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Abstract of the Dissertation

One parameter families of Schwarz reflection maps arising from Shabat-Belyi maps

by

Jacob Mazor

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

We study the iteration of Schwarz reflection maps, arising from polynomials which are

univalent on a closed disk.These form an anti-holomorphic counterpart to the correspondences

studied by S. Bullett, C. Penrose, L. Lomonaco, and others, which give matings of rational

maps and Kleinian groups. Adapting the straightening theorem of Douady and Hubbard we

show that such Schwarz reflection maps with connected non-escaping set are in a dynamical

bijection with a certain class of parabolic rational maps.

We then turn our attention to special one-parameter families of such Schwarz reflections,

which arise when the uniformizing polynomials are Shabat polynomials, and are indexed by

rooted planar trees. We show that the parameter spaces and escape loci are connected and

simply connected, and hence the connectedness loci are themselves connected. We give a

partial combinatorial description of the connectedness loci. We show, as in the Mandelbrot set,

that there are many renormalizable parameters, giving rise to little copies of Multibrot and

Multicorns contained in the connectedness loci. We also use the recent results of Clark-Drach-

Kozlovsky-van Strien (generalizing earlier results of Yoccoz and Avila-Kahn-Lyubich-Shen),

to show that any parameters which are not renormalizable are combinatorially rigid.
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Chapter 1

Introduction

Complex dynamics is the study of holomorphic (and anti-holomorphic) actions on complex

manifolds. The two oldest and most well studied cases within complex dynamics are the

actions of discrete groups of Möbius transformations on the Riemann sphere Ĉ, and the

iteration of rational maps. Pierre Fatou, and later Dennis Sullivan, noted similarities between

these two situations.

In the 90s, Shaun Bullett and Chris Penrose demonstrated that one could produce

holomorphic correspondences which acted as matings of quadratic polynomials with the

modular group. Bullett expanded on this with a number of co-authors, and with Luna

Lomonaco showed that any parabolic quadratic rational map could be mated with the

modular group, and that furthermore this mating respected the structure of the parameter

spaces.

More recently, there has been interest in the study of Schwarz reflection maps, a class of

anti-holomorphic dynamics. There have been a number of works by Seung-Yeop Lee, Mikhail

Lyubich, Nikolai Makarov, and Sabyasachi Mukherjee, the author, and a number of other

contributors. We refer the reader to the survey article [LM23] for an overview of some recent

results.

This thesis details work done by the author which gives a coplementary, anti-holomorphic

1



perspective to the Bullett-Lomonaco-Penrose correspondences. Results from the first half of

this thesis appear in [LMM23], and are primarily dynamical results in nature, and the second

half focuses on one-parameter families of Schwarz reflections.

The Schwarz reflections in question always have parabolic behavior at the cusp point.

To develop a suitable semi-local theory for the dynamics of these Schwarz reflections, we

introduce notions of pinched polynomial-like maps, and give a straightening theorem for

them under suitable hypotheses (see definition 3.3.2).

Theorem A. A simple pinched anti-polynomial-like map is hybrid conjugate to a Schwarz

reflection, and to a parabolic anti-rational map. Furthermore, if the non-escaping set is

connected, then the straightened maps are unique up to a holomorphic automorphism.

The proof of this theorem is an adaptation of the classical Douady-Hubbard straightening

theorem [DH85] and relies crucially on an analytic estimate for uniformizing strips due to

Warschawski [War42].

This results naturally lends itself to the following.

Theorem B. There is a dynamical bijection between a family §R⌈ of Schwarz reflection maps

and a corresponding family Fd of parabolic anti-rational maps. Furthermore, this bijection is

continuous at hyperbolic and quasiconformally rigid parameters.

Straightneing results do not, in general, have any ability to describe what happens in

parameter spaces when they are of complex dimension greater than one. We are able to

obtain a dynamical bijection in higher dimension in this case as we have exactly two external

classes we are concerned with, and the surgery replaces one with the other.

We then turn our attention to parameter questions regarding these maps. In particular,

we consider Schwarz reflection maps for which there is a single unrestricted critical value.

Such maps arise when the uniformizing map for their domains have at most two critical

values, polynomials known as Shabat polynomials. These Shabat polynomials are classified
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by combinatorial bi-colored planar embedded trees, giving us many families of Schwarz

reflections. We denote a family of such reflections by ST .

Theorem C. The family ST is the interior of a quadrilateral with real-analytic boundary

arcs, together with one of the boundary arcs.

One point of interest about this theorem that it is essentially an analytic result. It is a

statement about disks on which a given polynomial is univalent. We prove it, however, using

dynamical methods to analyze the degeneration of quadrature domains. It seems likely that

such methods could be fruitful in the study of singularities for quadrature domains more

broadly.

Following this we focus more closely on the connectedness locus for this space.

Theorem D. The connectedness locus C(ST ) is a hull, i.e. it is compact, connected, and has

connected complement.

We present a partial combinatorial model of the connectedness loci for these families, and

prove that non-renormalizable maps within this family are combinatorially rigid.

1.1 Organization of chapters

Let us detail the organization of the rest of this thesis.

In Chapter 2 we detail background results in complex dynamics. First, for context, we

recall the theory of polynomial-like maps, straightening and renormalization for unicritical

polynomials introduced in [DH85] as well as Yoccoz’s rigidity theorem for non-renormalizable

quadratic polynomials. We then define generalized polynomial-like mappings (also known

as complex box mappings) and recall more recent results on their rigidity given in [Avi+09;

Cla+22].

We conclude the chapter with a theorem due to Alfredo Poirier which appears in [Poi13],

based on the realization result of W. Thurston appears in [DH93], which gives a condition
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Figure 1.1: Pictured is the parameter space for a family of Shabat-Belyi polynomials. It gives
a combinatorially equivalent picture to a corresponding family of Schwarz reflections.

for when combinatorial models called Hubbard trees may be realized by postcritically finite

polynomials.

Chapter 3 concerns the dynamics of Schwarz reflections, anti-holomorphic maps on a

domain which extend identity on the boundary. Such domains are called quadrature domains.

We restrict our attention to those quadrature domains which are Jordan domains with one

boundary singularity, and such that the reflection has a single maximal degree critical value

lying outside the domain of definition. We describe an external class for such maps, playing

an analogous role to the Böttcher coordinates for polynomials.

We then introduce the notion of pinched polynomial-like-maps. These are a natural class

of semi-local restrictions of Schwarz reflections and parabolic anti-rational maps alike. We

show that when one has a single pinching for these maps and that the behavior at such a

pinching is of simple parabolic type, that one can straighten this map to a Schwarz reflection

or a parabolic anti-rational map, giving theorem A.

This is not enough to prove the entirety of theorem B, as both Schwarz reflections and

parabolic anti-rational maps contain higher order parabolic parameters. To prove a full
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bijection we introduce instead a different quasi-conformal surgery. The other surgery however

does not yield as much information about how the straightening map varies under parameter

change, and so both techniques are necessary.

In Chapter 4 we impose critical orbit relations on our Schwarz reflections so that there

are two critical values, one of them necessarily being the singular point on the boundary of

the quadrature domain. This implies that the domain for the reflection map is uniformized

by a Shabat polynomial. We consider the combinatorics of such maps and give a realization

theorem for post-critically finite ones, using a result of Poirier [Poi13]. We analyze the ways

in which the corresponding domains can degenerate to prove theorem C.

Following this, we show that a hyperbolic component in our family can be described by

the multiplier of the attracting periodic point together with some finite covering data, and

that the boundaries of hyperbolic components consists of maps with neutral periodic points.

We then give a tessellation for the escape locus, and use this to prove theorem D.

After that we turn our attention to finer detail of the structure of the connectedness loci,

C(ST ). In particular, we introduce a puzzle structure for maps, show that renormalizable

maps have associated with them full Multibrot or Multicorn combinatorial families in C(ST ),

and non-renormalizable parameters are combinatorially rigid.

We conclude by showing that the critical dessin T embeds into a combinatorial model for

the connectedness locus C̃(ST ), given by identifying non-hyperbolic combinatorial classes.
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Chapter 2

Background

Here we recall some of the key results used in this thesis. For more thorough introductions to

the field of complex dynamics we refer the reader to the books of Milnor [Mil06] and Lyubich

[Lyu].

2.1 Polynomial-like maps, and generalized

polynomial-like maps

2.1.1 Polynomial-like maps and Straightening

The notion of polynomial-like maps were introduced in [DH85].

Definition 2.1.1. Let U, V be open topological disks in C with U compactly contained in V .

A polynomial-like map g is a holomorphic degree d ≥ 2 branched cover g : U → V .

The filled Julia set or nonescaping set, K(g) of a polynomial-like map is the the intersection⋂
g−n(U). Two polynomial-like maps g : U → V, g̃ : Ũ → Ṽ are said to be hybrid conjugate

if there is a quasiconformal conjugacy φ : U → Ũ such that φ is conformal on K(g).

One source of examples for polynomial-like mappings is the restriction of polynomials to

suitable domains. The following straightening theorem of Douady-Hubbard states that up to
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a hybrid conjugacy all polynomial like mappings are such restrictions.

Theorem 2.1.1. [DH85] Any polynomial-like map g : U → V is hybrid conjugate to the

restriction of a polynomial f : C → C. Furthermore, if the filled Julia set of g is connected

then the polynomial f is unique up to an affine conjugacy.

2.1.2 Generalized Polynomial-Like Mappings and Rigidity

We now introduce a generalization of polynomial like mappings, called generalized polynomial-

like mappings (also referred to as complex box mappings).

Definition 2.1.2. [Cla+22] Let V be finite union of Jordan domains with disjoint closures,

U ⊂ V be an open set so that each component of U is either itself a component of V or

compactly contained in V .

A generalized polynomial-like map is a map f : U → V , which is proper when restricted

to any component of U .

In [Cla+22] they further consider conditions of “dynamical naturality” to ensure that

certain pathologies do not occur. The conditions are:

1. No permutation condition: For each component Uj ⊂ U there is some n ≥ 0 so that

F n(U) \ U ̸= ∅.

2. Define Koff-crit(F ) to be the subset of K(F ) consisting of points whose orbit stays

disjoint from a puzzle neighborhood of the critical points of F . The Lebesgue measure

of Koff-crit(F ) is zero.

3. For every x ∈ K(F ) there is some δ = δ(x) so that

lim sup
k

mod
(
CompFk(x)(V ) \ CompFk(x)(U)

)
> δ.
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A generalized polynomial-like map f : U → V is said to be non-renormalizable if there is

no restriction of f to a polynomial-like map with connected Julia set.

The main result of [Cla+22], generalizing the results of [Avi+09] is the following.

Theorem 2.1.2. [Cla+22, Theorem 6.1, and the remark afterwards] Suppose that two

dynamically natural complex box mappings are combinatorially equivalent. Then they are

quasiconformally conjugate. Furthermore, if the Julia sets are nowhere dense then the maps

are conformally conjugate.

2.2 Postcritically Finite Polynomials

2.2.1 Hubbard trees and Poirier’s realization theorem

Theorem 2.2.1. [Poi13, Theorem 5.1] A normalized orientation-reversing angled tree dy-

namics can be realized as the dynamics associated to a postcritically finite anti-holomorphic

polynomial map if and only if it is expanding. In other words, all anti-Hubbard trees — and

only them — can be realized. Such a realization is unique up to affine conjugation in the

dynamical plane.

9





Chapter 3

Schwarz Reflection Maps as Matings

of Anti-Holomorphic Parabolic Maps

with Kleinian Reflection Groups

3.1 The Dynamics of Schwarz Reflections

3.1.1 Schwarz reflections associated to univalent rational maps

By definition, a domain Ω ⊊ Ĉ satisfying ∞ ̸∈ ∂Ω and Ω = intΩ is a quadrature domain

if there exists a continuous function σ : Ω → Ĉ such that σ is anti-meromorphic in Ω and

σ(z) = z on the boundary ∂Ω. Such a function σ is unique (if it exists), and is called the

Schwarz reflection map associated with Ω. It is well known that except for a finite number of

singular points (cusps and double points), the boundary of a quadrature domain consists of

finitely many disjoint real-analytic curves [Sak91]. Every non-singular boundary point has a

neighborhood where the local reflection in ∂Ω is well-defined. The (global) Schwarz reflection

σ is an antiholomorphic continuation of all such local reflections.

Round disks on the Riemann sphere are the simplest examples of quadrature domains.

Their Schwarz reflections are just the usual circle reflections. Further examples can be
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constructed using univalent polynomials or rational functions. In fact, simply connected

quadrature domains admit a simple characterization.

Proposition 3.1.1. [AS76, Theorem 1][LMM21, Proposition 2.3] A simply connected domain

Ω ⊊ Ĉ with ∞ /∈ ∂Ω and int Ω = Ω is a quadrature domain if and only if the Riemann

uniformization R : D → Ω extends to a rational map on Ĉ. The Schwarz reflection map σ of

Ω is given by R ◦ η ◦ (R|D)−1.

D Ω

Ĉ \ D Ĉ.

R

η σ

R

In this case, if the degree of the rational map R is d+1, then σ : σ−1(Ω) → Ω is a (branched)

covering of degree d, and σ : σ−1(intΩc) → int Ωc is a (branched) covering of degree d+ 1.

We refer the reader to [AS76], [LM16], [Lee+18a, §3], [LMM21, §2] for more background

on quadrature domains and Schwarz reflection maps.

For d ≥ 2, the preimage σ−1(Ω) is never relatively compact in Ω, and the Schwarz

reflection does not restrict to an anti-polynomial-like map. It is convenient then to give a

weaker notion generalizing this semi-local behavior.

We say that a polygon is a Jordan domain whose boundary consists of finitely many closed

smooth arcs. The points of intersection of these arcs will be denoted as the corners of the

polygon. A pinched polygon is a union of domains in Ĉ whose closure is homeomorphic to

a closed disk quotiented by a finite geodesic lamination, and whose boundary is given by

finitely many closed smooth arcs. The separating points of the closure of a pinched polygon

will be called its pinched points.

Definition 3.1.1. Let V ⊂ Ĉ be a polygon, and let U ⊂ V be a pinched polygon with U ∩V

consisting of the corners of V .

Suppose that there is a (anti-)holomorphic map g : U → V which is a branched cover

from each component of U onto V , extends continuously to the boundary of U , and such

12



that at the corners of V , the map g has local degree 1. We further suppose that corners and

pinchings of U are the preimages of the corners of V .

We then call the triple (g, U, V ) a pinched (anti-)polynomial-like map.

(See Figure 3.1.)

∂V

∂U

Figure 3.1: Pictured is the domain and codomain of a pinched (anti-)polynomial-like map.
Here, V is the interior of the black polygon with three corners (marked in red). The interior
of the blue pinched polygon is U . The pinched point and the additional corner points of ∂U
are marked in green.

As with polynomial-like maps, we define the filled Julia set or non-escaping set of a

pinched (anti-)polynomial-like map to be K(g) =
⋂
n≥0 g

−n(U), and denote it by K(g).

Analogous to classical polynomial-like maps [DH85], the filled Julia set K(g) of a pinched

(anti-)polynomial-like map is connected if and only if it contains all of the critical values of g.

Let us give two important examples of pinched polynomial like maps.

1. For a simply connected quadrature domain Ω with Schwarz reflection σ the restriction

σ : σ−1(Ω) → Ω is a pinched anti-polynomial-like map.

13



2. Let R : Ĉ → Ĉ be a(n) (anti-)rational map, with a parabolic fixed point and an

associated fully invariant parabolic basin of attraction, B. Let P ⊂ B be an attracting

petal for the parabolic fixed point. Then the restriction R : Ĉ \R−1(P ) → Ĉ \ P is a

pinched (anti-)polynomial-like map.

In general there is no straightening theorem for all pinched polynomial-like maps as there

is for standard polynomial-like maps. In a later section however we will prove a straightening

theorem under additional assumptions.

Let us now return to the degree (d+ 1) rational map f that is univalent on D. We set

Ω := f(D) and denote the associated Schwarz reflection map by σ.

We define T (σ) := Ĉ \ Ω and S(σ) to be the singular set of ∂T (σ). We further set

T 0(σ) := T (σ) \ S(σ), and

T∞(σ) :=
⋃
n≥0

σ−n(T 0(σ)).

We will call T∞(σ) the tiling set of σ. For any n ≥ 0, the connected components of σ−n(T 0(σ))

are called tiles of rank n. Two distinct tiles have disjoint interior. The non-escaping set of σ

is defined as

K(σ) := Ĉ \ T∞(σ) ⊂ Ω ∪ S(σ).

The common boundary of the non-escaping set K(σ) and the tiling set T∞(σ) is called the

limit set of σ, denoted by Λ(σ).

Proposition 3.1.2. The tiling set T∞(σ) is open, and hence the non-escaping set K(σ) is

closed.

Proof. Let us denote the union of the tiles of rank 0 through k by Ek.

If z ∈ T∞(σ) belongs to the interior of a tile of rank k, then it clearly belongs to intEk.

On the other hand, if z ∈ T∞(σ) belongs to the boundary of a tile of rank k, then z lies in

intEk+1. Hence,

T∞(σ) =
⋃
k≥0

intEk.

14



So T∞(σ) is a union of open sets. The result now follows.

Proposition 3.1.3. For Ω a quadrature domain and σ the associated Schwarz reflection, the

following are equivalent.

1. The critical values of σ which lie in Ω also lie in K(σ).

2. T∞(σ) is a simply connected domain.

3. K(σa) is connected.

Proof. (1 =⇒ 2) Let Ek be the union of the tiles of rank ≤ k.

Note that since vwvwvw ∈ ∆a, we have y2 ∈ Ωa. Hence, σa : σ
−1
a (intT 0(σa)) → intT 0(σa) is

a degree (d+ 1) branched cover branched only at f(a). It now follows from the Riemann-

Hurwitz formula that σ−1
a (intT 0(σa)) is a simply connected domain. Moreover, we have

∂T 0(σa) ⊂ ∂σ−1
a (T 0(σa)). Hence, intE

1 is a simply connected domain.

If y2 ∈ K(σa), then every tile of rank ≥ 2 is unramified, and we can iterate the arguments

of the previous paragraph to conclude that intEk is a simply connected domain, for each

k. Since T∞(σa) =
⋃
k≥0 intE

k (see Proposition 3.1.2), we conclude that T∞(σa) is a simply

connected domain.

(2 =⇒ 3) The complement of a simply connected domain is a full continuum.

(3 =⇒ 1) Suppose that K(σa) is connected. If y2 ∈ T∞(σa), then the tile containing a

critical point of σa with corresponding critical value y2 would be ramified, and disconnect

K(σa). Therefore, y2 must lie in K(σa).

3.2 The space SRd
of Schwarz reflections

The goal of this section is to introduce a space of Schwarz reflection maps that will give rise

to matings of parabolic Bers anti-rational maps and Hecke reflection groups, and describe

their dynamics on the tiling set. These Schwarz reflections arise from quadrature domains

which are Jordan domains with exactly one singularity on the boundary.
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Suppose that there exists a degree d+1 rational map f that admits a univalent restriction

f |D such that T∞(σ) (where σ is the Schwarz reflection map of the quadrature domain f(D))

is a simply connected domain containing exactly one critical value v0 of f , and v0 ∈ intT 0(σ)

with f−1(v0) a singleton. By the commutative diagram of Subsection 3.1.1, the set of critical

points of σ is given by

{f(η(c)) : c ∈ Ĉ \ D, and c is a critical point of f}.

One now sees that σ must have a unique critical point in its tiling set T∞(σ) and this critical

point maps to v0 ∈ intT 0(σ) with local degree d+ 1. It is this property of σ on its tiling set

that will be captured by the anti-Farey map Rd defined below (cf. [Lee+21, §4.4]).

3.2.1 The anti-Farey map Rd and the anti-Hecke group ΓΓΓd

Consider the Euclidean circles C̃1, · · · , C̃d+1 where C̃j intersects {|z| = 1} at right angles

at the roots of unity exp (2πi·(j−1)
d+1

), exp (2πi·j
d+1

). We denote the intersection of D ∩ C̃j by Cj.

Then C1, · · · , Cd+1 are hyperbolic geodesics in D, and they form a closed ideal polygon (in

the topology of D) which we call Π.

Let ρj be reflection with respect to the circle C̃j , Vj be the bounded connected component

of Ĉ \ C̃j, and Dj := Vj ∩ D (see Figure 3.2). Note that Vj is the symmetrization of Dj with

respect to the unit circle. The maps ρ1, · · · , ρd+1 generate a subgroup Gd of Aut±(D). As an

abstract group, it is given by the generators and relations

⟨ρ1, · · · , ρd+1 : ρ
2
1 = · · · = ρ2d+1 = id⟩.

3.2.1.1 The anti-Farey map Rd

We define Mω : z 7→ ωz, and consider the (orbifold) Riemann surfaces Q := D⧸⟨Mω⟩ and

Q̃ := Ĉ⧸⟨Mω⟩, where ω := e
2πi
d+1 . Note that a (closed) fundamental domain for the action of

⟨Mω⟩ on Ĉ is given by

{z ∈ C : 0 ≤ arg z ≤ 2π

d+ 1
} ∪ {0,∞},
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D1

D2

D3 D4

0

Π

ρ1(0)

ρ1(D2)

ρ1(D3)

ρ1(D4)

ρ1(Π)

0

Π

F

ρ1(F)

ρ1(0)

Figure 3.2: Top: Depicted is the ideal polygon Π for d = 3. The set ρ1(Π) is also shown.

ρ1(Π) is mapped by R3 as a 4 : 1 branched cover onto Q1 = Π⧸⟨Mi⟩ ⊂ Q (whereMi : z 7→ iz).

The unique critical point of R3 is ρ1(0). Bottom: F is a fundamental domain for the action
of the group ΓΓΓ3, generated by ρ1 and Mi, on D. A fundamental domain for the action of the
associated index two Fuchsian subgroup Γ̃ΓΓ3 on D is given by F̃ = F ∪ ρ1(F). The generators

Mi and ρ1 ◦Mi ◦ ρ1 of Γ̃ΓΓ3 pair the sides of F̃ as indicated by the arrows. This shows that
D⧸̃

ΓΓΓ3
is a sphere with one puncture and two orbifold points of order four.
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and a (closed) fundamental domain for its action on D is given by

{|z| < 1, 0 ≤ arg z ≤ 2π

d+ 1
} ∪ {0}.

Thus, Q (respectively, Q̃) is biholomorphic to the surface obtained from the above fundamental

domain by identifying the radial line segments {r : 0 < r < 1} and {re
2πi
d+1 : 0 < r < 1}

(respectively, the infinite radial rays at angles 0 and 2πi
d+1

) by Mω. This endows Q and Q̃ with

preferred choices of complex coordinates. With these coordinates, the identity map is an

embedding of the (bordered) surface D1 ∪ C1 (respectively, V1 ∪ C̃1) into Q (respectively, Q̃).

The map ρ1 induces a map

Rd : V1 ∪ C̃1 Ĉ Ĉ/⟨Mω⟩ = Q̃.ρ1

We note that ∂Q := S1
⧸⟨Mω⟩ is topologically a circle, and Rd restricts to an orientation-

reversing degree d covering of ∂Q ⊂ Q̃ with a unique neutral fixed point (at 1). By [Lyu+20,

Lemma 3.7], Rd|∂Q is expansive. Moreover, Rd has a critical point of multiplicity d at ρ1(0)

with associated critical value 0. We also note that all points in D1 ∪ C1 eventually escape to

Q1 := Π⧸⟨Mω⟩ ⊂ Q under iterates of Rd. We refer to the map Rd as the degree d anti-Farey

map (see [Lod+23, §9] for connections between the map R2 and an orientation-reversing

version of the classical Farey map).

