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Abstract of the Dissertation

Stability for the Positive Mass Theorem and the Penrose inequality

by

Conghan Dong

Doctor of Philosophy

in

Mathematics

Stony Brook University

2024

Let (M3, g) be a complete, smooth, asymptotically flat 3-manifold which has nonnegative

scalar curvature, ADM mass m(g), and an outermost minimal boundary with area A. The

Riemannian Penrose inequality states that m(g) ≥
√

A
16π

, and the equality holds if and only

if (M3, g) is isometric to the Schwarzschild 3-manifold of mass m(g). In particular, this

implies the Positive Mass Theorem, which states that m(g) ≥ 0, and m(g) = 0 if and only if

(M3, g) is isometric to the Euclidean 3-space (R3, gEucl). In this thesis, we study the stability

problems of these two geometric inequalities. We show that when m(g) is almost zero, (M3, g)

is close to the Euclidean 3-space in the pointed measured Gromov-Hausdorff topology modulo

negligible spikes; when m(g) is almost equal to
√

A
16π

, (M3, g) is close to the Schwarzschild

3-manifold in the pointed measured Gromov-Hausdorff topology modulo negligible spikes

and boundary area perturbations.
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Chapter 1

Introduction

A smooth orientable connected complete Riemannian 3-manifold (M3, g) is called asymptoti-

cally flat if there exists a compact subset K ⊂M such that M \K = ⊔N
k=1M

k
end consists of

finite pairwise disjoint ends, and for each 1 ≤ k ≤ N , there exist constants C > 0, σ > 1
2
, and

a C∞-diffeomorphism Φk :M
k
end → R3 \B(1) such that under this identification,

|∂l(gij − δij)(x)| ≤ C|x|−σ−|l|,

for all multi-indices |l| = 0, 1, 2 and any x ∈ R3 \ B(1), where B(1) is a unit ball in R3.

Furthermore, we always assume the scalar curvature Rg is integrable over (M3, g).

In General Relativity, following Arnowitt-Deser-Misner [ADM61], the ADM mass of each

end Mk
end, 1 ≤ k ≤ N , is then defined by

mk(g) := lim
r→∞

1

16π

∫
Sr

∑
i

(gij,i − gii,j)ν
jdA

where ν is the unit outer normal to the coordinate sphere Sr of radius |x| = r in the given

end, and dA is its area element. It has been shown in [Bar86] that mk(g) is a geometric

invariant of the given end and is independent on the choice of coordinates. We can also define

the mass of (M3, g) as the maximum mass of its ends.

The Riemannian case of the Positive Mass Theorem, firstly proved by Schoen-Yau [SY79],
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states that an asymptotically flat 3-manifold of non-negative scalar curvature has

m(g) ≥ 0.

Furthermore, the mass is zero if and only if the manifold is isometric to the Euclidean 3-space

R3. This theorem has since been proven by numerous new methods: these include [Wit81]

using harmonic spinors; [HI01] using the inverse mean curvature flow; [Li18] using Ricci

flow with surgery; [Bra+22] using harmonic functions; [AMO21] using Green’s function; and

others. There are also generalizations in higher dimensions including [Wit81; SY17; LUY21],

and spacetime variations including [SY81; Wit81; Bar86; Eic13; Eic+15] etc.

Motivated by physics, one is also interested in the case when an asymptotically flat

manifold has minimal boundary. Given an asymptotically flat 3-manifold (M3, g) with one

end and possibly non-empty boundary ∂M , we say that ∂M is outermost minimal if it

is compact and consists of minimal surfaces, and M contains no other compact minimal

surfaces. In 1973, Penrose [Pen73] conjectured that for an asymptotically flat 3-manifold

with outermost minimal boundary and nonnegative scalar curvature,

m(g) ≥
√

Area(∂M)

16π
.

Furthermore, the equality holds if and only if (M, g) is isometric to the Schwarzschild

3-manifold.

The Schwarzschild 3-manifold M3
sc of positive mass m > 0 is the manifold R3 \ B(m

2
),

where B(m
2
) is the Euclidean ball with radius m

2
around 0, equipped with the metric gsc =(

1 + m
2|x|

)4
δ. Notice that Msc is an asymptotically flat manifold with mass m, and ∂Msc is

an outermost minimal boundary with Area(∂Msc) = 16πm2.

Huisken-Ilmanen [HI01] firstly proved Penrose’s inequality by using the inverse mean

curvature flow when the boundary is assumed to be connected, and later Bray [Bra01] proved

the general case by using a different flow of conformal metrics together with the result of the

positive mass theorem. There are also many additional extensions including [BL09; KWY17;

Ago+22] and others.
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Recently there has been growing interest in establishing stability results for geometric

inequalities. The stability problem related to the Positive Mass Theorem and the Penrose

inequality to then ask is whether the almost equality in these theorems would imply that the

manifold is close to the model case when the equality holds in some topology. Physically,

this problem helps us understand the interplay between the mass and the space geometry

more deeply. Mathematically, this problem falls within the larger effort to understand the

geometry for metrics with lower scalar curvature bounds [Gro19].

When studying such stability problems, a main difficulty we need to deal with is deter-

mining the appropriate topology. To measure how close two Riemannian manifolds are, the

preferred topology is the Ck,α topology for some k ∈ N and α ∈ (0, 1). Recall that a sequence

of pointed complete Riemannian manifolds is said to converge in the pointed Ck,α topology,

(Mi, gi, pi) → (M, g, p), if for envery D > 0 we can find a domain Ω ⊂M with B(p,D) ⊂ Ω

and embeddings Φi : Ω →Mi for all large enough i such that Φi(p) = pi, B(pi, D) ⊂ Φi(Ω),

and Φ∗
i gi → g on Ω in the Ck,α topology. Usually, one can hope to establish control in

the Ck,α topology when strong geometric conditions are imposed. Some notable results

include: Cheeger [Che67] proved that the class of Riemannian manifolds with uniformly

bounded sectional curvature and uniformly positive volume lower bound is precompact in the

pointed C1,α topology; Anderson [And90] proved that the class of Riemannian manifolds with

uniformly bounded Ricci curvature and uniformly positive injectivity radius is precompact in

the pointed C1,α topology; Anderson-Cheeger [AC92] proved that the class of Riemannian

manifolds with uniformly Ricci curvature lower bound and uniformly positive injectivity

radius is precompact in the pointed Cα topology.

In general, one cannot expect to achieve Ck,α precompactness. We need to extend the

class of Riemannian manifolds to a class of ‘weak’ Riemannian manifolds and study ‘weak’

convergence in a broader set of spaces. To preserve the Riemannian metric structure, a

natural generalization is metric spaces. Recall that a metric space (X, d) consists of a set X

and a metric function d on X ×X satisfying that for any x, y, z ∈ X, d(x, y) = d(y, x) ≥ 0,
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d(x, y) = 0 iff x = y, and the triangle inequality d(x, z) ≤ d(x, y)+d(y, z). For any Riemannian

manifold (M, g), the canonical metric structure is given by d(x, y) := inf{Lengthg(γ) =∫
γ
|γ′|g : γ is a piecewise smooth curve between x and y}. So we can consider the class of

Riemannian manifolds as a subset of the class of metric spaces, and study the topology for

the class of metric spaces.

At the beginning of the 20th century, Hausdorff introduced the so-called Hausdorff distance

between subsets of a metric space. Given a metric space (X, d), for any two subsets A,B,

the Hausdorff distance is defined by

dH(A,B) := inf{ε : A ⊂ Bε(B), B ⊂ Bε(A)},

where Bε(A) := {x ∈ X : d(x, y) < ε for some y ∈ A} is the ε neighborhood of A. Around

1980, Gromov extended Hausdorff’s definition to introduce a so-called Gromov-Hausdorff

(GH) distance in the class of metric spaces, not limited to subsets of a fixed metric space.

Given two abstract pointed metric spaces (X, dX , x) and (Y, dY , y), we say d is an admissible

metric on the disjoint union X ⊔Y if d|X = dX and d|Y = dY . Then the pointed GH distance

is defined as

dGH((X, dX , x), (Y, dY , y)) := inf{dH(X, Y ) + d(x, y) : admissible metric d on X ⊔ Y }.

Notice that for compact metric spaces, dGH(X, Y ) = 0 iff X and Y are isometric. And the

collection of all isometric classes of compact metric spaces is complete. A very important

property for GH distance is the Gromov’s precompactness theorem. Let M(D) be the

collection of isometric classes of metric spaces whose diameters are bounded by D <∞. For

any X ∈ M(D), we can define the capacity and covering functions as CapX(ε) = maximum

number of disjoint ε-balls in X, CovX(ε) = minimum number of ε-balls it takes to cover X.

Theorem 1.0.1 (Gromov’s precompactness theorem). For a class C ⊂ (M(D), dGH), C is

precompact iff there is a function N1(ε) : (0, α) → (0,∞) such that CapX(ε) ≤ N1(ε) for

all X ∈ C iff there is a function N2(ε) : (0, α) → (0,∞) such that CovX(ε) ≤ N2(ε) for all

X ∈ C.
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The Gromov-Hausdorff distance proves highly useful when sectional curvature or Ricci

curvature has a uniform lower bound. This is due to a significant corollary of Gromov’s

precompactness theorem and the Bishop-Gromov comparison theorem, which states that the

collection of pointed complete Riemannian n-manifolds with a uniform Ricci lower bound is

precompact in the pointed GH topology. Based on this fundamental fact, the geometry of

metrics with sectional curvature or Ricci curvature bounded from below has been extensively

studied in the past several years. The study of metrics with sectional curvature bounded

from below is now well-known as Alexandrov geometry. Refer to [BGP92; Per91] and others

for the explosion of work on the intrinsic theory of Alexandrov spaces using the GH topology.

The examination of metrics with Ricci curvature bounded from below, along with the analysis

of the limit space in GH convergence, was initially comprehensively explored in the series of

works by Cheeger and Colding [Col96b; Col96a; Col97; CC96; CC97; CC00a; CC00b]. Since

then, the study of a synthetic approach to Ricci curvature has been very active, including

the so-called RCD space. In the case of Ricci lower bound and non-collapsing, many analytic

tools have also been developed for GH convergence; refer to [Gig18] and others for reference.

In cases where the scalar curvature has a uniform lower bound, as in the stability problems

we mentioned previously, one also hopes to achieve GH convergence and develop similar

analytic tools. Unfortunately, there are many examples showing that GH topology is not

suitable in these cases. As shown in [HI01; LS14], one can construct metrics with a uniform

lower bound on the scalar curvature; however, these metrics are not precompact in the GH

topology. Even if the GH limit exists, the resulting metrics may appear quite peculiar when

compared to our intuitive expectations. As mentioned in [HI01], the main issue here could

be that adding arbitrarily many long, thin cylindrical spikes does not violate positive scalar

curvature. Moreover, neither the number nor the volume of these spikes can be bounded.

