h0(OPm(k)) =

(
m+ k

m

)
,

hm(OPm(k)) = h0(OPm(−m− k − 1)),

and all other H i vanish.

Now we can prove Macaulay’s Theorem.

Proof of Macaulay’s Theorem. Since the Fi have no common zeroes, term-
wise multiplication by the Fi gives a map of sheaves

p⊕
i=0

OPm(k − di) → OPm(k).

Note that when p = m, the Fi form a regular sequence. In this case, the
Koszul complex gives a resolution

0 → O
(
k −

∑
di
)

. . .
⊕p

i=0O(k − di) O(k) 0.

On H0, surjectivity of the map

p⊕
i=0

H0(O(k − di)) → H0(O(k))

is equivalent to Jk = Sk. By splitting the Koszul complex up into short exact
sequences and chasing back to the beginning of the complex, this traces
back to whether Hm(OPm(k−d0−· · ·−dm)) vanishes. By Proposition 2.2.5,
this occcurs if and only if k ≥ d0 + · · · + dm − m, so we get the desired
result in the p = m case.

When p > m, we will use the fact that Jk = Sk if (Fi0 , . . . , Fim)k = Sk

for all possible subcollections of indices {ij}mj=0 ⊆ {0, . . . , p}. For each such
index set {ij}mj=0, it follows that (Fi0 , . . . , Fim)k = Sk when k ≥

∑m
j=0 dij−m.

By the ordering d0 ≥ · · · ≥ dp, all of these are achieved when k ≥ d0 + · · ·+
dm −m as desired.
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Ein, Há, and Lazarsfeld establish that the bound from Macaulay’s
Theorem holds also in the case when the zero locus of the polynomials is
a smooth projective variety.

Theorem 2.2.6. [6] Suppose that J = (F0, . . . , Fp) ⊆ S is generated by
forms of degrees d0 ≥ · · · ≥ dp and that X = V (J) ⊆ Pr is a smooth variety.
Then

sat. deg(J) ≤ d0 + · · ·+ dr − r,

where dp+1 = · · · = dr = 0 if p < r.

Note that unlike the situation of Macaulay’s Theorem, it is unknown
if this bound is sharp in the p = r case.

2.3 Regularity

The vanishing of cohomology groups can be useful when using sheaf coho-
mology. Recall the well-known theorem of Serre:

Theorem 2.3.1 (Serre Vanishing Theorem, Proposition III.5.3 in [12]). Let
X be an irreducible projective variety and L be an invertible sheaf on X.
Then the following conditions are equivalent:

1. L is ample;

2. For each coherent sheaf F on X, there is an integer n0, depending on
F, such that for each i > 0 and each n ≥ n0, H i(F ⊗ Ln) = 0.

If L is very ample and defines an embedding of X into a projective
space P, then in particular, given a coherent sheaf F on a projective space
P of some dimension, the Serre vanishing theorem says that that the higher
cohomology groups of F(m) vanish for sufficiently large values of m. It is
natural to ask whether we can obtain information about what n0 should
be for a given sheaf F. Castelnuovo-Mumford regularity gives a way to
approach this.
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Definition 2.3.2 (Definition 1.8.1 in [15]). Let F be a cohererent sheaf on
P, and let m be an integer. We call F m-regular if

H i(P,F(m− i)) = 0 for all i > 0.

Definition 2.3.3. The Castelnuovo-Mumford regularity reg(F) of a
coherent sheaf F on P is the smallest integer m so that F is m-regular.

A theorem of Mumford allows us to connect regularity to the questions
of when the cohomology of F becomes simple.

Theorem 2.3.4 (Mumford’s Theorem from Lecture 14 in [19]). Let F be
an m-regular sheaf on P. Then for every k ≥ 0,

1. F(m+ k) is generated by its global sections.

2. The natural maps

H0(F(m))⊗H0(OP(k)) → H0(F(m+ k))

are surjective.

3. F is (m+ k)-regular.

One case of particular interest is when F is the ideal sheaf of a sub-
variety X of projective space.

Definition 2.3.5. A subvariety or subscheme X ⊆ P is m-regular if its
ideal sheaf IX is. The regularity of X is reg(IX).

A general goal in the study of regularity is to bound the regularity of
projective varieties using their geometric quantities. Towards this, there is
the following result due to Gruson, Peskine, and Lazarsfeld.

Theorem 2.3.6 (Regularity for curves, [11]). Let C ⊆ Pr be an irreducible,
nondegenerate, reduced curve of degree d. Then C is (d+ 2− r)-regular.

Eisenbud and Goto produce a natural extension of this result to the
case of higher dimensional varieties.
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Conjecture 2.3.7 (Regularity conjecture, [8]). If X ⊆ Pr is an irreducible
subvariety of dimension n and degree d, then X is (d+ n− r + 1)-regular.

This conjecture has been shown to hold in certain cases, such as
arithmetically Cohen-Macaulay varieties [8], subspace arrangements [5], and
smooth surfaces [14, 21]. While Theorem 2.3.6 holds for singular curves,
[18] provide counterexamples of this conjecture in the singular case overall.

Remark 2.3.8 (Importance of H1(IX(k)) in the context of regularity). If
X ⊆ Pr is a subvariety, then we get a short exact sequence of sheaves

0 IX OPr OX 0.

Twisting up by some integer k, we can look at a portion of the long exact
sequence in cohomology

H i−1(OPr(k)) H i−1(OX(k)) H i(IX(k))) H i(OPr(k)).

Note that for 1 ≤ i ≤ r−1, H i(OPr(k)) vanishes, and for k ≥ −r, H i(OPr(k))

vanishes for i = r. Overall, for i ≥ 2 and k ≥ −r, we have an isomorphism

H i(IX(k))) ∼= H i−1(OX(k)).

Thus, the cohomology in degrees i ≥ 2 of IX(k) is governed by the coho-
mology of the line bundle on X defining the embedding of X ⊆ Pr, which
is often easy to control. Hence, we are particularly interested in studying
H1(IX(k)) in order to bound the regularity of X.

2.4 Flatness

If we want to discuss the notion of a continuously varying family of objects
in the context of algebraic geometry, the notion of flatness gives a nice way
to do this. We start with the idea of a flat module.

Definition 2.4.1. Let A be a ring and M be an A-module. M is flat over
A if the functor N 7→ M ⊗A N is an exact functor for every A-module N .

17



Proposition 2.4.2 (Proposition 9.1A in [12]). Let

0 → M ′ → M → M ′′ → 0

be an exact sequence of A-modules. If M ′ and M ′′ are both flat, then M is
flat; if M and M ′′ are both flat, then M ′ is flat.

We can use this to define a flat morphism in the category of OX

modules.

Definition 2.4.3. Let f : X → Y be a morphism of schemes and let F be
an OX-module. Then F is flat over Y at x ∈ X if Fx is a flat Oy,Y -module,
where y = f(x). We say that F is flat over Y if it is flat at every point of
X. We say that f is flat if OX is flat over OY .

The fibres of a flat morphism satisfy some nice properties.

Proposition 2.4.4 (cf. Proposition 9.5 in [12]). Let f : X → Y be a flat
morphism of schemes of finite type over a field. Then

dimx(Xy) = dimx X − dimy Y,

where Xy is the fibre of f over y = f(x) ∈ Y .

Definition 2.4.5. The fibres Xy of a flat morphism f : X → Y are called
a flat family.