Note that the map z 7→ zd+1 yields a conformal isomorphism ξ between the surface Q̃ and

the Riemann sphere Ĉ. This isomorphism restricts to a homeomorphism between ∂Q and S1.

3.2.1.2 The anti-Hecke group ΓΓΓd

Consider the subgroup ΓΓΓd of Aut±(D) generated by ρ1 and Mω. It is easy to see that ΓΓΓd is a

discrete group isomorphic to Γd, and a (closed) fundamental domain F for the ΓΓΓd-action on

D is given by

F := {z ∈ Π : 0 ≤ arg z ≤ 2π

d+ 1
} ∪ {0}.

The index two Fuchsian subgroup Γ̃ΓΓd of ΓΓΓd is generated by Mω and ρ1 ◦Mω ◦ ρ1. A (closed)

fundamental domain for the Γ̃ΓΓd-action on D is given by F̃ := F ∪ ρ1(F), which is the double
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of F. It is easy to check that D⧸̃
ΓΓΓd

is a sphere with one puncture and two orbifold points of

order d+ 1 (see Figure 3.2).

3.2.2 Schwarz reflections with external class Rd

We will now show that restrictions on the uniformizing map f forces the external class of σ

to be the anti-Farey map Rd.

Proposition 3.2.1. Let f be a rational map of degree d+1 that is injective on D, Ω := f(D),

and σ the Schwarz reflection map associated with Ω. Then the following are equivalent.

1. T∞(σ) is a simply connected domain containing exactly one critical value v0 of f .

Moreover, v0 ∈ intT 0(σ) with f−1(v0) a singleton.

2. Ω is a Jordan domain with a unique conformal cusp on its boundary. Moreover, σ has a

unique critical point in its tiling set T∞(σ), and this critical point maps to v0 ∈ intT 0(σ)

with local degree d+ 1.

3. There exists a conformal conjugacy ψ between

Rd : Q \ intQ1 −→ Q and σ : T∞(σ) \ intT 0(σ) −→ T∞(σ).

In particular, T∞(σ) is simply connected.

4. After possibly conjugating σ by a Möbius map and pre-composing f with an element of

Aut(D), the uniformizing map f can be chosen to be a polynomial with a unique critical

point on S1. Moreover, K(σ) is connected.

Proof. (1) =⇒ (2): That Ω is a Jordan domain follows from injectivity of f on D. By the

classification of singular points on boundaries of quadrature domains, there is no double

point on ∂Ω; i.e., any singularity of ∂Ω must be a conformal cusp. We also note that

intT 0(σ) = Ĉ \ Ω is a Jordan domain.
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Since intT 0(σ) ⊊ T∞(σ) contains exactly one critical value v0 of f and f−1(v0) is a

singleton, it follows that v0 is the unique critical value of σ in intT 0(σ) and σ−1(v0) is a

singleton. It follows by Riemann-Hurwitz formula that σ−1(intT 0(σ)) is a simply connected

domain.

Let us suppose, by way of contradiction, that ∂Ω is non-singular. Then, T 0(σ) = Ĉ \ Ω

is a closed Jordan domain, and the rank one tile σ−1(T 0(σ)) contains a one-sided annular

neighborhood of ∂Ω. Since σ−1(T 0(σ)) is simply connected, it must be equal to Ω, and hence

T 0(σ) ∪ σ−1(T 0(σ)) must be the whole Riemann sphere. But this contradicts the fact that

σ−1(Ω) ̸= ∅. Hence, ∂Ω must have at least one conformal cusp.

We claim that ∂Ω cannot have more than one conformal cusp. By way of contradiction,

assume that it has at least two cusps x1, x2. Due to connectivity of σ−1(intT 0(σ)), the union

T 0(σ) ∪ σ−1(T 0(σ)) of the rank zero and rank one tiles must contain a simple closed curve γ

in its interior such that x1 and x1 lie in different components of Ĉ \ γ. As x1, x2 ∈ K(σ), we

conclude that T∞(σ) is not simply connected. This contradicts the hypothesis, and proves

our claim.

Thus, we have demonstrated that Ω is a Jordan domain with a unique conformal cusp

on its boundary. By the commutative diagram of Subsection 3.1.1, a critical value of

σ is also a critical value of f . Hence, σ has a unique critical value in T∞(σ). Since

σ−1(v0) = f |D(η(f−1(v0)) and f
−1(v0) is a singleton, we conclude that σ has a unique critical

point in T∞(σ), and the associated critical value is v0. Moreover, since f has global degree

d + 1, it follows that the unique critical point of σ in the tiling set maps to v0 ∈ intT 0(σ)

with local degree d+ 1.

(2) =⇒ (3): As Q1 is simply connected, we can choose a homeomorphism

ψ : Q1 → T 0(σ)

such that it is conformal on the interior (note that both Q1 and T 0(σ) are closed topological

disks with one boundary point removed). We can further assume that ψ(0) = v0, and its

continuous extension sends the cusp point 1 ∈ ∂Q1 to the unique cusp on ∂T 0(σ) = ∂Ω.
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Note that σ : σ−1(T 0(σ)) → T 0(σ) is a (d+1) : 1 branched cover branched only at σ−1(v0),

and Rd : ρ1(Π) → Q1 is a (d + 1) : 1 branched cover branched only at ρ1(0). Moreover, σ

fixes ∂T 0(σ) pointwise, and Rd fixes C2 ∪ {1} ∼= ∂Q1 pointwise.

This allows one to lift ψ to a conformal isomorphism from ρ1(Π) onto σ
−1(T 0(σ)) such that

the lifted map sends ρ1(0) to σ
−1(v0), and continuously matches with the initial map ψ on Q1.

Abusing notation, we denote this extended conformal isomorphism by ψ. By construction, ψ is

equivariant with respect to the actions of Rd and σ on ∂ρ1(Π) and ∂σ
−1(T 0(σ)), respectively.

Since T∞(σ) contains no other critical point of σ, every tile of T∞(σ) of rank greater than

one maps diffeomorphically onto σ−1(T 0(σ)) under some iterate of σ. Similarly, each tile of

D1 of rank greater than one maps diffeomorphically onto ρ1(Π) under some iterate of Rd.

This fact, along with the equivariance property of ψ mentioned above, enables us to lift ψ to

all tiles using the iterates of Rd and σ. This produces the desired biholomorphism ψ between

Q and T∞(σ) which conjugates the anti-Farey map Rd to the Schwarz reflection σ.

(3) =⇒ (4): Simple connectivity of T∞(σ) follows from the same property of Q, and this

implies connectivity of K(σ). By hypothesis, σ has a unique critical point in σ−1(T 0(σ)) ⊂

T∞(σ). We denote this critical point by c∞. Conjugating σ by a Möbius map, we can assume

that this critical point maps with local degree d + 1 to ∞. We can normalize f (which

amounts to pre-composing it with an element of Aut(D)) so that it sends 0 to c∞. The

commutative diagram in Subsection 3.1.1 now implies that f sends ∞ to itself with local

degree d+ 1. Consequently, f is a degree d+ 1 polynomial. It remains to prove that f has a

unique critical point on S1. This will follow from the next paragraph, where we argue that

∂Ω has a unique singular point, which is a conformal cusp.

The biholomorphism ψ induces a homeomorphism between ∂Q1 (boundary taken in Q̃,

see Subsection 3.2.1) and ∂T 0(σ). Note also that the map Rd admits local anti-conformal

extensions around each point of C1 (see Subsection 3.2.1), but does not have any such extension

in a relative neighborhood of 1 in Q (closure taken in Q̃). It follows via the conjugacy ψ that

σ admits local anti-conformal extensions around each point of ∂T 0(σ) \ {ψ(1)}, but does
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not have any such extension in a neighborhood of ψ(1). This implies that the Jordan curve

∂T 0(σ) = ∂Ω has a unique singular point at ψ(1), which must be a conformal cusp.

(4) =⇒ (1): Connectedness of K(σ) implies that T∞(σ) is simply connected.

Since f is a polynomial, σ has a d-fold critical point at f(0) with associated critical value

∞ ∈ intT 0(σ). Moreover, f−1(∞) = {∞}. If any tile of T∞(σ) of rank greater than one

contains a critical point of σ, then such a tile would be ramified, and disconnect K(σ) (cf.

[Lee+18a, Proposition 5.23]). Therefore, T∞(σ) does not contain any other critical value of

σ and hence does not contain any critical value of f other than v0 = ∞.

Definition 3.2.1. We define SRd
to be the space of pairs (Ω, σ), where

1. Ω is a Jordan quadrature domain with associated Schwarz reflection map σ : Ω → Ĉ,

and

2. there exists a conformal map ψ : (Q, 0) → (T∞(σ),∞) that conjugates Rd : Q \

intQ1 −→ Q to σ : T∞(σ) \ intT 0(σ) −→ T∞(σ).

We endow this space with the Carathéodory topology (cf. [McM94, §5.1]).

Remark 3.2.2. The family SRd
can be thought of as a Bers slice in the space of Schwarz

reflection maps, since all maps in this family have the same external dynamics Rd.

The next corollary follows from Proposition 3.2.1.

Corollary 3.2.3. Let (Ω, σ) ∈ SRd
. Then ∂Ω has a unique conformal cusp yyy on its boundary.

Moreover, there exists a polynomial f of degree d+ 1 with a unique critical point on S1 such

that f carries D injectively onto Ω.

The following proposition shows that SRd
is large. The proof relies on David surgery and

a full proof can be found in [LMM23]

Let us recall that an anti-rational map is said to be semi-hyperbolic if it has no parabolic

cycles and all critical points in its Julia set are non-recurrent.
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Proposition 3.2.4. Let p be a degree d semi-hyperbolic anti-polynomial with a connected

Julia set. Then, there exist

• (Ω, σ) ∈ SRd
, and

• a global David homeomorphism H that is conformal on intK(p),

such that H conjugates p|K(p) to σ|K(σ).

Definition 3.2.2. We call (Ω, σ) ∈ SRd
relatively hyperbolic if the forward σ-orbit of each

critical point of σ in K(σ) converges to an attracting cycle.

Remark 3.2.5. (1) There are two major difficulties in carrying out the arguments of Proposi-

tion 3.2.4 for an arbitrary degree d anti-polynomial with a connected Julia set. Firstly, the

Julia set of p may not be locally connected, in which case the proof breaks down. Secondly,

even if the Julia set is locally connected, lack of expansion along the postcritical set of p may

result in loss of control of the geometry of B∞(p). This may, in turn, imply that the Beltrami

coefficient constructed in the proof of Proposition 3.2.4 is not a David coefficient (note that

Johnness of the basin of infinity for semi-hyperbolic maps was used crucially in our proof).

(2) We use the term relatively hyperbolic (as opposed to hyperbolic) because the external

map of every Schwarz reflection map in SRd
has a parabolic fixed point. Thus, there is no

expanding conformal metric in a neighborhood of the limit set of a relatively hyperbolic map

in SRd
.

(3) A member of SRd
obtained by applying Proposition 3.2.4 on a hyperbolic anti-

polynomial p with connected Julia set is relatively hyperbolic.

Note that there is a natural action of Aut(C) on SRd
given byA·(Ω, σ) := (A(Ω), A◦σ◦A−1).

We will define the set of equivalence classes by

[SRd
] := SRd⧸Aut(C),

and denote the equivalence class of (Ω, σ) by [Ω, σ].

The next result shows that SRd
also contains the closure of relatively hyperbolic maps.
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Q1

D1

ρ1(0)

B

ψn(B)

fn(0) = ψn(ρ1(0))

Ωn

K(σn)

ψn

∂B(0, R)

Figure 3.3: The pointed domains (Ωn, fn(0)) have a non-trivial Carathéodory limit since all
of them contain an open set ψn(B) of definite size and are contained in B(0, R).

Proposition 3.2.6. The moduli space [SRd
] is compact.

Proof. Let {[Ωn, σn]} be a sequence in [SRd
] where ψn : Q → T∞(σn) is a conformal conjugacy

between Rd and σn. We will show that there is a convergent subsequence. We can choose a

representative from [Ωn, σn] for which ψn(0) = ∞, and ψn(z) = 1/z + O(z) as z → 0 (this

amounts to replacing Ωn by an affine image of it). By the normality of schlicht maps we may

pass to a convergent subsequence, whose limit we denote by ψ∞.

Let fn : D → Ωn be a uniformizing map. We normalize fn as in Proposition 3.2.1 so

that it extends to a degree d+ 1 polynomial on Ĉ. The normalization of ψn and the Koebe

1/4 theorem imply that there is some R > 0 such that ψn(Q1) ⊃ Ĉ \ B(0, R), and hence

Ωn ⊂ B(0, R) for all n (see Figure 3.3). This implies that the coefficients of fn are uniformly

bounded, and so after passing to a subsequence there is a limit polynomial f∞ of degree at

most d+ 1 which is univalent on D.

Take B to be a neighborhood of ρ1(0) which is compactly contained in D1. We note that

for all n sufficiently large that ψ∞(B) ⊂ ψn(D1) ⊂ fn(D) = Ωn (see Figure 3.3). Furthermore
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fn(0) = ψn(ρ1(0)) ∈ ψ∞(B) for all n large enough. It follows that f∞ has degree at least 1. By

the Carathéodory kernel theorem, the pointed disks (Ωn, fn(0)) converges to (f∞(D), f∞(0))

in the Carathéodory topology.

The curve γ := ∂ψ∞(Q1) is a real-algebraic curve, since it is the limit of the real-algebraic

curves ψn(∂Q1) = fn(∂D) of uniformly bounded degree. Thus, γ is locally connected, and

hence ψ∞|Q1 extends continuously to Q1. Conformality of ψ∞ on Q now implies that ψ∞|∂Q1

is a homeomorphism. Therefore, γ is a Jordan curve. We also know that f∞(∂D) is a

closed curve which is contained in γ, and hence is the same Jordan curve. This shows that

f∞(D) = Ĉ \ ψ∞(Q1).

Let σ∞ be the Schwarz reflection map for the quadrature domain f∞(D), which we

have just shown to be a Jordan domain with a single cusp on its boundary. We know

that ψ∞ conjugates Rd to σ∞ where defined, and as Q =
⋃
n≥0R

−n
d (Q1), it follows that

T∞(σ∞) =
⋃
n≥0 σ

−n
∞ (T 0(σ∞)) = ψ∞(Q). Thus, the action of σ∞ on its tiling set is conformally

conjugate (via ψ∞) to the action of Rd on Q.

3.2.3 Relation between SRd
and correspondences

Let (Ω, σ) ∈ SRd
and f : D → Ω be the uniformizing degree d + 1 polynomial given by

Corollary 3.2.3. Associated to f is the anti-holomorphic d : d correspondence C∗ where

(z, w) ∈ C∗ if

f(w)− f(ι(z))

w − ι(z)
= 0,

where ι(z) = 1/z̄. These form the anti-holomorphic analogues to the correspondences

considered in [BP94; BF03; BF05; BL20; BL22] considered by Bullett, Penrose, Lomonaco,

and other co-authors. We refer the reader to [LMM23, Section 2] for a detailed description of

the dynamics of C∗.
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3.3 Straightening members of SRd

3.3.1 A space Fd of parabolic anti-rational maps

We begin with some background on parabolic points in antiholomorphic dynamics. Let z0 be

a parabolic fixed point for an anti-rational map R (i.e., R(z0) = z0 and (R◦2)′(z0) = 1) with

an invariant Fatou component (a parabolic basin) U such that z0 ∈ ∂U and R◦n|U → z0 as

n→ +∞. Then according to [HS14, Lemma 2.3], there is an f -invariant open subset V ⊂ U

with z0 ∈ ∂V so that for every z ∈ U , there is an n ∈ N with f ◦n(z) ∈ V . Moreover, there is

a univalent map φatt : V → C, called the Fatou coordinate, with

φatt(R(z)) = φatt(z) + 1/2, z ∈ V,

and φatt contains a right half-plane. The map φatt is unique up to real translations. Note that

the antiholomorphic map R interchanges the two ends of the attracting cylinder V⧸R ∼= C/Z,

and hence fixes a unique horizontal round circle around this cylinder, which we call the

attracting equator. By construction, φatt sends the equator to the real axis. We can extend φatt

analytically to the entire Fatou component U as a semi-conjugacy between R and ζ → ζ+1/2.

For z ∈ U , we call Im(φatt(z)) (which is well-defined) the Écalle height of z.

Note that the anti-Blaschke product

Bd(z) =
(d+ 1)zd + (d− 1)

(d− 1)zd + (d+ 1)

has a parabolic fixed point at 1 and D is an invariant parabolic basin of this fixed point. Due

to real-symmetry of the map Bd, the unique critical point 0 of Bd in D has Écalle height zero.

Definition 3.3.1. We define the family Fd to be the collection of degree d ≥ 2 anti-rational

maps R with the following properties.

1. ∞ is a parabolic fixed point for R.

2. There is a marked parabolic basin B(R) of ∞ which is simply connected and completely

invariant.
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3. R|B(R) is conformally conjugate to Bd|D.

Note that each R ∈ Fd is a Bers-like anti-rational map with filled Julia set K(R) = Ĉ\B(R).

In consistence with the terminology for Schwarz reflections, we call R ∈ Fd relatively

hyperbolic if the forward orbit of each critical point of R in K(R) converges to an attracting

cycle (compare Definition 3.2.2).

Remark 3.3.1. By [Lyu+20, Example 4.2, Theorem 4.12], any circle homeomorphism con-

jugating zd|S1 to Bd|S1 continuously extends to a David homeomorphism of D. Using this

fact, one can perform a David surgery (as in the proof Proposition 3.2.4) to glue the map

Bd|D outside the filled Julia set of a semi-hyperbolic anti-polynomial (with connected Julia

set). This would prove that for any degree d hyperbolic anti-polynomial p with a connected

Julia set, there exists a relatively hyperbolic map R ∈ Fd such that R|K(R) is topologically

conjugate to p|K(p) with the conjugacy being conformal on the interior.

An alternative way of constructing relatively hyperbolic maps in Fd is to appeal to the

Cui-Tan theory of characterization of geometrically finite rational maps (cf. [CT18]).

Proposition 3.3.2. The moduli space [Fd] := Fd⧸Aut(C) is compact.

Proof. Let Rn be a sequence in Fd and B(Rn) be their corresponding marked basins, con-

jugated by affine transformations appropriately so that the maps φn : D → B(Rn) which

conjugate Bd to Rn satisfy φn(0) = 0, φ′
n(0) = 1. As these are schlicht functions, we

may pass to a subsequence such that φn converge to some map φ∞. We have that the

pointed domains (B(Rn), 0) converge in the Carathéodory topology to (φ∞(D), 0), and as

Rn|B(Rn) = φn ◦Bd ◦ φ−1
n , these anti-rational maps converge to some map R∞ : φ∞(D) → Ĉ.

Since R∞ is the locally uniform limit of anti-rational maps of degree d it must extend to an

anti-rational map itself, of degree at most d. Furthermore, R∞ is conformally conjugate to

Bd on φ∞(D) (via φ−1
∞ ), so that it must have degree at least d, and therefore has degree d.

It is easy to see that R∞ has a parabolic point at ∞ and that φ∞(D) is the desired marked

parabolic basin of ∞.
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3.3.2 Hybrid conjugacies for Schwarz and anti-rational maps

For a map R ∈ Fd, let P ⊂ B(R) be a petal at ∞ such that the critical value of R in B(R)

lies in P , the corresponding critical point (of multiplicity d− 1) lies on ∂P , and ∂P \ {∞} is

smooth. This can be arranged so that V := Ĉ \ P is a polygon. We now set U := R−1(V ),

and observe that (R|U , U, V ) is a pinched anti-polynomial-like map, as in Definition 3.1.1,

and this pinched anti-polynomial-like restriction has the same filled Julia set as R. Any two

such restrictions are clearly hybrid equivalent.

Convention: We will associate maps R ∈ Fd with the above choice of pinched anti-

polynomial-like restrictions when discussing hybrid conjugacies.

We now show that elements of [Fd] and [SRd
] are completely determined by their hybrid

classes.

Lemma 3.3.3. 1) Let R1, R2 ∈ Fd be hybrid conjugate. Then R1 and R2 are affinely

conjugate.

2) Let (Ω1, σ1), (Ω2, σ2) ∈ SRd
be hybrid conjugate. Then σ1 and σ2 are affinely conjugate.

Proof. 1) Let Φ: Ĉ → Ĉ be a quasiconformal homeomorphism inducing the hybrid conjugacy

between R1, R2. Also recall that there are conformal maps ψi : D → B(Ri) which conjugate

Bd to Ri, i ∈ {1, 2}.

We now define the map

H =


Φ on K(R1),

ψ2 ◦ ψ−1
1 on B(R1).

We wish to show that H is continuous. By the arguments of [DH85, §1.5, Lemma 1], it

suffices to show that Φ and ψ2 ◦ ψ−1
1 agree on the fixed prime ends of B(R1). Since ψ2 ◦ ψ−1

1

conjugates R1 to R2 on their parabolic basins of ∞, it clearly takes fixed prime ends to fixed

prime ends while mapping the prime end of B(R1) corresponding to ∞ to the prime end of

B(R2) corresponding to ∞.
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On the other hand, since Φ is a global homeomorphism that conjugates pinched anti-

polynomial-like restrictions of R1 and R2, it follows that Φ also carries fixed prime ends to

fixed prime ends and maps the prime end of B(R1) corresponding to ∞ to the prime end of

B(R2) corresponding to ∞. As the fixed prime ends of B(Ri) are circularly ordered, Φ must

agree with ψ2 ◦ ψ−1
1 on each of them, and hence H is continuous.

By the Bers-Rickman gluing lemma (see [DH85, §1.5, Lemma 2]), H is a quasiconformal

homeomorphism of the sphere. By design it conjugates R1 to R2, and is conformal almost

everywhere. By Weyl’s lemma, it follows that H is in fact conformal and thus an affine map

as it fixes ∞.

2) Let h1 : Ĉ → Ĉ be a quasiconformal homeomorphism inducing the hybrid conjugacy

between σ1 and σ2. Furthermore, by definition of SRd
, there is a conformal map h2 : T

∞(σ1) →

T∞(σ2) which conjugates the Schwarz reflections, where defined. We now define the map

h(z) :=


h1 on K(σ1),

h2 on T∞(σ1).

If we prove that h1 and h2 agree on the fixed prime ends of T∞(σ1), then the arguments of

the previous part would apply mutatis mutandis to show that σ1 and σ2 are Möbius conjugate.

As each σi has a unique critical value in its tiling set; namely at ∞, such a Möbius conjugacy

must send ∞ to ∞. Hence, σ1 and σ2 would be affinely conjugate.

To complete the proof, we now proceed to establish the above statement about prime

ends. Since h2 conjugates σ1 to σ2 on their tiling sets, it takes fixed prime ends to fixed

prime ends while mapping the prime end of T∞(σ1) corresponding to yyy1 to the prime end of

T∞(σ2) corresponding to yyy2.

On the other hand, since h1 is a global homeomorphism that conjugates pinched anti-

polynomial-like restrictions of σ1 and σ2, it follows that h1 also carries fixed prime ends to

fixed prime ends and maps the prime end of T∞(σ1) corresponding to yyy1 to the prime end of

T∞(σ2) corresponding to yyy2. As the fixed prime ends of T∞(σi) are circularly ordered, h2
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must agree with h1 on each of them.

3.3.3 Two straightening results

The goal of this subsection is twofold. The first one is to prove a straightening result for a

restricted class of pinched anti-polynomial-like maps (see Definition 3.1.1), and the second one

is to establish the fact that the external classes Rd and Bd are quaiconformally compatible.