Motivated by these examples, Huisken-Ilmanen formulated the following conjecture regarding

the stability of the Positive Mass Theorem:

Conjecture 1.0.2 ([HI01]). Suppose Mi is a sequence of asymptotically flat 3-manifolds with
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ADM mass tending to zero. Then there is a set Zi ⊂ Mi such that |∂Zi| → 0 and Mi \ Zi

converges to R3 in the Gromov-Hausdorff topology.

Later, researchers have explored various newer topologies for metrics with a scalar curvature

lower bound explored by researchers, notably the intrinsic flat topology in [SW11] (refer to

[Sor16; Sor23] for a survey on those questions) and the dp convergence developed in [LNN20].

We will now introduce another new topology, a modification of the GH topology, as

proposed in Huisken-Ilmanen’s conjecture. For simplicity, we only consider manifolds, but

one can easily generalize it to general metric measured spaces.

Definition 1.0.1. For a sequence of pointed Riemannian n-manifolds (Mi, gi, pi) and (M, g, p),

we say that (Mi, gi, pi) converges to (M, g, p) in the pointed measured Gromov-Hausdorff

topology modulo negligible spikes, if there exist open subsets Zi ⊂Mi such that Hn−1(∂Zi) →

0, pi ∈Mi \ Zi and

(Mi \ Zi, d̂gi , pi) → (M,dg, p)

in the pointed measured Gromov-Hausdorff topology for the induced length metric.

Recall that for any subset A ⊂ (Mn, g), and any x, y ∈ A, the induced length metric on

A of the metric g is defined as d̂g,A(x, y) := infγ{Lengthg(γ)}, where the infimum is taken

among all rectifiable curves γ ⊂ A connecting x and y.

Given this definition, we can state our first main theorem jointly with Antoine Song,

which proves Huisken-Ilmanen’s conjecture:

Theorem 1.0.3 ([DS23]). The Euclidean 3-space is stable for the Positive Mass Theorem in

the pointed GH topology modulo negligible spikes.

More precisely, let (M3
i , gi) be a sequence of asymptotically flat 3-manifolds with nonnega-

tive scalar curvature and suppose that the ADM mass m(gi) is positive and converges to 0.

Then for all i, for each end in Mi, there is a domain Zi in Mi with smooth boundary such
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that the area of the boundary ∂Zi converges to 0, Mi \ Zi contains the given end, and

(Mi \ Zi, d̂gi , pi) → (R3, dEucl, 0)

in the pointed measured Gromov-Hausdorff topology, where pi ∈Mi \ Zi is any choice of base

point and d̂gi is the length metric on Mi \ Zi induced by gi.

Moreover, the area of ∂Zi is almost bounded quadratically by the mass in the following

sense. For any positive continuous function ξ : (0,∞) → (0,∞) with

lim
x→0+

ξ(x) = 0,

for all large i, we have

Area(∂Zi) ≤
m(gi)

2

ξ(m(gi))
.

Similarly, we can also reformulate the stability problem for the Penrose inequality. Before

giving the appropriate conjecture, let’s review an example constructed by Mantoulidis-Schoen.

In [MS15], for some non-standard metric on 2-sphere (S2, g), they constructed a sequence of

asymptotically flat 3-manifolds (M3
i , gi) with nonnegative scalar curvature such that ∂M3

i

is isometric to (S2, g) and minimal, and ADM mass m(gi) →
√

Areag(S2)

16π
. Also, outside a

neighborhood of ∂Mi, which could be an arbitrarily long neck, gi is isometric to a Schwarzschild

metric with mass m(gi). That is, we need to cut out the long necks in these examples such

that the remaining part has almost the same boundary area and is stable for the Penrose

inequality. Our second main theorem states that up to such boundary area perturbations,

the Schwarzschild 3-manifold is stable.

Theorem 1.0.4 ([Don24]). The Schwarzschild 3-manifold is stable for the Penrose inequality

in the pointed GH topology modulo negligible spikes and boundary area perturbations.

More precisely, let A0 ≥ 0 be a fixed constant and (M3
i , gi) be a sequence of asymptotically

flat 3-manifolds, each of which has nonnegative scalar curvature and a compact connected

outermost minimal boundary with area A0. Suppose that the ADM mass m(gi) converges to

7



√
A0

16π
, then for all i, there is a smooth submanifold Ni ⊂Mi such that Areagi(∂Ni) → A0, a

spike domain Zi ⊂ Ni with smooth boundary such that Areagi(∂Zi) → 0, and for Ňi := Ni\Zi,

(Ňi, d̂gi,Ňi
, pi) → (M3

sc, gsc, xo)

in the pointed measured Gromov-Hausdorff topology, and

(∂∗Ňi, d̂gi,∂∗Ňi
) → (∂M3

sc, d̂gsc,∂M3
sc
)

in the measured Gromov-Hausdorff topology,where (M3
sc, gsc, xo) is the standard Schwarzschild

3-manifold with boundary area Area(∂M3
sc) = A0, mass m(gsc) =

√
A0

16π
and xo ∈ ∂M3

sc,

∂∗Ňi = ∂Ni \ Zi, and d̂gi,· are the length metrics on the corresponding spaces induced by gi

respectively, and pi is any base point on ∂∗Ňi.

Now, let’s provide a brief overview of the proof ideas for these two main theorems. Recently,

Kazaras-Khuri-Lee [KKL21] were able to solve the stability problem for the Positive Mass

Theorem under Ricci curvature lower bounds and a uniform asymptotic flatness assumption.

The author [Don22] also made progress on the original version of the stability problem, without

additional curvature assumptions but still under a uniform asymptotic flatness assumption.

Similarly to [KKL21; Don22], our proof builds on the recent new proof of the Positive Mass

Theorem by Bray-Kazaras-Khuri-Stern [Bra+22]. There, the authors employ level sets of

harmonic maps. This method was initially explored by [Ste22], and there have been many

other applications and generalizations in recent studies, including [Bra+23; AMO21; Ago+22]

and others.

The result of [Bra+22] gives a quantitative mass inequality, which bounds the mass m(g)

of an asymptotically flat manifold (M, g) with nonnegative scalar curvature as follows: let

Mext be an exterior region of (M, g), i.e. Mext is an asymptotically flat manifold with an

outermost minimal boundary, then

m(g) ≥ 1

16π

∫
Mext

(
|∇2u|2

|∇u|
+Rg|∇u|

)
dvolg (1.0.1)

8



where u :Mext → R is any harmonic function “asymptotic to one of the asymptotically flat

coordinate functions on Mext”, see [Bra+22].

Let u := (u1, u2, u3) : Mext → R3, where uj (j = 1, 2, 3) is the harmonic function

asymptotic to the asymptotically flat coordinate function xj on Mext (we fix a coordinate

chart at infinity). Assuming that the mass m(g) is positive and close to 0, we consider as in

[Don22] the subset Ω of Mext where the differential of u is ϵ0-close to the identity map, for

some small positive ϵ0. More concretely define F : (Mext, g) → R by

F (x) :=
3∑

j,k=1

(
g(∇uj,∇uk)− δjk

)2
.

Then set Ω := F−1[0, ϵ0]. On such a set, u is close to being a Riemannian isometry onto its

image in R3.

In the first step, we show that one level set S of F has small area, bounded by m(g)2

times a constant depending on ϵ0. Inequality (1.0.1) bounds the L2 norm of the gradient

of F . The crucial point is then to observe that the classical capacity-volume inequality of

Poincaré-Faber-Szegö generalizes to our setting, and enables us to find a region between two

level sets of F with small volume. Then one can apply the coarea formula to find the small

area level set S.

Consider the connected component A ofMext \S containing the end. An issue is that even

though the area of ∂A is small, the component A is in general not close to Euclidean 3-space

for the induced length structure on A. The second step of the proof consists of modifying

the subset A to another subset A′ containing the end, so that ∂A′ still has small area but

moreover A′ is close to Euclidean 3-space in the pointed Gromov-Hausdorff topology with

respect to its own length metric. This is shown by dividing the full space into small cube-like

regions and by a repeated use of the coarea formula.

Regarding the stability for the Penrose inequality, we will first prove a similar stability

result for the mass-capacity inequality, then up to a boundary area perturbation, Theorem

1.0.4 will be a corollary by an argument in [Bra01, Section 7].

9



Recall that for an asymptotically flat 3-manifold (M3, g) with an outermost minimal

boundary Σ and an end ∞1, the capacity of Σ in (M3, g) is defined by

C(Σ, g) := inf{ 1

2π

∫
M

|∇φ|2dvolg : φ ∈ C∞(M), φ =
1

2
on Σ, lim

x→∞1

φ(x) = 1}.

Then, as a corollary of the Positive Mass theorem, it was shown by [Bra01, Theorem 9] that

m(g) ≥ 2C(Σ, g), and equality holds if and only if (M3, g) is the Schwarzschild manifold. For

more details, please refer to Section 4.1.

Theorem 1.0.5 ([Don24]). Let m0 > 0 be a fixed constant and (M3
i , gi) be a sequence

of asymptotically flat 3-manifolds, each of which has nonnegative scalar curvature and a

compact connected outermost minimal boundary. Suppose that m(gi)− 2C(∂Mi, gi) → 0 and

m(gi) → m0, then the same conclusion of Theorem 1.0.4 holds.

Assume the conditions stated in Theorem 1.0.5, i.e., (M3, g) is an asymptotically flat

3-manifold with nonnegative scalar curvature and a connected outermost minimal boundary

Σ such that m(g) − 2C(Σ, g) ≪ 1. By employing a doubling technique and allowing for a

perturbation as in [Bra01], we can assume that M̄ =M ∪ΣM is a smooth asymptotically flat

3-manifold with nonnegative scalar curvature and two ends ∞1,∞2. Then the infimum in

the definition of capacity is achieved by the Green’s function f defined on M̄ , which satisfies

∆gf = 0,

lim
x→∞1

f(x) = 1,

lim
x→∞2

f(x) = 0.

From symmetry of M̄ , f equals 1
2
on Σ. We now consider the conformal metric h = f 4g on

M̄ . Then ∞2 can be compactified such that M̄∗ := M̄ ∪ {∞2} is a smooth manifold and

(M̄∗, h) is an asymptotically flat 3-manifold with nonnegative scalar curvature. Also it can

be shown that the ADM mass m(h) = m(g)− 2C(Σ, g) as in [Bra01].

Based on our assumptions, m(h) ≪ 1, the case discussed in [DS23]. So modulo negligible

spikes, (M̄∗, h) is close to the Euclidean 3-space R3 in the pointed measured Gromov-Hausdorff

10



topology. For the original metric g = f−4h, we will show that f is uniformly close to the

conformal factor in the Schwarzschild metric in the following two steps.