When the codomain Y of a flat morphism f : X → Y is one di-
mensional, we can think of the flat family as an algebraically varying
one-parameter family of the fibres Xy over Y . The next result describes
the existence of a flat limit over a punctured curve.

Proposition 2.4.6 (Proposition 9.8 in [12]). Let Y be a curve and p ∈ Y

be a closed point. Let X ⊆ Pn|Y−p be a closed subscheme which is flat over
Y − {p}. Then there exists a unique closed subscheme X̄ ⊆ Pn|Y that is
flat over Y and restricts to X on Pn|Y−p.

The cohomology of the members of a flat family follows the following
semicontinuity property.
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Definition 2.4.7. Let X be a topological space. A function f : X → Z is
upper semicontinuous if for each x ∈ X there is an open neighborhood
U of x such that for all x′ ∈ U , f(x′) ≤ f(x).

Theorem 2.4.8 (Semicontinuity Theorem, Theorem III.12.8 in [12]). Let
f : X → Y be a projective morphism of noetherian schemes, and let F be a
coherent sheaf on X, flat over Y . Then for each i ≥ 0, the function

hi(y,F) = dimH i(Xy,Fy)

is an upper semicontinuous function on Y .

In other words, the dimension of the cohomology groups of the flat
family may jump up for special values of Y .
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Chapter 3

Cone Polynomials

In this chapter, I will introduce cone polynomials which are the key objects
of interest in this dissertation. We work over C unless specified otherwise.
Section 3.1 defines the cone polynomial and discusses their connection
to Castelnuovo-Mumford regularity. Prior work on cone polynomials is
surveyed in Section 3.2. Section 3.3 proves that cone polynomials can be
used to scheme-theoretically cut out smooth projective varieties. Finally,
in Section 3.4, I find a rough bound on the saturation degree of the ideal
generated by cones that follows from sheaf cohomology.

3.1 Definitions and Motivation

Let’s start with the definition of a cone polynomial.

Definition 3.1.1. Let X ⊆ Pr be a smooth projective variety of degree d

and dimension n. For any linear space Λ ⊆ Pr of dimension r − n − 2

disjoint from X, let CΛ(X) be the join of Λ and X and call its defining
equation cΛ(X). We call cΛ(X) the cone polynomial over X centered
at Λ.

In the special case when X ⊆ P2 is a finite set of d distinct points,
we will use the notation cp(X), or simply cp when the base X is clear, to
denote the cone polynomial over X centered at a point p.
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Example 3.1.2. Let X = {p1, p2, p3, p4} ⊆ P2 be a set of 4 distinct points.
Then for any point p /∈ X, cp is the product of the four linear forms that
vanish on p and one of the pi.

When X is a set of d points in Pr, each cΛ(X) will be a product of d linear
forms. When X is an arbitrary degree d variety, cΛ(X) will define a degree
d hypersurface in Pr.

Definition 3.1.3. Let X and Λ ⊆ Pr be as in Definition 3.1.1. Define the
cone ideal of X to be the ideal generated by the cone polynomials

IconeX = ⟨ cΛ(X) | Λ ⊆ Pr \X ⟩.

When the base variety X is clear, we may leave off the subscript and denote
the cone ideal simply as Icone.

Remark 3.1.4. In Section 3.3, we will show that cone polynomials cΛ(X)

cut out a smooth projective variety X scheme-theoretically. Thus, by Propo-
sition 2.1.9, (Icone)sat = IX .

3.1.1 Motivating the Study of Cone Polynomials

As discussed in Remark 2.3.8, understanding H1(IX(k)) is important in
order to bound the Castelnuovo-Mumford regularity of a projective variety
X. In particular, we are interested in finding bounds on k for which this
cohomology group vanishes.

One general question of interest is if we can use geometric methods to
find such a bound. Towards this, consider a nondegenerate, smooth variety
X ⊆ Pr of degree d and dimension n. A generic hyperplane H ⊆ Pr gives
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an exact sequence

0 IX(−1) IX IX∩H/H 0.·H

The following Lemma, extracted from [19], allows us to study H1(IX(k)).

Lemma 3.1.5. Suppose that IX∩H/H is m-regular. Then for k ≥ m− 1,

h1(IX(k))

is strictly decreasing as a function of k until it reaches and remains at 0.

Proof. For brevity of notation, let I = IX and IH = IX∩H/H . By definition
of m-regularity,

H0(I(k + 1))
ρk+1−−→ H0(IH(k + 1)) → H1(I(k)) → H1(I(k + 1)) → 0 (3.1)

is exact for k ≥ m− 2 and

0 → H i(I(k)) → H i(I(k + 1)) → 0 (3.2)

is exact for i ≥ 2, k ≥ m − i. Exactness of sequence (3.2) means that
H i(I(k)) ∼= H i(I(k + 1)) for i ≥ 2, k ≥ m − i. Since H i(I(k)) = 0 for
i ≥ 1, k ≫ 0 by Serre Vanishing, we get

H i(I(k)) = 0 for i ≥ 2, k ≥ m− i,

so I satisfies the m-regular condition on H≥2.
Consider the map ρk+1 from sequence (3.1). For k ≥ m− 2, either

ρk+1 is surjective or ρk+1 is not surjective,

in which case h1(I(k)) > h1(I(k + 1)).
(3.3)
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Suppose that ρk is surjective for some k ≥ m. Then restriction to H gives
a commutative diagram

H0(IH(k))⊗H0(OH(1)) H0(IH(k + 1))

H0(I(k))⊗H0(OPn(1)) H0(I(k + 1)),

ρk+1

where surjectivity of the upper map comes from the Theorem 2.3.4 and
surjectivity of the left map is from our assumption. Then ρk+1 must also be
surjective, i.e., once ρk is surjective for some k ≥ m, it must be surjective
for all higher k. Considering this along with condition (3.3) yields the
Lemma.

When considering the long exact sequence

H0(IX(k)) → H0(IX∩H/H(k)) → H1(IX(k − 1)) → H1(IX(k)),

the rightmost term is the one we want to be 0. In practice, one can suppose
by induction on dimension that we can control reg(IX∩H/H), so by Lemma
3.1.5, since h1(IX(k)) is strictly decreasing after a certain point, it suffices
to show that the leftmost map above is surjective. In other words, can we
show that any degree k polynomial in H vanishing on X ∩H comes from
(i.e., is a hyperplane section of) a degree k polynomial in Pr vanishing on X?

This is where the usefulness of cones becomes apparent. When Λ ⊆ H

is a linear space of dimension r − n − 2, the cone polynomial cΛ(X) is a
polynomial vanishing on X which extends the polynomial cΛ∩H(X ∩ H)

that vanishes on X ∩ H.
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This means that when considering the degree d parts of the ideals,

(IconeX )d ↠ (IconeX∩H)d.

Since the cone ideals are generated by degree d elements, we also get
(IconeX )k ↠ (IconeX∩H)k for k ≥ d. Then since (IconeX )k ⊆ (IX)k, if we can
find k such that (IconeX∩H)k = (IX∩H)k, then for that k, we would obtain
the desired surjection H0(IX(k)) ↠ H0(IX∩H(k)). In the diagram below,
surjectivity of (∗) yields surjectivity of (∗∗).

H0(IX(k)) H0(IX∩H(k))

(IX)k (IX∩H)k

(IconeX )k (IconeX∩H)k.

(∗∗)

(∗)

This motivates our study of finding the values of k for which (IconeX )k = (IX)k.
The smallest such value of k is the saturation degree of the cone ideal.