These results form the technical core of this section.

3.3.3.1 Simple pinched anti-polynomial-like maps

Definition 3.3.2. Let (F,U, V ) be a pinched anti-polynomial-like map as defined in Defini-

tion 3.1.1. We impose the following conditions on U and V .

(a) ∂U ∩ ∂V = {∞}, and ∞ is the only corner of V .

(b) There exists some sufficiently large R such that

∂V \B(0, R) = {te±2πi/3 | t ≥ R},

and −t ∈ V for t > R.

Furthermore, we restrict F : U → V such that:

1. There is some neighborhood U ′ of U \F−1(∞) on which F extends to an antiholomorphic

map.

2. Each access from Ĉ \ U to each point of F−1(∞) has a positive angle.

3. The point ∞ is fixed under F and F (z) = z + 1
2
+O(1/z) as z → ∞.

4. The critical values of F lie either in V or at ∞.

We then say that the triple (F,U, V ) is a simple pinched anti-polynomial-like map.
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(See Figure 3.5.) We will often refer to a simple pinched anti-polynomial-like map simply

by F , implicitly assuming the domain and codomain to be given.

Remark 3.3.4. By Condition (3) we have that near ∞, ∂U is asymptotic to linear rays at

angles ±2π/3.

Definition 3.3.3.

1. We define

Ssimp
Rd

:= {(Ω, σ) ∈ SRd
: the unique cusp of ∂Ω is of type (3, 2)},

and set Shigh
Rd

:= SRd
\ Ssimp

Rd
.

2. We define

F simp
d := {R ∈ Fd : ∞ is a simple parabolic fixed point of R},

and set Fhigh
d := Fd \ F simp

d .

For a map R ∈ F simp
d the associated pinched anti-polynomial-like map will be simple.

Our main result of this subsection is the following straightening theorem for simple pinched

anti-polynomial-like maps, which is of independent interest.

Theorem 3.3.5.

1. Let (F,U, V ) be a simple pinched anti-polynomial-like map of degree d ≥ 2. Then F

is hybrid conjugate to a simple pinched anti-polynomial-like restriction of a degree d

anti-rational map R with a simple parabolic fixed point.

2. If the filled Julia set of F is connected, then R is unique up to Möbius conjugacy, and

has a unique representative in
[
F simp
d

]
.

Proof. 1) We will use quasiconformal surgery to attach the dynamics of an appropriate degree

d antiholomorphic map to the exterior of V . Let pd(z) = zd+ cd, where cd = (d− 1)d
−d
d−1 . We
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P
0

p−1
d (P )

Figure 3.4: The interior of the red curve is the petal P introduced in the proof of Theorem 3.3.5,
and the interior of the white curve is its preimage p−1

d (P ).

note that pd has a simple parabolic fixed point at z0 = d
−1
d−1 and the orbit of the critical point

0 has Écalle height zero (see the discussion in the beginning of Subsection 3.3.1). Let P be an

attracting petal for this fixed point, such that the boundary ∂P near z0 consists of straight

lines which subtend an angle of 4π/3, the boundary ∂P is smooth away from z0, and 0 ∈ ∂P

so that p−1
d (P ) is connected (see Figure 3.4). We make a change of variables z 7→ −c/(z− z0)

which sends z0 to infinity and denote the image of the petal by P and the conjugated map

by p. We choose c > 0 so that the asymptotics of p at ∞ is given by z 7→ z + 1
2
+ O(1/z).

Denote Q = p−1(P) and note that ∂Q (like ∂U) is asymptotically linear near ∞ and smooth

away from p−1(∞) (see Figure 3.5).

Let Φ: P → C \ V be a conformal map whose continuous boundary extension fixes ∞.

Since the angle that ∂P makes at ∞ is equal to the angle that ∂V makes at ∞, this map is of

the form Φ(z) = λz + o(z), for some λ > 0, near ∞. By the Carathéodory-Torhorst theorem,

Φ extends continuously as a map from ∂P to ∂V and in fact smoothly away from ∞. The d

components of ∂Q \ p−1(∞) are circularly ordered by position relative to infinity. There is a

corresponding circular ordering of the components of ∂U \ F−1(∞). We then equivariantly
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∂V∂U

F

∂P∂Q

p

S

S

Figure 3.5: Left: Depicted are the domain and range of the simple pinched anti-polynomial-
like map F . The shaded region is the pinched polygon U , and the region to the left of the
red curve is its F -image V . Right: Depicted are the domain and range of the map p obtained
by Möbius conjugating the restriction pd : p

−1
d (P ) → P of Figure 3.4. The shaded region is

the ‘petal’ P, and the region to the right of the black curve is its p-preimage Q.

lift Φ : ∂P \ {∞} → ∂V \ {∞} to a map Φ : ∂Q \ p−1(∞) → ∂U \ F−1(∞). More precisely,

Φ is extended as F−1 ◦ Φ ◦ p, where we choose the branch of F−1 so that components of

∂Q \ p−1(∞) map to corresponding components of ∂U \ F−1(∞). By continuity Φ extends

to a map from ∂Q to ∂U , which will not be injective at the preimages of the pinched points

of U . Since the accesses from Ĉ \ U to the pinched points have positive angles, the images of

local arcs of ∂Q are quasiarcs. In particular, Φ is locally a quasi-symmetry. Also note that

due to the asymptotics of F and p near ∞, this lifted map Φ on the boundary also has the

asymptotics Φ(z) = λz + o(z) as z → ∞.

In fact we will say more. Let z1 ∈ ∂P, z2 ∈ ∂Q be given points which are sufficiently close

to infinity and a distance less than 1 apart. This is possible as ∂Q is asymptotic to a pair of

rays which are parallel to ∂P and a distance of
√
3/4 from it. Now note that by choosing z1
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and z2 sufficiently close to ∞ we have that p(z2) ∈ ∂P ∩B(z2, 1). Thus |p(z2)− z1| < 2. It

follows from continuity of Φ that |Φ(p(z2))− Φ(z1)| is bounded, and thus together with the

asymptotics on Φ near infnity that

|Φ(p(z2))− Φ(z1)| ≤ |Φ(p(z2))− Φ(p(z2))|+ |Φ(p(z2))− Φ(z1)| < M

for some sufficiently large M which depends only on how close to ∞ the points z1 and z2 were

chosen to be, and not on the choice of points. By definition of the conjugacy and asymptotics

of F , we have that

Φ(p(z2)) = F (Φ(z2)) = Φ(z2) + 1/2 +O(1/Φ(z2)) = Φ(z2) +
1

2
+O(1/z).

We conclude that Φ(z1) and Φ(z2) are at a uniformly bounded distance from each other.

Let S be the strip V \ U and S = Q \P be the corresponding strip to be glued in (see

Figure 3.5). In order to interpolate the boundary map Φ: ∂P∪∂Q → ∂S to a quasiconformal

map on all of S we decompose S into two parts: the unbounded parts asymptotic to half-strips

and the bounded pinched polygon.

Let E1 be a top end of S, such that E1 is a rotation and translation of the right half-strip

bounded by curves x = 0, y = 0, y =
√
3/4 + O(1/x) as x → ∞. This is possible as ∂V

is a linear ray close enough to ∞ and ∂U = F−1(∂V ) is asymptotically linear as noted in

Remark 3.3.4. By [War42], there is a uniformizing map α : E1 → T := {(x, y) | x > 0, y ∈

(0,
√
3/4)} with asymptotics given by α(z) = e−2πi/3z + o(z). There is an analogous region

E ′
1 ⊂ S with ∂E ′

1 ∩ ∂S = Φ−1(∂E1 ∩ ∂S) and an analogous uniformizing map α′ : E ′
1 → T

with the asymptotics α′(z) = e−2πi/3z + o(z). Thus, we have an induced map

Φ̃ := α ◦ Φ ◦ α′−1 : ∂T → ∂T

on the upper and lower boundary rays and by the identity on the vertical line segment

{it | t ∈ (0,
√
3/4)}. Note that Φ̃ is smooth on the upper and lower boundary lines of T .

Moreover, by the computation above, it is asymptotic to w 7→ λw + o(w) as ∂T ∋ w → ∞,

and the maps on the upper and lower boundaries are a bounded distance from each other.

34



Therefore, linear interpolation yields a homeomorphism Φ̃ : T → T that is quasiconformal

on intT and that continuously agrees with Φ̃|∂T defined above (cf. [Lee+21, Lemma 5.3]).

This extended map lifts to a quasiconformal map from E ′
1 to E1 which agrees with Φ on the

boundary. The same argument shows the existence of a quasiconformal interpolating map

between regions E ′
2 ⊂ S and E2 ⊂ S which are ends of the lower accesses to ∞.

Now consider the regions S\(E ′
1∪E ′

2) and S\(E1∪E2) which are a conformal polygon and

a conformal pinched polygon respectively. Moreover, the edges of these (pinched) polygons

are smooth and they meet at positive angles at the vertices. The map Φ, constructed so far,

is a quasisymmetric map between the boundaries of the two regions. Each of these regions

may be uniformized by the disk D and two conformal maps φ1, φ2 which send the disk to

S \ (E ′
1 ∪E ′

2) and S \ (E1 ∪E2) respectively. We now define the map φ−1
2 ◦Φ ◦φ1 : ∂D → ∂D

where this composition is well defined, and extending continuously using the circular ordering

of the pinched points where it is not. Now note that for every point on ∂(S \ (E ′
1∪E ′

2)) there

is a local neighborhood for which Φ is a quasi-symmetric homeomorphism onto its image.

This property lifts to the boundary map, and by the Ahlfors-Beurling theorem the boundary

map extends to a quasiconformal map of D. Going back via the conformal maps φ1, φ2, we

obtain our desired quasiconformal extension Φ : S \ (E ′
1 ∪ E ′

2) −→ S \ (E1 ∪ E2).

We now have a globally defined continuous map

F̃ : Ĉ −→ Ĉ

F̃ (z) =


F (z), z ∈ U

Φ ◦ p ◦ Φ−1(z), z ∈ Ĉ \ U.

Note that since ∂U is a piecewise smooth curve with finitely many singular points, it is

removable for quasiconformal maps. Hence, F̃ is a degree d anti-quasiregular map of Ĉ. In

fact, F̃ is antiholomorphic off the strip S and the pinching points of ∂U are critical points for

F̃ . Let µ0 denote the standard complex structure on Ĉ \ V . Pulling µ0 back under iterates of

F̃ we obtain a complex structure on S2 \K(F ), and we complete this to a complex structure µ
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on all of S2 by putting the standard complex structure on K(F ). Furthermore, µ is invariant

under the action of F̃ . As at most one iterate of F̃ lands in the strip S, it follows that the

eccentricity of the pulled back complex structure is essentially bounded. By applying the

measurable Riemann mapping theorem we obtain a map Ξ: S2 → Ĉ which sends µ to the

standard complex structure. Note that as µ was already the standard complex structure on

K(F ) we have the Ξ is in fact conformal on K(F ). Now R := Ξ ◦ F̃ ◦ Ξ−1 : Ĉ → Ĉ is an

orientation reversing map of the sphere which preserves the standard complex structure, and

is thus an anti-rational map. By construction it is hybrid equivalent to F .

It remains to argue that R has a simple parabolic fixed point at Ξ(∞). That ∞ is a fixed

point for R follows from the fact that the anti-quasiregular map F̃ fixes ∞. Moreover, by

Condition 3 of the definition of simple pinched anti-polynomial-like maps and the construction

of F̃ , points in U are repelled away from ∞ under iterations of F̃ , while the forward F̃ -orbits

of points in Ĉ \ U converge to ∞. This translates to the fact that Ξ(∞) is a parabolic fixed

point of R with a unique attracting and a unique repelling petal. In other words, Ξ(∞) is a

simple parabolic fixed point of R.

2) We now assume that the filled Julia set K(F ) is connected. We can assume, possibly

after a Möbius change of coordinates, that Ξ(∞) = ∞; i.e., R has a simple parabolic

fixed point at ∞. Moreover, by construction of R, the forward R-orbits all points outside

of Ξ(K(F )) converge to ∞. It follows that B(R) := Ĉ \ Ξ(K(F )) is a simply connected,

completely invariant parabolic basin of ∞.

Also note that connectedness of K(F ) is equivalent to the fact that all critical points

of F lie in K(F ). Therefore, there is a unique critical point (of multiplicity d− 1) of R in

B(R). Since the critical point 0 of pd has Écalle height zero and the critical Écalle height is

a conformal invariant, it follows that the unique critical point of R in B(R) also has Écalle

height zero. Thus, R|B(R) is conformally conjugate to the action on D of a unicritical parabolic

anti-Blaschke product with critical Écalle height zero. Up to Möbius conjugacy, Bd is the

unique such anti-Blaschke product. We conclude that R ∈ F simp
d .
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It remains to prove that if R1, R2 ∈ F simp
d are two such straightened maps, then they are

affinely conjugate. But this follows from Lemma 3.3.3. The proof of the theorem is now

complete.

3.3.3.2 Straightening the external class Rd

Our next technical lemma asserts that the external classes Rd and Bd are quasiconformally

conjugate in a pinched neighborhood of the circle. As the idea of the proof is similar to that

of Theorem 3.3.5, we only outline the key steps.

Lemma 3.3.6. There exists a homeomorphism h : Q → D that is quasiconformal on D,

sends 1 to 1, and conjugates the restriction of the anti-Farey map Rd on the closure of a

(one-sided) neighborhood of ∂Q \R−1
d (1) to the restriction of the anti-Blaschke product Bd

on the closure of a (one-sided) neighborhood of S1 \B−1
d (1).

Q1 1 Qw
1 1 P 1

h

Figure 3.6: We open up the cusp of Q1 at 1 to obtain a wedge of positive angle. Since
this thickened region Qw

1 and the petal P of Bd have the same angle at 1, the conformal
isomorphism h : Qw

1 → P is asymptotically linear near 1. The shaded regions are fundamental
domains for Rd and Bd.

Sketch of the proof. Let us first thicken Q1 near 1 to turn the cusp into a wedge of angle θ0

(for some θ0 ∈ (0, π)), and call this domain Qw
1 (see Figure 3.6). Analogously, consider an

attracting petal P ⊂ D of Bd at the parabolic point 1 such that P contains the critical value

of Bd in D, the critical point 0 lies on ∂P, and ∂P subtends an angle θ0 at 1. Now choose

a homeomorphism h : Qw
1 −→ P that is conformal on the interior and sends 1 to 1. Since
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these regions subtend the same angle at 1, it follows that h is asymptotically linear near

1. Note that both Rd : R−1
d (∂Qw

1 ) \ ∂Qw
1 −→ ∂Qw

1 and Bd : B
−1
d (∂P) −→ ∂P are degree d

orientation-reversing covering maps. We lift the map h : ∂Qw
1 −→ ∂P via the above coverings

to get a homeomorphism from R−1
d (∂Qw

1 ) \ ∂Qw
1 onto B−1

d (∂P), which we also denote by h.

The parabolic asymptotics of Rd, Bd near 1 and the linear asymptotics of h near 1 allow

one to apply the quasiconformal interpolation arguments of Theorem 3.3.5 to conclude

the existence of a quasiconformal homeomorphism h between the pinched fundamental

annuli R−1
d (Qw

1 ) \ Qw
1 and B−1

d (P) \ P (of Rd and Bd respectively) that continuously agrees

with h already defined (these fundamental domains are shade in grey in Figure 3.6). By

construction, this map conjugates the actions of Rd and Bd on the boundaries of their

fundamental domains. Finally, pulling h back by iterates of Rd and Bd, one obtains a

quasiconformal homeomorphism of D that conjugates the restriction of Rd on the closure

of a (one-sided) neighborhood of ∂Q \ R−1
d (1) to the restriction of Bd on the closure of a

(one-sided) neighborhood of S1 \B−1
d (1).

Remark 3.3.7. A weaker version of Lemma 3.3.6; namely, the existence of a quasiconformal

homeomorphism Q → D that conjugates Rd to Bd only on S1, can be deduced from [Lyu+20,

Theorem 4.9].

3.3.4 Straightening Schwarz reflections in SRd

3.3.4.1 Straightening all maps in SRd

Theorem 3.3.8. Let (Ω, σ) ∈ SRd
. Then, there exists a unique Rσ ∈ [Fd] such that σ is

hybrid conjugate to Rσ. Moreover, Rσ ∈ Fhigh
d if and only if (Ω, σ) ∈ Shigh

Rd
.

Proof. Let us fix (Ω, σ) ∈ SRd
. Recall that there exists a conformal map ψ : Q → T∞(σ)

that conjugates Rd to σ and sends 1 to yyy. Moreover, by Lemma 3.3.6, there exists a

quasiconformal homeomorphism h : Q → D that conjugates the restriction of Rd on a (one-
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sided) neighborhood of ∂Q \R−1
d (1) to the restriction of Bd on a (one-sided) neighborhood

of S1 \B−1
d (1).

Let us now define a map on Ĉ as follows:

R̃σ :=


(ψ ◦ h−1) ◦Bd ◦ (h ◦ ψ−1) on T∞(σ),

σ on K(σ).

By the conjugation properties of ψ and h, the map R̃σ agrees with σ on the closure of a

neighborhood of K(σ) \ σ−1(yyy). Since finitely many points are quasiconformally removable,

we conclude that the map R̃σ is a global anti-quasiregular map.

Let µ be the Beltrami coefficient on Ĉ given by the pullback of the standard complex

structure under the map h ◦ ψ−1 on T∞(σ) and zero elsewhere. As Bd is an antiholomorphic

map, it follows that µ is R̃σ-invariant. Since h ◦ ψ−1 is quasiconformal, it follows that

||µ||∞ < 1. We conjugate R̃σ by a quasiconformal homeomorphism Ξ of Ĉ that solves the

Beltrami equation with coefficient µ to obtain an anti-rational map Rσ. By construction, Rσ

has a parabolic fixed point at ∞ (after possibly conjugating Rσ by a Möbius map), and this

parabolic point has a simply connected, completely invariant Fatou component where the

dynamics is conformally conjugate to Bd. Thus, Rσ ∈ Fd. Moreover, B(Rσ) = Ξ(T∞(σ)),

and K(Rσ) = Ξ(K(σ)).

Note that by the normalization of h, the parabolic fixed point 1 of Bd is glued to the

unique cusp of ∂Ω. Hence, Ξ is conformal a.e. on K(σ), sends the unique cusp on ∂Ω to the

parabolic fixed point ∞, and conjugates a pinched anti-polynomial-like restriction of σ to a

pinched anti-polynomial-like restriction of Rσ.

According to [LMM23, Corollary A.6], (Ω, σ) ∈ Shigh
Rd

if and only if the cusp yyy has at least

one σ◦2-invariant attracting direction in K(σ). Since Ξ(yyy) = ∞, it follows that (Ω, σ) ∈ Shigh
Rd

if and only if R◦2
σ has at least two invariant attracting directions at ∞ (one in B(Rσ) and at

least one in K(Rσ)). Clearly, this is equivalent to saying that ∞ is a fixed point of R◦2
σ of

multiplicity at least three; i.e., Rσ ∈ Fhigh
d .
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Finally for the uniqueness statement, note that if R1, R2 ∈ Fd are hybrid conjugate to σ,

then they are hybrid conjugate to each other. By Lemma 3.3.3, R1 and R2 must be affinely

conjugate.

Remark 3.3.9. Although Theorem 3.3.8 gives a uniform way of straightening all maps in SRd
,

the appearance of the Riemann map of the tiling set in the proof makes this straightening

surgery less suitable for parameter space investigations.

3.3.4.2 Straightening Schwarz reflections in Ssimp
Rd

via pinched

anti-polynomial-like restrictions

We now show that the Straightening Theorem 3.3.5 applies to the Schwarz reflections in

Ssimp
Rd

. The main advantage of this straightening method is that it gives better control on the

domains of the hybrid conjugacies.

Lemma 3.3.10. Let (Ω, σ) ∈ Ssimp
Rd

. Then, there exists a Jordan domain V ′ ⊂ Ω with

V
′ ⊃ K(σ) and a conformal map β : V ′ → Ĉ such that β conjugates σ : σ−1(V ′) → V ′ to a

simple pinched anti-polynomial-like map (F,U, V ) of degree d. Moreover, the filled Julia set

of this pinched anti-polynomial-like map is β(K(σ)).

Proof. Without loss of generality we may assume that the cusp is at 0 and points into the

positive real axis.

We begin by opening up the cusp of Ω (i.e., creating a wedge), using the following

procedure. For some δ > 0, to be specified later, we define a Jordan domain V ′ ⊂ Ω such that

∂V ′ \B(0, δ) = ∂Ω \B(0, δ), ∂V ′ ∩B(0, δ/2) = L± := {te±2πi/3 : t ∈ [0, δ/2)},

and ∂V ′ is smooth except at 0. Since (∂Ω \ {0}) ∩K(σ) = ∅, we can choose δ > 0 small

enough so that K(σ) ⊂ V ′ ∪B(0, δ).

By [LMM23, Proposition A.4], σ has a unique invariant direction at 0 given by the positive

real axis. By [LMM23, Proposition A.5], this direction is repelling for σ. We apply the
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change of coordinates β described in [LMM23, Subsection A.4] which conjugates σ (near 0)

to ζ 7→ ζ + 1/2 +O(1/ζ) (near ∞). Moreover, β sends small enough positive reals to large

negative reals and the line segments L± to the infinite rays at angles ±2π
3

meeting at ∞.

Since β ◦σ ◦β−1 is approximately ζ+ 1
2
for | Im ζ| large enough, it follows that points between

β(L±) and β(∂Ω) with sufficiently large imaginary part eventually leave β(Ω). Therefore, we

can choose δ > 0 sufficiently small so that points in B(0, δ) \ V ′ eventually leave Ω. It now

follows that for such a δ, the non-escaping set K(σ) is contained in σ−1(V ′). Hence, we have

that

K(σ) = {z ∈ σ−1(V ′) : σ◦n(z) ∈ σ−1(V ′) ∀ n ≥ 0}. (3.3.1)

Note also that ∂σ−1(V ′) \ B(0, δ) ⊂ Ω \ B(0, δ), and so (∂σ−1(V ′) \ B(0, δ)) ∩ ∂V ′ = ∅.

Together with the asymptotics of β ◦ σ ◦ β−1 near ∞, it follows that ∂σ−1(V ′) ∩ ∂V ′ = {0}.

We now set V := β(V ′), U := β(σ−1(V ′)), and F := β◦σ◦β−1 : U → V , and claim that F

is a simple pinched anti-polynomial-like map. The pinched polygon structure of U follows from

the fact that σ−1(Ω) is a pinched disk with possible pinched points in σ−1(0) (this happens

only if the cusp 0 is a critical value of σ). We also note that σ is a proper antiholomorphic

map on each component of σ−1(Ω), and hence F is a proper antiholomorphic map on each

component of U . The other defining conditions of a simple pinched anti-polynomial-like map

are easily checked from the above construction. The fact that the filled Julia set of this

pinched anti-polynomial-like map is β(K(σ)) follows from Relation (3.3.1).

Remark 3.3.11. The conformal map β : V ′ → β(V ′) can be extended as a quasiconformal

homeomorphism of Ĉ.

As a slight abuse of notation, we will call σ : σ−1(V ′) → V ′ a simple pinched anti-

polynomial-like restriction of σ.

Theorem 3.3.12. Let (Ω, σ) ∈ Ssimp
Rd

. Then,

1. σ restricts to a simple pinched anti-polynomial-like map with filled Julia set equal to

K(σ), and
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2. this simple pinched anti-polynomial-like map is hybrid conjugate to a unique member

[Rσ] ∈
[
F simp
d

]
with filled Julia set K(Rσ).