We first prove a new integral inequality involving scalar curvature and the hessian of f

(c.f. Proposition 4.2.1):

8π(m(g)2 − (2C(Σ, g))2)
m(g)2

≥∫
M

(
|∇2f − (1− f)−1f−1(2f − 1)|∇f |2(g − 3ν ⊗ ν)|2

|∇f |
+Rg|∇f |

)
dvolg,

where ν = ∇f
|∇f | and the integration is taken over regular set of f . This formula is very similar

to the mass inequality proved by [Bra+22, Theorem 1.2]. One can follow the proof of [Bra+22,

Theorem 1.2] and employ the technique of integration over level sets of f to control the

integral in above inequality. But by this argument, we can only get an integral inequality with

a coarse upper bound. To obtain the final effective estimate, we study a weighted volume,

and use the nonnegative scalar curvature conditions together with ODE comparison to prove

a weighted volume comparison (c.f. Lemma 4.2.3), which finally implies the desired estimate.

As a corollary, we also get a mass-area-capacity inequality (c.f. Proposition 4.2.5).

Then by using the integral inequality of f , together with the techniques used in [DS23], we

are able to find a region E ⊂ M̄∗ with a small area boundary. In this region E , the behavior of

|∇f | closely resembles the conformal factor in the Schwarzschild metric, and particularly |∇f |

is uniformly bounded. By Arzelà-Ascoli theorem, along the convergence of (E , h), we can take

a limit of such f and get a limit function f∞ defined on R3. However, it is not immediately

clear whether f∞ is precisely the conformal factor in the Schwarzschild metric. To address this,

we note that a favorable property of the pointed measured Gromov-Hausdorff convergence

modulo negligible spikes, is that f also converges to f∞ in the W 1,2-sense (c.f. Lemma 4.4.1).

Therefore, the elliptic equations satisfied by f are preserved in this convergence, and f∞ also

satisfies an elliptic equation on R3. The fact that the area of the boundary ∂E converges to

0 has been used essentially here. The elliptic equation satisfied by f∞ together with some

growth conditions would imply the rigidity of f∞ (c.f. Section 4.4).
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Finally, using metric geometry tools and similar arguments in [DS23, Section 4], we can

utilize these properties of f and h to prove Theorem 1.0.5.

From these main theorems together with their proofs, it seems that the GH topology

modulo negligible spikes could be an appropriate tology when studying metrics with a uniform

scalar curvature lower bound. So a natural follow-up question is:

Question 1.0.6. Do we have precompactness for pointed complete Riemannian manifolds

with a uniform scalar curvature lower bound in the pointed GH topology modulo negligible

spikes?

Also, we can ask that

Question 1.0.7. If we have a sequence of metrics with a uniform scalar curvature lower

bound converging in the pointed GH topology modulo negligible spikes, can we develop analysis

on the limit space? Can we define some weak scalar curvature on the limit space?
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Chapter 2

Preliminaries

2.0.1 Notations

We will use C,C ′ to denote a universal positive constant (which may be different from line to

line); Ψ(t),Ψ(t|a, b, · · · ) denote small constants depending on a, b, · · · and satisfying

lim
t→0

Ψ(t) = 0, lim
t→0

Ψ(t|a, b · · · ) = 0,

for each fixed a, b, · · · .

We denote the Euclidean metric by gEucl or δ, and the induced geometric quantities with

subindex Eucl or δ.

For a general Riemannian manifold (M, g) and any π ∈M , the geodesic ball with center

p and radius r is denoted by Bg(p, r) or B(p, r) if the underlying metric is clear. Given a

Riemannian metric, for a surface Σ and a domain Ω, Area(Σ) is the area of Σ, Vol(Ω) is the

volume of Ω with respect to the metric.

Finally we introduce some notations about length metric that will be used later. Given a

subset U in a Riemannian manifold (M, g), let (U, d̂g,U) be the induced length metric on U

of the metric g, that is, for any x1, x2 ∈ U ,

d̂g,U(x1, x2) := inf{Lg(γ) : γ is a rectifiable curve connecting x1, x2 and γ ⊂ U},

13



where Lg(γ) =
∫ 1

0
|γ′|g is the length of γ with respect to metric g. For any D > 0 and p ∈ U ,

we use B̂g,U(p,D) to denote the geodesic ball inside (U, d̂g,U), that is

B̂g,U(p,D) := {x ∈ U : d̂g,U(p, x) ≤ D}.

2.0.2 Basics of Riemannian geometry

We review some basics of Riemannian geometry. Most of the content in this subsection is

derived from [Pet06].

A Riemannian n-manifold (Mn, g) consists of a C∞-manifold M (Hausdorff and second

countable) and a Euclidean inner product gp or g|p on each of the tangent spaces TpM ∼= Rn

of M . In addition we assume that p 7→ gp varies smoothly. The tensor g is referred to as the

Riemannian metric or simply the metric. Usually, we also use ⟨·, ·⟩g to denote the metric.

In local coordinate charts {xi}ni=1 with ∂i =
∂
∂xi , we can write

g = gijdx
i · dxj,

where gij = g(∂i, ∂j). The canonical flat metric on Rn in the identity chart is

gEucl = δijdx
idxj =

n∑
i=1

dxidxi.

There is a canonical Riemannian volume n-form dvolg, which is defined locally by

dvolg =
√

det(gij)dx
1 ∧ dx2 · · · ∧ dxn.

Given two vector fields X = X i∂i, Y = Y j∂j, the Levi-Civita connection ∇ is defined

locally as

∇YX = Y j(∂jX
i)
∂

∂xi
+ Y jX iΓk

ij

∂

∂xk
,

where

Γk
ij =

1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
.
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Then the curvature tensor is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, ∀X, Y, Z ∈ TM.

In local coordinate charts, we can write R(∂i, ∂j)∂k = Rl
ijk∂l, so

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γs

jkΓ
l
is − Γs

ikΓ
l
js.

At any p ∈M , for any v, w ∈ TpM , the sectional curvature of (v, w) is defined as

secg(v, w) =
g(R(w, v)v, w)

g(v, v)g(w,w)− g(v, w)2
.

The Ricci curvature is defined as

Ricg(v, w) =
n∑

i,j=1

gijg(R(v, ∂i)∂j, w).

We say that Ric ≥ λ if Ric(v, v) ≥ λg(v, v) for all v ∈ TpM .

The scalar curvature is defined as

Rg =
n∑

i,j=1

gijRicg(∂i, ∂j).

For a smooth function f : M → R, we can define its gradient ∇f by ⟨∇f,X⟩ =

X(f),∀X ∈ TM ; its hessian ∇2f = Hessf by

∇2f(X, Y ) = ∇Y (∇f)(X) = ∇Y∇Xf −∇∇Y Xf, ∀X, Y ∈ TM,

and its Laplacian by

∆f = trg∇2f =
n∑

i,j=1

gij∇2f(∂i, ∂j).

Locally, we have

∆f =
1√
detg

∂

∂xi

(
gij
√

detg
∂f

∂xj

)
,

where gij is the inverse matrix of gij.
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If n ≥ 3, for the conformal metric g̃ = e2φg, we have the relation between the scalar

curvature

Rg̃ = e−2φ

(
Rg −

4(n− 1)

(n− 2)
e−

(n−2)φ
2 ∆g(e

(n−2)φ
2 )

)
,

and the Laplacian on functions:

∆g̃f = e−2φ
(
∆gf + (n− 2) ⟨∇φ,∇f⟩g

)
.

2.0.3 Geometry of Schwarzschild metric

For a positve number m > 0, the Schwarzschild 3-manifold (M3
sc, gsc) (with mass m) is given

by the following warped product metric on S2 × [0,∞):

gsc = ds2 + um(s)
2gS2 , s ∈ [0,∞), (2.0.1)

where gS2 is the spherical metric with Area(S2, gS2) = 4π, and um is a positive increasing

function satisfying

um(0) = 2m, u′m(0) = 0, u′m(s) =

(
1− 2m

um(s)

) 1
2

, u′′m(s) =
m

um(s)2
. (2.0.2)

Then the scalar curvature of gsc is identically zero, and the boundary Σsc := ∂M3
sc is the only

minimal surface inside M3
sc.

Under Cartesian coordinate, M3
sc is diffeomorphic to R3 \ B(m

2
), where B(m

2
) is the

Euclidean ball with radius m
2
around the center, and we have

gsc,ij(x) =

(
1 +

m

2|x|

)4

δij, ∀|x| ≥
m

2
. (2.0.3)

This metric can also be extended to give a Schwarzschild metric gsc defined on R3 \ {0}.

Define ρm(x) := dist(x,Σsc). Then

ρm(x) =

∫ |x|

m
2

(
1 +

m

2t

)2
dt = |x| − m2

4|x|
+m log

2|x|
m

,

which implies that

ρm(x)−m log
2ρm(x)

m
≤ |x| ≤ ρm(x). (2.0.4)
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Using these two representations (2.0.1) and (2.0.3) of gsc to compute the area of geodesic

spheres, we have

um(ρm(x))
2 · 4π =

(
1 +

m

2|x|

)4

· 4π|x|2,

i.e.

um(ρm(x)) =

(
1 +

m

2|x|

)2

· |x|. (2.0.5)

In particular, together with (2.0.4),

lim
r→∞

um(r)

r
= 1. (2.0.6)

Now we introduce another harmonic function fm and rewrite above identities using fm

instead of |x|. Define

fm(x) :=

(
1 +

m

2|x|

)−1

.

Standard computations imply that

∆gscfm = 0, fm =
1

2
on Σsc, lim

|x|→∞
fm(x) = 1.

Then

|x| = m

2
· fm(x)

1− fm(x)
,

and

ρm(x) = ρm(fm(x)) =
m

2

(
1

1− fm(x)
− 1

fm(x)

)
+m log

fm(x)

1− fm(x)
. (2.0.7)

Moreover,

um(ρm(x)) =
m

2
· 1

fm(x)(1− fm(x))
. (2.0.8)
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2.0.4 Asymptotically flat 3-manifolds

A smooth orientable connected complete Riemannian 3-manifold (M3, g) is called asymptot-

ically flat if there exists a compact subset K ⊂ M such that M \K = ⊔N
k=1M

k
end consists

of finite pairwise disjoint ends, and for each 1 ≤ k ≤ N , there exist C > 0, σ > 1
2
, and a

C∞-diffeomorphism Φk :M
k
end → R3 \B(1) such that under this identification,

|∂l(gij − δij)(x)| ≤ C|x|−σ−|l|,

for all multi-indices |l| = 0, 1, 2 and any x ∈ R3 \B(1). Furthermore, we always assume the

scalar curvature Rg is integrable over (M3, g). The ADM mass from general relativity of each

end Mk
end, 1 ≤ k ≤ N , is then well-defined (see [ADM61; Bar86]) and given by

mk(g) := lim
r→∞

1

16π

∫
Sr

∑
i

(gij,i − gii,j)ν
jdA

where ν is the unit outer normal to the coordinate sphere Sr of radius |x| = r in the given

end, and dA is its area element.