In this dissertation we attempt to find or bound the saturation degree
of the cone ideal and understand how the saturation degree may vary based
on geometric properties of the variety.
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3.2 Theorems of Fu and Nie

Weibo Fu and Zipei Nie [9] examined the codimension of the span of cone
polynomials sitting inside the space of degree d forms. Their work builds on
a conjecture of Bo Ilic on whether cone polynomials generate the defining
ideal of a set of d generic points in P2 in the smallest degree possible. I
will give an overview of their work here. In this section, projective space
is defined over an arbitrary characteristic zero field k.

As previously discussed, cone polynomials can be defined over smooth
projective varieties that are at least codimension 2 in some Pn. The first
case of this is points in P2, so let’s focus on sets of points in Pn for n ≥ 2.

Let X be a set of d points in Pn. Since degree d homogeneous poly-
nomials in Pn form a vector space of dimension

(
d+n
n

)
and vanishing at a

point imposes one linear condition, we have

dim(IX)d =

(
d+ n

n

)
− d.

Then Iconed ⊆ (IX)d is a vector subspace. Note that for any collection X ⊆ P2

of d distinct points, IX is d-regular.
In the mid 1990s, Bo Ilic ran computational experiments comparing

the dimensions of Iconed and (IX)d. Based on his observations, he conjectured
the following:

Conjecture 3.2.1. Let X ⊆ P2 be a set of d generic points. For each
integer d ≥ 2, we have

dim Iconed =


(
d+2
2

)
− d, if d = 0 mod 2,(

d+2
2

)
− d− 2, if d = 1 mod 4,(

d+2
2

)
− d− 1, if d = 3 mod 4.

In particular, experimental data suggests that cone polynomials gen-
erate all degree d homogeneous polynomials that vanish on X if and only
if d is even.
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By finding nontrivial linear relations among the cone polynomials, Fu
and Nie prove the following two results about an odd number of points in
generic position, which are consistent with Conjecture 3.2.1.

Theorem 3.2.2. For n ≥ 2, let X ⊆ Pn be a set of d generic points. When
d ≥ 3 is an odd integer,

dim Iconed ≤
(
d+ 2

2

)
− d− 1.

Theorem 3.2.3. Let X ⊆ P2 be a set of d generic points. When d ≥ 5 and
d ≡ 1 mod 4,

dim Iconed ≤
(
d+ 2

2

)
− d− 2.

Note that Theorem 3.2.2 holds in projective spaces in dimensions
higher than 2, which may suggest higher-dimensional analogues of Conjec-
ture 3.2.1.

The rest of this section is dedicated to the clever proof of Theorem
3.2.2. We will first fix notation for the proof. Let X = {p1, . . . , pd} be
a set of d generic points in Pn and Pi ∈ kn+1 \ {0} be pi represented
in homogeneous coordinates. Let Di represent the directional derivative
operator along Pi. Let Λ be a n − 2 plane in Pn. The linear form Li is
the linear form vanishing on Λ and Pi so that the cone polynomial cΛ is
the product

∏d
i=1 Li. Let {Qj ∈ Pn}n−1

j=1 be an affine basis of the plane Λ.
Define a linear function in k[x1, . . . , xn+1] by

li(v) = det[v, Pi, Q1, . . . , Qn−1].

Lemma 3.2.4. Dilj = −Djli for 1 ≤ i ̸= j ≤ d.

Proof. We have

Dilj =

 n∑
k=0

Pi,k
∂

∂xk

 det[v, Pj, Q1, . . . , Qn−1]

=
n∑

k=0

det[P@k
j , Q@k

1 , . . . , Q@k
n−1]

26



where the @k superscript represents removing the kth position entry. By
cofactor expansion,

Dilj = det[Pi, Pj, Q1, . . . , Qn−1]

= − det[Pj, Pi, Q1, . . . , Qn−1]

= −Djli.

Lemma 3.2.5. For each odd positive integer d ≥ 3 and for each cone
polynomial cΛ, we have  d∏

i=1

Di

 cΛ = 0.

Furthermore, this restriction on cone polynomials is nontrivial, i.e., there
exists a polynomial f ∈ k[x1, . . . , xn+1] of degree d that vanishes on X such
that

(∏d
i=1Di

)
f ̸= 0.

Proof. We have d∏
i=1

Di

 d∏
i=1

li

 =
∑
σ∈Sd

d∏
i=1

Dilσ(i)

=
1

2

∑
σ∈Sd

 d∏
i=1

Dilσ(i) + (−1)d
d∏

i=1

Dσ(i)li

 .

When d is odd, (−1)d = −1, so the expression continues as

=
1

2

∑
σ∈Sd

d∏
i=1

Dilσ(i)

− 1

2

 ∑
σ−1∈Sd

d∏
i=1

Dilσ(i)


= 0.

Since each li is a scalar multiple of Li from the definition of the cone
polynomial, the first part of the Lemma holds.

27



To show that this restriction is nontrivial, consider the polynomial
f ∈ k[x1, . . . , xn+1] defined by

f(v) =
d∏

i=1

det[π(v), π(Pi), π(Pi+1)],

where the indices are taken modulo d and π : kn+1 → k3 is the projection
(x1, . . . , xn+1) 7→ (x1, x2, x3). It is sufficient to check that

(∏d
i=1 Di

)
f is

nonzero in the case where Pi = (1, i, i2, . . . , in) for each integer 1 ≤ i ≤ d.
In this case, d∏

i=1

Di

 f =
∑
σ∈Sd

d∏
i=1

Dσ(d) det[π(v), π(Pi), π(Pi+1)]

=
∑
σ∈Sd

d∏
i=1

det[Pσ(d),π(Pi),π(Pi+1)]

=
∑
σ∈Sd

(d− 1)(d− σ(d))(σ(d)− 1)
d−1∏
i=1

(σ(i)− i)(σ(i)− i− 1),

where the last equality comes from the Vandermonde determinant identity.
The final expression must be strictly positive because (d−1)(d−σ(d))(σ(d)−
1) and (σ(i)− i)(σ(i)− i−1) are always nonnegative, and when σ(i) = i−1

mod d, the term is positive.

As Lemma 3.2.5 provides a nontrivial linear restriction among cone
polynomials, the result of Theorem 3.2.2 is implied.

The bound in Theorem 3.2.3 follows a similar idea to obtain an addi-
tional linear restriction in the case of n = 2 and d ≡ 1 mod 4. If these linear
restrictions are the only restrictions among cone polynomials, including the
case of d even, Ilic’s Conjecture 3.2.1 would hold.
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3.3 Cutting out Varieties with Cone Polyno-

mials

Mumford [20] provides the following criterion for when a smooth variety is
scheme-theoretically the intersection of hypersurfaces.

Lemma 3.3.1. If a subvariety X ⊆ Pr is non-singular, then X is scheme-
theoretically the intersection of hypersurfaces H1, . . . , Hn if and only if

1. X =
⋂n

i=1Hi.

2. for all x ∈ X, Tx,X =
⋂n

i=1 Tx,Hi
.

We can use this to show that cone polynomials can cut out any smooth,
projective variety scheme-theoretically.

Proposition 3.3.2. A smooth, projective variety X is scheme-theoretically
an intersection of cone polynomials. In other words, the equations cΛ where
Λ is a linear space of dimension r−n−2 disjoint from X generate the ideal
sheaf IX .