Proof. This follows from Lemma 3.3.10 and Theorem 3.3.5.

For (Ω, σ) ∈ SRd
, the map Rσ produced by Theorems 3.3.12 and 3.3.8 will be referred to

as the straightening of σ. Clearly, if σ1, σ2 ∈ SRd
are affinely conjugate, then they have the

same straightening.

Definition 3.3.4. We define the straightening map

χ : [SRd
] −→ [Fd] , χ([Ω, σ]) = [Rσ],

where [Rσ] is the straightening of σ; i.e., Rσ is the unique map in Fd, up to affine conjugacy,

to which σ is hybrid conjugate.

Abusing notation, we will often write χ(σ) = R.

Corollary 3.3.13. Hybrid conjugacies between [Ω, σ] ∈
[
Ssimp
Rd

]
and χ([Ω, σ]) ∈

[
Ssimp
Rd

]
can

be chosen such that

1. their dilatations are locally bounded, and

2. the domains of definition of these conjugacies depend continuously on parameters.

Proof. This follows from the construction of hybrid conjugacies given in Theorem 3.3.5 and

the facts that the fundamental (pinched) annuli of the simple pinched anti-polynomial-like

restrictions of Schwarz reflections constructed in Lemma 3.3.10 move continuously with

respect to the parameter and the asymptotics of the maps near the cusps are the same

throughout Ssimp
Rd

(see [LMM23, Appendix]).
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3.4 Invertibility of the straightening map and proofs of

the main Theorems

The main goal of this section is to prove that the straightening map χ is bijective, from which

our main theorems will follow. We will demonstrate this by constructing an explicit inverse

of χ. The construction of this inverse map is dual to that of χ given in Theorem 3.3.8.

For maps in F simp
d , we will also give an alternative construction of χ−1 that will follow

the strategy of the proof of Theorem 3.3.12. This will give us control on the dilatations and

the domains of definition of the associated hybrid conjugacies on F simp
d .

3.4.1 Invertibility of χ

Theorem 3.4.1. The map χ : [SRd
] −→ [Fd] is invertible. In particular, the restrictions

χ :
[
Ssimp
Rd

]
→
[
F simp
d

]
and χ :

[
Shigh
Rd

]
→
[
Fhigh
d

]
are bijections.

Proof. Let us fix R ∈ Fd. Recall that there exists a conformal map ψ : D → B(R) that

conjugates Bd to R, and sends 1 to ∞. Also, the quasiconformal homeomorphism h : Q → D

of Lemma 3.3.6 conjugates the restriction of Rd on a (one-sided) neighborhood of ∂Q\R−1
d (1)

to the restriction of Bd on a (one-sided) neighborhood of S1 \B−1
d (1).

We now define a map on a subset of Ĉ as follows:

σ̃R :=


(ψ ◦ h) ◦ Rd ◦ (h−1 ◦ ψ−1) on B(R) \ ψ(h(intQ1)),

R on K(R).

By the conjugation properties of ψ and h, the map σ̃R agrees with R on the closure of a

neighborhood of K(R) \R−1(∞). Since finitely many points are quasiconformally removable,

we conclude that the map σ̃R is an anti-quasiregular map on Ĉ \ ψ(h(Q1)). Moreover, σ̃R

continuously extends as the identity map to the boundary of its domain of definition, which

is a Jordan domain (compare the proof of Proposition 3.2.4).
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Let µ be the Beltrami coefficient on Ĉ given by the pullback of the standard complex

structure under the map h−1 ◦ψ−1 on B(R) and zero elsewhere. As Rd is an antiholomorphic

map, it follows that µ is σ̃R-invariant. Since h−1 ◦ ψ−1 is quasiconformal, it follows that

||µ||∞ < 1. We conjugate σ̃R by a quasiconformal homeomorphism g of Ĉ that solves the

Beltrami equation with coefficient µ to obtain an antiholomorphic map σR on a Jordan

domain that continuously extends as the identity map to the boundary of its domain of

definition ΩR = Ĉ \ g(ψ(h(intQ1))). Thus, ΩR is a Jordan quadrature domain and σR is its

Schwarz reflection map.

Arguments used in the last two paragraphs of the proof of Proposition 3.2.4 apply verbatim

to the current context to show that the Jordan curve ∂ΩR has a unique conformal cusp and

the tiling set dynamics of σR is conformally conjugate to the action of Rd on Q. Thus, after

possibly a Möbius change of coordinates, we can assume that (ΩR,ΣR) ∈ SRd
. It also follows

from the same arguments that K(σR) = g(K(R)), and T∞(σR) = g(B(R)).

Note that by the normalization of h, the parabolic fixed point 1 of Rd is glued to

the parabolic fixed point ∞ of R. It now follows from the construction that the global

quasiconformal map g−1 (suitably normalized) is conformal a.e. on K(σR), sends the unique

cusp on ∂ΩR to ∞, and conjugates a pinched anti-polynomial-like restriction of σR to a

pinched anti-polynomial-like restriction of R.

By Lemma 3.3.3, the map (ΩR, σR) is the unique element of SRd
(up to affine conjugacy)

that is hybrid conjugate to R. Hence,

χ∗ : [Fd] −→ [SRd
] , [R] 7→ [ΩR, σR]

is a well-defined map. Finally, the fact that no two distinct elements of [SRd
] , [Fd] have the

same hybrid class (again by Lemma 3.3.3) implies that χ∗ ◦ χ ≡ id on [SRd
] and χ ◦ χ∗ ≡ id

on [Fd]. Therefore, χ
∗ is the desired inverse of χ.

The second statement of the theorem follows from the fact that χ([Ω, σ]) ∈
[
Fhigh
d

]
if and

only if [Ω, σ] ∈
[
Shigh
Rd

]
(see Theorem 3.3.8).
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We will now provide an alternative construction of χ−1 on
[
F simp
d

]
using the notion of

simple pinched anti-polynomial-like maps (in the sense of Definition 3.3.2). This will supply

additional control on the corresponding hybrid conjugacies that will be useful in studying

topological properties of χ.

Theorem 3.4.2. Hybrid conjugacies between [R] ∈
[
F simp
d

]
and χ−1([R]) ∈

[
Ssimp
Rd

]
can be

chosen such that

1. their dilatations are locally bounded, and

2. the domains of definition of these conjugacies depend continuously on parameters.

Proof. Let R ∈ F simp
d .

By Proposition 3.2.4, there exists (Ω0, σ0) ∈ SRd
such that σ0|K(σ0) is topologically

conjugate to zd|D with the conjugacy being conformal on the interior. In particular, the cusp

of ∂Ω0 has no attracting direction and hence is of type (3, 2) (by [LMM23, Corollary A.6]).

Thus, (Ω0, σ0) ∈ Ssimp
Rd

. Real-symmetry of zd and Rd implies that Ω0 can be chosen to be is

real-symmetric (cf. [Lyu+20, Section 11.4]). We can also normalize so that that the cusp of

∂Ω0 is at the origin.

Recall from Lemma 3.3.10 that there exists a Jordan domain V ′ ⊂ Ω0 with a corner at

the origin such that V
′ ⊃ K(σ0) and

β : V ′ → β(V ′), z 7→ c/
√
z

conjugates σ0 : σ
−1
0 (V ′) → V ′ to a degree d simple pinched anti-polynomial-like map whose

filled Julia set is β(K(σ0)) (where c ∈ R<0 is chosen suitably and the chosen branch of square

root sends positive reals to positive reals). In particular, the map β sends the cusp of ∂Ω0 to

∞, and conjugates σ0 to a map of the form ζ 7→ ζ + 1/2 +O(1/ζ) near ∞. We denote this

simple pinched anti-polynomial-like map by (σσσ0, U, V ), where U := β(σ−1
0 (V ′)), V := β(V ′)

(see Figure).
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Note that the map β extends to a quasiconformal homeomorphism of Ĉ. After possibly

post-composing β with an affine map, we may assume that β(∞) = 0. We set ΩΩΩ0 := β(Ω0),

and continue to denote the conjugated map β ◦ σ0 ◦ β−1 on ΩΩΩ0 by σσσ0. Since σ−1
0 (∞) is a

singleton {c0}, it follows that ccc0 := β(c0) is a d-fold critical point for σσσ0 with associated

critical value 0.

Let us consider a simple pinched anti-polynomial-like restriction R : U → V of R. By

construction, Ĉ \ V ⊊ B(R) is an attracting petal which subtends an angle of 4π/3 at the

parabolic fixed point ∞ such that the petal contains the critical value of R in B(R) and

the corresponding critical point (of multiplicity d − 1) lies on the petal boundary. Also,

U := R−1(V) (see Figure).

Let Ψ: Ĉ \ V −→ Ĉ \ V be a Riemann map whose homeomorphic boundary extension

carries ∞ to ∞ and is asymptotically z 7→ λz+o(z), for some λ > 0, near ∞. The arguments

of Theorem 3.3.5 apply verbatim to this setting to supply a continuous map Ψ: Ĉ\U −→ Ĉ\U

that is quasiconformal on the interior of the strip V \ U , conformal on Ĉ \ V and conjugates

σσσ0 : ∂U → ∂V to R : ∂U → ∂V .

We then define the map

F : U ∪ Ψ
(
ΩΩΩ0 \ U

)
−→ Ĉ

F (z) =


R(z), z ∈ U

Ψ ◦ σσσ0 ◦Ψ−1(z), otherwise.

The fact that ∂U is a piecewise smooth curve with finitely many singular points implies that

it is removable for quasiconformal maps and hence, F is anti-quasiregular. Moreover, Ψ(ccc0)

is a critical point of multiplicity d of F with associated critical value Ψ(0). We also note

that under iterates of F , each z /∈ K(R) eventually escapes to Ψ(C \ΩΩΩ0) = C \ intDom(F ).

Finally, the map F fixes ∂Dom(F ) pointwise.

We pull back the standard complex structure on Ĉ \ V ′ under the quasiconformal map

Ψ ◦ β to get a complex structure on Ĉ \ V. Pulling this complex structure on Ĉ \ V back

by iterates of F and extending by the standard complex structure on K(R), one obtains an
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∂V∂V ∂U∂U

σσσ0

R

∂ΩΩΩ0

ccc0

Figure 3.7: Left: The simple pinched anti-polynomial-like map (R,U ,V) is shown. The
shaded region is U , and the region to the left of the red curve is V . Right: The simple pinched
anti-polynomial-like map (σσσ0, U, V ) is shown. The shaded region is U , and the region to the
left of the red curve is V . The boundary ∂V (in red) consists of a part of ∂ΩΩΩ0 and a pair of
smooth arcs that meet at ∞ at a positive angle. The purple curves denote the remaining
part of ∂ΩΩΩ0.

F -invariant Beltrami coefficient µ on Ĉ. Since the anti-quasiregular map F is antiholomorphic

on U , and the F -orbit of each point meets V \ U at most once, it follows that ||µ||∞ < 1.

Conjugating F by a quasiconformal map H that solves the Beltrami equation with

coefficient µ, we obtain an antiholomorphic map σR = H ◦ F ◦H−1 defined on the closed

Jordan disk ΩR := H(Dom(F )). Moreover, σR fixes the boundary ∂ΩR pointwise. Hence, ΩR

is a simply connected quadrature domain and σR is its Schwarz reflection map. After possibly

conjugating σR by a Möbius map, we can assume that H(Ψ(0)) = ∞ and H(Ψ(∞)) =

H(∞) = 0.
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We will now justify that (ΩR, σR) ∈ Ssimp
Rd

. The mapping properties of F imply that

H(Ψ(0)) = ∞ ∈ int Ωc
R is a critical value of σR with σ−1

R (∞) = {H(Ψ(ccc0))} ∈ ΩR. In

particular, c := H(Ψ(ccc0)) is a critical point of multiplicity d. It follows that σR : σ−1
R (intΩc

R) →

int Ωc
R is a degree d + 1 branched covering. Since ΩR is a Jordan quadrature domain, it

follows from Proposition 3.1.1 that there exists a degree d+ 1 rational map f that carries D

injectively onto ΩR. We normalize f so that f(0) = c. As σR ≡ f ◦ η ◦ (f |D)
−1, we conclude

that f maps ∞ to itself with local degree d+ 1. Thus, f is a degree d+ 1 polynomial.

Note that as R has d − 1 critical points in K(R), the Schwarz reflection σR has d − 1

critical points in H(K(R)) ⊂ ΩR. This implies that f has d− 1 critical points in D∗ \ {∞}.

As f has d critical points in the plane and none of them can lie in D, it follows that the

remaining critical point of f lies on S1. Thus, f has a unique critical point on S1, and hence

∂ΩR has a unique conformal cusp (and no double point). Further, the fact that ∂Ω0 \ {0} is

a non-singular real-analytic arc combined with quasiconformality of β,Ψ and H implies that

∂ΩR \ {0} is a quasi-arc. Hence, the unique conformal cusp of ∂ΩR is at 0.

Therefore, T 0(σR) = ΩcR \ {0}. That each z /∈ K(R) eventually escapes to C \ intDom(F )

under F translates to the fact that the non-escaping set (respectively, the tiling set) of σR

is given by H(K(R)) (respectively, Ĉ \ H(K(R))). Thus, the non-escaping set K(σR) is

connected.

In light of Proposition 3.2.1, we conclude that (ΩR, σR) ∈ SRd
(one could alternatively

conclude this from the fact that c is the unique critical point of σR in its tiling set T∞(σR)

and that this critical point maps to ∞ ∈ intT 0(σR) with local degree d+1). Since R ∈ F simp
d ,

the parabolic fixed point ∞ of R has no attracting direction in K(R). Under the topological

conjugacy H, this translates to the fact that σR has no attracting direction in K(σR). By

[LMM23, Corollary A.6], the unique conformal cusp of ∂ΩR is of type (3, 2). Therefore,

(ΩR, σR) ∈ Ssimp
Rd

.

Finally, since ∂H = 0 a.e. on K(R), we conclude that H−1 induces a hybrid conjugacy

between a simple pinched anti-polynomial-like restriction of σR (with filled Julia set K(σR))
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and a simple pinched anti-polynomial-like restriction of R (with filled Julia set K(R)). In

particular, χ−1([R]) = [ΩR, σR].

Finally, since the fundamental (pinched) annuli of the simple pinched anti-polynomial-

like restrictions of anti-rational maps [R] ∈
[
F simp
d

]
move continuously with respect to the

parameter and the asymptotics of the maps near the parabolic point at ∞ are the same

throughout F simp
d , it follows that the quasiconformal dilatations of the hybrid conjugacies

between [R] and [χ−1(R)] constructed above are locally bounded and the domains of definition

of these conjugacies depend continuously on parameters as [R] runs over F simp
d .

3.4.2 Proofs of the main theorems

We are now ready to prove precise versions of Theorem A and the first part of Theorem B

stated in the introduction. The continuity statement of Theorem B will be proved in the

next section.

Theorem 3.4.3. Let R ∈ Fd. Then, there exists a polynomial map f of degree d+ 1 with

a unique critical point on S1 such that f |D is univalent, and the associated antiholomorphic

correspondence C∗ given in Section 3.2.3 is a mating of the anti-Hecke group ΓΓΓd and R.

Moreover, this mating operation yields a bijection between [Fd] and the space of antiholo-

morphic correspondences arising from [SRd
].

Proof. The statement follows from Theorem 3.4.1 and the definition of χ.

3.5 Continuity properties of the straightening map

Lemma 3.5.1.

1. Let {[Ωn, σn]} −→ [Ω∞, σ∞] in
[
Ssimp
Rd

]
. Then, all accumulation points of {χ(σn)} in

[Fd] are quasiconformally conjugate to χ(σ∞).
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2. Let {[Rn]} −→ [R∞] in
[
F simp
d

]
. Then, all accumulation points of {χ−1(Rn)} in [SRd

]

are quasiconformally conjugate to χ−1(R∞).

Proof. 1) We set [Rn] := χ(σn). According to Theorem 3.3.5, there exist quasiconformal

maps φn that hybrid conjugate simple pinched anti-polynomial-like restrictions of σn (with

filled Julia set K(σn)) to simple pinched anti-polynomial-like restrictions of Rn (with filled

Julia set K(Rn)). Moreover by Corollary 3.3.13, the quasiconformal dilatations of the hybrid

conjugacies φn are bounded. Thus, we may assume after passing to a subsequence that the

global quasiconformal maps φn converge uniformly to some quasiconformal homeomorphism

φ∞ of Ĉ.

According to Proposition 3.3.2, Fd is compact. Thus, we can assume possibly after passing

to a further subsequence that [Rn] → [R∞] ∈ Fd. We also recall from Corollary 3.3.13 that

the domains of definition of the hybrid conjugacies φn depend continuously on parameters.

Thus, the domains of the simple pinched anti-polynomial-like restrictions of σn constructed

in Lemma 3.3.10 converge to that of σ∞ (with associated non-escaping set K(σ∞)). The

equivariance property of φn now implies that φ∞ is a conjugacy between a pinched anti-

polynomial-like restriction of σ∞ to a pinched anti-polynomial-like restriction of R∞.

On the other hand, there exists a quasiconformal map φ that hybrid conjugates a simple

pinched anti-polynomial-like restriction of σ∞ (with filled Julia set K(σ∞)) to a simple

pinched anti-polynomial-like restriction of χ(σ∞) (with filled Julia set K(χ(σ∞))). Thus,

the map R∞ and χ(σ∞) are quasiconformally conjugate on some pinched neighborhoods of

their filled Julia sets. As these two maps are also conformally conjugate on their parabolic

basin of ∞, it follows by the arguments of Lemma 3.3.3 that R∞ and χ(σ∞) are globally

quasiconformally conjugate.

2) Since χ is bijective, we may set [Ωn, σn] := χ−1(Rn). Theorem 3.4.2 provides with global

quasiconformal homeomorphisms ψn that hybrid conjugate simple pinched anti-polynomial-

like restrictions of Rn (with filled Julia set K(Rn)) to simple pinched anti-polynomial-like

restrictions of σn (with filled Julia set K(σn)) such that the quasiconformal dilatations of
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the hybrid conjugacies ψn are bounded. Thus, we may assume after passing to a subse-

quence that the global quasiconformal maps ψn converge uniformly to some quasiconformal

homeomorphism ψ∞ of Ĉ.

By Proposition 3.2.6, SRd
is compact, and hence we can assume possibly after passing to a

further subsequence that [Ωn, σn] → [Ω∞, σ∞] ∈ SRd
. Theorem 3.4.2 also guarantees that the

domains of definition of the hybrid conjugacies ψn depend continuously on parameters, and

hence the domains of the conventional simple pinched anti-polynomial-like restrictions of Rn

converge to that of R∞ (with associated filled Julia set K(R∞)). Hence, ψ∞ is a conjugacy

between a pinched anti-polynomial-like restriction of R∞ to a pinched anti-polynomial-like

restriction of σ∞.

On the other hand, there exists a quasiconformal map ψ that hybrid conjugates a simple

pinched anti-polynomial-like restriction of R∞ (with filled Julia set K(R∞)) to a simple

pinched anti-polynomial-like restriction of χ−1(R∞) (with filled Julia set K(χ−1(R∞))). Thus,

the map σ∞ and χ−1(R∞) are quasiconformally conjugate on some pinched neighborhoods of

their non-escaping sets. As these two maps are also conformally conjugate on their tiling set, it

follows by the arguments of Lemma 3.3.3 that σ∞ and χ−1(R∞) are globally quasiconformally

conjugate.

Proposition 3.5.2. The sequence {[Ωn, σn]} ⊂
[
Ssimp
Rd

]
has no accumulation point in

[
Shigh
Rd

]
⇐⇒ the sequence {[χ(σn)]} ⊂

[
F simp
d

]
has no accumulation point in

[
Fhigh
d

]
.

Proof. Suppose that all accumulation points of {[Ωn, σn]} ⊂
[
Ssimp
Rd

]
lie in

[
Ssimp
Rd

]
. Then by

part (1) of Lemma 3.5.1, all accumulation points of {[χ(σn)]} are quasiconformally conjugate

to maps in
[
F simp
d

]
. As the multiplicity of a parabolic fixed point is a topological invariant,

it follows that all accumulation points of {[χ(σn)]} lie in
[
F simp
d

]
.

Conversely, assume that {[Ωn, σn]} ⊂
[
Ssimp
Rd

]
and all accumulation points of {[χ(σn)]}

lie in
[
F simp
d

]
. Then by part (2) of Lemma 3.5.1, all accumulation points of {[Ωn, σn]} are

quasiconformally conjugate to maps in
[
Ssimp
Rd

]
. By [LMM23, Corollary A.6], the condition of
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having a (3, 2)-cusp on the quadrature domain boundary is a topological conjugacy invariant

for maps in SRd
. Therefore, all accumulation points of {[Ωn, σn]} lie in

[
Ssimp
Rd

]
.

Proposition 3.5.3. The straightening map χ is continuous at quasiconformally rigid and at

relatively hyperbolic parameters in
[
Ssimp
Rd

]
.

Proof. We first note that (Ω, σ) ∈ SRd
is a quasiconformally rigid parameter if and only if

χ(σ) is so. Continuity of χ at quasiconformally rigid parameters in
[
Ssimp
Rd

]
now follows from

Lemma 3.5.1.

A straightforward adaptation of [Mil12, Theorem 5.1] shows that the relatively hyperbolic

components of
[
Ssimp
Rd

]
and

[
F simp
d

]
are diffeomorphic to appropriate spaces of fibrewise

anti-Blaschke products. The construction of such a diffeomorphism and the fact that hybrid

conjugacies are conformal on the interior of the non-escaping sets imply that χ carries each

relatively hyperbolic component of
[
Ssimp
Rd

]
to a corresponding component of

[
F simp
d

]
, and

χ factors (through a space of fibrewise anti-Blaschke products) as the composition of two

diffeomorphisms. The result follows.
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Chapter 4

One Parameter Families of Maps

Associated With Belyi-Shabat

Polynomials

4.1 One-parameter families in Fd and associated Belyi

Schwarz reflections

4.1.1 Slices LT of Belyi anti-rational maps

An anti-rational maps is called Belyi if it has at most three critical values in Ĉ. If R ∈ Fd is

Belyi with exactly three critical values, then the filled Julia set K(R) contains two of the

three critical values of R. As in the holomorphic case, we can define the dessin d’enfant of R

to be the bicolored plane tree obtained by taking the R-preimage of a simple arc γ connecting

the two critical values of R in K(R). As the third critical value of R (lying in B(R)) is fully

ramified, it follows that the dessin d’enfant of R is a tree.

If R ∈ Fd is Belyi with exactly two critical values, then K(R) contains exactly one critical

value of R which must be fully ramified. Thus, this critical value must be different from
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the parabolic fixed point ∞. In this case, one can still construct a dessin d’enfant of R by

choosing γ to be a simple arc that connects ∞ to the unique critical value of R in K(R).

We will denote this (combinatorial) bicolored plane tree by T (R).

A natural way of defining dynamically natural sub-families of Belyi anti-rational maps in

Fd is to introduce critical orbit relations.

Definition 4.1.1. We define

L := {R ∈ Fd : R is Belyi, and if R has three critical values, then the parabolic

fixed point ∞ is a critical value of R}.

Note that for R ∈ L, the parabolic fixed point ∞ gives rise to a marked vertex of valence

one (also called an endpoint or a tip) on T (R). As a convention, we will color this vertex

black and denote it by vb. The adjacent white vertex (of valence at least two) is denoted by

v′w.