Definition 2.0.1. A surface Σ ⊂ (M3, g) is called a horizon if it is a minimal surface. It

is called an outermost horizon if it is a horizon and it is not enclosed by another minimal

surface in (M3, g).

Let (M3, g) be an asymptotically flat 3-manifold. By Lemma 4.1 in [HI01], we know

that inside M3, there is a trapped compact region T whose topological boundary consists

of smooth embedded minimal 2-spheres. An “exterior region” M3
ext is defined as the metric

completion of any connected component ofM \T containing one end. ThenM3
ext is connected,

asymptotically flat, has a compact minimal boundary ∂M3
ext (∂M

3
ext may be empty), and

contains no other compact minimal surfaces, that is, M3
ext is an asymptotically flat 3-manifold

with outermost horizon boundary.

We will be able to perturb an asymptotically flat metric to a metric with nicer behavior

at infinity in each end because of the following definition and proposition.
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Definition 2.0.2. We say that (M3, g) is harmonically flat at infinity if (M3 \ K, g) is

isometric to a finite disjoint union of regions with zero scalar curvature which are conformal

to (R3 \ B, δ) for some compact set K in M3 and some ball B in R3 centered around the

origin.

By definition, if (M3, g) is harmonically flat, then on each end, gij(x) = V (x)δij for some

bounded positive δ-harmonic function V (x), which satisfies that ∆δV (x) = 0 and (c.f. [Bra01,

Equation (10)])

V (x) = a+
b

|x|
+O

(
1

|x|2

)
. (2.0.9)

In this case, its ADM mass on this end is given by 2ab.

Proposition 2.0.1 ([SY81]). Let (M3, g) be a complete, asymptotically flat 3-manifold with

Rg ≥ 0 and ADM mass mk(g) in the k-th end. For any ϵ > 0, there exists a metric ĝ such

that e−ϵg ≤ ĝ ≤ eϵg, Rĝ ≥ 0, (M3, ĝ) is harmonically flat at infinity, and |mk(ĝ)−mk(g)| ≤ ϵ,

where mk(ĝ) is the ADM mass of ĝ in the k-th end.

2.0.5 pm-GH convergence modulo negligible spikes

In this subsection, we recall some definitions for the pointed measured Gromov-Hausdorff

topology.

Assume (X, dX , x), (Y, dY , y) are two pointed metric spaces. The pointed Gromov-

Hausdorff (or pGH-) distance is defined in the following way. A pointed map f : (X, dX , x) →

(Y, dY , y) is called an ε-pointed Gromov-Hausdorff approximation (or ε-pGH approximation)

if it satisfies the following conditions:

(1) f(x) = y;

(2) B(y, 1
ε
) ⊂ Bε(f(B(x, 1

ε
)));

(3) |dX(x1, x2)− dY (f(x1), f(x2))| < ε for all x1, x2 ∈ B(x, 1
ε
).
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The pGH-distance is defined by

dpGH((X, dX , x),(Y, dY , y)) :=

inf{ε > 0 : ∃ ε-pGH approximation f : (X, dX , x) → (Y, dY , y)}.

We say that a sequence of pointed metric spaces (Xi, di, pi) converges to a pointed metric

space (X, d, p) in the pointed Gromov-Hausdorff topology, if the following holds

dpGH((Xi, di, pi), (X, d, p)) → 0.

If (Xi, di) are length metric spaces, i.e. for any two points x, y ∈ Xi,

di(x, y) = inf{Ldi(γ) : γ is a rectifiable curve connecting x, y},

where Ldi(γ) is the length of γ induced by the metric di, then equivalently,

dpGH((Xi, di, pi), (X, d, p)) → 0

if and only if for all D > 0,

dpGH((B(pi, D), di), (B(p,D), d)) → 0,

where B(pi, D) are the geodesic balls of metric di.

A pointed metric measure space is a structure (X, dX , µ, x) where (X, dX) is a complete

separable metric space, µ a Radon measure on X and x ∈ supp(µ).

We say that a sequence of pointed metric measure length spaces (Xi, di, µi, pi) converges to

a pointed metric measure length space (X, d, µ, p) in the pointed measured Gromov-Hausdorff

(or pm-GH) topology, if for any ε > 0, D > 0, there exists N(ε,D) ∈ Z+ such that for all

i ≥ N(ε,D), there exists a Borel ε-pGH approximation

fD,ε
i : (B(pi, D), di, pi) → (B(p,D + ε), d, p)

satisfying

(fD,ε
i )♯(µi|B(pi,D)) weakly converges to µ|B(p,D) as i→ ∞, for a.e.D > 0.
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In the case when Xi is an n-dimensional manifold, without extra explanations, we will

always consider (Xi, di, pi) as a pointed metric measure space equipped with the n-dimensional

Hausdorff measure Hn
di
induced by di.

Finally, we introduce a notation about the topology that we used in this paper. For

simplicity, we only consider manifolds, and one can easily generalize it to general metric

measured spaces.

Definition 2.0.3. For a sequence of pointed Riemannian n-manifolds (Mi, gi, pi) and (M, g, p),

we say that (Mi, gi, pi) converges to (M, g, p) in the pointed measured Gromov-Hausdorff

topology modulo negligible spikes, if there exist open subsets Zi ⊂Mi such that Hn−1(∂Zi) →

0, pi ∈Mi \ Zi and

(Mi \ Zi, d̂gi , pi) → (M,dg, p)

in the pointed measured Gromov-Hausdorff topology for the induced length metric.
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Chapter 3

Stability for the Positive Mass

Theorem

3.1 Regular region with small area boundary

In this section, for any given asymptotically flat 3-manifold (M3, g) with nonnegative scalar

curvature, we will find out an unbounded domain in Mext containing the end such that its

boundary has small area depending on m(g). We always assume 0 < m(g) ≪ 1.

Consider the harmonic map u = (u1, u2, u3) : Mext → R3 associated to one end as in

previous section, where for each j ∈ {1, 2, 3}, uj is a harmonic function with Neumann

boundary condition if ∂Mext ̸= ∅ and asymptotical to a coordinate function around the end.

Define the C∞-function F : (Mext, g) → R by

F (x) :=
3∑

j,k=1

(
g(∇uj,∇uk)− δjk

)2
.

Fix a small number 0 < ϵ≪ 1. We use the following notations:

∀t ∈ [0, 6ϵ], St := F−1(t),

∀0 ≤ a < b ≤ 6ϵ, Ωa,b := F−1([a, b]).
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Notice that for any t ∈ (0, 6ϵ], St is compact, St ∩ ∂Mext = ∅ since ϵ is small, and the

complement of Ω0,t is compact in Mext. By Sard’s theorem, we will always consider t ∈ (0, 6ϵ]

outside of the measure zero set of critical values of F , and we will call such t “generic”. For

generic choices of 0 < a < b < 6ϵ, we have ∂Ωa,b = Sa ∪ Sb.

We will always consider the restricted map u : Ω0,6ϵ → R3. We choose ϵ ≪ 1 such that

for any x ∈ Ω0,6ϵ, the Jacobian of u satisfies (with abuse of notations):

|Jacu(x)− Id| ≤ ϵ′, (3.1.1)

for

ϵ′ := 100
√
ϵ≪ 1,

so that in particular u is a local diffeomorphism. What we mean by (3.1.1) is that there exist

orthonormal bases of TxM and R3 such that with respect to these bases, Jacu(x) is ϵ′-close

to the identity map.

Lemma 3.1.1. ∫
Ω0,6ϵ

|∇F |2 ≤ Cm(g).

Proof. By definitions, we have

|∇uj|(x) ≤
√
1 +

√
6ϵ, ∀x ∈ Ω0,6ϵ, ∀j ∈ {1, 2, 3}. (3.1.2)

We readily obtain that for all x ∈ Ω0,6ϵ,

|∇F |(x) ≤
3∑

j,k=1

2|g(∇uj,∇uk)− δjk| · (|∇uj||∇2uk|+ |∇2uj||∇uk|)

≤ C

3∑
j=1

|∇2uj|.
(3.1.3)
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So by inequalities (3.1.2) and (??), we have∫
Ω0,6ϵ

|∇F |2 ≤ C

3∑
j=1

∫
Ω0,6ϵ

|∇2uj|2

≤ C
3∑

j=1

∫
Ω0,6ϵ

|∇2uj|2

|∇uj|

≤ Cm(g).

(3.1.4)

In the context of General Relativity, the notion of capacity of a set has been studied in

[Bra01; BM08; Jau20; Mia22] (see also references therein). We will use capacity in a different

way. Recall that the classical Poincaré-Faber-Szegö inequality relates the capacity of a set in

Euclidean space to its volume, see [PS51; Jau12]. In the following lemma, which is a key step

in this section, we prove a Poincaré-Faber-Szegö type inequality. This will be used to find a

smooth level set of F with small area.

Lemma 3.1.2. If infs∈(0,5ϵ)Area(Ss) > 0, where the infimum is taken over all generic regular

values, then there exists s0 ∈ (0, 5ϵ) such that

Vol(Ωs0,s0+ϵ ∩ {|∇F | ≠ 0}) ≤ C

(
m(g)

ϵ2

)3

.

Proof. Since infs∈(0,5ϵ) Area(Ss) > 0, we can find a generic s0 ∈ (0, 5ϵ) such that Ss0 is a

smooth surface satisfying

Area(Ss0) ≤ 2 inf
s∈(0,5ϵ)

Area(Ss).

For the reader’s convenience, we follow the presentation of the note [Jau12] when we can.

Case 1): s0 ∈ [3ϵ, 5ϵ).

For any regular value s ∈ (ϵ, s0), define the function χ : R3 → R by

χ(x) := H0(u−1(x) ∩ Ωs,s0).

By the isoperimetric inequality [EG15, Theorem 5.10 (i)],

∥χ∥
L

3
2 (R3)

≤ Cisop∥Dχ∥(R3).
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Since u is a local diffeomorphism and |Jacu− Id| ≤ ϵ′ by (3.1.1), this means that

Vol(Ωs,s0)
2
3 ≤ 2Cisop(Area(Ss) + Area(Ss0)). (3.1.5)

By the definition of s0, we have

Vol(Ωs,s0)
2
3 ≤ 6CisopArea(Ss). (3.1.6)

By the coarea formula,∫
Ωϵ,s0

|∇F |2dvolg =
∫ s0−ϵ

0

∫
Ss0−t

|∇F |dAgdt.

For t ∈ (0, s0 − ϵ), define

V (t) := Vol(Ωs0−t,s0), S(t) := Area(Ss0−t).