Proof. If X ⊆ Pr is a projective variety of dimension n (of at least codi-
mension 2) and degree d, and Λ ⊆ Pr a linear space of dimension r− n− 2

disjoint from X, consider the cone polynomial CΛ. We have

dimCΛ = dimX + dimΛ + 1 = n+ (r − n− 2) + 1 = r − 1,

so CΛ is a degree d hypersurface.
To show that X is the intersection of the CΛ, note that X ⊆ CΛ for

each Λ ∩X = ∅, so X ⊆
⋂

Λ∩X=∅ CΛ. On the other hand, if x ∈ Pr −X,
consider the projection

π : Pr − {x} → Pr−1.
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Then π(X) ⊆ Pr−1 is dimension n, so there exists some linear space M ⊆
Pr−1 of dimension (r− 1)−n− 1 disjoint from π(X). Choose a linear space
Λ ⊆ Pr so that π(Λ) = M . Then x ̸∈ CΛ, since x ∈ CΛ means that there
exists a line l through X and Λ containing x. Then π(l) = M would not
be disjoint from π(X), which is a contradiction.

Next assume X is smooth. Let’s confirm that TxX =
⋂

Λ∩X=∅ TxcΛ

for every x ∈ X. Since every cΛ contains X, we have TxX ⊆ TxcΛ for each
x ∈ X, which implies TxX ⊆

⋂
Λ∩X=∅ TxcΛ. On the other hand, if v ∈ TxPr

is a tangent vector with v /∈ TxX, it corresponds to a line l ⊆ Pr through x.
Pick Λ so that l ⊊ Λ. For this choice of Λ, v /∈ TxcΛ. This shows that the
tangent spaces of cΛ at x cut out TxX, so by Lemma 3.3.1, cone polynomials
cut X out scheme-theoretically.

Hence, we can apply the theory of saturation to our study of cone
polynomials. In particular, bounding the saturation degree of the cone ideal
can give quantitative information about how close cone polynomials can
get to generating the defining ideal of a smooth variety.

3.4 A Preliminary Bound for the Saturation

Degree of the Cone Ideal

In this section, we will examine what sheaf cohomology reveals about the
saturation degree of the cone ideal. One goal of this dissertation is to
improve upon this bound.

Lemma 3.4.1 (Cohomology Vanishing, Theorem III.2.7 in [12]). If X is a
smooth projective variety of dimension n and F is a coherent sheaf on X,
then

H i(F) = 0 for i > n.
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Remark 3.4.2. Recall that if X ⊆ Pr is a finite set of d smooth (i.e., re-
duced) points, the ideal sheaf is generated by r+1 general cone polynomials
by Proposition 2.1.12. In other words, we have a surjective map of sheaves

OPr(−d)r+1 IX 0.

Consider the r = 2 case in P2. Taking the Koszul complex and splitting
into short exact sequences, we get the following diagram.

0

0 B2 F1 H2 0

0 OP2(−3d) OP2(−2d)3 OP2(−d)3 IX 0

0 B1 F1 H1 0.

0

The r+1 = 3 cone polynomials do not form a regular sequence, so the Koszul
complex is not exact. However, the cohomology of the Koszul complex is
annihilated by IX , so the homology sheaves are supported on X, which is
0-dimensional. This means that the higher cohomology of the Hi vanish.
We can use this to find a bound for the degree in which cone polynomials
generate IX .

Proposition 3.4.3. (Bound from Sheaf Cohomology.) Let X ⊆ P2 be a set
of d distinct points. Then for k ≥ 3d − 2, we have (Icone)k = (IX)k. In
other words, sat.deg(Icone) ≤ 3d− 2.

Proof. This result comes from chasing the above diagram twisted up by
OP2(k) for an integer k.

We have (Icone)k = (IX)k if and only if

H0(OP2(k − d))3 → H0(IX(k))
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is surjective, which occurs precisely when H1(F1(k)) = 0. Since the higher
cohomology groups of the Hi vanish by Lemma 3.4.1, we have H1(H1(k)) =

0, so H1(B1(k)) ↠ H1(F1(k)). Thus, if we know H1(B1(k)) = 0, that would
imply the desired H1(F1(k)) = 0.

Recall that by Proposition 2.2.5, we have the vanishing of H2(OP2(k−
2d)3) if and only if k ≥ 2d− 2 and H1(OP2(k − 2d)3) = 0 for any k. Then
for k ≥ 2d− 2, exactness of the sequence

0 = H1(OP2(k − 2d)3) → H1(B1(k)) → H2(F2(k)) → 0

gives an isomorphism H1(B1(k)) ∼= H2(F2(k)).
Now since

H2(B2(k)) → H2(F2(k)) → H2(H2(k)) = 0,

we know that the map H2(B2(k)) → H2(F2(k)) is surjective, so vanishing
of H2(B2(k)) would imply the vanishing of H2(F2(k)). We also have that
OP2(k− 3d) ∼= B2(k), so H2(B2(k)) = 0 if and only if H2(OP2(k− 3d)) = 0,
which occurs when k ≥ 3d− 2. This yields the stated bound on k.

In a similar way, applying Theorem [6] of Ein, Há, and Lazarsfeld,
we glean the following generalization.

Proposition 3.4.4. Let X ⊆ Pr be a smooth variety of codimension at
least 2. Then

sat.deg(Icone) ≤ (r + 1)d− r.
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Chapter 4

Main Results for Finite Sets in the
Plane

This chapter contains the main results of this dissertation. In Section 4.1,
we prove that the saturation degree of the cone ideal of a collinear set of
d points in P2 is 2d− 2. In Section 4.2, we study the flat degeneration of
an arbitrary set of points in P2 to a collinear one and show that the result
for collinear points will yield an upper bound on the saturation degree of
the cone ideal for non-collinear sets of points in P2.

4.1 Collinear Points

We start by considering the most specialized configuration of points in the
plane: collinear points. In this section, let Z = {p1, . . . , pd} ⊆ P2 be a set
of d > 1 distinct points contained in a line L.

Remark 4.1.1 (Fixing an affine patch). We can choose coordinates x, y, z
on P2 so that the line L containing Z is defined by z = 0. Then in the affine
patch {z ̸= 0} = A2 ⊆ P2, the points pi ∈ Z all lie in the line at infinity. For
any center point p ∈ P2 not contained in L, the dehomogenization of the
cone polynomial centered at p is cp(x : y : 1) ∈ C[x, y]d. Call cp(x : y : 1)

the affine cone polynomial centered at p. The affine curve cut out by
cp(x : y : 1) is the union of d lines meeting at p whose slopes correspond to
the d points at infinity.
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Lemma 4.1.2. The set of all affine cone polynomials lies in the ideal
spanned by any single affine cone polynomial a and the partials of a of all
orders.

Proof. Consider the map

ϕ : A2 → C[x, y]≤d

p 7→ cp(x : y : 1)

that sends a point in the affine patch to the affine cone polynomial centered
at the point.

Note that the image curves will all be translates of the curve cut out by

a(x, y) := ϕ(0, 0),

the affine cone centered at the origin, which is a homogeneous degree d

polynomial since it is a product of d linear forms through the origin.
Let s, t be affine coordinates on this patch, so that via Taylor expand-

ing, ϕ can be written as

ϕ : A2 →C[x, y]≤d

(s, t) 7→ a(x+ s, y + t)

= a(x, y) + s
∂a

∂x
+ t

∂a

∂y
+ s2

∂2a

∂x2
+ 2st

∂2a

∂x∂y
+ · · ·+ td

∂da

∂yd

= a(x, y) +
d∑

i=1

1

i!

i∑
j=0

(
i

j

)
si−jtj

∂ia

∂xi−jyj
(x, y).
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The image of ϕ contains all of the affine cone polynomials centered at a
point p /∈ L. By the above expresssion, any such cone polynomial can
be written as a linear combination combination of partials of a(x, y) with
coefficients given by monomials in s, t.