Definition 4.1.2. We define

LT := {R ∈ L : (T (R), vb) ∼= (T , O)},

where (T , O) is a bicolored plane tree with a black vertex O of valence one as a root, and the

isomorphism is understood to preserve the root and the bicolored plane structure. We also

set

Lsimp
T := LT ∩ F simp

d = {R ∈ LT : ∞ is a simple parabolic fixed point of R}.

We also remark that if T is a star-tree, then each map in LT has a unique critical value

in K(R).

Lemma 4.1.1. intLT ̸= ∅.

Proof. Perform David surgery to glue Bd|D outside the filled Julia set of the dynamically

Shabat anti-polynomial p (if T is a star-tree, perform the surgery on zd). We can also arrange
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so that the unique parabolic fixed point of Bd corresponds to the repelling fixed point emb(vb)

of p (this is possible because emb(vb) is the landing point of the external dynamical ray

of p at angle 0). This would produce an anti-rational map R with a parabolic fixed point

at ∞ (after possibly a Möbius change of coordinates) such that R has a simply connected,

completely invariant parabolic basin (of the parabolic fixed point ∞) where the dynamics

is conformally conjugate to Bd. Moreover, R has at most three critical values, and when R

has exactly three critical values, then the parabolic fixed point ∞ is one of them. Hence,

R ∈ L. That the dessin d’enfant of R is isomorphic to T follows from the fact that p|K(p)

is conjugate to R|K(R) under a global orientation-preserving homeomorphism. This proves

the existence of a map R ∈ LT with a superattracting fixed point. One can now construct

an open neighborhood of R in LT by a standard quasiconformal surgery that changes this

superattracting fixed point into a linearly attracting one.

4.1.2 The associated Belyi Schwarz reflections ST

We will now study the preimage of the family LT under the straightening map χ, and see that

the corresponding Schwarz reflections come from univalent restrictions of Shabat polynomials

whose dessin d’enfant can be explicitly read from T .

Proposition 4.1.2. Let [Ω, σ] ∈ χ−1(LT ), and f : D → Ω be a uniformizing polynomial map.

Then the following hold.

1. f is a Shabat polynomial whose dessin d’enfant T aug is obtained by adding a single edge

to T op at the black vertex vb. (The other endpoint of this new edge is necessarily white,

and we denote it by vw.)

In particular, T aug has a black vertex vb of valence 2 that lies between a terminal white

vertex vw and a white vertex v′w of valence at least two.

2. If emb : T aug → C induces an isomorphism between the combinatorial tree T aug and a

planar realization of it, then emb(vb) ∈ S1 and emb(vw) ∈ D.
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Remark 4.1.3. (1) Recall that the vertex set of the embedded tree Tγ(f) (where γ is an arc

connecting the finite critical values of f) and the isomorphism emb : T (f) → Tγ(f) appearing

in the statement of Proposition 4.1.2 are independent of the choice γ.

(2) We use the notation T aug to remind the reader that it is an augmentation of the

original tree T .

Proof. 1) Let χ(Ω, σ) = R. Then, σ|K(σ) is hybird conjugate to R|K(R).

Let us denote the unique cusp on ∂Ω by y1. Note that y1 is fixed under σ, and corresponds

to the fixed point ∞ of R under the hybrid conjugacy. It now follows that σ has exactly

d − 1 critical points (counted with multiplicities) and at most two critical values in K(σ).

More precisely, if T is a star-tree, then σ has a unique critical point of multiplicity d− 1 and

hence a single critical value in K(σ); otherwise, σ has exactly two critical values K(σ) one of

which is y1.

Consider a simple arc γσ ⊂ Ω connecting these two critical values of σ (if σ has only one

critical value in K(σ), then we choose γσ to be an arc connecting this critical value to y1).

The existence of a hybrid conjugacy between σ and R implies that Tγσ(σ) := σ−1(γσ) is a

tree with a plane bicolored structure. We denote this combinatorial tree by T (σ), and note

that it is is isomorphic to T (R) ∼= T . Moreover, the root vb of T (R) defines a root point for

T (σ), and this root corresponds to the vertex y1 of Tγσ(σ). Abusing notation, we denote this

root point of T (σ) by vb. One can think of T (σ) as an analogue of dessin d’enfant for the

Schwarz reflection map σ.

Recall that f has a unique (simple) critical point on S1 with associated critical value

y1. As f has no critical point in D, we conclude that f has precisely d − 1 finite critical

points in D∗ (counted with multiplicities). Since σ = f ◦ η ◦ (f |D)−1, we see that these critical

points are given by η((f |D)−1(crit(σ))), and they are mapped by f to the two critical values

of σ (respectively, to the unique critical value and y1) in K(σ). Therefore, f is a Shabat

polynomial.
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T aug

T

D

emb(v′w)

emb(vw)

emb(vb)

y1

Figure 4.1: Relation among the dessin d’enfant T aug ∼= f−1(γσ) of f and the dessin d’enfant
T ∼= σ−1(γσ) of the Schwarz reflection map σ.

It is easy to see from the relation between f and σ that

f−1(γσ) = η((f |D)−1(σ−1(γσ)))
⋃

(f |D)−1(γσ). (4.1.1)

Moreover, the topological closed interval (f |D)−1(γσ) is contained in D and intersects S1 only

at (f |D)−1(y1), and η((f |D)−1(σ−1(γσ))) is a topological tree (with d edges) contained in D∗

intersecting S1 only at (f |D)−1(y1) (see Figure 4.1). We conclude that combinatorially, the

dessin d’enfant of f is obtained by adding an edge to T op at the vertex vb (note the appearance

of the orientation-reversing map η in Relation (4.1.1)). We denote this combinatorial tree

by T aug, and call the newly added vertex vw (it corresponds to the endpoint of (f |D)−1(γσ)

different from (f |D)−1(y1)).

Consequently, T aug has a black vertex vb of valence 2 with an adjacent white vertex vw

of valence 1. We further note that f is univalent on the closed disk D which has the vertex

(f |D)−1(y1) on its boundary, and contains the vertex (f |D)−1(y2) (where y2 is the unique

critical value of σ in K(σ) different from y1) in its interior.

2) We now consider an isomorphism emb between the combinatorial bicolored plane tree

T aug and its planar realization f−1(γσ). By construction, emb(vb) = (f |D)−1(y1) ∈ S1 and

emb(vw) = (f |D)−1(y2) ∈ D, where y2 is the unique critical value of σ (in K(σ)) different

from y1.

We now wish to give an explicit description of χ−1(LT ) as a real two-dimensional family of
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Schwarz reflections. Observe that by Proposition 4.1.2 , all [Ω, σ] ∈ χ−1(LT ), the polynomial

uniformizations f : D → Ω are equivalent Shabat polynomials. After possibly conjugating σ

by an affine map (which amounts to replacing Ω by an affine image of it), we can require

that all such σ have the same marked critical values. Then, the corresponding uniformizing

polynomials f only differ by pre-composition by an affine map. Instead of fixing the domain

of univalence D and varying the polynomial uniformizations (that differ by pre-composition

by affine maps), it will be slightly more convenient to fix a polynomial uniformization and

restrict it to various disks of uniavlence (that are affine images of D). This leads to the

following space of Schwarz reflections.

Definition 4.1.3. Fix a degree d+ 1 Shabat polynomial fff produced by Proposition 4.1.2

together with an isomorphism embembemb of the combinatorial tree T aug (which is the dessin d’enfant

of fff) and a planar realization of it. We also set vbvbvb := embembemb(vb), vwvwvw := embembemb(vw), fff(vbvbvb) = y1,

and fff(vwvwvw) = y2.

Define

ST := {a ∈ C : vwvwvw ∈ ∆a := B(a, |vbvbvb − a|) and fff |∆a
is univalent},

and

Ssimp
T := {a ∈ ST : the unique cusp y1 on ∂Ωa is simple; i.e., of type (3, 2)}.

We also set Ωa := fff(∆a).

Remark 4.1.4. (1) Since vbvbvb ∈ S1 and vwvwvw ∈ D, we have that ∆0 = D and thus 0 ∈ S (see

Proposition 4.1.2).

(2) For each a ∈ S, the quadrature domain Ωa contains y2 and its boundary ∂Ωa has a

conformal cusp at y1. In particular,

∆a ∩ fff−1({y1, y2}) = {vbvbvb, vwvwvw}.

We denote reflection in the circle ∂∆a by ηa, and the Schwarz reflection map of the

quadrature domain Ωa by σa = fff ◦ ηa ◦ (fff |∆a
)−1. By definition, the critical points of the
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Schwarz reflection map σa are given by

{fff(ηa(ζ)) : fff ′(ζ) = 0, ζ ̸= vbvbvb}.

If vbvbvb is the only critical point of fff over y1, then the only critical value of σa is y2. Otherwise,

the set of critical values of σa is {y1, y2}. In light of this fact, we call the map σa a Belyi map.

Definition 4.1.4. The family ST of Schwarz reflection maps is defined as

ST := {σa : Ωa → Ĉ : a ∈ ST },

while its sub-family Ssimp
T is defined as

Ssimp
T := {σa : Ωa → Ĉ : a ∈ Ssimp

T }.

Remark 4.1.5. The family ST can be seen as a generalization of the family of Schwarz

reflection maps associated with the cubic Chebyshev polynomial studied in [Lee+21].

Proposition 4.1.6. χ induces a bijection between ST ∩ SRd
and LT⧸Aut(C).

Proof. Let us first note that no two maps σa1 , σa2 ∈ Ssimp
T ∩ SRd

are Möbius conjugate. This

is because any Möbius map conjugating σa1 to σa2 would fix the unique critical value ∞ in

the tiling sets T∞(σai), the conformal cusp y1 on the boundaries ∂Ωai and the other critical

value y2 ∈ K(σai) of σai .

We proceed to show that χ−1(LT ) is contained in ST ∩ SRd
. To this end, let (Ω, σ) ∈

χ−1(LT ). By Proposition 4.1.2, there exists a Shabat polynomial f1 such that the dessin

d’enfant of f1 is isomorphic to T aug and f1 : D → Ω is a homeomorphism. After possibly

replacing Ω by an affine image, we can assume that the unique cusp on ∂Ω is y1 and the only

other critical value of σ in K(σ) is y2. Then, the proof of Proposition 4.1.2 shows that the

vertices vb, vw of the combinatorial tree T aug correspond to the critical and co-critical values

(f1|D)−1(y1), (f1|D)−1(y2), respectively.

The classification of Shabat polynomials now implies that there exists an affine map A

with A(vbvbvb) = (f1|D)−1(y1), A(vwvwvw) = (f1|D)−1(y2), and fff ≡ f1 ◦ A. Setting a := A−1(0), we
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fff

f1

∆a

Ωa
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(f1|D)

−1(y2)

vbvbvb

(f1|D)
−1(y1)

fff(a)

y2

Figure 4.2: Pictured is the affine change of coordinate A appearing in the proof of Proposi-
tion 4.1.6. The corresponding points are marked in the same color.

conclude that A−1(D) is a round disk centered at a having vbvbvb on its boundary such that fff

is univalent on A−1(D) = ∆a (see Figure 4.2). Thus, Ω = f1(D) = fff(A−1(D)) = Ωa, and

hence σ ≡ σa. Finally, vwvwvw = A−1((f1|D)−1(y2)) ∈ ∆a. It follows that ao ∈ ST , and hence

(Ω, σ) ∈ ST . Finally, the fact that the χ-preimage of any map in F simp
d lies in Ssimp

Rd
implies

that (Ω, σ) ∈ Ssimp
T ∩ SRd

.

Conversely, let (Ωa, σa) ∈ ST ∩ SRd
. We need to argue that R := χ(σa) ∈ LT . Since σa

has at most two critical values in K(σa), it follows that R has at most two critical values in

K(R). Hence, R has at most three critical values. Moreover, R has three critical values if and

only if y1 is a critical value of σa. Since the hybrid conjugacy between σa and R carries y1 to

∞, we conclude that if R has three critical values, then ∞ is one of them. Therefore, R ∈ L.

We will now describe the dessin d’enfant of R by dualizing some of the arguments of

Proposition 4.1.2. Let γa ⊂ Ωa be a simple arc connecting y1 and y2. Since fff : ∆a → Ωa is a

homeomorphism, it follows that fff−1(γa) ∩∆a is a simple arc that connects vbvbvb to vwvwvw. Note

that the embedded tree fff−1(γa) \∆a is isomorphic to T op as a combinatorial bicolored plane
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tree such that the isomorphism sends (fff |−1

∆a
)(y1) to vb. Thus, the tree

σ−1
a (γa) = fff(ηa(fff

−1(γa) \∆a)) ⊂ Ωa

is isomorphic to T as a combinatorial bi-colored plane tree. Clearly, the hybrid conjugacy

yields an isomorphism between σ−1
a (γa) and a planar realization of the dessin d’enfant T (R)

of R. We conclude that T (R) ∼= T ; i.e., R ∈ LT . Finally, the fact that the image of χ is

contained in F simp
d implies that R ∈ Lsimp

T .

Corollary 4.1.7. intST ̸= ∅.

Proof. This follows from Lemma 4.1.1 and Proposition 4.1.6.

Corollary 4.1.8. Let a ∈ ST , γ0 ⊂ Ωa be a simple arc connecting y1 and y2. Then, the

embedded tree

σ−1
a (γa) = fff(ηa(fff

−1(γa) \∆a)) ⊂ Ωa

is isomorphic to T as a combinatorial bi-colored plane tree, and the isomorphism identifies

the vertex y1 of σ−1
a (γa) with the root of T .

Corollary 4.1.8 can be restated as follows: σa is a Belyi map whose dessin d’enfant is

given by T .

The relationship between the dessin d’enfant of fff and that of σa can be used to prove that

the family ST is quasiconformally closed. Although we will not have need for this statement,

it seems worth recording this fact.

Proposition 4.1.9. Let a ∈ ST , µ be a σa-invariant Beltrami coefficient on Ĉ, and Φ be the

quasiconformal map solving the Beltrami equation with coefficient µ such that Φ fixes y1, y2,

and ∞. Then, there exists a′ ∈ ST such that Φ(Ωa) = Ωa′, and Φ ◦ σa ◦ Φ−1 = σa′ on Ωa′.

Sketch of Proof. The assumption that µ is σa-invariant implies that σ̌ := Φ ◦ σa ◦ Φ−1 is

anti-meromorphic on Ω̌ := Φ(Ωa), and continuously extends to the identity map on ∂Ω̌. Thus,

Ω̌ is a simply connected quadrature domain with Jordan boundary and Schwarz reflection
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map σ̌. Also, σ̌ : σ̌−1(int Ω̌c) → int Ω̌c is a d+ 1 : 1 branched cover with a critical point of

local degree d+ 1. Arguing as in Proposition 3.2.1, one concludes that there is a degree d+ 1

polynomial g which carries D injectively onto Ω̌. Thus, σ̌ ≡ g ◦ η ◦ (g|D)
−1 on Ω̌. The fact

that σ̌ has at most two critical points in K(σ̌) (recall that the same is true for σ) implies

that g has at most two finite critical values. Thus, g is a Shabat polynomial.

That the dessin d’enfant of σa is isomorphic to T implies that the same is true for σ̌.

Arguing as in Proposition 4.1.2, one concludes that the dessin d’enfant of g is isomorphic to

T aug. As g and fff have isomorphic dessin d’enfants and the same marked critical values, one

can use the arguments of Proposition 4.1.6 to deduce that σ̌ lies in the family ST .

4.1.3 Connectedness locus of ST and relation to SRd

Recall proposition 3.1.3, which states that for a parameter a the filled Julia set K(σa) is

connected if and only if the free critical value of σa is non-escaping. leads to the following

definition.

Definition 4.1.5 (Connectedness locus and escape locus). The connectedness locus of the

family ST is defined as

C(ST ) = {a ∈ ST : y2 ∈ K(σa)} = {a ∈ ST : K(σa) is connected}.

The complement of the connectedness locus in the parameter space ST is called the escape

locus. We similarly define C(Ssimp
T ) as the set of parameters a ∈ Ssimp

T with connected K(σa).

Definition 4.1.6 (Depth). For any a in the escape locus of ST , the smallest positive integer

n(a) such that σ
◦n(a)
a (y2) ∈ T 0(σa) is called the depth of a.

Lemma 4.1.10. 1) For a ∈ C(ST ), the map σa : T
∞(σa)\intT 0(σa) → T∞(σa) is conformally

conjugate to Rd : D1 ∪ C1 → Q.

2) For a ∈ ST \ C(ST ),

σa :

n(a)⋃
n=1

σ−n
a (T 0(σa)) →

n(a)−1⋃
n=0

σ−n
a (T 0(σa))
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is conformally conjugate to

Rd :

n(a)⋃
n=1

R−n
d (Q1) →

n(a)−1⋃
n=0

R−n
d (Q1).

Proof. Since Q1 is simply connected, we can choose a homeomorphism

ψa : Q1 → T 0(σa)

such that it is conformal on the interior. We can further assume that ψa(0) = ∞, and its

continuous extension sends the cusp point 1 ∈ ∂Q1 to the point y1 ∈ ∂T 0(σa).

Note that σa : σ
−1
a (T 0(σa)) → T 0(σa) is a (d + 1) : 1 branched cover branched only at

fff(a), and Rd : ρ1(Π) → Q1 is a (d+ 1) : 1 branched cover branched only at ρ1(0). Moreover,

σa fixes ∂T 0(σa) pointwise, and Rd fixes C2 ∪ {1} ∼= ∂Q1 pointwise.

This allows one to lift ψa to a conformal isomorphism from ρ1(Π) onto σ
−1
a (T 0(σa)) such

that the lifted map sends ρ1(0) to fff(a), and continuously matches with the initial map ψa

on Q1. We denote this extended conformal isomorphism by ψa. By construction, ψa is

equivariant with respect to the actions of Rd and σa on ρ1(Π) and ∂σ
−1
a (T 0(σa)), respectively.

1) If a ∈ C(ST ), then every tile of T∞(σa) (of rank greater than one) maps diffeomorphically

onto σ−1
a (T 0(σa)) under some iterate of σa, and each tile of D1 (of rank greater than one) maps

diffeomorphically onto ρ1(Π) under some iterate of Rd. This fact, along with the equivariance

property of ψa mentioned above, enables us to lift ψa to all tiles using the iterates of Rd and

σa. This produces the desired biholomorphism ψa between Q and T∞(σa) which conjugates

Rd to σa.

2) For a ∈ ST \ C(ST ), the above construction of ψa can be carried out onto the tiles of

T∞(σa) that map diffeomorphically onto σ−1
a (T 0(σa)), which includes all tiles of rank up to

n(a). This completes the proof.

Definition 4.1.7 (Dynamical Rays of σa). The pre-image of a Gd-ray at angle θ ∈ [0, 1
d+1

) in

Q under the map ψa (see Lemma 4.1.10) is called a θ-dynamical ray of σa.

Clearly, the image of (the tail of) a dynamical θ-ray under σa is (the tail of) a dynamical

ray angle Rd(θ).
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Proposition 4.1.11. ST ∩ SRd
= C(ST ). Consequently,

χ : C(Ssimp
T ) −→ Lsimp

T ⧸Aut(C)

is a bijection.

Proof. Clearly, if (Ω, σ) ∈ ST ∩ SRd
, then the tiling set T∞(σ) is biholomorphic to a round

disk and hence its complement K(σ) is connected.

Conversely, let σa ∈ C(ST ). By Lemma 4.1.10, the tiling set dynamics of σa is conformally

conjugate to the dynamics of Rd of Q via ψa. Hence, (Ωa, σa) ∈ ST ∩ SRd
. We conclude that

ST ∩ SRd
= C(ST ).

The second assertion now follows from the above equality and Proposition 4.1.6.

4.2 Combinatorics of connected filled Julia sets

Before turning to the parameter space for the ST we collect some useful results for the

combinatorics of maps within the family, and a criteria for realization of PCF maps.

Notation: We denote the vertices of T as {bj} and {wj} and set b0 to be the root of T

and w1 to be the unique white vertex adjacent to b0. We also denote va = σa(wj) to be the

free critcal value for the parameter a.

Proposition 4.2.1. For all a ∈ CT for which K(σa) is locally connected, the tree T embeds

into K(σa), and the embedding is unique up to a homotopy fixing the vertices.

Proof. Let γ be a path in K(σa) with endpoints b0 and v. Then σ−1
a (γ) is an embedding of

the path. The simple connectivity of K(σa) guarantees the uniqueness.

We will show that even when the Julia set is not locally connected that the combinatorial

structure of T is still present in K(σa).

Proposition 4.2.2. Periodic dynamic rays land.
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Proof. (See [Mil06, Theorem 18.10]) Let Rθ(a) be a periodic ray of period p. In the hyperbolic

metric on Ĉ \ K(σa) the ray is a union of geodesic segments tending towards infinity. In

particular, it must accumulate to at least one point on K(σa), which we denote as z0. We now

show that z0 is a periodic point with period dividing p. Let U be a neighborhood of z0. Let

Ipk denote a fundamental segment for the ray, with endpoints at a depth pk tile and a depth

p(k+1) tile. There is some k large enough that Ik ⊂ U . But now as U ∩f(U) ⊃ Ik∩Ik−1 ̸= ∅,

it follows that z0 is fixed by σpa.

The set of accumulation points of a ray must be connected, and thus either a single point

or is uncountable. But as the number of periodic points of σa of period dividing p is finite, it

follows that z0 must be the only accumulation point of this ray.

A version of the following proposition can be found in [Lyu, Theorem 24.5]

Proposition 4.2.3. Let z0 be a periodic repelling or parabolic point in the Julia set. Then

there is a ray which lands at z0.

Proposition 4.2.4. Suppose multiple rays land at z. Then z is a cut point for the filled

Julia set.

Proof. If θ1 and θ2 are distinct angles whose σa dynamical rays land at the same point then

the union of these rays, together with the landing point and ∞ forms a closed topological

loop in Ĉ. The cusp of Ωa lies in one complemenatary component of this loop. At the same

time, all rational θ ∈ (θ1, θ2) land on the filled Julia set, which is in the other complementary

component of said closed loop.

Corollary 4.2.5. For a ∈ C(T ) no two distinct vertices of T can lie in the same Fatou

component.

Proof. Let c1 and c2 be critical points of σa. If it were the case that they lay in the same

Fatou component there would exist a path connecting them not passing through ∂K(σa).
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Any path between critical points c1 and c2 of σa is homotopic within K(σa), rel the

endpoints, to a path in T . Such a path must pass through a critical preimage of 0, which are

cut points of K(σa). It follows that the original path must also contain the said cut point,

which is necessarily in ∂K.

Define the principal wakes for a Schwarz reflection σa ∈ ST to be the planar regions whose

boundaries are given by the dynamical rays landing at preimages of the cusp, and such that

no such dynamical rays are in the interior. When σa ∈ C(ST we may intersect these principal

wakes with K(σa) to arrive at the following analogue of 4.2.1:

Proposition 4.2.6. Let a ∈ CT . Then K(σa) is the union of finitely many hulls, any two of

which intersect in at most one point, namely at a critical pre-image of the cusp of Ωa. Each

such hull contains exactly one pre-image of the free critical value v.

Let G be the graph whose vertices are preimages of the cusp of Ωa and the free critical

value, and with edges connecting a preimage of the cusp of Ωa to a preimage of the free critical

value if they line in the same hull as above. Then G is isomorphic as a bi-colored planar

rooted tree to T .

Definition 4.2.1. We will say that a Hubbard tree for a post-critically finite map σa is the

(unique) tree contained in K(σa) which contains all preimages of the critical values of σa, and

whose intersections with Fatou components are given by internal rays.