By Sard’s theorem and the assumption that infs∈(0,5ϵ) Area(Ss) > 0, we know that except

possibly for a measure zero set in (0, s0 − ϵ), Ss0−t ̸= ∅ and |∇F | ≠ 0 over Ss0−t. Then

W (t) :=

∫ t

0

∫
Ss0−s

1

|∇F |
dAgds

is a strictly increasing continuous function, where the integral is taken over regular values of

F , and

W ′(t) =

∫
Ss0−t

1

|∇F |
dAg > 0

is well-defined for a.e. t ∈ (0, s0 − ϵ). Notice that for t ∈ (0, s0 − ϵ),

0 < W (t) = Vol(Ωs0−t,s0 ∩ {|∇F | ≠ 0}) ≤ V (t).

Since for a.e. t ∈ (0, s0 − ϵ),

S(t)2 ≤
∫
Ss0−t

|∇F |dAg ·
∫
Ss0−t

1

|∇F |
dAg,

we have ∫ s0−ϵ

0

S(t)2

W ′(t)
dt ≤

∫
Ωϵ,s0

|∇F |2dvolg.
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By the isoperimetric inequality (3.1.6) obtained above,

W (t)
2
3 ≤ V (t)

2
3 ≤ 6CisopS(t),

so we have ∫ s0−ϵ

0

W (t)
4
3

W ′(t)
dt ≤ 36C2

isop

∫
Ωϵ,s0

|∇F |2dvolg. (3.1.7)

Denote by ωn the volume of the unit Euclidean n-ball. For any t ∈ (0, s0 − ϵ), define R(t)

by

ω3R(t)
3 = W (t).

Note that R(0) = 0, R(s0 − ϵ) < ∞, and the derivative R′(t) is well-defined and positive

almost everywhere.

Define the function F̃ : BEucl(0, R(s0 − ϵ)) → R by

F̃ := t on ∂BEucl(0, R(t)).

Then for a.e. t ∈ (0, s0 − ϵ),

|∇F̃ | = 1

R′(t)
on ∂BEucl(0, R(t)).

By (3.1.7), for some uniform constant C > 0,

C

∫
Ωϵ,s0

|∇F |2dvolg ≥
∫ s0−ϵ

0

3ω3
R(t)2

R′(t)
dt

=

∫ s0−ϵ

0

∫
∂BEucl(0,R(t))

|∇F̃ |dAdt

=

∫
BEucl(0,R(s0−ϵ))

|∇F̃ |2dV.

(3.1.8)

The above inequality gives an upper bound of the capacity of the Euclidean ball BEucl(0, R(s0−

ϵ)).

Let us recall the definition and some properties of the capacity (see [EG15, Definition

4.10, Theorem 4.15]). Set

K := {f : Rn → R : f ≥ 0, f ∈ L2∗(Rn), |∇f | ∈ L2(Rn;Rn)}.
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For any open subset A ⊂ Rn, the capacity of A is defined as

Cap(A) := inf{
∫
Rn

|∇f |2dV : f ∈ K,A ⊂ {f ≥ 1}0}.

Then for any x ∈ Rn,

Cap(BEucl(x, r)) = rn−2Cap(BEucl(1)) > 0. (3.1.9)

In our case, modifying F̃ , we define a test function φ̂ : R3 → R by

φ̂ :=
s0 − ϵ− F̃

s0 − 5
2
ϵ

on BEucl(0, R(s0 − ϵ)),

φ̂ := 0 on R3 \BEucl(0, R(s0 − ϵ)).

With this definition, we have φ̂ ∈ K and

BEucl(0, R(ϵ)) ⊂ {φ̂ > 1} = {φ̂ ≥ 1}0.

This implies that

Cap(BEucl(0, R(ϵ))) ≤
∫
R3

|∇φ̂|2dV =
1

(s0 − 5
2
ϵ)2

∫
BEucl(0,R(s0−ϵ))

|∇F̃ |2dV.

Together with (3.1.8), we deduce

Cap(BEucl(0, R(ϵ))) ≤
C

(s0 − 5
2
ϵ)2

∫
Ωϵ,s0

|∇F |2dvolg.

From (3.1.9), s0 ≥ 3ϵ and Lemma 3.1.1,

R(ϵ) ≤ Cm(g)

ϵ2
.

Since Vol(Ωs0−ϵ,s0 ∩ {|∇F | ≠ 0}) = W (ϵ) = ω3R(ϵ)
3, we conclude:

Vol(Ωs0−ϵ,s0 ∩ {|∇F | ≠ 0}) ≤ C

(
m(g)

ϵ2

)3

.

This is the desired conclusion, up to renaming s0 − ϵ and s0.

Case 2): s0 ∈ (0, 3ϵ).
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That case is completely similar to the first case. For any regular value s ∈ (s0, 5ϵ), we

have

Vol(Ωs0,s)
2
3 ≤ 6CisopArea(Ss).

For t ∈ (0, 5ϵ− s0), define

W (t) := Vol(Ωs0,s0+t ∩ {|∇F | ≠ 0}), S(t) := Area(Ss0+t),

and

ω3R(t)
3 = W (t),

with R(0) = 0 and R(5ϵ− s0) <∞.

Define F̃ : BEucl(0, R(5ϵ− s0)) → R by

F̃ := t on ∂BEucl(0, R(t)).

Then as in Case 1, we get∫
BEucl(0,R(5ϵ−s0))

|∇F̃ |2dV ≤ C

∫
Ωs0,5ϵ

|∇F |2dvolg.

Modifying F̃ , we define a test function φ̂ : R3 → R by

φ̂ :=
5ϵ− s0 − F̃

7
2
ϵ− s0

on BEucl(0, R(5ϵ− s0)),

φ̂ := 0 on R3 \BEucl(0, R(5ϵ− s0)).

So φ̂ ∈ K and BEucl(0, R(ϵ)) ⊂ {φ̂ > 1} = {φ̂ ≥ 1}0. This implies that

Cap(BEucl(0, R(ϵ))) ≤
1

(7
2
ϵ− s0)2

∫
BEucl(0,R(5ϵ−s0))

|∇F̃ |2dV.

Thus we have

R(ϵ) ≤ Cm(g)

ϵ2
,

and since Vol(Ωs0,s0+ϵ ∩ {|∇F | ≠ 0}) = W (ϵ) = ω3R(ϵ)
3, we conclude:

Vol(Ωs0,s0+ϵ ∩ {|∇F | ≠ 0}) ≤ C ·
(
m(g)

ϵ2

)3

.
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Lemma 3.1.3. There exists a generic τ0 ∈ (0, 6ϵ) such that Sτ0 is a smooth surface satisfying

Area(Sτ0) ≤ C

(
m(g)

ϵ2

)2

.

Proof. If infs∈(0,5ϵ) Area(Ss) = 0, then we can take a generic τ0 ∈ (0, 5ϵ) such that Sτ0 is a

smooth surface and satisfies

Area(Sτ0) ≤
m(g)2

ϵ4
.

If infs∈(0,5ϵ) Area(Ss) > 0, then we can choose s0 ∈ (0, 5ϵ) as in Lemma 3.1.2. By the

coarea formula,∫ s0+ϵ

s0

Area(St)dt =

∫
Ωs0,s0+ϵ

|∇F |

≤

(∫
Ωs0,s0+ϵ

|∇F |2
) 1

2

· (Vol(Ωs0,s0+ϵ ∩ {|∇F | ≠ 0}))
1
2

≤ C
√
m(g)

(
m(g)

ϵ2

) 3
2

,

(3.1.10)

where in the last inequality we used Lemma 3.1.1 and Lemma 3.1.2. So there exists a generic

τ0 ∈ (s0, s0 + ϵ) ⊂ (0, 6ϵ) such that Sτ0 is smooth and

Area(Sτ0) ≤
Cm(g)2

ϵ4
.

For τ0 in above lemma, the domain Ω0,τ0 has smooth boundary Sτ0 , whose area is very

small depending on m(g), and contains the end of Mext. In general, u : Ω0,τ0 → R3 is only

a local but not global diffeomorphism. For this reason, we need to restrict u to a smaller

region.

By definition of asymptotic flatness and the construction of u, we clearly have the following

lemma (see for instance [Don22, Lemma 3.3, 3.4]).

Lemma 3.1.4. u is one-to-one around the end at infinity. That is, for some big number

L > 0 (not uniform in general), there exists an unbounded domain U ⊂Mext containing the

end such that u : U → R3 \BEucl(0, L) is injective and onto.
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Proposition 3.1.5. Assume (M3, g) is an asymptotically flat 3-manifold with nonnegative

scalar curvature. For any end of (M, g), let Mext be the exterior region associated to this end.

Then there exists a connected region E ⊂Mext with smooth boundary, such that the restricted

harmonic map

u : E → Y ⊂ R3

is a diffeomorphism onto its image Y := u(E), E contains the end of Mext, Y contains the

end of R3, and

Area(∂E) ≤ Cm(g)2

ϵ4
.

Proof. Take τ0 in Lemma 3.1.3. Then u : Ω0,τ0 → R3 is a local diffeomorphism and

∂Ω0,τ0 = Sτ0 has small area. Let Y1 ⊂ u(Ω0,τ0) be the connected component containing the

end of R3, and

Y2 := {y ∈ Y1 : H0(u−1{y} ∩ Ω0,τ0) = 1}.

By Lemma 3.1.4, Y2 ̸= ∅ and contains the end of R3. Notice that Y2 is open in Y1 and

∂Y2 ⊂ u(Sτ0).

Since u(Sτ0) is a smooth immersed surface in R3, we can choose a slightly smaller region

Y3 such that Y3 ∪ ∂Y3 ⊂ Y2, ∂Y3 is a smooth embedded surface and Area(∂Y3) ≤ 2Area(∂Y2).

Define Y to be the connected component of Y3 containing the end of R3, and E := u−1(Y ).

By construction, u : E → Y is a diffeomorphism. Moreover by (3.1.1),

Area(∂E) =

∫
∂Y

|Jac(u
∣∣
∂E

)−1| ≤ C(1 + ϵ′)Area(∂Y ) ≤ CArea(Sτ0).

3.2 Proof of Theorem 1.0.3

In general a regular region E such as the one given by Proposition 3.1.5 is not sufficient to get

Gromov-Hausdorff convergence. In this section, we will construct a more refined subregion
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over which we have pointed measured Gromov-Hausdorff convergence for the induced length

metric.

Fix a continuous function ξ : (0,∞) → (0,∞) with ξ(0) = 0 and

lim
x→0+

ξ(x) = 0.

For our purposes we can assume without loss of generality that

lim
x→0+

x

ξ(x)
= 0.

Choose continuous functions ξ0, ξ1 : (0,∞) → (0,∞) with ξ0(0) = ξ1(0) = 0, and

lim
x→0+

ξ(x)

ξ1000 (x)
= lim

x→0+

ξ0(x)

ξ1001 (x)
= 0.

The reader can think of these functions ξ, ξ0, ξ1, as converging to 0 very slowly as x → 0+.

Set

δ0 := ξ0(m(g)), δ1 := ξ1(m(g)).