In order to study the span of the affine cone polynomials, we will use
the following Lemma:

Lemma 4.1.3. Let V be a complex vector space and consider a map ϕ of
the following form:

C2 ϕ−→ V

(s, t) 7→ v00 + sv10 + tv01 + s2v20 + stv11 + t2v02 + · · ·+ tmv0m

=
m∑

i,j=0

sitjvij,

where the vij ∈ V . Then

span(ϕ(C2)) = span{vij}.

Proof. For each s, t ∈ C, ϕ(s, t) is in the span of the vij, so span(ϕ(C2)) ⊆
span{vij}.

Suppose to the contrary that there is a strict inclusion span(ϕ(C2)) ⊊
span{vij}, which means that there exists some a, b ∈ {1, . . . ,m} so vab ̸∈
span(ϕ(C2)). Pick a basis {u1 = vab, . . . , ul} for span(vij) so that

span(ϕ(C2)) ⊆ span{u2, . . . , ul} ⊊ span{vij}.

Using this basis, let v1ij be the first coordinate of the vector vij. Then

ϕ(s, t) =

v100...
+ s

v110...
+ t

v101...
+ · · ·+ tm

v10m...
 ∈


0

∗
...
∗

 ,
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where the * are arbitrary values. This means that

v100 + v110s+ v101t+ v120s
2 + · · ·+ v10mt

m ≡ 0

is the zero polynomial. A polynomial is uniformly 0 if and only if all its
coefficients are 0, so this means v1ij = 0 for all i, j, and in particular, v1ab = 0.
However, by our choice of basis, v1ab = 1, which is a contradiction.

Considering Lemmas 4.1.2 and 4.1.3 together in the context of the
map ϕ, which sends a point to the affine cone polynomial, and viewing the
partial derivatives of a(x, y) as vectors in C[x, y]≤d, we obtain the following
result.

Corollary 4.1.4. With ϕ as described in the proof of Lemma 4.1.2,

span(ϕ(A2)) = span

{
a,

∂a

∂x
,
∂a

∂y
, . . . ,

∂da

∂yd

}
.

In other words, affine cone polynomials are spanned by a(x, y) and all of its
partial derivatives.

Now, we will rehomogenize the affine cone polynomials so that we
can continue to work in projective space. Each ϕ(s, t) = cp(s : t : 1)

becomes cp, so span(ϕ(A2)), which is the C-linear combinations of affine
cone polynomials, rehomogenizes to be the degree d part of Icone. As
observed earlier, a is homogeneous and of degree d. An order i partial
derivative of a is degree d− i, so the rehomogenization will be the partial
derivative times zi. Overall, we get

(Icone)d =

(
a, z

∂a

∂x
, z

∂a

∂y
, . . . , zd

∂da

∂yd

)
d

.

Since the cone polynomials have degree d, this means that for any p ̸∈
{z = 0},

cp ∈

(
a, z

∂a

∂x
, z

∂a

∂y
, . . . , zd

∂da

∂yd

)
d

.
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Hence, {a, z ∂a
∂x
, z ∂a

∂y
, . . . , zd ∂da

∂yd
} can be taken as a generating set for Icone:

Corollary 4.1.5.

Icone =

(
a, z

∂a

∂x
, z

∂a

∂y
, . . . , zd

∂da

∂yd

)
.

The last ingredient of our main proof comes from an identity credited
to Euler.

Lemma 4.1.6. [Euler’s Homogeneous Function Identity] Let f be a homo-
geneous degree k function in n variables. Then

k · f(x1, . . . , xn) =
n∑
1

xi
∂f

∂xi

(x1, . . . , xn).

We will make use of the following generalization:

Lemma 4.1.7. [Generalized Euler’s Identity] Let f be a homogeneous degree
k function in n variables. Let I = {i1, . . . , ia} be a collection of indices
ij ∈ {1, . . . , n} and denote the product xI := xi1 · · · · · xia and the operator
∂a

∂xI
:= ∂a

∂xi1
...∂xia

. Then for 1 ≤ a ≤ k, we have

k!

(k − a)!
f(x1, . . . , xn) =

∑
|I|=a

xI
∂af

∂xI

(x1, . . . , xn).

Proof. We proceed by induction on a. The base case a = 1 follows by
Euler’s Homogeneous Function Identity.

Let x̄ = x1, . . . , xn. For the inductive step, assume that the identity
holds for a− 1, i.e.,

k!

(k − a+ 1)!
f(x̄) =

∑
|I|=a−1

xI
∂a−1f

∂xI

(x̄). (4.1)
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Since f is homogeneous, the (a − 1)-th partials of f are homogeneous of
degree k − a+ 1, so

(k − a+ 1)
∂a−1f

∂xI

(x̄) =
n∑

j=1

xj
∂f

∂xj

∂a−1f

∂xI

(x̄).

Substituting this into 4.1, we see that

k!

(k − a+ 1)!
f(x̄) =

∑
|I|=a−1

xI

 1

k − a+ 1

n∑
j=1

xj
∂f

∂xj

∂a−1f

∂xI

(x̄)


=

1

k − a+ 1

∑
|J |=a

xJ
∂af

∂xJ

(x̄).

The statement of the lemma follows.

Now, we can prove our main result.

Theorem 4.1.8. If Z is a set of d > 1 collinear points in P2, then

(Icone)k = Ik

if and only if k ≥ 2d− 2.

Proof. The main idea is to filter the elements of Icone based on their degree
of vanishing along the line containing Z, which I will assume without loss
of generality is z = 0.

Take 1 ≤ i ≤ d. We start by showing that the order i partial deriva-
tives of the cone polynomial a(x, y) have no common zeroes in P1.

Suppose ∂a
∂x

and ∂a
∂y

both vanish at p ∈ P1. Then by Lemma 4.1.6,
a(x, y) must also vanish at p. Since p must be contained in at least one
of the affine patches, then without loss of generality, suppose p is in the
affine patch defined by y = 1. After restricting to this patch, a(x, y) is a
univariate polynomial a(x) and

a′(x) =
∂a

∂x

∣∣∣∣
y=1

.
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Then a and a′ both vanish at p, which means that a has a double root
at p. This would contradict our assumption that a has distinct roots in
P1. Hence, the first partials of a(x, y) must have no common zeroes in P1.
Similarly, using Lemma 4.1.7, it follows the order i partials of a(x, y) have
no common zeroes in P1.

Let S = C[x, y]. Then, Macaulay’s Theorem 2.2.1 gives(
∂a

∂x
,
∂a

∂y

)
k

= Sk for k ≥ 2(d− 1)− 1 = 2d− 3,(
∂2a

∂x2
,
∂2a

∂x∂y
,
∂2a

∂y2

)
k

= Sk for k ≥ 2(d− 2)− 1 = 2d− 5,

...(
∂d−1a

∂xd−1
, . . . ,

∂d−1a

∂yd−1

)
= Sk for k ≥ 2(1)− 1 = 1.