Poirier’s realization theorem, together with theorem C of [LMM23] allows the construction

of many post-critically finite maps in S. We give a construction below showing that S contains

maps which are semi-conjugate in a natural way to the dynamics of PCF unicritical anti-

holomorphic polynomials.

Lemma 4.2.7. Let wj be a white vertex of degree d > 1, and let p be any PCF, unicritical,

anti-holomorphic polynomial of degree d. Then there exists some PCF σa ∈ S such that

σa(Pj) ⊃ Pj, and with a David hybrid conjugacy from a neighborhood of J(p) to a neighborhood

U ⊃ Pj.
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Proof. Denote the Hubbard tree of p as Tp. Now consider the tree given by adjoining Tp to

T at wj. We associate a topological map to this tree given by sending each white vertex

to the critical value in Tp, sending each black vertex to the root of T , and maintaining the

dynamics on Tp. The dynamics on this tree is expanding. This is an admissible Hubbard tree

and therefore is realized by some anti-holomorphic polynomial, q. By theorem C of [LMM23]

we have that q is David hybrid equivalent to some σa ∈ S, which has the desired properties.

4.3 The parameter space ST .

In this section we show that the parameter space ST is a topological quadrilateral with

boundary given by real analytic arcs, and analyze the dynamics of the associated maps at

those boundary components.

4.3.1 Boundedness of ST

Note that ∂∆a contains a fixed base point vbvbvb. As |a| → ∞, the radius |a− vbvbvb| of the disk ∆a

also goes to infinity. Hence, as a→ ∞ along some θ-ray {vbvbvb +Reiθ : R ∈ (0,∞)}, the disk

∆a converges to some closed half-plane in Ĉ. Since the polynomial fff behaves like c · zd+1

near ∞ with d+ 1 ≥ 3, it follows that fff cannot be injective on a half-plane near ∞. Hence,

for |a| large enough, fff cannot be injective on ∆a.

This gives the following.

Lemma 4.3.1. The parameter space ST is a bounded subset of C.

4.3.2 Dynamics near cusp points

Definition 4.3.1.
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1. We define

Γhoc := {a ∈ ST : y1 = fff(vbvbvb) is a cusp of type (ν, 2), ν ≥ 5},

and call Γhoc the higher order cusp locus.

2. We define

Γpb := {a ∈ C : vwvwvw ∈ ∂∆a, fff |∆a
is univalent} ⊂

The perpendicular bisector of the straight line segment joining vwvwvw and vbvbvb.

For θ ∈ R/2πZ, denote by αθ the curve germ at vbvbvb that maps under fff to a straight line

segment {y1 − [0, ε]e2iθ} (for ε > 0 small).

The following statement can be found in [LMM23, Appendix A]

Lemma 4.3.2. Let a ∈ ST . Then the following are equivalent.

1. a ∈ Γhoc; i.e., y1 is a cusp of type (ν, 2) of ∂Ωa with ν > 3.

2. The circle ∂∆a is an osculating circle to the curve germ αθ at vbvbvb, where θ = arg (a− vbvbvb).

3. The second iterate σ◦2
a has at least one attracting and at least one repelling direction in

Ωa at the cusp y1. In particular, the unique free critical orbit of σa (i.e., the forward

orbit of y2) non-trivially converges to y1.

Corollary 4.3.3. Let a ∈ ST . Then the following statements hold.

1. y1 is a (ν, 2)-cusp of ∂Ωa, where ν ∈ {3, 5, 7}.

2. The invariant direction {y1 + [0, ε]e2i arg (a−vbvbvb)} is a repelling (respectively, attracting)

direction for σa at y1 if y1 is a (3, 2) or (7, 2) (respectively, (5, 2)) cusp of ∂Ωa.

Proof. 1) Suppose that ν > 7. By [LMM23, Proposition A.4], there are at least seven

σ◦2
a -invariant direction at y1, of which at least three are attracting. By the proof of [Lee+21,
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Proposition 4.5], there must be three infinite critical orbits of σ◦2
a converging to y1 in this

case. But this is absurd as σ◦2
a has at most two infinite critical orbits. Thus, ν ≤ 7.

2) This follows from [LMM23, Proposition A.5].

Lemma 4.3.4. Γhoc ∩ Γpb = ∅.

Proof. For a ∈ Γhoc, the cusp point y1 non-trivially attracts the forward orbit of y2. On the

other hand, for a ∈ Γpb, the critical value y2 lies on ∂Ωa \ {y1}, and is thus fixed. Hence,

Γpb ∩ Γhoc = ∅.

4.3.3 Dynamics near double points

A point p ∈ ∂Ωa is said to be a double point if for all sufficiently small ε > 0, the intersection

B(p, ε) ∩ Ωa is a union of two Jordan domains, and p is a non-singular boundary point

of each of them. In particular, two distinct non-singular (real-analytic) local branches of

∂Ωa intersect tangentially at a double point p. One can further classify such double points

according to the order of contact of the two real-analytic branches γ1 and γ2 of ∂Ωa at p. Let

ι1 and ι2 be the local Schwarz reflection maps associated with γ1 and γ1. It is easily checked

that if γ1 and γ2 have contact of order k at p, then ι1 ◦ ι2 is a parabolic germ of the form

z 7→ z + a(z − p)k+1 + o((z − p)k+1) with a ̸= 0. Moreover, ι2 ◦ ι1 is the inverse of ι1 ◦ ι2, and

these two germs are anti-conformally conjugate via ι1. We also note that k is necessarily odd

since otherwise the two branches γ1 and γ2 would cross at p.

Definition 4.3.2. We define

Γdp := {a ∈ C : vwvwvw ∈ ∆a, f |∆a is univalent, and ∂Ωa has a double point},

and call Γdp the double point locus.

We now study the local dynamics of σa near a double point p of ∂Ωa.

Lemma 4.3.5. Let p be a double point on ∂Ωa. Then the following assertions hold.
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γ1γ1γ2 γ2

ℓ ℓ

Figure 4.3: The situations considered in the two sub-cases 2a and 2b in the proof of
Lemma 4.3.5 are depicted. The arrows indicate attracting/repelling directions for the
parabolic germ ι2 ◦ ι1.

1. The two non-singular branches of ∂Ωa at p have contact of order one or three.

2. If the contact is of order one, then the two associated normal directions at p are repelling

directions for σ◦2
a and there is no attracting direction for σ◦2

a at p.

3. If the contact is of order three, then the two associated normal directions at p are the

only attracting directions for σ◦2
a , and the unique free critical orbit of σa non-trivially

converges to p. In particular, ∂Ωa has at most one such double point. Furthermore,

there are four repelling directions for σ◦2
a .

Proof. We denote the common tangent line for γ1 and γ2 at p by ℓ.

Case 1 (k = 1). Up to second order, the local power series of ι1, ι2 depend only on the

(signed) curvature of γ1, γ2 at p. Hence, it suffices to assume that ι1, ι2 are Schwarz reflections

with respect to the osculating circles to γ1, γ2 at p (cf. [Dav74, Sec.7]). A simple computation

now shows that the inward normal to γ1 (respectively, the outward normal to γ1) at p is a

repelling direction for γ2 ◦γ1 (respectively, for γ1 ◦γ2). In other words, these normal directions

are repelling directions for σ◦2
a .

Case 2 (k = 3). In this case, the germ ι2 ◦ ι1 has three attracting and three repelling

directions. Note that the inward normal to γ1 at p is invariant under this germ.
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Sub-case 2a. If the inward normal to γ1 at p is an attracting direction for ι2 ◦ ι1, then the

other two attracting directions of ι2 ◦ ι1 are on the opposite side of ℓ (see Figure 4.3 (left)).

Thus, these two directions are repelling directions for ι1 ◦ ι2 and hence for σ◦2
a . On the other

hand, the outward normal to γ1 at p is attracting for ι1 ◦ ι2 (since it is repelling for ι2 ◦ ι1).

Therefore, the only attracting directions for σ◦2
a at p are the above two normal vectors, and

they are exchanged by σa (see [Lee+18a, Proposition 5.15] for the same situation in the

circle-and-cardioid family of Schwarz reflections). By Fatou-type arguments, the unique free

critical orbit of σa must converge to p asymptotic to this 2-cycle of attracting directions (cf.

[Lee+18a, Propositions 5.30, 5.32]). The statement about the repelling directions for σ◦2
a also

follows.

Sub-case 2b. If the inward normal to γ1 at p is a repelling direction for ι2 ◦ ι1, then so

is the outward normal to γ1 at p for the inverse germ ι1 ◦ ι2. In this case, σ◦2
a has four

attracting directions which are pairwise exchanged by σa (see Figure 4.3 (right)). Once again,

a Fatou-type argument shows that there are two period two cycles of parabolic basins of σa

(at p) and each such cycle contains an infinite critical orbit of σa. But this contradicts the

fact that σa has at most one infinite critical orbit. Hence, this sub-case cannot occur.

Case 3 (k ≥ 5). The same arguments as in the previous case show that there must be at

least two period two cycles of parabolic basins of σa at p. But this would require at least two

infinite critical orbits of σa, implying that this case is impossible.

Definition 4.3.3. We call a double point of ∂Ωa regular (respectively, special) if the two

non-singular branches of ∂Ωa at p have contact of order one (respectively, three).

For a ∈ Γdp, the desingularized droplet T 0(σa) is defined as the set obtained by removing

the cusp and the double points from Ĉ \Ωa. Note that in this case, T 0(σa) contains a unique

unbounded component, denoted by T 0
u (σa), and finitely many bounded components, whose

union is denoted by T 0
b (σa).
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Ωa
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X

p

X ′

Figure 4.4: Pictured are two a priori possible configurations of the desingularized droplet
that are disallowed by Lemma 4.3.6.

Lemma 4.3.6. Let a ∈ Γdp, and X be a component of T 0
b (σa). Then, the set of singular

points on ∂X is either exactly two double points of ∂Ωa, or exactly one double point and the

unique cusp of ∂Ωa.

Proof. Clearly, ∂X must contain at least one double point p of ∂Ωa.

We will first argue that p cannot be the only singular point of ∂Ωa on ∂X. By way of

contradiction, let us assume that this is the case (see Figure 4.4 (left)). Then, ∂X \ {p}

is a non-singular real-analytic arc, and hence there exists a component Y of σ−1
a (X) such

that ∂X ⊊ ∂Y . Since a ∈ Γdp, the free critical value of σa lies in Ωa, which is disjoint

from intX. Hence, σa : intY → intX is a covering map. As intX is a topological disk,

σa : intY → intX must be a homeomorphism. But this is impossible because each point on

∂X \ {p} has at least two preimages under σa on the boundary of Y .

Therefore, ∂X must contain at least two double points of ∂Ωa or a double point and

the unique cusp of ∂Ωa. Also note that since ∂Ωa is a real-algebraic curve, it has at most

finitely many double points. Hence, if ∂X contains an additional double point of ∂Ωa, then

there must exist some component X ′ ̸= X of T 0
b (σa) such that the only singularity on ∂X ′

is a double point of ∂Ωa (see Figure 4.4 (right)). But this contradicts the conclusion of the

previous paragraph. This completes the proof.
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Figure 4.5: The component X of T 0
a (σa) (introduced in Proposition 4.3.7) and its σa-preimages

in the tiling component U are displayed.

We now proceed to study the relation between components of T 0
b (σa) and the free critical

orbit of σa.

Proposition 4.3.7. Let a ∈ Γdp. Then T 0
b (σa) is connected and some forward iterate of the

critical value y2 of σa lands in T 0
b (σa).

Proof. By Proposition 4.3.6 and the fact that ∂Ωa has at most finitely many singular points,

there must exist a component X of T 0
a (σa) which has the cusp y1 and a double point p

(of ∂Ωa) on its boundary, and such that ∂X \ {p, y1} is the union of a pair of non-singular

real-analytic arcs. In particular, ∂X \ {p, y1} has a small neighborhood contained in the

tiling set of σa. We denote the component of T∞(σa) containing X by U (see Figure 4.5).

We will first suppose that the orbit σ◦n
a (y2) does not intersect X and study its dynamical

consequence. Under this assumption, the Riemann-Hurwitz formula implies that σ−1
a (intX)∩

U is the union of two simply connected domains each of which maps homeomorphically onto

intX. Moreover, ∂X ⊊ ∂(σ−1
a (X) ∩ U), and int (X ∪ (σ−1

a (X) ∩ U)) is a simply connected

domain (see Figure 4.5). Since the free critical orbit never meets X, one can now apply the

above argument inductively to conclude that for each n ≥ 1,
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• σ−n
a (intX) ∩ U is the union of two simply connected domains each of which maps

homeomorphically onto intX under σ◦n
a , and

• int
n⋃
i=0

(σ−i
a (X) ∩ U) is a simply connected domain.

Since U =
∞⋃
n=1

(
int

n⋃
i=0

(σ−i
a (X) ∩ U)

)
is an increasing union of simply connected domains, we

conclude that U is also a simply connected domain. We denote the two connected components

of U \ (X ∪ σ−1
a (X)) by V1 and V2, and the two connected components of U \X by W1 and

W2 such that Wj ⊃ Vj, j ∈ {1, 2}. Note that the above arguments also demonstrates simple

connectivity of the domains Vj,Wj, j ∈ {1, 2}. Moreover, σ◦2
a : V1 → int (X ∪W1) is a

conformal isomorphism. We denote the corresponding inverse branch by g : int (X ∪W1) →

V1 ⊊ int (X ∪W1), and observe that g is a contraction with respect to the hyperbolic metric

of int (X ∪W1).

It follows by the previous paragraph and the local dynamics of σ◦2
a near p (see Lemma 4.3.5)

that there are points in U close to p whose g-orbits converge to p (asymptotically to a repelling

direction of σ◦2
a at p). By [Mil06, Lemma 5.5], all g-orbits must converge to p.

By Lemma 4.3.2 and Corollary 4.3.3, the cusp point y1 also has a repelling direction in

Ωa. Hence, there are points in Ωa near the cusp that eventually land in X. Consequently,

there are points in U close to y1 whose g-orbits converge to y1. By [Mil06, Lemma 5.5], all

g-orbits must converge to y1. This contradicts the conclusion of the previous paragraph, and

proves that the orbit σ◦n
a (y2) must intersect X.

If T 0
b (σa) had a component X ′ other than X, then one can repeat the above argument

to conclude that the orbit σ◦n
a (y2) must also intersect X ′, which is impossible. Thus, we

conclude that T 0
b (σa) = X.

Corollary 4.3.8. Let a ∈ Γdp. Then the unique double point on ∂Ωa is a regular double

point.

Proof. By Lemma 4.3.5 and Proposition 4.3.7, the existence of a special double point on ∂Ωa
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would force the free critical orbit of σa to non-trivially converge to the special double point

as well as escape to T 0
b (σa), which is absurd.

Corollary 4.3.9. Γhoc ∩ Γdp = ∅.

Proof. By way of contradiction, assume that a ∈ Γhoc ∩ Γdp. By Proposition 4.3.7, the free

critical orbit of σa escapes to T 0
b (σa). But this is impossible since the free critical orbit of σa

must also converge non-trivially to the cusp point y1 by Lemma 4.3.2.

Corollary 4.3.10. Let a ∈ Γdp. Then the forward orbit of the free critical value of σa is

disjoint from T 0
u (σa) ∪ {y1}.

Proof. This follows from Propositions 4.3.7.

4.3.4 Description of the boundary and interior of the parameter

space ST

Lemma 4.3.11. Γhoc
⋃
Γdp

⋃
Γpb ⊂ ∂ST .

Proof. Let a ∈ Γhoc. By definition, a ∈ ST . By Lemma 4.3.2, the circle ∂∆a is an osculating

circle to the curve germ αθ at vbvbvb that maps under fff to a straight line segment {y1− [0, ε]e2iθ},

where θ = arg (a− vbvbvb). Let
−→
ℓa be the infinite ray from vbvbvb to ∞ passing through a, and a′ be

a parameter obtained by pushing a slightly along
−→
ℓa away from vbvbvb. Then, ∆a′ contains points

of αθ that are identified under fff , and hence fff is not injective on ∆a′ . Therefore, a ∈ ∂ST ;

i.e., Γhoc ⊂ ∂ST .

Let a ∈ Γpb. By Lemma 4.3.4 and the definition of Γpb, fff is univalent on ∆a and y1 is a

(3, 2) cusp. Thus, by Lemma 4.3.2, the circle ∂∆a is not an osculating circle to the curve

germ αθ at vbvbvb. Hence, pushing a along
−→
ℓa slightly away from vbvbvb produces parameters a′ such

that fff is injective on ∆a′ and vwvwvw ∈ ∆a′ . Hence, a ∈ ∂ST . This proves that Γ
pb ⊂ ∂ST .

Let a ∈ Γdp. Once again, pushing a along
−→
ℓa slightly away from vbvbvb produces parameters

a′ such that fff is not injective on ∆a′ (since ∆a′ ∪ {vbvbvb} ⊃ ∆a). On the other hand, pushing
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a slightly along
−→
ℓa towards vbvbvb produces parameters a′ such that fff is injective on ∆a′ (since

∆a′ ⊂ ∆a∪{vbvbvb}) and vwvwvw ∈ ∆a′ (see Figure 4.6). Hence, a ∈ ∂ST . This proves that Γ
dp ⊂ ∂ST .

The result now follows by taking closures.

Theorem 4.3.12. We have

∂ST = Γhoc
⋃

Γdp
⋃

Γpb,

and

intST = {a ∈ C : vwvwvw ∈ ∆a, f |∆a
is univalent, and y1 is a (3, 2) cusp}.

Proof. First we recall that if fff |∆a
is univalent and the cusp y1 ∈ ∂Ωa is of type (3, 2), then a

has a neighborhood such that for all parameters a′ in this neighborhood, fff |∆a′
is univalent.

Since parameters in ST for which y1 is a higher order cusp belong to the boundary of ST (by

Lemma 4.3.11), the description of the interior of ST given in the statement of the theorem

follows.

Now let a ∈ ∂ST . We consider two cases.

Case 1: a ∈ ST . By the description of intST , we have that y1 is a cusp of type (ν, 2) of ∂Ωa,

with ν ≥ 5; i.e., a ∈ Γhoc.

Case 2: a /∈ ST . Since fff |∆a is the local uniform limit of a sequence of injective holomorphic

maps and fff is non-constant, we have that fff |∆a is injective. The assumption that a /∈ ST

now implies that either fff is not injective on ∂∆a or vwvwvw ∈ ∂∆a (or both). In the former case,

there is a double point on ∂Ωa. Moreover, as a ∈ ST , we have that vwvwvw ∈ Ωa. Hence, a ∈ Γdp.

In the latter case, either a ∈ Γdp or a ∈ Γpb depending on whether there is a double point on

∂Ωa or not.

Combining the two cases, we conclude that

∂ST ⊂ Γhoc ∪ Γdp ∪ Γpb.

The description of the boundary of ST follows from the above containment and Lemma 4.3.11.
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vbvbvb
vwvwvw

αθ

∆a
∆a′

a′
a

ℓa

Figure 4.6: The red straight line is the perpendicular bisector of the line segment joining vbvbvb
and vwvwvw, the half-plane to the right of the red straight line is P, and αθ is the curve germ at vbvbvb
that maps under fff to a straight line segment {y1 − [0, ε]e2iθ}, where θ = arg (a− vbvbvb). There
is a nesting structure of the disks ∆a when a lies on a fixed straight ray emanating from vbvbvb.

4.3.5 Connectedness of ST

Our next goal is to prove that the parameter space ST is connected. This will be done

through a series of lemmas.

Lemma 4.3.13. Each connected component of intST is a Jordan domain. Moreover, ST =

intST .

Proof. Recall that by Corollary 4.1.7, the interior of ST is non-empty.

Given any a ∈ C, let ℓa be the straight line segment connecting vbvbvb to a. Now let a′ ∈ ℓa.

By definition, |a− vbvbvb| > |a′ − vbvbvb| and hence ∆a′ ⊂ ∆a. Thus, if fff is univalent on ∆a then it

is also univalent on ∆a′ . This means that if a ∈ ST , then the intersection of ℓa with the half

plane P := {z ∈ C : |z−vwvwvw| < |z−vbvbvb|} (which is one of the complementary components of the
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perpendicular bisector of the line segment joining vwvwvw and vbvbvb) also lies in the parameter space

(see Figure 4.6). This implies that each connected component of ST is simply connected.

Now suppose that a ∈ Γdp ∪ Γhoc, and a′ ∈ ℓa ∩P, a′ ̸= a. The above argument and the

ones used in the proof of Lemma 4.3.11 show that fff is injective on ∆a′ and vwvwvw ∈ ∆a′ (see

Figure 4.6). We also claim that y1 is a (3, 2) cusp on ∂Ωa′ . Indeed, if this were not true,

then pushing a′ along ℓa in the direction of a (i.e., away from vbvbvb) would result in fff to be

non-univalent on the corresponding disk contradicting the assumption that f |∆a is univalent.

Therefore, ℓa ∩P \ {a} ⊂ intST for all a ∈ Γdp ∪ Γhoc (by the description of intST given in

Theorem 4.3.12). It follows that each component of intST is a Jordan domain.

By Theorem 4.3.12, if a ∈ ST \ intST , then a must lie on Γhoc. But the above argument

demonstrates that in this case, there are points a′ ∈ ℓa arbitrarily close to a such that

a′ ∈ intST . This proves that ST ⊂ intST , and hence, ST = intST .

Lemma 4.3.14. Γpb ∩ Γdp contains at most two points.

Proof. Let a ∈ Γpb ∩ Γdp. Then the free critical value y2 of σa lies on ∂Ωa, and thus is fixed.

Moreover, by Proposition 4.3.7, y2 lies on ∂T 0
b (σa), but is not the (unique) double point or

the (unique) cusp point of ∂Ωa.

Therefore, for each a ∈ Γpb ∩ Γdp, the interior of T 0
b (σa) is a Jordan domain whose

boundary contains three distinct distinguished points; namely, the unique double point of

∂Ωa, the unique cusp of ∂Ωa, and the unique free critical value y2 of σa. On the other hand,

the interior of T 0
u (σa) is also a Jordan domain which contains the fully branched critical value

∞ of σa and has the unique cusp of ∂Ωa on its boundary.

Let us now assume that there are two parameters a1, a2 ∈ Γpb ∩ Γdp such that for both

parameters, the unique double point of ∂Ωai , the unique cusp of ∂Ωai , and the unique free

critical value y2 of σai lie in the same cyclic order on ∂T 0
b (σai). We claim that a1 = a2. Since

these three distinguished points on the boundary of T 0
b (σa) can lie in exactly two different

cyclic orders, the proof will be complete once the claim is established.
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Let gb : intT
0
b (σa1) → intT 0

b (σa2) be the conformal isomorphism whose homeomorphic

boundary extension (also denoted by gb) carries the cusp, double point and the free critical

value associated with a1 to those associated with a2. Furthermore, let gu : intT 0
u (σa1) →

intT 0
u (σa2) be the conformal isomorphism which sends the fully branched critical value ∞

of σa1 to the fully branched critical value ∞ of σa1 , and whose homeomorphic boundary

extension (also denoted by gb) takes the unique double point of ∂Ωa1 to the unique double

point of ∂Ωa2 . Since y2 is fixed under σai (i ∈ {1, 2}), Lemmas 4.3.2 and 4.3.5 imply that the

double points on ∂Ωa1 , ∂Ωa2 are regular and the cusps on them are of type (3, 2). Hence, one

can apply the arguments of [Lee+18b, Lemmas 8.10, 8.11] or [LMM21, Lemmas 5.3, 5.4] to

conclude that there exists a global K-quasiconformal map G0 of the Riemann sphere that

continuously matches with gu and gb on their domains of definition.