Then

δ1001 ≫ δ0 ≫ ξ(m(g))
1

100 ≫ m(g)
1

100

when 0 < m(g) ≪ 1. In the following, we will always assume 0 < m(g) ≪ 1.

Let E be the regular region given by Proposition 3.1.5 and its image Y := u(E) ⊂ R3.

Then u : E → Y is a diffeomorphism and

Area(∂Y ) ≤ Cm(g)2

ϵ4
. (3.2.1)

For any subset U ⊂ E, let (U, d̂g,U) be the induced length metric on U of the metric g,

that is, for any x1, x2 ∈ U ,

d̂g,U(x1, x2) := inf{Lg(γ) : γ is a rectifiable curve connecting x1, x2 and γ ⊂ U},

where Lg(γ) =
∫ 1

0
|γ′|g is the length of γ with respect to metric g.
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Similarly, for any V ⊂ Y ⊂ R3, let (V, d̂Eucl,V ) be the induced length metric on V of the

standard Euclidean metric gEucl, that is, for any y1, y2 ∈ V ,

d̂Eucl,V (y1, y2) := inf{LEucl(γ) : γ is a rectifiable curve connecting y1, y2 and γ ⊂ V },

where LEucl(γ) is the length of γ with respect to the Euclidean metric gEucl.

Write

Σ := ∂Y ⊂ R3

and let W be the compact domain bounded by Σ in R3, so ∂W = Σ.

The main part of this section is devoted to the proofs of Proposition 3.3.7 and the lemmas

leading to it. In Proposition 3.3.7, we construct a subregion inside Y ⊂ R3 with small area

boundary, over which the induced length metric of gEucl is close to the restriction of the

Euclidean metric.

By the isoperimetric inequality and (3.2.1),

Vol(W) ≤ CArea(Σ)
3
2 ≤ Cm(g)3

ϵ6
.

Take

ϵ = δ0

(in particular in this section ϵ depends on m(g)). Recall that

ϵ′ := 100
√
ϵ≪ 1.

Then

Area(Σ) ≤ Cm(g)2

δ40
≪ 1, Vol(W) ≤ Cm(g)3

δ60
≪ 1.

For any triple k = (k1, k2, k3) ∈ Z3, consider the cube Ck(δ1) defined by

Ck(δ1) := (k1δ1, (k1 + 1)δ1)× (k2δ1, (k2 + 1)δ1)× (k3δ1, (k3 + 1)δ1) ⊂ R3.

Let Bk(r) be the Euclidean ball with center the same as Ck(δ1) and radius r. By applying

the coarea formula, we can find r ∈ (3δ1, 3δ1 + δ0) such that W ∩ ∂Bk(r) consists of smooth
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surfaces and

Area(W ∩ ∂Bk(r)) ≤
Vol(W ∩Bk(4δ1))

δ0
. (3.2.2)

Since Vol(Bk(4δ1)) ≥ 16ω3δ
3
1, where ω3 is the Euclidean volume of unit ball in R3, we know

Vol(W ∩Bk(4δ1)) ≤ Vol(W) ≤ Cm(g)3

δ60
≪ δ31 <

1

10
Vol(Bk(4δ1)).

By the relative isoperimetric inequality [EG15, Theorem 5.11 (ii)],

Vol(W ∩Bk(4δ1)) ≤ CArea(Σ ∩Bk(4δ1))
3
2

≤ Cm(g)

δ20
Area(Σ ∩Bk(4δ1)).

So by (3.2.2),

Area(W ∩ ∂Bk(r)) ≤
Cm(g)

δ30
Area(Σ ∩Bk(4δ1))

≤ Area(Σ ∩Bk(4δ1)).

Then we can smooth the surface (Σ ∩Bk(r)) ∪ (W ∩ ∂Bk(r)) to get a closed embedded

surface Σk ⊂ Bk(4δ1), which coincides with Σ inside Ck(δ1), and which satisfies

Area(Σk) ≤ 2(Area(Σ ∩Bk(4δ1)) + Area(W ∩ ∂Bk(r)))

≤ 4Area(Σ ∩Bk(4δ1)).

(3.2.3)

For t ∈ R, define the plane

Ak,δ1(t) := {(x1, x2, x3) ∈ R3 : x3 = (k3 + t)δ1}.

By definition Ck(δ1) ⊂
⋃

t∈[0,1]Ak,δ1(t).

By the coarea formula, there exists tk ∈ (1
2
, 1
2
+ δ0) such that Ak,δ1(tk) ∩ Σk consists of

smooth curves and

Length(Ak,δ1(tk) ∩ Σk) ≤
Area(Σk)

δ0δ1

≤ Cm(g)2

δ50δ1

≤ m(g).

(3.2.4)
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Define D′
k as the connected component of (Ck(δ1) ∩ Ak,δ1(tk)) \ Σ with largest area and

D′′
k := (Ck(δ1)∩Ak,δ1(tk)) \D′

k. By the relative isoperimetric inequality and (3.2.4), we know

that

Area(D′′
k) ≤ CLength(Ak,δ1(tk) ∩ Σk)

2

≤ Cm(g)
Area(Σk)

δ0δ1

≤ Area(Σk).

(3.2.5)

Let πk : R3 → Ak,δ1(tk) be the orthogonal projection. Define

Ck(δ1)
′ := D′

k ∪
(
Ck(δ1) ∩ π−1

k (D′
k \ πk(Σk))

)
.

Lemma 3.2.1. Ck(δ1)
′ is path connected.

Proof. By definition, for any point x ∈ Ck(δ1) ∩ π−1
k (D′

k \ πk(Σk)), the line segment Lx ⊂

Ck(δ1) through x and orthogonal to Ak,δ1(tk) satisfies Lx ∩ D′
k ̸= ∅. Since D′

k is path

connected, Ck(δ1)
′ is also path connected.

Lemma 3.2.2. Vol(Ck(δ1) \Ck(δ1)
′) ≤ 8δ1Area(Σ ∩Bk(4δ1)) ≤ m(g)δ31.

Proof. Since

Area(πk(Σk)) ≤ Area(Σk),

and since by (3.2.5),

Area(D′′
k) ≤ Area(Σk),

we have

Vol(Ck(δ1)) \ Vol(Ck(δ1)
′) ≤ 2δ1Area(Σk)

≤ 8δ1Area(Σ ∩Bk(4δ1)).

(3.2.6)

We can use (3.2.1) to conclude the proof.

Clearly by construction,

Ck(δ1)
′ ⊂ Y.
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Define

Y ′ := ∪k∈Z3Ck(δ1)
′ ⊂ Y.

Notice that when |k| is big enough, one can certainly ensure that Ck(δ1)
′ = Ck(δ1), so that

Y \ Y ′ is a bounded set. Choosing Y slightly bigger in Proposition 3.1.5, we can assume that

∂Y ∩ Y ′ = ∅.

For any subset V ⊂ Y , let Vt be the t-neighborhood of V inside (Y, d̂Eucl,Y ) in terms of

the length metric d̂Eucl,Y , i.e.

Vt := {y ∈ Y : ∃z ∈ V such that d̂Eucl,Y (y, z) ≤ t}.

So (Y ′)t is the t-neighborhood of Y ′ inside (Y, d̂Eucl,Y ).

In the following lemma, by modifying some (Y ′)t, we construct a domain with smooth

boundary such that its boundary area is small and it is very close to Y ′ in the Gromov-

Hausdorff topology with respect to a length metric.

Lemma 3.2.3. There exists Y ′′ with smooth boundary such that Y ′ ⊂ Y ′′ ⊂ (Y ′)6δ0,

Area(∂Y ′′) ≤ m(g)2

δ50
,

and Y ′′ is contained in the 6δ0-neighborhood of Y ′ inside Y ′′, with respect to its length metric

d̂Eucl,Y ′′.

Proof. Smoothing the Lipschitz function d̂Eucl,Y (Y
′, ·), we can get a smooth function ϕ : Y →

R such that |ϕ− d̂Eucl,Y (Y
′, ·)| ≤ δ0 and |∇ϕ| ≤ 2 (see for instance [GW79, Proposition 2.1]).

Applying coarea formula to ϕ, we have∫ 4δ0

3δ0

Area(ϕ−1(t) ∩ Y )dt =

∫
{3δ0<ϕ<4δ0}∩Y

|∇ϕ|dvol ≤ 2Vol(Y \ Y ′).

By Lemma 3.2.2, for each k ∈ Z3,

0 ≤ Vol(Ck(δ1))− Vol(C′
k(δ1)) ≤ 8δ1Area(Σ ∩Bk(4δ1)).
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Since the number of overlaps of {Bk(4δ1)}k∈Z3 is uniformly bounded,

0 ≤ Vol(Y )− Vol(Y ′) ≤ 8δ1
∑
k∈Z3

Area(Σ ∩Bk(4δ1))

≤ Cδ1Area(Σ)

≤ Cδ1m(g)2

δ40
.

(3.2.7)

So we can find a generic regular value t ∈ (3δ0, 4δ0) of ϕ such that ϕ−1(t) is smooth and

Area(ϕ−1(t) ∩ Y ) ≤ Cδ1m(g)2

δ50
≤ m(g)2

8δ50
.

Smoothing (ϕ−1(t) ∩ Y ) ∪ (∂Y ∩ {ϕ < t}) inside Y , we can get a smooth surface S1 with

S1 ⊂ (Y ′)5δ0 \ Y ′ and

Area(S1) ≤ 2(Area(ϕ−1(t) ∩ Y ) + Area(∂Y )) ≤ m(g)2

4δ50
+
Cm(g)2

δ40
≤ m(g)2

2δ50
.

Denote by Y1 the connected component such that

Y ′ ⊂ Y1 ⊂ (Y ′)5δ0 ⊂ Y and ∂Y1 ⊂ S1. (3.2.8)

At this point, Y1 is close to Y ′ in the Hausdorff topology with respect to d̂Eucl,Y , but

possibly not with respect to its own length metric d̂Eucl,Y1 . To remedy this, choose a finite

subset {xj} consisting of δ0-dense discrete points of (Y1 \ Y ′, d̂Eucl,Y1) and denote by γj ⊂ Y

a smooth curve connecting xj to Y
′ with minimal length with respect to the length metric

d̂Eucl,Y . Then by (3.3.11), γj has length at most 5δ0, and so γj ⊂ (Y ′)5δ0 . By thickening

each γj, we can get thin solid tubes Tj inside δ0-neighborhood of γj with arbitrarily small

boundary area. Let Y2 := Y1 ∪ (∪jTj). By smoothing the corners of Y2, we have a connected

domain Y ′′ with smooth boundary such that

Y ′ ⊂ Y ′′ ⊂ Y2 ⊂ Y ′
6δ0

and

Area(∂Y ′′) ≤ 2Area(S1) ≤
m(g)2

δ50
.
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For any y ∈ Y ′′\Y ′, by our construction, there exists some j such that either d̂Eucl,Y1(y, xj) ≤

δ0 or y ∈ Tj . In each case, there exists a smooth curve σy,j ⊂ Y ′′ connecting y to a point in γj

and Length(σy,j) ≤ δ0. Since Length(γj) ≤ 5δ0, σy,j ∪ γj is a piecewise smooth curve inside

Y ′′ connecting y to Y ′ with length smaller than 6δ0. So inside the length space (Y ′′, d̂Eucl,Y ′′),

Y ′′ is in the 6δ0-neighborhood of Y ′ as desired.