In general, for each order 1 ≤ i ≤ d− 1,(
∂ia

∂xi
, . . . ,

∂ia

∂yi

)
k

= Sk for k ≥ 2(d− i)− 1. (4.2)

Now, look at the ideal

Icone =

(
a, z

∂a

∂x
, z

∂a

∂y
, . . . , zd

∂da

∂yd

)

in degree k for k ≥ 2d− 2:

(Icone)k = (a)k + z ·
(
∂a

∂x
,
∂a

∂y

)
k−1

+ · · ·+
(
zd
)
k

= (a)k +
d−1∑
i=1

zi ·(∂ia

∂xi
, . . . ,

∂ia

∂yi

)
k−i

+
(
zd
)
k
.
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Note that for 1 ≤ i ≤ d− 1, we have k − i ≥ 2d− i− 2 ≥ 2(d− i)− 1, so
by equation (4.2),

(
∂ia
∂xi , . . . ,

∂ia
∂yi

)
k−i

= Sk−i. Thus, continuing the string of
equalities above,

= (a)k +
d−1∑
i=1

[
zi · Sk−i

]
+
(
zd
)
k

= (a)k + z · C[x, y, z]k−1.

From this, we get

(Icone)k ⊆ Ik ⊆ C[x, y, z]k
q q

a · Sk−d + z · C[x, y, z]k−1 ⊆ Sk + z · C[x, y, z]k−1.

Next, a codimension count:

codim
(
Iconek ⊆ C[x, y, z]k

)
= codim (a · Sk−d ⊆ Sk)

= codim (Sk−d ⊆ Sk)

= dimSk − dimSk−d

= (k + 1)− (k − d+ 1)

= d.

Since Ik is also codimension d in C[x, y, z]k, there is equality

(Icone)k = Ik

for d > 1, k ≥ 2d− 2.
Now for the converse. The sharpness of Macaulay’s Theorem says(

∂a

∂x
,
∂a

∂y

)
t

⊊ St for t < 2(d− 1)− 1 = 2d− 3.
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Now examine Icone in degree k < 2d− 2:

(Icone)k = (a)k + z ·
(
∂a

∂x
,
∂a

∂y

)
k−1

+ · · ·+ zd

= (a)k + z ·
(
∂a

∂x
,
∂a

∂y

)
k−1

+
d∑

i=2

zi ·(∂ia

∂xi
, . . . ,

∂ia

∂yi

)
k−1


Earlier, we checked that codim

(
a · Sk−d + z · C[x, y, z]k−1 ⊆ C[x, y, z]k

)
=

d, so as a strict subset,

codim
[
(Icone)k ⊆ C[x, y, z]k

]
≥ d+ 1,

which means
(Icone)k ̸= Ik

for d > 1, k < 2d− 2.

4.2 Implications for Non-colllinear Points

Now that we have established a sharp bound for the saturation degree of
the cone ideal for collinear points, we would like to study non-collinear
configurations. In this section, we will use the result for collinear points to
prove that cones generate the defining ideal in degrees 2d − 2 and higher
for any set Z ⊆ P2 of d reduced points, although the bound is no longer
as good as possible in the non-collinear case.

Consider the ambient space X = P2 × A1, where A1 can be thought
of as a 1-dimensional time parameter. Inside of X, consider two slices
P2 × {0} and P2 × {1}. Each of these is a projective plane, in which we
can put collections of d distinct points, Z0 ∈ P2 × {0} and Z1 ∈ P2 × {1}.
In particular, we are interested in the case when Z0 is a set of collinear
points and Z1 is a set of arbitrary reduced points so that we can study
the degeneration of Z1 to Z0. We will start by describing the construction
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of a subset

Z ⊆ X

where the images of the second projection Zt form a flat degeneration so
that we can use the bound of Theorem 4.1.8 to obtain a rough bound for
arbitrary sets of points.

Lemma 4.2.1 (Flat family). For any arbitrary set Z of d distinct points,
there exists a flat family {Zt}t∈A1 over A1 where Z1 = Z and Z0 is a set of
d distinct collinear points. In particular, this can be done so that the ideal
sheaves of the Zt are all isomorphic to one another for t ̸= 0. Call Z ⊂ X

the set with fibers Zt.

Proof. Let Z1 be an arbitrary set of d distinct points in P2. If Y is the
union of all lines through each pair of points of Z1, choose a point P not
contained in Y . Choose coordinates on P2 so that P = (0 : 0 : 1). For each
non-zero t ∈ C, we have an automorphism of P2 given by

σt : (x : y : z) 7→ (x : y : tz),
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which is a projection from the point P onto the line defined by z = 0 in
the limit as t → 0. By our choice of center P , each point of Zt approaches
a distinct point on the line. For each t ̸= 0, let Zt = σt(Z1). Note that the
all of the ideal sheaves IZt are isomorphic to one another by construction,
so in particular, the Zt form a flat family parameterized by A1 \ {0}. Then
this extends to a flat family over all of A1 with the flat limit Z0 a set of d
distinct, collinear points.

We would like to discuss how cone polynomials over this flat family
behave. For simplicity, our next goal is to establish the existence of fixed
centers for the cone polynomials, which will generate Zt as t varies. We
will use the following Lemmas:

Lemma 4.2.2. If a morphism of vector bundles V → W over A1 is surjec-
tive at 1 ∈ A1, then it is surjective in a Zariski neighborhood of 1.

Proof. Suppose ν : V → W is a morphism of vector bundles. Then in
a neighborhood U around 1 ∈ A1, νU : VU → WU is given by a matrix
of regular functions [aij(t)]. Suppose the map over 1 given by [aij(1)] is
surjective, so the matrix is full rank. Since dropping rank is defined by the
vanishing of minors of [aij(t)], which defines a closed set, the matrix will
be full rank in a neighborhood of 1.

Lemma 4.2.3. For the flat family {Zt} described in Lemma 4.2.1, there ex-
ists a finite collection of fixed points P1, . . . , PN so that the cone polynomials
{cPi

(Zt)}Ni=1 generate (IconeZt
)d for all but finitely many t ∈ A1.

Proof. Choose centers P1, . . . , PN such that {cPi
(Z0)}Ni=1 generate (IconeZ0

)d

and {cPi
(Z1)}Ni=1 generate (IconeZ1

)d. By the automorphism σt of P2 for t ̸= 0,
all of the subspaces (IconeZt

)d ⊆ Sd have the same dimension for t ̸= 0. Then
the (IconeZt

)d can be put together to form a vector bundle

V ⊆ Sd × A1

over A1. Consider the map of vector bundles over A1

ON
A1 → V

43



given by the cone polynomials {cPi
(Zt)}Ni=1. By our choice of the Pi, this

map is surjective at t = 1 and at t = 0. Then by Lemma 4.2.2, the map
is surjective in a Zariski neighborhood of 1 ∈ A1, which means that it is
surjective for all but finitely many t ∈ A1. This is equivalent to the cone
polynomials {cPi

(Zt)}Ni=1 generating (IconeZt
)d for those t.

Lemma 4.2.4 (Fixed centers). For the flat family {Zt} described in Lemma
4.2.1, there exists a finite set of fixed points A = P1, . . . , PM for which the
cone ideal of Zt in degree d is generated by the cone polynomials centered
at the points P1, . . . , PM for every t ∈ A1.

Proof. Consider the points P1, . . . , PN described in Lemma 4.2.3. Then for
the finite number of tj for which {cPi

(Zt)}Ni=1 does not generate (IconeZt
)d,

there are points P
tj
k so that the cones over those points generate (IconeZt

)d.
Let A be the union of the Pi and P

tj
k .

Now, we can prove the main result of this section, which is a bound
on the saturation degree of Icone for arbitrary finite sets in P2.