Since the free critical orbits of σa1 , σa2 lie in the respective tiling sets, one can apply classical

arguments of Fatou to see that intK(σa1) = intK(σa2) = ∅ (see [Lee+18a, Propositions 5.30,

5.32]). Hence, ∂T∞(σai) = K(σai); i.e., T
∞(σai) = Ĉ. Moreover, the same fact also allows

one to show that these non-escaping sets have zero area (cf. [Lee+18a, Corollary 6.3]).

As the Schwarz reflection maps act as identity on the boundaries of the desingularized

droplets, a standard pullback argument as in [Lee+18b, Proposition 8.13] or [LMM21,

Theorem 5.1] can be employed to construct a sequence of K-quasiconformal maps {Gn} such

that

1. σa2 ◦Gn = Gn−1 ◦ σa1 on Ĉ \ intT 0(σa1),

2. Gn is conformal on
n⋃
i=0

σ−i
a1
(T 0(σa1)), and

3. Gn = Gn−1 on
n−1⋃
i=0

σ−i
a1
(T 0(σa1)).

By compactness of the family of K-quasiconformal homeomorphisms and Conditions (1), (2),

there exists a quasiconformal homeomorphism G∞ of Ĉ that conjugates σa1 to σa2 on the

tiling set. By continuity and density of the tiling sets of σa1 , σa2 in Ĉ, the conjugacy relation
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holds on the entire domain of definition of σa1 . Also, Condition 3 implies that G∞ is conformal

on the tiling set of σa1 . Since the non-escaping set of σa1 has zero area, it follows by Weyl’s

lemma that G∞ is a Möbius map of Ĉ. Finally, since the conjugacy G∞ fixes ∞, y2 and y1,

it must be the identity map. Hence, a1 = a2.

Lemma 4.3.15. Γhoc ⊂ ∂ST is a closed real-analytic arc.

Proof. We will first show that Γhoc ̸= ∅. To do this, we apply the arguments of A on the

dynamically Shabat anti-polynomial p (as usual, if T is a star-tree, we perform the surgery

on zd) to replace the dynamics on the basin of infinity with Rd|Q and the dynamics on the

bounded fixed critical Fatou component with the unicritical parabolic anti-Blaschke product

Bd|D such that the unique parabolic fixed point of Rd as well as the unique parabolic fixed

point of Bd correspond to the repelling fixed point emb(vb) of p. This produces a parameter

a0 ∈ ST such that σ◦2
a0

has a unique attracting direction in K(σa0) at the cusp y1 of ∂Ωa0 .

Hence, by Lemma 4.3.2 and Corollary 4.3.3, y1 is a (5, 2) cusp of ∂Ωa0 ; and hence in particular,

a0 ∈ Γhoc. Note that J (p) is removable for W 1,1 functions (by [JS00, Theorem 4] and the

fact that B∞(p) is a John domain). Thus, according to [Lyu+20, Theorem 2.7], the limit set

∂K(σa0) is conformally removable.

The discussion in the beginning of Subsection 3.3.1, applied to a forward-invariant

attracting petal of σa0 at the cusp point y1, furnishes a Fatou coordinate (unique up to real

translations) on such a petal that conjugates σa0 to the glide reflection ζ 7→ ζ + 1
2
on a right

half-plane. By construction of σa0 , such an attracting petal at y1 contains the tail of the

σ◦2
a0
-orbit of the free critical value y2 (of σa0). We refer to the imaginary part of σ◦2n

a0
(y2)

(for n large enough) in this coordinate as the critical Écalle height of σa0 . It is readily seen

that the critical Écalle height is a conformal conjugacy invariant of the map σa0 . As in

Subsection 3.3.1, the real-symmetry of Bd tells us that the critical Écalle height of the map

σa0 is 0.

One can now apply a quasiconformal deformation argument as in the proof of [Lee+21,

Proposition 6.6 (part 2)] (cf. [MNS17, Lemma 3.1]) to obtain an open real-analytic arc
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Γ′ ⊂ ST containing a0 such that for each t ∈ R, there exists a unique parameter a(t) ∈ Γ′

with the following properties:

1. the cusp y1 has a unique attracting direction under σa(t), and hence y1 is a (5, 2) cusp

of ∂Ωa(t),

2. the forward orbit of the free critical value y2 of σa(t) converges to y1, and

3. the critical Écalle height of σa(t) is t.

Clearly, Γ′ is contained in Γhoc. Since conformal removability is preserved under quasiconformal

maps, the limit set of each map produced above is conformally removable.

We claim that there are no other parameters in Γhoc such that y1 is a (5, 2)-cusp on

the corresponding quadrature domain boundary. Indeed, let a′ ∈ Γhoc be such that y1 is

a (5, 2)-cusp of ∂Ωa′ . Then the unique free critical orbit of σa′ converges to y1 and hence

the map has a finite critical Écalle height t0. We claim that a′ = a(t0), where a(t0) is the

unique parameter on Γ′ with critical Écalle height t0. Since both σa′ , σa(t0) have a unique free

critical orbit, one can adapt the arguments of [Lee+18a, Propositions 5.30, 5.32] to show

that both intK(σa′), intK(σa(t0)) equal the basin of attraction of the cusp y1. Moreover,

the proofs of [Lee+18b, Lemma 8.5, Proposition 8.6] (or more generally, that of [Kiw01,

Proposition 6.19]) apply to the maps σa′ , σa(t0) and imply that both ∂T∞(σa′), ∂T
∞(σa(t0))

are quotients of ∂Q ∼= S1 under the closed Rd-invariant equivalence relation generated by the

angles of the dynamical rays landing at the preimages of y1. Note that the angles of these

rays only depend on the plane tree T , and hence the corresponding equivalence relation is

the same for the two maps σa′ , σa(t0). It now follows that the non-escaping set dynamics of

σa′ and σa(t0) are topologically conjugate where the conjugacy is conformal on the interior

(conformality is a consequence of the fact that the maps have the same critical Écalle height).

Moreover by Lemma 4.1.10, their tiling set dynamics are also conformally conjugate. These

two conjugacies match up to yield a global orientation-preserving topological conjugacy

between the two Schwarz reflection maps such that the conjugacy is conformal off the limit
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set. Conformal removability of the limit set of σa(t0) now implies that σa′ and σa(t0) are

Möbius conjugate and hence equal. (Alternatively, one can employ the pullback arguments

of [Lee+18b, Proposition 9.4] to prove rigidity of parameters with (5, 2)-cusps.)

Since Γhoc is contained in a real-algebraic curve (defined by the higher order cusp condition),

each end of the arc Γ′ has a unique limit point in Γhoc. We claim that the two ends of

Γ′ have distinct endpoints. If this were not true, since Γhoc ∩ Γpb = ∅ (by Lemma 4.3.4),

the closure of Γ′ (in C) would be a topological circle contained in the open half plane

P = {z ∈ C : |z − vwvwvw| < |z − vbvbvb|}. As Γhoc ⊂ ∂ST , this topological circle must entirely lie on

the boundary of ST . On the other hand, there must exist sub-arcs I ′, I ′′ of this topological

circle such that the union of the line segments connecting points of I ′ to vbvbvb contain I
′′ in its

interior. The ‘projection argument’ of Lemma 4.3.13 now implies that I ′′ is contained in the

interior of ST , a contradiction.

Let a′ be a limit point of Γ′. We will now argue that a′ ∈ ST , and that y1 is a (7, 2)-cusp

of ∂Ωa′ . Clearly, fff is univalent on ∆a′ , vwvwvw ∈ ∆a′ , and y1 is a cusp of type (ν, 2) with ν > 3

on ∂Ωa′ , where Ωa′ := fff(∆a′). Thus, by the arguments of Lemma 4.3.2, the forward orbit

of y2 under the associated Schwarz reflection map σa′ converges non-trivially to the cusp

y1. It follows that y2 = fff(vwvwvw) /∈ ∂Ωa′ ; i.e., vwvwvw ∈ ∆a′ . If there were a double point on ∂Ωa′ ,

then Proposition 4.3.7 would prevent the critical value y2 of σa′ to converge non-trivially

to y1. Therefore, fff is injective on ∆a′ , and hence a′ ∈ ST . Thanks to Corollary 4.3.3, it

now suffices to show that y1 is not a (5, 2)-cusp on ∂Ωa′ . We have already established that

the parameters in ST for which y1 is a (5, 2) cusp on the corresponding quadrature domain

boundaries comprise Γ′. Thus, we need to prove that Γ′ does not accumulate on itself. But

this follows directly from the fact that ℓa ∩P \ {a} ⊂ intST for all a ∈ Γhoc (see the proof of

Lemma 4.3.13). Hence, y1 is a (7, 2)-cusp of ∂Ωa′ .

As in the case of (5, 2)-cusps, one can now apply the arguments of [Lee+18b, Proposi-

tion 8.15] to prove a rigidity statement for parameters with (7, 2)-cusps and conclude that

there are no other parameters in Γhoc such that y1 is a (7, 2)-cusp of ∂Ωa.
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By Corollary 4.3.3, these are all the parameters in Γhoc. Therefore, Γhoc = Γ′ is a closed

real-analytic arc.

Corollary 4.3.16. For all a ∈ Γhoc, the free critical orbit {σ◦n
a (y2)} converges to the cusp y1.

Remark 4.3.17. The existence of two distinct parameters a for which y1 is a (7, 2)-cusp of

∂Ωa can be interpreted as follows. For such a parameter, the interior of K(σa) is the basin of

attraction of y1, and every component of intK(σa) is mapped eventually to the 2-cycle of

Fatou components touching at y1 (which correspond to the two attracting directions of σ◦2
a

at y1). Moreover, the first return map σ◦2
a to each of these two components is a unicritical

holomorphic Blaschke product of degree equal to the valence of v′w in T . Since such Blaschke

products are rigid and since the external class of σa is frozen, it follows that all parameters

with a (7, 2)-cusp at y1 have conformally conjugate dynamics on the union of the tiling set

and the interior of the non-escaping set. However, the internal and external conjugacies

between two such maps would agree if and only if the circular order of the two periodic Fatou

components (which are marked as one of them contains v′wv
′
wv
′
w) and the droplet at y1 are the

same. This implies that there are at most two maps σa for which y1 is a (7, 2)-cusp of ∂Ωa,

and the proof of Lemma 4.3.15 confirms that both possibilities are realized.

Theorem 4.3.18.

1. intST is a bounded Jordan domain.

2. ST is a topological quadrilateral whose sides are given by Γhoc, Γpb, and the two connected

components of Γdp.

Proof. 1) By Lemma 4.3.13, it suffices to show that intST is connected.

Let us first note that by the projection argument of Lemma 4.3.13, the boundary of

each component of intST contains a non-degenerate interval in Γpb. As Γhoc ∩ Γpb = ∅, we

conclude that the boundary of each component of intST must contain at least two points

of Γpb ∩ Γdp. It follows that if intST had two distinct components, then Γpb ∩ Γdp would
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contain at least three distinct points, which would contradict Lemma 4.3.14. Hence, intST is

connected.

2) By Lemma 4.3.13, ST = intST . By the proof of the first part of the theorem, ∂ST

is a Jordan curve in C consisting of a closed real-analytic arc Γhoc, a closed interval Γpb,

and a pair of closed real-analytic arcs Γdp that connect the two endpoints of Γhoc to the two

endpoints of Γpb. This yields the desired topological quadrilateral structure of ST .

4.4 Hyperbolic components in ST

We say that a parameter a is hyperbolic if σa has an attracting periodic cycle1. Let Ua

be the union of the connected Fatou components which contain the attracting periodic

cycle. Necessarily there is a critical point c contained in Ua [Mil06]. The following is then a

consequence of Crollary 4.2.

Proposition 4.4.1. There are no critical or co-critical points in Ua other than ca.

Proof. Since Ua is contained in the interiror of Ωa, it follows that the cusp does not belong

to Ua and therefore neither does any preimage. If c̃ ∈ σ−1 must necessarily be contained

in the same component of Ua as c, since they are both mapped to v. At the same time no

connected component of σ−1
a (Ωa) contains two different vertices of T .

Definition 4.4.1. We define the primary hyperbolic component H to be the hyperbolic

component of C(ST ) such that critical point in the periodic Fatou component is w1, the

critical point adjacent in T to the pararabolic point.

Proposition 4.4.2. Γhoc ⊂ H ⊂ C(ST ). Moreover, any sequence in ST accumulating on the

interior of Γhoc is eventually contained in H.

Proof. Follows from the proof of Lemma 4.3.15.

1Strictly speaking, we should call such parameters relatively hyperbolic, as there is always a fixed point
with parabolic dynamics. However, as this behavior is persistent throughout our parameter space, we call
these maps hyperbolic for the sake of brevity.
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4.4.1 Uniformizing hyperbolic parameters

For a hyperbolic map σa the free critical value has a bounded orbit, and thus the Julia set

is connected. The periodic Fatou component is then topologically equivalent to D. The

Riemann mapping theorem produces a map φ : D → U , and the first return map σpa|U is a

proper (anti-)holomorphic map, and hence φ−1 ◦ fp ◦ φ : D → D is a Blaschke product.

The holomorphic and anti-holomorphic unicritical Blaschke products as

B+
a,λ,d(z) = λ

(
z − a

āz − 1

)d
and B−

a,λ,d(z) = λ

(
z − a

āz − 1

)d
,

where |λ| = 1 and a ∈ D. Such maps, if normalized to fix 1, are unique up to d− 1 choices in

the holomorphic case, and d+ 1 maps in the anti-holomorphic setting. This argument, as

seen in [NS03][Lemma 3.2] gives rise to the following proposition.

Proposition 4.4.3. Let σa ∈ S be hyperbolic, let U be a periodic Fatou component, and

suppose that the critical point of σa contained in the periodic Fatou cycle has degree d. Then

there are a ∈ D, λ ∈ S1 such that the first return map σpa|U is conformally conjugate either to

B+
a,λ,d if p is even or B−

a,λ,d if p is odd.

Normalizing in such a way that 1 is a fixed point of the conjugated map, there are d− 1

choices of (a, λ) in the holomorphic case, and d+ 1 choices of (a, λ) in the anti-holomorphic

case.

Remark 4.4.4. As noted in [NS03], not every choice of (a, λ) will give rise to a fixed point in

the interior of D.

We will show a parameter version of this statement. Let B±
d be the spaces of maps B±

a,λ,d

such that there exists an attracting fixed point in D.

For an anti-holomorphic map f with an attracting fixed point (say at 0), [NS03] showed

that there exists a local conformal coordinate φ : U → D which linearizes f , in the sense that

φ ◦ f = ∂̄f(ζ) · φ.
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For a hyperbolic map σa ∈ S, let wj be the critical point in the periodic Fatou coordinate,

and let ζ be the periodic point that lies in the same Fatou coordinate as wj. The first

return map σpa has the local linearizing coordinate above, which can be extended to a closed

neighborhood U ∋ ζ in such a way that wj ∈ ∂U . The linearizing coordinate is unique if we

choose φ(wj) = 1.

Definition 4.4.2. The critical value map for σa is defined to be σa 7→ φ(σpa(wj)).

Theorem 4.4.5. (see also [NS03] theorems 5.6, 5.9). Every even period hyperbolic component

whose critical point in the periodic Fatou coordinate has degree d is homeomorphic to B+
d ,

and the homeomorphism respects the multiplier of the attracting fixed point. Likewise, every

odd period hyperbolic component whose critical point in the periodic Fatou coordinate has

degree d is homeomorphic to B−
d , and the homeomorphism respects the critical value map.

4.4.2 Boundaries of hyperbolic components

The unicriticality of our hyperbolic components allows many statments about the boundaries

of hyperbolic components in the Multicorn family to carry over to our setting as well. The

following proposition however is specific to our setting.

We say that hyperbolic components of C(ST ) are adjacent if their closures are not disjoint.

Proposition 4.4.6. Let H1 and H2 be two adjacent hyperbolic components. The ass in T .

Proof. Suppose to the contrary that there were two adjacent hyperbolic components whose

periodic Fatou components contained critical points with different addresses in T , and denote

these addresses by w and w′. Argue that when moving parameters from σa to σa′ that v must

pass through a point which eventually lands at the cusp. But such Misiurewicz parameters

cannot be on the boundary of hyperbolic components.

The above proposition allows us to consider bifurcations of hyperbolic parameters analgo-

usly to the standard unicritical case.
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We will say that a parameter is parabolic if σa has a periodic cycle other than root whose

multiplier is a root of unity.

Proposition 4.4.7 (Netural parameters on boundary of hyperbolic components). If σa has a

neutral periodic point of period k, then every neighborhood of a in S contains parameters with

attracting periodic points of period k, so the parameter a is on the boundary of a hyperbolic

component of period k of C(ST ).

Proof. See [MNS17, Theorem 2.1] for a proof in the multicorn family. Since the proof given

there only uses local dynamical properties of anti-holomorphic maps near neutral periodic

points, it applies to the family ST as well.

Another result which carries over from the Multicorn setting ([MNS17, Theorem 1.1]) is

the following.

Proposition 4.4.8. If σa has a 2k-periodic cycle with multiplier e2πp/q with gcd(p, q) = 1,

then the parameter a sits on the boundary of a hyperbolic component of period 2kq (and is

the root thereof) of C(ST ).

Proposition 4.4.9. 1) The boundary of a hyperbolic component of odd period k of C(ST )

which is not the primary hyperbolic component is contained in the interior of ST , and consists

entirely of parameters having a parabolic orbit of exact period k. In suitable local conformal

coordinates, the 2k-th iterate of such a map has the form z 7→ z+zq+1+ · · · with q ∈ {1, 2}. 2)

Every parameter on the boundary of the primary hyperbolic component H is either contained

in Γhoc or has a parabolic fixed point (with local power series as above).

Proof. 1) The boundary of any hyperbolic component H will either intersect Γhoc or be

contained in the interior of C(ST ). By 4.4.2 it follows that for a non-primary hyperbolic

component that its boundary is contained in the interior of C(ST ). Now applying [MNS17,

Lemma 2.5] combined with the fact that the Schwarz reflection maps under consideration

have unique free critical values also show that for every parameter on the boundary of H, the
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k-cycle to which the critical orbit converges must be parabolic with the desired local Taylor

series expansion. 2) The proof is analogous to part 1), accounting for the fact that Γhoc ⊂ H

by 4.4.2.

Definition 4.4.3. Let a be a parameter with a parabolic periodic point of odd period. If for

the above proposition q = 1 we say that it is a simple parabolic parameter. If q = 2, we say

that it is a parabolic cusp.

Proposition 4.4.10. Let ã be a simple parabolic parameter of odd period. Then ã is on

a parabolic arc in the following sense: there exists a real-analytic arc of simple parabolic

parameters a(h) (for h ∈ R) with quasiconformally equivalent but conformally distinct

dynamics of which ã is an interior point, and the Écalle height of the free critical value of

σa(h) is h. This arc is called a parabolic arc.

Proposition 4.4.11. Every parabolic arc of odd period k > 1 intersects the boundary of a

hyperbolic component of period 2k along an arc consisting of the set of parameters where the

parabolic fixed point index is at least 1. In particular, every parabolic arc has, at both ends,

an interval of positive length at which bifurcation from a hyperbolic component of odd period

kto a hyperbolic component of period 2k occurs.

For a critical point of degree d, there are d+ 1 distinct combinatorial ways for parabolic

arcs to occur. This allows us to conclude the following (see [Lee+18b]

Proposition 4.4.12. 1) The boundary of every non-primary hyperbolic component of odd

period k of C(ST ) is a topological polygon with d+ 1 sides having parabolic cusps as vertices

and parabolic arcs as sides. Here d is the degree of the critical point contained in the periodic

Fatou coordinate. 2) The boundary of the primary hyperbolic component consists of d parabolic

arcs, d− 1 parabolic cusps, and Γhoc.
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4.5 Tessellation of the escape locus of ST

Theorem 4.5.1 (Uniformization of The Escape Locus). The map

ΨΨΨ : ST \ C(ST ) → D1,

a 7→ ψa(y2)

is a homeomorphism.

Proof. The proof is analogous to that of [Lee+18b, Theorem 1.3]. We only indicate the key

differences.

Note that for all a ∈ ST , the critical value y2 of σa lies in Ωa; i.e., y2 /∈ T 0(σa). It now

follows from the definition of ψa that ψa(y2) ∈ D1 for each a ∈ ST \ C(ST ).

The map ΨΨΨ is easily seen to be continuous. We will show that ΨΨΨ is proper, and locally

invertible. This will imply that ΨΨΨ is a covering map from ST \C(ST ) onto the simply connected

domain D1, and hence a homeomorphism from each connected component of ST \ C(ST ) onto

D1. However, a0 = vwvwvw is the only possible parameter in ST \ C(ST ) satisfying ΨΨΨ(a0) = ρ1(0).

So, ST \ C(ST ) must be connected; i.e., ΨΨΨ is a homeomorphism.

Local invertibility follows from a quasiconformal deformation/surgery argument as in

[Lee+18b, Theorem 1.3].

We need to consider several cases to show that ΨΨΨ is proper. Let us first assume that

{ak}k is a sequence in ST \ C(ST ) such that ak → Γpb. It follows from the definition of Γpb

that the spherical distance between the co-critical point vwvwvw of fff and the circle ∂∆a tends

to zero as k → ∞. Hence, dsph (y2, ∂Ωak) tends to 0 as k → ∞. Therefore, ΨΨΨ(ak) = ψak(y2)

accumulates on C1 ⊂ ∂D1.

Now suppose that {ak}k ⊂ ST \C(ST ) is a sequence with {ak}k → a ∈ Γdp. It then follows

from Proposition 4.3.7 that the free critical value y2 of σa lands in the bounded component

T 0
b (σa) of the corresponding desingularized droplet T 0(σa) under σ

◦n
a , for some n ≡ n(a) ≥ 1.

Note that for k sufficiently large, σak is a small perturbation of σa. We set

Uk := int (T 0(σak) ∪ σ−1
ak
(T 0(σak))).
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Then, for k large enough, the critical value y2 of σak lands in T 0(σak) under σ◦n′
ak

, where

n′ ∈ {n, n+ 1}. Moreover, the hyperbolic geodesic in Uk connecting σ◦n′
ak

(y2) and ∞ passes

through an extremely narrow channel formed by the splitting of the double point on ∂T 0(σa)

such that the thickness of this channel decreases as k → ∞, and gets pinched in the limit.

Since the Euclidean distance between this part of the geodesic and the boundary of Uk tends

to zero as k → ∞, the hyperbolic distance between σ◦n′
ak

(y2) and ∞ (in Uk) tends to ∞ as

k → ∞. Furthermore, as ψak is a conformal isomorphism from Uk onto Q1 ∪ R−1
d (Q1), we

have that the hyperbolic distance between ψak(σ
◦n′
ak

(y2)) and 0 (in Q1 ∪R−1
d (Q1)) tends to ∞

as k increases. Consequently, {ψak(σ◦n′
ak

(y2))}k escapes to the boundary of Q1 ∪R−1
d (Q1) as

k → ∞. But the sequence {ψak(σ◦n′
ak

(y2))}k is contained in Q1, and hence, {ψak(σ◦n′
ak

(y2))}k

must converge to 1 ∈ ∂Q1. In fact, the dynamical properties of σak and the geometry of

T 0(σak) now imply that for k sufficiently large, each ψak(σ
◦j
ak
(y2)) (0 ≤ j ≤ n′) is close to

1 ∈ ∂D1, and hence ΨΨΨ(ak) = ψak(y2) converges to 1 ∈ ∂D1 as k → ∞.