Let Y ′′ be as in Lemma 3.2.3. Recall that d̂Eucl,Y ′′ is defined as the length metric on Y ′′

induced by gEucl. Since Y
′ ⊂ Y ′′ ⊂ Y , we have dEucl ≤ d̂Eucl,Y ≤ d̂Eucl,Y ′′ .

Lemma 3.2.4. diamd̂Eucl,Y ′′
(Ck(δ1)

′) ≤ 5δ1.

Proof. For any two points x1, x2 ∈ Ck(δ1)
′, let Lx1 , Lx2 be the line segments inside Ck(δ1)

through x1, x2 and orthogonal to Ak,δ1(tk) respectively. Let x
′
1 = Lx1 ∩D′

k, x
′
2 = Lx2 ∩D′

k.

Then by modifying the line segment between x′1, x
′
2 if necessary, and by (3.2.4), we can find a

curve γ between x′1, x
′
2 inside D′

k such that

LengthEucl(γ) ≤ dEucl(x
′
1, x

′
2) + Length(Ak,δ1(tk) ∩ Σk)

≤ dEucl(x
′
1, x

′
2) +m(g).

Consider the curve γ̃ consisting of three parts: the line segment [x1x
′
1] between x1, x

′
1, γ, and

the line segment [x′2x2] between x
′
2, x2. We have γ̃ ⊂ Ck(δ1)

′ ⊂ Y ′, so

d̂Eucl,Y ′′(x1, x2) ≤ LEucl(γ̃) ≤ 4δ1 +m(g) ≤ 5δ1.

Lemma 3.2.5. For any base point q ∈ Y ′ and any D > 0,

dpGH((Y
′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′ ∩BEucl(q,D), dEucl, q)) ≤ Ψ(m(g)).

Proof. Let x0, y0 ∈ Y ′ ∩ BEucl(q,D) be two points and x0 ∈ Ck(δ1)
′, y0 ∈ Cl(δ1)

′ for some

k, l ∈ Z3. Since dEucl ≤ d̂Eucl,Y ′′ , it’s enough to show

d̂Eucl,Y ′′(x0, y0) ≤ dEucl(x0, y0) + Ψ(m(g)). (3.2.9)
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Let Tk,l be the translation which maps Ck(δ1) to Cl(δ1). Then by Lemma 3.2.2,

Vol(Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′) ≥Vol(Ck(δ1))− (Vol(Ck(δ1) \Ck(δ1)
′))

− (Vol(Cl(δ1) \Cl(δ1)
′))

≥(1− 2m(g))δ31.

If k = l, then by Lemma 3.2.4, we know that

d̂Eucl,Y ′′(x0, y0) ≤ 4δ1 ≤ dEucl(x0, y0) + 4δ1.

Suppose that k ̸= l. For any x ∈ R3, the straight line between x and Tk,l(x) meets the set

Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′ in a subset of total length at most say 10δ1. We claim that there is

at least one point x′0 ∈ Ck(δ1)
′ such that Tk,l(x

′
0) ∈ Cl(δ1)

′ and the line segment [x′0Tk,l(x
′
0)]

between these two points has no intersection with ∂Y ′′. Otherwise, by the coarea formula

and Lemma 3.2.3, we would get

Vol(Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′) ≤ 10δ1Area(∂Y
′′) ≤ 10δ1m(g),

which together with the above estimate on the left hand side would give

(1− 2m(g))δ31 ≤ 10δ1m(g),

a contradiction when 0 < m(g) ≪ 1.

Since from the paragraph above, [x′0Tk,l(x
′
0)] ⊂ Y ′′, we estimate

d̂Eucl,Y ′′(x0, y0) ≤ d̂Eucl,Y ′′(x0, x
′
0) + LengthEucl([x

′
0Tk,l(x

′
0)]) + d̂Eucl,Y ′′(Tk,l(x

′
0), y0)

≤ 4δ1 + dEucl(x
′
0, Tk,l(x

′
0)) + 4δ1

≤ dEucl(x0, y0) + 16δ1.

Proposition 3.2.6. For any base point q ∈ Y ′′ and any D > 0,

dpGH((Y
′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩BEucl(q,D), dEucl, q)) ≤ Ψ(m(g)).
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Proof. By Lemma 3.2.3, Y ′′ lies in the 6δ0-neighborhood of Y ′ inside (Y ′′, d̂Eucl,Y ′′). This

clearly implies for any q ∈ Y ′:

dpGH((Y
′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q)) ≤ Ψ(m(g)).

Similarly, since dEucl ≤ d̂Eucl,Y ′′ , Y ′′ lies in the 6δ0-neighborhood of Y ′ in terms of dEucl

and for any q ∈ Y ′:

dpGH((Y
′ ∩BEucl(q,D), dEucl, q), (Y

′′ ∩BEucl(q,D), dEucl, q)) ≤ Ψ(m(g)).

Together with Lemma 3.2.5 and the triangle inequality, we have the conclusion for in

fact any base point q ∈ Y ′′ (using again that Y ′′ lies in the 6δ0-neighborhood of Y ′ inside

(Y ′′, d̂Eucl,Y ′′)).

Next we can construct a subregion in E ⊂Mext by pulling back the subregion constructed

above through the diffeomorphism u. Set

E ′′ := u−1(Y ′′).

For any p ∈ E ′′ and D > 0, denote by B̂g,E′′(p,D) the geodesic ball in (E ′′, d̂g,E′′), that is,

B̂g,E′′(p,D) := {x ∈ E ′′ : d̂g,E′′(p, x) ≤ D}.

Similarly, denote by B̂Eucl,Y ′′(q,D) the geodesic ball in (Y ′′, d̂Eucl,Y ′′).

Lemma 3.2.7. For any base point q ∈ Y ′′ and any D > 0,

dpGH((Y
′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (B̂Eucl,Y ′′(q,D), d̂Eucl,Y ′′ , q)) ≤ Ψ(m(g)).

Proof. From Lemma 3.2.3 and (3.2.9) in the proof of Lemma 3.2.5, for any q, x ∈ Y ′′,

dEucl(q, x) ≤ d̂Eucl,Y ′′(q, x) ≤ dEucl(q, x) + Ψ(m(g)), (3.2.10)

so

B̂Eucl,Y ′′(q,D) ⊂ Y ′′ ∩BEucl(q,D) ⊂ B̂Eucl,Y ′′(q,D +Ψ(m(g))).
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Lemma 3.2.8. For any base point p ∈ E ′′ and any D > 0,

dpGH((B̂g,E′′(p,D), d̂g,E′′ , p), (B̂Eucl,Y ′′(u(p), D), d̂Eucl,Y ′′ ,u(p))) ≤ Ψ(m(g)|D).

Proof. It is enough to show that u gives the desired GH approximation. Under the diffeo-

morphism u, if we still denote the metric (u−1)∗g by g, then

(E ′′, d̂g,E′′ , p) = (Y ′′, d̂g,Y ′′ ,u(p)).

Since |Jacu− Id| ≤ ϵ′, we have

d̂g,Y ′′(x1, x2) ≤ (1 + ϵ′)d̂Eucl,Y ′′(x1, x2) ≤ (1 + ϵ′)2d̂g,Y ′′(x1, x2).

Note that we have taken ϵ = δ0. So for any fixed D > 0, if x1, x2 ∈ B̂Eucl,Y ′′(u(p), D),

|d̂g,Y ′′(x1, x2)− d̂Eucl,Y ′′(x1, x2)| ≤ Ψ(m(g)|D).

From Proposition 3.3.7, Lemma 3.2.7 and Lemma 3.2.8, we immediately have the following.

Lemma 3.2.9. For any p ∈ E ′′ and D > 0,

dpGH((B̂g,E′′(p,D), d̂g,E′′ , p), (Y ′′ ∩BEucl(u(p), D), dEucl,u(p)) ≤ Ψ(m(g)|D).

To compare those metric spaces to the Euclidean 3-space (R3, gEucl), we need the following

lemma, which is a corollary of the fact that Area(∂Y ′′) ≤ Ψ(m(g)).

Lemma 3.2.10. For any q ∈ Y ′′ and D > 0,

dpGH((Y
′′ ∩BEucl(q,D), dEucl, q), (BEucl(0, D), dEucl, 0)) ≤ Ψ(m(g)).

Proof. Under a translation diffeomorphism, we can assume q = 0. By (3.2.10), it suffices to

show that BEucl(q,D) lies in a Ψ(m(g))-neighborhood of Y ′′. If that were not the case, there

would be a µ > 0, independent of m(g), such that for all small enough 0 < m(g) ≪ 1, there
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exists a x ∈ BEucl(q,D) with BEucl(x, µ) ∩ Y ′′ = ∅. But from the isoperimetric inequality, we

should have

Vol(R3 \ Y ′′) ≤ CArea(∂Y ′′)
3
2 ≤ Ψ(m(g)),

which would imply that

ω3µ
3 = Vol(BEucl(x, µ)) ≤ Ψ(m(g)),

a contradiction.

Summarizing above arguments, we have proved the following. Recall that ξ is a fixed

function defined at the begining of this section.

Proposition 3.2.11. Assume (M3, g) is an asymptotically flat 3-manifold with nonnegative

scalar curvature and mass 0 < m(g) ≪ 1. For any end of (M, g), there exists a connected

region E ⊂M containing this end, with smooth boundary, such that

Area(∂E) ≤ m(g)2

ξ(m(g))
,

and there is a harmonic diffeomorphism u : E → Y with Y := u(E) ⊂ R3 such that the

Jacobian satisfies

|Jacu− Id| ≤ Ψ(m(g)).

Moreover, for any base point p ∈ E, any D > 0,

dpGH((B̂g,E(p,D), d̂g,E , p), (BEucl(0, D), dEucl, 0)) ≤ Ψ(m(g)|D),

and Φu(p) ◦ u gives a Ψ(m(g)|D)-pGH approximation, where Φu(p) is the translation diffeo-

morphism of R3 mapping u(p) to 0.

Proof. With the same notations as above, we take E := E ′′ and Y := Y ′′. Notice that by

Lemma 3.2.3, by the fact that |Jacu− Id| ≤ ϵ′ (see (3.1.1)), and by our choice of δ0 and ξ0,

when 0 < m(g) ≪ 1,

Area(∂E) ≤ 2
m(g)2

δ50
= 2

m(g)2

ξ50(m(g))
≤ m(g)2

ξ(m(g))
.