Theorem 4.2.5. If Z is a set of d distinct points in P2 and if k ≥ 2d− 2,
then (Icone)k = Ik.

Proof. Let Z0 = Z and consider the flat family Zt as described previously.
By Lemma 4.2.4, there exists some N so that we get a short exact sequence
of sheaves over P2 × A1:

0 M ON
P2×A1(−d) IZ 0,

where M is the kernel sheaf of the morphism given by the cone polynomials
specified in Lemma 4.2.4 and ON

P2×A1(−d) := pr∗1OP2(−d). Since IZ is flat
over A1 by Lemma 4.2.1 and ON

P2(−d) is flat over A1 as it is constant, this
implies that M and its twists are flat over A1, too, by Proposition 2.4.2.

By the Semicontinuity Theorem, for k ∈ Z, h1(Mt(k)) is upper semi-
continuous in t ∈ A1. Theorem 4.1.8 tells us that cone polynomials generate
in degrees at least 2d− 2, which means that the map

H0(ON
P2(k − d)) H0(IZ0(k))
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is surjective for k ≥ 2d−2. This is equivalent to the vanishing of H1(M0(k))

for k ≥ 2d−2. Upper semicontinuity of h1(Mt(k)) implies that for k ≥ 2d−2,
the value of h1 can only jump up. The smallest possible value for the
cohomology dimension is 0, which we know is attained at t = 0. Thus, there
is an open neighborhood around 0 ∈ A1 on which h1(Mt(k)) = 0. Then
there exists some t′ ≠ 0 such that H1(Mt′(k)) = 0. Since this cohomology
group measures the codimension of

W =
(
cP1(Zt′), . . . , cPN

(Zt′)
)
d
⊆ (IZt′

)k,

we know that these cones generate all of IZt′
in degrees k ≥ 2d− 2. Since

σt′ is an automorphism of P2, we also have that W ′ is isomorphic to W , the
degree k piece of the ideal generated by the cones

cσ−1
t′ (Pi)

(σ−1
t′ (Zt′)) = cσ−1

t′ (Pi)
(Z1).

Then W = (IZ1)k, i.e., IZ1 is generated by cones in degrees k ≥ 2d − 2,
which is the desired result.

This theorem shows that the saturation degree of the cone ideal for
arbitrary sets of points in the plane can not exceed 2d− 2. Note that this
is not what we expect to be the actual saturation degree in non-collinear
cases, which we will discuss in Section 5.1.
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Chapter 5

Experimental Data and Further
Directions

Interest in the study of cone polynomials began with the experimental
observations of Bo Ilic, summarized in Conjecture 3.2.1, that for generic
points in P2, the degree in which cones generate the defining ideal of the
points depended on the parity of the number of points. In this chapter, I will
describe the results of my computational experiments on cone polynomials.
All of the data described was obtained using Macaulay2 [10]. For trials
involving random points in projective space, I made use of the Points
package by [23], which includes functions that produce random points in
an ideal. My computations are all done over the finite field of order 32749,
the largest prime order stored in Macaulay2, in the expectation that the
experiments would capture what is occurring over C.

Given a projective variety X, we compute the cone ideal Icone by
producing sufficiently many cone polynomials over X and looking at the
ideal that they generate. We compare the Hilbert function of Icone to the
expected size of IX in a given degree, and search for the first instance in
which they agree to find the saturation degree of the cone ideal.

Remark 5.0.1 (Benefits and limitations of computational data). Being
able to compute saturation degrees of the cone ideal for a specific variety
X is useful as a starting point for finding patterns and forming conjectures.
As we will see in this chapter, the data reveal a relationship between the
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degree d of X and the saturation degree of Icone. For example, the consistent
pattern that emerged for collinear points in the plane is what sparked our
interest in proving this case, which resulted in Theorem 4.1.8.

A potential issue that could occur with working out concrete examples
is that a pattern that occurs for a particular collinear set may not work
for every collinear set. To mitigate this, data reported in this chapter were
run several times with appropriately randomized attributes and checked for
consistency.

Another limitation is the runtime of the programs. The tables in
this chapter end at d = 10, which was the point at which many of the
computations started to slow down. This also impacts the size of the
dimension that we can work in, so we stop at curves in P3.

5.1 Cones over Points in the Plane

Remark 5.1.1 (Cone polynomials in Macaulay2). Suppose

X = {P1, . . . , Pd} ⊆ P2

is a set of d points, and we want to find explicit generators of Icone using
Macaualay2. To work in P2, set the base ring as k[x, y, z], where k =

Z/32749Z. Using the Points Package, we can generate a matrix whose
columns represent the homogeneous coordinates of random center points
for the cone polynomials. We choose

(
d+2
2

)
random center points Cj, since

cone polynomials live inside k[x, y, z]d which has dimension
(
d+2
2

)
. Then for

1 ≤ i ≤ d and 1 ≤ j ≤
(
d+2
2

)
, the determinant

li,j :=

∣∣∣∣∣∣∣∣
x | |
y Pi Cj

z | |

∣∣∣∣∣∣∣∣
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gives the linear function that vanishes on the points Pi and Cj so that the
cone polynomial centered at Cj is

cCj
(X) =

d∏
i=1

li,j.

Then we assume that Icone is the ideal generated by these cones.

Example 5.1.2 (Betti tables and Hilbert functions). As described in the
Remark 5.1.1, we can produce generators for the cone ideal of a set of points
X ⊆ P2. When X is a set of 5 randomly generated points, we can print the
Betti table of Icone to get the following Macaulay2 output.

In column 1, the 14 in row 4 indicates that there are 14 forms of degree 5
needed to generate Icone. In other words, dim(Icone5 ) = 14. The expected
dimension of the ideal of 5 points in degree 5 is

(
5+2
2

)
−5 = 16, so in this case,

Icone has codimension 1 in I5. We can also compute the Hilbert function
of Icone, which will give the codimension of Iconek in S[x, y, z]k. When the
value of the Hilbert function in degree k achieves the number of points of
X, this means that Iconek = Ik for that k. In our case, this first occurs when
k = 6.

Note that the bottom right entry in the Betti table above indicates
that there are two relations of degree 2 among the relations on the generators
of Icone. Compare this to the Betti table when X is instead a set of 7
randomly generated points, shown below.
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In this case, there is one relation of degree 2 among relations instead. In
looking at the Betti tables for Icone when X is a set of d ≥ 3 random points,
we observe that the bottom right entry is

1 if d = 3 mod 4 and 2 if d = 1 mod 4

for values of d up to 15, which match the number of linear relations among
cone polynomials found in Theorems 3.2.2 and 3.2.3 of Fu and Nie.

Similarly, we can work with collinear points by letting X be a set of
5 randomly generated points that lie in the line defined by z = 0. Then we
get the following Betti table.

Here, Icone5 is codimension 4 in I5. In the second column, we can read off
the syzygies: 15 linear syzygies, 1 degree 2 syzygy, and 1 degree 4 syzygy.
By examining the Hilbert function, we get that cones generate the defining
ideal of X in degree 8.

49



Trial 5.1.3 (Generic points). Data on the saturation degree of Icone when
X is a set of d randomly generated points in P2.

Figure 5.1: Schematic diagram of X

d sat. deg
1 1
2 2
3 4
4 4
5 6
6 6
7 8
8 8
9 10
10 10

Based on this data, we can reinterpret Bo Ilic’s Conjecture 3.2.1 in
terms of saturation degree.