Finally let {ak}k ⊂ ST \ C(ST ) be a sequence accumulating on C(ST ). Suppose that

{ΨΨΨ(ak)}k converges to some u ∈ D1. Then, {ψak(y2)}k is contained in a compact subset X

of D1. After passing to a subsequence, we can assume that X is contained in a single tile

of D1. But this implies that each ak has a common depth n0 (see Definition 4.1.6), and

ψak(σ
◦n0
ak

(y2)) is contained in the compact set R◦n0
d (X ) ⊂ Q1 for each k. Note that the map

σa′ , the fundamental tile T 0(σa′) as well as (the continuous extension of) the conformal

isomorphism ψ−1
a′ : Q1 → T 0(σa′) change continuously with the parameter as a′ runs over ST .

Therefore, for every accumulation point a of {ak}k, the point σ◦n0
a (y2) belongs to the compact

set ψ−1
a (R◦n0

d (X )). In particular, the critical value y2 of σa lies in the tiling set T∞(σa). This

contradicts the assumption that {ak}k accumulates on C(ST ), and proves that {ΨΨΨ(ak)}k must

accumulate on the boundary of D1.

Definition 4.5.1 (Parameter Rays of ST ). The pre-image of a Gd-ray at angle θ ∈ [0, 1
d+1

)

in D1 under the map ΨΨΨ is called a θ-parameter ray of ST .

Proposition 4.5.2. Parameters rays at pre-periodic angles land at critically pre-periodic
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parameters. Furthermore, the corresponding dynamical rays land at the free critical value for

this landing parameter. (cf. [Lee+21] lemma 8.14)

Proof. Let Rθ be a (strictly) pre-periodic parameter ray, let a0 be an accumulation point of

this parameter ray, and let Rθ
a be the dynamical ray of the corresponding angle for a Schwarz

reflection σa. Also recall, that by definition, there exist a close to a0 for which Rθ
a contains

the free critical value of σa′ .

Note that Rθ
a0

is strictly pre-periodic and thus lands at a pre-periodic point, which we

denote by z0. The point z0 has a forward orbit which is either a repelling or a parabolic

periodic point.

First, we rule out the possibility that z0 eventually hits a parabolic periodic point, with

the possible exception of the Schwarz reflection cusp. To see this, suppose the opposite for

the sake of contradiction. Note that z0 is not contained in the closure of the free critical

orbit, and so we may find two repelling periodic points near to z0 and an arc contained in the

filled Julia set K(σa) which connects these two points and separates z0 from the free critical

value. Such curves persist under peturbations, contradicting the fact that Rθ
a′ lands at the

free critical value for nearby parameters a′.

This means that the orbit of z0 is eventually a repelling periodic point. If z0 is neither

pre-critical nor equal to the free critical value, then the ray Rθ
a will still land at a periodic

point for all a near enough to a0, giving rise to a contradiction.

This means that z0 is pre-critical, and hence σa0 is critically pre-periodic and hence locally

connected. Then the same cut-line argument as above implies that if z0 is not equal to the

free critical value that we may separate the two for all nearby parameters, giving rise to a

contradiction. Hence z0 is the free critical value.

Lastly we show that a0 is the unique accumulation point of Rθ. Any accumulation point

must be critically pre-periodic parameter with preperiod defined by θ. Specifically, there

exist n, p which are minimal such that σna0(v) = σn+pa0
(v). At most finitely many parameters

satisfy this property for the given n and p, since there are at most finitely many Hubbard
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trees which do. As the accumulation set of a ray must be connected, and in particular the

accumulation set is either a single point or infinitely many, it follows that a0 is the only

accumulation point.

4.6 Puzzles, renormalizability, and combinatorial

rigidity

The purpose of this section is to show twofold: We show that the connectedness locus CT

contains many combinatorial copies of multibrots and multicorns, which correspond to the

the connectedness loci of families of (anti-)polynomial-like mappings. We also show that the

parameters which do not lie inside of these little multibrot and multicorns are combinatorially

rigid.

We say that a parameter σa ∈ ST is (pinched-)renormalizable if there is some domain V

containing the critical value and some component U of σ−p
a (V ) with v ∈ U ⊂ V , such that

σp : U → V is a unicritical (pinched) polynomial-like map of degree d ≥ 2, with connected

non-escaping set.

Theorem 4.6.1. Suppose that a map σa ∈ C(ST ) is non-renormalizable. Then it has locally

connected Julia set.

Theorem 4.6.2. A non-renormalizable map is combinatorially rigid.

4.6.0.1 Period 1 renormalizations

Before describing the puzzle structure associated with our Schwarz reflection maps, let us

first mention a case with particularly simple renormalization combinatorics.

For a fixed map σa ∈ C(ST ), denote by Ω1,Ω2, · · · ,Ωk the preimages of Ω under σa. As

a convention we will always choose Ω1 to be the component which contains the root on its

boundary.
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Figure 4.7: The depth 0, 1, and 2 puzzle pieces of a Schwarz reflection for a given combinatorics

Now suppose that σa is such that the critical orbit σn(v) lies within a single component

Ωj, which contains a critical point. If j ̸= 1 then σa|Ωj
: Ωj → Ω is an anti-polynomial

like map, with connected non-escaping set. For the case j = 1 there are two possible

cases. Either a ∈ Γhoc, or there is a restriction of σa to a subset of Ω1 which is a simple

pinched-anti-polynomial-like mapping.

We will refer to the special case in which we have a period 1 renormalization and such

that σna (v) ∈ Ω as the map σa being pinched renormalizable.

Theorem 4.6.3. For a renormalizable parameter a which is not pinched renormalizable there

is a compact set Ma ⊂ C(ST ) which contains a and is homeomorphic to the closure of the

hyperbolic components of a multibrot set or a multicorn set.

Theorem 4.6.4. The pinched renormalizable parameters form a set combinatorially equivalent

to a parabolic multicorn.

4.6.1 Puzzle pieces

Here we describe a “puzzle piece” structure associated to Schwarz reflections in our family.
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Denote by Ω(a) the quadrature domain associated with σa ∈ ST , and let Ωj(a) denote

the preimages of Ω under σ. We denote the preimage with boundary intersecting the cusp as

Ω1. We let cj ∈ Ωj denote the unique preimage of v, the free critical value.

Throughout this section we will assume that the free critical orbit, orb(v) never lands on

the cusp of Ω. In such cases the associated map will be postcritically finite, and the results

of this section can be obtained from standard arguments.

Definition 4.6.1. For a map σ ∈ C(ST ), the puzzle pieces of depth k ≥ 0 are the components

of σ−k(Ω).

These are a collection of disjoint topological such that the boundaries of any two intersect

in at most one point. For a Jordan disk V , let DomRV = {z ∈ V | σk(z) ∈ V for some k > 0}.

We define RV : DomRV → V to be the first return map under σ. Note that for a puzzle piece

V , components of DomRV are themselves puzzle pieces.

The situation we have above does not immediately fall into the above setting, as puzzle

pieces all contain non-compactly contained deeper puzzle pieces. We deal with this as follows:

First, suppose that there is some k ≥ 1 such that σk(cj) ∈ Ωi ̸= Ω1; otherwise we are in a

renormalizable situation by considering the map restriction σ : Ω1 → Ω. We will deal with

this situation later.

Proposition 4.6.5. If σ is combinatorially recurrent there is a domain V which is the union

of puzzle pieces such that the first return map to V is a dynamically natural complex box

mapping, containing the postcritical set of σ.

Proof. Let Vj = σ−(k+1)(Ωi)|cj be the depth k + 2 critical puzzle pieces. As Ωi ⊂ Ω is a

compact containment, it follows that the puzzle pieces Vj are all compactly contained in

puzzle pieces of one lower depth. Let D be any component of DomRVj , and let D ⊂ D′ ⊂ Vj ,

where D′ is the puzzle piece containing D of one lower depth. If RVj |D ≡ σt, then as

σt(D) = Vj ⊂ σt(D′), it follows that D is compactly contained in D′, and hence in all puzzle

pieces of less depth. In particular, D ⊂ Vj is a compact containment.
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4.6.2 Combinatorics of Puzzles

For a puzzle piece V k
j of depth k, let ckj ∈ V k

j be the point so that σk(ckj ) = v. Let b = b0

denote the conformal cusp of Ω, and denote by bkj the elements of σ−k(b).

Using arcs contained in V k
j , connect each c

k
j to any points in σ−k(b) ∩ ∂V k

j . This clearly

gives rise to a bi-colored planar embedded graph. We will let T k denote the abstract graph

isomorphic to this one (retaining the planar embedding data), and refer to it as the depth k

dessin. Note that the depth 1 dessin is T , the original dessin generating our family.

Alternatively, we may say that T k is the graph isotopic to
⋃
V k
j where the isotopy is

taken rel σ−k(b).

We have two maps from T k → T k−1. One is a branched covering map induced by σ; we

map ckj → ck−1
ℓ if σ(V k

j ) = V k−1
ℓ and map bkj to σ(bkj ).

The other map is the forgetful one, induced by the inclusion of puzzle into ones of less

depth.

Proposition 4.6.6. The graphs T k are trees.

Proof. We will prove this inductively. It is clearly true for T 1, which is the generating dessin

for the family. Now suppose that T k−1 is a tree. If there is a cycle in T k, then it must

lie inside of a single puzzle piece of depth k − 1, which we will denote by P . The interior

component of this cycle gives rise to a topological disk D ⊂ P \
⋃
V k
j , where the union is

taken over all depth k puzzle pieces contained in P . The boundary of D is given by a cycle of

depth k puzzle pieces, and so the boundary of σ(D) is given by a cycle of depth k − 1 puzzle

pieces, a contradiction.

Definition 4.6.2. We define the depth k kneading sequence {ϑkn} to be the address of the

critical orbit σn(v) in the depth k puzzles.
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Proposition 4.6.7. The depth k dessin and the depth k kneading sequence uniquely determine

the depth k + 1 dessin. That is, if ϑkj (a) = ϑkj (a
′), then T k+1(a) = T k+1(a′).

A puzzle piece is called critical if it contains a critical point cj. Suppose that there is

some critical puzzle piece V ∋ c, and a component U of the first return map RV to V which

also contains c. If σp : U → V is the first return map (necessarily a unicritical branched

cover), and σnp(c) ∈ U for all n, then we say that our map is renormalizable with period p.

Note that for all depths k, the kneading sequence ϑkj is periodic with period p for a

renormalizable map.

4.6.3 Renormalization combinatorics have associated Multibrots

or Multicorns

We will use this section to prove

Proposition 4.6.8. For a given renormalization combinatorics of period p, there exists a

unique critically periodic parameter with the same combinatorics.

Proof. We will use the depth k dessins to produce a Hubbard tree for this map. More

specifically, let V be a depth k critical puzzle piece, let U ∋ cj be the component of the first

return map containing cj, and suppose that RV |U ≡ σp with σnp(cj) ∈ U for all n ≥ 1.

As described in the previous subsection there are maps σ : T k+ℓ → T k+ℓ−1 and ι : T k →

T k+p. Then ι ◦ σk : T k+p → T k+p, which can then be realized as the Hubbard tree of an

anti-holomorphic polynomial.

4.6.3.1 Non-pinched renormalizations

Let Uj(a) be the component of σ−1
a (Ω) containing the critical point wj(a) of degree dj ≥ 2.

For the remainder of this sub-subsection we assume that wj is not adjacent to the cusp (i.e.

j ̸= 1), so that Uj(a) is compactly contained in Ω, and σa|Uj(a) : Uj(a) → Ω is a family of

anti-holomorphic, unicritical, polynomial-like maps of degree dj. The little filled Julia set
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of this polynomial-like map is defined to be the set of points which do not escape from Uj,

and will be denoted by Kj(a). Define the set Cj ⊂ C(ST ) as the set of parameters for which

Kj(a) is connected.

Following [IM16, Section 5], there exists quasiconformal map ρa : Uj(a) → C which is a

hybrid conjugacy between the polynomial-like map σa|Uj(a) and a unicritical anti-holomorphic

polynomial z 7→ zdj + c. The parameter c here is not unique; it is only determined up to a

dj + 1 order symmetry. To fix the polynomial to which we straighten, we will canonically

mark the fixed points of the polynomial-like map.

Proposition 4.6.9. Let σa ∈ Cj. Then there exists a unique point β(a) ∈ Uj(a) ∩ K(σa)

which disconnects wj from the parabolic root b

Proof sketch. Let aj be such that wj(aj) = v (a parameter which can be argued to exist by

[Poi13]) the dessin T naturally embeds into K(σaj ), using internal angles for arcs intersecting

Fatou coordinates. The interval between wj and the adjacent black vertex closer to the cusp

is mapped onto a strictly larger interval, and therefore contains a fixed point. Furthermore,

since there are no critical points in the interior of this interval it is mapped univalently and

thus the fixed point is unique. Any other fixed points in Uj(aj) will therefore not disconnect

wj from b. Call this fixed point β(aj). As it disconnects the filled Julia set K(σaj) it will

have multiple dynamical rays land at it. These rays persist throughout Cj.

Remark 4.6.10. The rays which land at β(a) will be a period 2 cycle. The corresponding

parameter rays land at the root of the little multicorn.

In light of the above proposition, fix the hybrid conjugacy so that ρa(β(a)) is sent to the

landing point of the 0 ray. We define a straightening map χj : Cj → M∗
dj
, by applying a

dynamical straightening to each parameter in Cj.

The main result of this subsection is the following:

Theorem 4.6.11. Let Cj be as above.
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1. The straightening map χj is injective.

2. The image of the straightneing map χj(Cj) contains the closure of hyperbolic parameters

in M∗
dj
.

We will refer to sets Cj as period 1 little combinatorial multicorns. The above theorem

justifies this name.

We first prove a number of preperatory propositions.

Proposition 4.6.12. Let σa ∈ C(ST ). Almost every point z ∈ Ja converges to ω(v(a)).

Proof. By the main result of [LMM23] every such Schwarz reflection is quasiconformally

conjugate to a (anti-holomorphic) rational map. For rational maps the postcritical set forms

a measure-theoretic attractor for the Julia set, and as quasiconformal maps preserve the

Lebesgue measure class this property is preserved for σa. Thus, almost every point in Ja

converges to either ω(v(a)) or the cusp b. If a /∈ Γhoc then Ja is contained in a repelling

petal of b. Therefore the only points which converge to b are its preimages, which form a

countable, and thus measure-zero, set.

On the other hand if a ∈ Γhoc then ω(v) = {b} and we are done.

Remark 4.6.13. Alternatively, if a ∈ Γhoc then one can show that the Julia set Ja has zero

Lebesgue measure.

Definition 4.6.3. For a postcritically finite (possibly anti-holomorphic) unicritical polynomial

p, there exists a unique, up to homotopy forward invariant tree contained in the filled Julia

set of p which contains the critical point and its forward orbit, as well as the landing point of

the 0 ray and all its preimages. Define the augmented Hubbard tree of p to be the associated

combinatorial tree and the induced action on it.

Proposition 4.6.14. The image of the straightening map χj(Cj) contains all postcritically

finite parameters of M∗
dj
.
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Proof. Let f ∈ M∗
dj

be a postcritically finite map. We consider an augmented Hubbard

tree for it, denoted by Tf , which contains the landing point for the dynamical ray at angle

0, which we denote β, as well as all preimages of β. We produce a tuned tree as follows:

Delete from T the point wj, giving dj components which are circularly ordered. Attach the

component of T \ wj which contains the root of T to Tf at β, and attach the remaining

components of T \ {wj} to the preimages of β, maintaining the circular ordering. Denote

this tuned tree as T̂f . The embedding Tf ↪→ T̂f induces dynamics on a forward-invariant part

of the new tree. We induce dynamics on the rest of it by mapping all black points from T to

the root, and mapping all remaining white points of T to the critical value contained in the

embedding of Tf .

By [Poi13, Theorem 5.1], to find a postcritically finite, anti-holomorphic polynomial,

pf : C → C which realizes this Hubbard tree T̂f , it suffices to check that Note that pf has two

finite critical values, one of which is fixed. Furthermore for an interval I containing the two

critical values, p−1
f (I) is isomorphic as a planar embedded tree to T . By [LMM23, Theorem

C], pf is hybrid equivalent to a Schwarz reflection, and by the critical orbit relation just

described, it is in fact hybrid equivalent to some σa(f) ∈ C(ST ).

Lastly, it remains to be shown that χj(σa(f)) = f . Note first that σa(f) has Hubbard

tree T̂f . Need to argue that the embedded image of Tf is contained in Uj, and is the only

forward-invariant part of the tree for which that is true. Then after straightening and by

uniqueness we are done.

Proposition 4.6.15. The image of the straightening map χ(Cj) is closed under quasiconformal

conjugations.

Proof. Lift line fields on filled Julia set under straightening map to filled Julia set of σa.

Then we use measurable Riemann mapping theorem to find another σa′ which straightens to

desired map.

Proof of Theorem 4.6.11. Injectivity: We make use of the “pullback argument” first devel-
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oped by W. Thurston [Lyu]. Suppose that χ(σa) = χ(σã). By composing the dynamical

straightening maps we obtain a quasiconformal map ρ−1
ã ◦ ρa : Uj → Ũj such that ∂̄ψ0 ≡ 0

almost everywhere on Kj(a), which conjugates the polynomial-like restrictions. We obtain

neighborhoods V, Ṽ which are mapped to eachother by ρ−1
ã ◦ ρa. Now define φ0 : Ω(a) → Ω(ã)

to be such that

φ0(z) =


ρ−1
ã (z) for z ∈ V

ψ−1
ã ◦ ψa(z) for z ∈ Ω(a) \ Uj(a)

.

This map is quasiconformal, conjugates σa to σã on a neighborhood of Kj(a), and satisfies

∂̄φ0 ≡ 0 on Kj(a).

We now proceed to lift this conjugacy to preimages of Uj. For any i, lift φ0 to the map

φ1,i : σ
−1
a (V ) ∩ Ui → σ−1

ã (Ũj) ∩ Ũi, so that ψ0 ◦ σa = σã ◦ ψ1,i. There will be deg(wi) choices

for this lift, which in general will be greater than 1. However, there will only be one preimage

of β(a) (corresponding β(ã) in Ui (Ũi) which disconnects the preimage of v from b. The

lift φ1,i is chosen to map the corresponding marked preimages, and is therefore uniquely

determined. Define φ1 : Ω(a) → Ω(ã) to be φ1,i on σ
−1(Uj) ∩ Ui, and the uniformizing map

ψ−1
ã ◦ψa on Ω \ σ−1

a (Uj). Note that ψ1 has the same maximum dilatation as ψ0. Furthermore,

∂ψ1 ≡ 0 almost everywhere on σ−1
a (Kj(a)).

We now inductively repeat this process to obtain a sequence of uniformly quasiconformal

maps φn : Ω(a) → Ω(ã) which conjugate σa|σ−n
a (V ) to σã|σ−n

ã
(Ṽ ), and with ∂̄φn ≡ 0 almost

everywhere on pullbacks of the little filled Julia set. The φn converge to some global

quasiconformal conjugacy φ : Ω(a) → Ω(ã), which is conformal almost everywhere on the

pullbacks of Kj(a). Note that Kj contains every periodic Fatou component, as well as ω(v).

By proposition 4.6.12 almost every point in K(σa) lies in a preimage of Kj. In particular, φ

is conformal almost everywhere on K(σa).

It was shown in [LMM23] that the hybrid class of any parameter in C(ST ) is a single

point, and therefore a = ã.
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Almost surjectivity: It is easy to extend proposition 4.6.14 to show that the image of

χj contains all hyperbolic parameters by using the uniformization of hyperbolic parameters

from section 4.4. Now suppose that pcn ∈ M∗
dj

are hyperbolic parameters in the associated

multicorn set with cn → c , and let an ∈ Cj be the preimages under χj. After passing to a

subsequence, we assume that an → a ∈ Cj. Denote the associated dynamical straightening

maps as ρn, extending them as necessary so that they all share a common domain, and

let ρ be the straightening map for σa. Note that the domains Uj(a) and Ω(a) all vary

continuously, and so the modulus of the annulus Ω(a) \ Uj(a) is bounded below. This tells

us that the associated straightening maps ρn can be chosen to have uniformly bounded

dilatation, so in particular, after passing to a subsequnce, there is a limit ρn → ρ̃. It follows

that pc = ρ̃ ◦ σa ◦ ρ̃−1 = ρ̃ ◦ ρ−1 ◦ χj(a) ◦ ρ ◦ ρ̃−1. But now as the image of the straightening is

quasiconformally closed, it follows that pc ∈ χj(Cj).

4.6.3.2 Pinched period 1 renormalizations

We now consider the case in which j = 1, i.e. the case in which the critical point adjacent

to the cusp has a period 1 renormalization. It is no longer true that U1 ⊂ Ω is compactly

contained, and so the classical straightening theorem will not work.

Instead, Theroem 3.3.5 allows us to straighten such maps to parabolic anti-rational maps,

which are a unicritical. The same proof as above works with minor modifications.

4.7 Model of the connectedness locus C(ST )

4.7.1 Laminations and the pinched-disk model

We begin this section with some definitions.

Definition 4.7.1 (Pre-periodic Laminations and Combinatorial Classes). 1. For a ∈ C(ST )

the pre-periodic lamination of σa is defined as the equivalence relation on Per(ρ) ⊂ ∂Q =
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[0, 1
d+1

]/{0 ∼ 1
d+1

} such that θ, θ′ ∈ Per(ρ) are related if and only if the corresponding

dynamical rays land at the same point of ∂Ka.

2. Two parameters a and a′ in C(ST ) are said to be combinatorially equivalent if they have

the same pre-periodic lamination.

3. The combinatorial class Comb(a) of a ∈ C(ST ) is defined as the set of all paraemters in

C(ST ) which are combinatorially equivalent to a.

4. A combinatorial class Comb(a) is called periodically repelling if for every a′ ∈ Comb(a),

each periodic orbit of σa is repelling.

Proposition 4.7.1. Two parameters a and a′ in C(ST ) are combinatorially equivalent if and

only if χ(a), χ(a′) ∈ FT are as well.

Proof. This follows from the hybrid equivalence of the straightening.

Proposition 4.7.2. Every combinatorial class Comb(a) of C(ST ) is one of the following

types.

• Comb(a) consists of an even period hyperbolic component that does not bifurcate from an

odd period hyperbolic component, its root point, and the irrationally neutral parameters

on its boundary.

• Comb(a) consists of an even period hyperbolic component that bifurcates from an odd

period hyperbolic component, the unique parabolic cusp and the irrationally neutral

parameters on its boundary.

• Comb(a) consists of an odd period hyperbolic component and the parabolic arcs on its

boundary.

• Comb(a) is periodically repelling.

We define an equivalence relation ∼ on S2 as follows:
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• identify all points in the closure of each periodically repelling combinatorial class of

C(ST ),

• identify all points in the closure of the non-bifurcating sub-arc of each parabolic arc of

C(ST ), and

• identify all points in Γhoc.

All equivalence classes are connected and non-separating, and therefore by Moore’s

theorem the image of S2 under this relation is again S2.

Definition 4.7.2. The abstract connectedness locus of S is defined as the image of C(ST )

under the above equivalence relation, and will be denoted as C̃T .

Proposition 4.7.3. There is an embedding of T \ {root} into C̃T , which maps the white

vertices of T which are of valence at least two to the combinatorial classes associated with the

centers of period one hyperbolic components, and maps the remaining white vertices and the

black vertices to the combinatorial classes associated with Misiurewicz points.

Proof. This tree will exactly be the image of those parameters σa for which the free critical

value va lies on the spine of K(σa). The combinatorial classes of these parameters are given

by the rays which land on the spine.
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