Conjecture 5.1.4. Let X be a set of d ≥ 2 generic points in P2. Then

sat. deg(Icone) =

d if d is even,

d+ 1 if d is odd.

Trial 5.1.5 (Points split between two lines). For integers d ≥ 2, let

X = {(0 : 1 : 1), . . . , (0 : ⌊d/2⌋ : 1), (1 : 0 : 1), . . . , (⌈d/2⌉, 0 : 1)},

a set of points in P2 where ⌊d/2⌋ of the points are contained in the line
{x = 0} and the rest of the points are contained in the line {y = 0}.
Then the saturation degree of X matches the saturation degree of the
corresponding number of generic points described in Trial 5.1.3.
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Figure 5.2: Schematic diagram of X

These data suggest the following strengthenging of Conjecture 5.1.4:

Conjecture 5.1.6. Let X be a set of d ≥ 2 in P2 such that ⌊d/2⌋ of the
points are contained in one line and the rest of the points are contained in
a distinct line. Then

sat. deg(Icone) =

d if d is even,

d+ 1 if d is odd.

Trial 5.1.7 (Moving points from one line into two). In this trial, we will
look at sets of d points that lie in the two lines in P2 defined by x = 0 and
y = 0. For i = 0, 1, 2, 3, let Xi be a set of d points so that i of the points
are randomly generated points in the line x = 0 and the rest of them are
randomly generated points in the line y = 0.

d sat.deg(IconeX0
) sat.deg(IconeX1

) sat.deg(IconeX2
) sat.deg(IconeX3

)

1 1 N/A N/A N/A
2 2 N/A N/A N/A
3 4 4 N/A N/A
4 6 5 4 N/A
5 8 6 6 6
6 10 8 7 6
7 12 10 8 8
8 14 12 10 9
9 16 14 12 10
10 18 16 14 12
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Recall that Theorem 4.1.8 establishes that for d ≥ 2, the saturation degree
for IconeX0

is 2d− 2. The data above suggests that for d ≥ 5, the saturation
degree of IconeX1

is 2d− 4, for d ≥ 7, the saturation degree of IconeX2
is 2d− 6,

and for d ≥ 9, the saturation degree of IconeX3
is 2d− 8. Then, as points are

moved one at a time from one line into two, the saturation degree should
drop by two until the points are split as evenly as possible between the two
lines, which would give a saturation degree of 2d− 2⌊d/2⌋ = d or d+ 1.

Remark 5.1.8 (Semicontinuity and saturation degree). As explained in
Section 4.2, the saturation degree of the cone ideal when X is a finite set of
d points in P2 satisfies a semicontinuity property, which means that it may
jump up for special configurations of X. To summarize the observations
of this Section, we expect the following pattern in the saturation degree of
Icone:

sat. deg(Icone) =



d, d+ 1 if X is a set of generic points,

d, d+ 1 if X is split evenly between two lines,
...

2d− 6 if X is collinear except two points,

2d− 4 if X is collinear except one point,

2d− 2 if X is collinear.

5.2 Cones over Points in Higher Projective

Spaces

To find cones over points in projective spaces of dimension n ≥ 3, the
centers of the cones are linear spaces Λ of dimension n − 2.

Trial 5.2.1 (Generic points). Data on the saturation degree for d randomly
generated points in P3 and P4.
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d sat. deg(X ⊆ P3) sat. deg(X ⊆ P4)

1 1 1
2 2 2
3 4 4
4 4 4
5 6 6
6 6 6
7 8 8
8 8 8
9 10 10
10 10 10

The saturation degree of generic sets of d points in P3 and P4 appear to
follow the same parity pattern that occurs for P2: d when d is even and
d+ 1 when d is odd.

Note that the saturation degree being greater than d in the odd case
will always occur in Pn≥2 by Theorem 3.2.2 of Fu and Nie.

Trial 5.2.2 (Collinear points in P3). Data on the saturation degree of d
randomly generated points contained in a line in P3.

d sat. deg
1 1
2 2
3 4
4 6
5 8
6 10
7 12
8 14
9 16
10 18

We get a saturation degree of 2d−2, which is the same behavior as collinear
points in P2.
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5.3 Cones over Curves

Trial 5.3.1 (Cones over Curves in P3). I consider two types of curves,
although both end up having the same behavior. Let Xd be the union of
d randomly generated lines. Let Yd be the paramerterized curve defined as
the image of the map P1 → P3 which takes

(s, t) 7→ (f0(s, t), . . . , f3(s, t)),

where f0, . . . , f3 are random linear combinations of the degree d monomials
sd−iti. In both cases, we take

(
d+3
3

)
random center points for the cone

polynomials.

d sat. deg(Xd) sat. deg(Yd)

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10

This set of data suggests that the saturation degree for degree d curves in
P3 is d. Notably, the variation depending on the parity of d which was
present in the case when X is 0-dimensional does not appear.
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5.4 Further Directions

A focus of this dissertation is to study the saturation degrees of ideals
generated by cone polynomials. One could naturally ask similar questions
for ideals generated by other classes of polynomials.

Example 5.4.1 (Saturation degree of quadrics cutting out a Veronese
Curve). Recall that the rational normal curve of degree r is given as the
image of the Veronese map

ν : P1 → Pr

[s : t] 7→ [sr : sr−1t, . . . , str−1, tr]

and is cut out scheme-theoretically by the 2× 2 minors of the 2× r matrix

M =

[
x0 x1 . . . xr−1

x1 x2 . . . xr

]
.

Let qi,j be the determinant of the matrix consisting of columns i and j of M .
There are

(
r
2

)
many of these quadrics qi,j. By 2.1.12, taking r + 1 general

linear combinations of these are sufficient to cut out the rational normal
curve. For k = 0, . . . , r, we set

Fk =
∑
i<j

ck,i,jqi,j

where the coefficients ck,i,j are randomly generated values so that the ideal
J := (F0, . . . , Fr) saturates to the defining ideal I of the rational nor-
mal curve in Pr. Then, we can compute the saturation degree of I using
Macaulay2, which yields the following values.
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Veronese degree Saturation degree of J
2 2
3 2
4 3
5 4
6 5
7 6

Since J is generated by elements of degree 2, the smallest possible saturation
degree is 2. The data above suggest that for r ≥ 3, the saturation degree
of J is r − 1.

Remark 5.4.2 (More questions about cone polynomials). This chapter
provides some insight into the behavior of cone polynomials in certain low
dimensions, and it would be interesting to study if any patterns analogous
to the one confirmed for collinear points in the plane described in Theorem
4.1.8 occur for higher dimensional varieties. As discussed in Section 4.2, the
saturation degree of cone ideals follows an upper semicontinuity property.
Remark 5.1.8 suggests that the saturation degree of Icone for points in P2

jumps up based on how close the points are to being collinear.
Here are some open questions related to the work presented in this

dissertation.

• If X ⊆ P2 is a set of d points where all but one of the points are
contained in a line, can we prove that the saturation degree is 2d− 4?

I expect that if one can figure out a proof of this statement, there is
potential for a way to confirm the pattern observed in Remark 5.1.8
by moving points off of the line one by one. This would also prove
Conjecture 5.1.4.

• For rational curves of degree d in P3 (or higher dimensional analogues),
do cones generate IX in degree d?

This is suggested by the data in Trial 5.3.1.
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• For curves X ⊆ P3 (or higher dimensional analogues), does the satura-
tion degree of Icone jump up when X is contained in a hyperplane? Are
there other special geometric conditions on X that result in different
saturation degrees?
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