The rest of the statement follows from Lemma 3.2.9 and Lemma 3.3.9.
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Proof of Theorem 1.0.3. Assume (M3
i , gi) is a sequence of asymptotically flat 3-manifolds

with nonnegative scalar curvature and positive mass m(gi) → 0. Assume ξ is any fixed

continuous function as in the statement of Theorem 1.0.3. For any end of Mi, for all large i,

Proposition 3.2.11 gives the existence of a region Ei containing this end, which satisfies

Areagi(∂Ei) ≤
m(gi)

2

ξ(m(gi))
,

and a harmonic diffeomorphism ui : Ei → Yi ⊂ R3 with Yi = ui(Ei).

By Proposition 3.2.11, for any base point pi ∈ Ei, any D > 0, up to a translation

diffeomorphism of R3, we can assume ui(pi) = 0, and then ui is an Ψ(m(gi)|D)-pGH

approximation, and as i→ ∞,

dpGH((B̂gi,Ei(pi, D), d̂gi,Ei , pi), (BEucl(0, D), dEucl, 0)) ≤ Ψ(m(gi)|D) → 0.

In other words,

(Ei, d̂gi,Ei , pi) → (R3, dEucl, 0)

in the pointed Gromov-Hausdorff topology.

We claim that (Ei, d̂gi,Ei , pi) → (R3, dEucl, 0) also in the pointed measured Gromov-

Hausdorff topology. Since the Hausdorff measure induced by d̂gi,Ei is the same as dvolgi , it

suffices to show that for a.e. D > 0,

(ui)♯(dvolgi |B̂gi,Ei (pi,D)) weakly converges to dvolEucl|B(0,D) as i→ ∞. (3.2.11)

By construction and the isoperimetric inequality,

Vol(R3 \ Yi) ≤ Ψ(m(gi)),

and so (Yi ∩BEucl(0, D), dvolEucl) converges weakly to (BEucl(0, D), dvolEucl). Since we have

(by abuse of notations):

|Jacui − Id| ≤ Ψ(m(gi)),

it is now simple to check (3.2.11) using Lemma 3.2.7 and Lemma 3.2.8.

We finish the proof by defining Zi :=Mi \ Ei.
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3.3 GH convergence modulo negligible spikes in

general dimensions

We observe that the metric geometric arguments presented in the previous section are valid

in higher dimensions. In this section, we will prove the following theorem using the same

arguments, which the author hopes will be useful in future studies.

Theorem 3.3.1. Assume that n ≥ 2, and Wi ⊂ Rn is a sequence of smooth bounded domains

whose boundary Σi := ∂Wi consists of smooth closed hypersurfaces such that Hn−1(Σi) → 0,

then for Yi := Rn \ Wi, there exists a sequence of smooth closed subsets Y ′′
i ⊂ Yi such that

Hn−1(∂Y ′′
i ) → 0 and for any base point pi ∈ Y ′′

i ,

(Y ′′
i , pi, d̂Eucl,Y ′′

i
)

pGH−−→ (Rn, 0, d̂Eucl).

Moreover, we have a quantitative version: there exists ε(n) ≪ 1 such that if Hn−1(Σ) ≤ ε(n),

then for the perturbation Y ′′ ⊂ Y , Hn−1(∂Y ′′) ≤ (Hn−1(Σ))1−10−4n−1
, and

dpGH((Y
′′, d̂Y ′′ , p), (Rn, d̂Eucl, 0)) ≤ (Hn−1(Σ))2

−n

.

Proof. Notice that the case when n = 2 is obvious by definition, and the case when n = 3

has been proved in previous section. So we assume that n ≥ 4. In the following, we will

prove the theorem by induction and assume that the conclusion holds for all dimensions less

than or equal to n− 1. For simplicity, we will omit the subindex and all metric tensors are

taken as the Euclidean metric in the following of this section.

We ignore the index i for now. We will find out ε(n) inductively. Firstly take ε(n) ≪ 1

such that 4ε(n)1−(10n)−1 ≤ ε(n − 1). Let ε := Hn−1(Σ) ≤ ε(n) ≪ 1. By the isoperimetric

inequality,

Hn(W) ≤ C(n)Hn−1(Σ)
n

n−1 ≤ C(n)ε
n

n−1 ≤ ε.
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Take δ0 = ε10
−2n−1

, δ1 = ε10
−4n−1

. For any k = (k1, k2, · · · , kn) ∈ Zn, consider the cube Ck(δ1)

defined by

Ck(δ1) := (k1δ1, (k1 + 1)δ1)× · · · × (knδ1, (kn + 1)δ1) ⊂ Rn.

Let Bk(r) be the ball with center the same as Ck(δ1) and radius r. By applying the co-area

formula, we can find r ∈ (3δ1, 3δ1 + δ0) such that W∩ ∂Bk(r) consists of smooth surfaces and

Hn−1(W ∩ ∂Bk(r)) ≤
Hn(W ∩Bk(4δ1))

δ0
. (3.3.1)

Since Hn(Bk(4δ1)) ≥ 16ωnδ
n
1 , where ωn is the Euclidean volume of unit ball in Rn, we know

Hn(W ∩Bk(4δ1)) ≤ Hn(W) ≤ ε≪ δn1 <
1

10
Hn(Bk(4δ1)). (3.3.2)

By the relative isoperimetric inequality [EG15, Theorem 5.11 (ii)],

Hn(W ∩Bk(4δ1)) ≤ C(n)Hn−1(Σ ∩Bk(4δ1))
n

n−1

≤ C(n)ε
1

n−1Hn−1(Σ ∩Bk(4δ1)).

So by (3.3.1),

Hn−1(W ∩ ∂Bk(r)) ≤
C(n)ε

1
n−1

δ0
Hn−1(Σ ∩Bk(4δ1))

= C(n)ε(1−10−2)n−1Hn−1(Σ ∩Bk(4δ1))

≤ Hn−1(Σ ∩Bk(4δ1)).

Then we can smooth the surface (Σ ∩Bk(r)) ∪ (W ∩ ∂Bk(r)) to get a closed embedded

hypersurface Σk ⊂ Bk(4δ1), which coincides with Σ inside Ck(δ1), and which satisfies

Hn−1(Σk) ≤ 2(Hn−1(Σ ∩Bk(4δ1)) +Hn−1(W ∩ ∂Bk(r)))

≤ 4Hn−1(Σ ∩Bk(4δ1)).

(3.3.3)

For t ∈ R, define the plane

Ak,δ1(t) := {(x1, · · · , xn) ∈ Rn : xn = (kn + t)δ1}.
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By definition Ck(δ1) ⊂
⋃

t∈[0,1]Ak,δ1(t).

By the coarea formula, there exists tk ∈ (1
2
, 1
2
+ δ0) such that Ak,δ1(tk) ∩ Σ consists of

(n− 2)-submanifolds and

Hn−2(Ak,δ1(tk) ∩ Σ) ≤ Hn−1(Σ)

δ0δ1

≤ 4ε1−(10n)−1

≤ ε(n− 1).

(3.3.4)

By induction assumption, there is a perturbation Σ̃n−2(tk) ⊂ Ak,δ1(tk) of Σn−2(tk) :=

Ak,δ1(tk) ∩ Σ such that the domain bounded by Σn−2(tk) is inside the domain bounded by

Σ̃n−2(tk),

Hn−2(Σ̃n−2(tk)) ≤ 4Hn−2(Ak,δ1(tk) ∩ Σ), (3.3.5)

and for any two points x, y ∈ Ỹ (tk) := Ak,δ1(tk) \ Z̃(tk), where Z̃(tk) is the domain bounded

by Σ̃n−2(tk) inside Ak,δ1(tk), we have

|d̂Ỹ (tk)
(x, y)− d̂Rn−1(x, y)| ≤ (4ε1−(10n)−1

)2
−(n−1) ≤ 1

8
ε2

−n

, (3.3.6)

if we choose ε(n) small enough depending on n.

Define D′
k as the connected component of Ck(δ1) ∩ Ỹ (tk) with largest Hn−1-measure and

D′′
k := (Ck(δ1)∩Ak,δ1(tk)) \D′

k. By the relative isoperimetric inequality and (3.3.4), we know

that

Hn−1(D′′
k) ≤ C(n)Hn−2(Ak,δ1(tk) ∩ Σk)

n−1
n−2

≤ ε(2n)
−1Hn−2(Ak,δ1(tk) ∩ Σk)

≤ Hn−1(Σk).

(3.3.7)

We can take a ε-net of D′
k and define D̃′

k as the union of D′
k and all almost d̂Ỹ (tk)

-geodesics

connecting points in the ε-net. In this way, for any x, y ∈ D̃′
k, we have a smooth curve

γ ⊂ D̃′
k connecting x and y such that

|LengthEucl(γ)− dEucl(x, y)| ≤ ε+
1

8
ε2

−n ≤ 1

4
ε2

−n

. (3.3.8)
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For simplicity, we still denote D̃′
k by D′

k. Let πk : Rn → Ak,δ1(tk) be the orthogonal

projection. Notice that by comparing Hn−1-measures, D′
k \ πk(Σk) ̸= ∅.

Define

Ck(δ1)
′ := D′

k ∪
(
Ck(δ1) ∩ π−1

k (D′
k \ πk(Σk))

)
.

Lemma 3.3.2. Ck(δ1)
′ is path connected.

Proof. By definition, for any point x ∈ Ck(δ1) ∩ π−1
k (D′

k \ πk(Σk)), the line segment Lx ⊂

Ck(δ1) through x and orthogonal to Ak,δ1(tk) satisfies Lx ∩ D′
k ̸= ∅. Since D′

k is path

connected, Ck(δ1)
′ is also path connected.

Lemma 3.3.3. Hn(Ck(δ1) \Ck(δ1)
′) ≤ 8δ1Hn−1(Σ ∩Bk(4δ1)) ≤ 8ε1+10−4n−1

.

Proof. Since

Hn−1(πk(Σk)) ≤ Hn−1(Σk),

and since by (3.3.7),

Hn−1(D′′
k) ≤ Hn−1(Σk),

we have

Hn(Ck(δ1)) \ Vol(Ck(δ1)
′) ≤ 2δ1Hn−1(Σk)

≤ 8δ1Hn−1(Σ ∩Bk(4δ1)).

(3.3.9)

Clearly by construction,

Ck(δ1)
′ ⊂ Y.

Define

Y ′ := ∪k∈ZnCk(δ1)
′ ⊂ Y.

Notice that when |k| is big enough, one can certainly ensure that Ck(δ1)
′ = Ck(δ1), so that

Y \ Y ′ is a bounded set. Choosing Y slightly bigger, we can assume that ∂Y ∩ Y ′ = ∅.
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For any subset V ⊂ Y , let Vt be the t-neighborhood of V inside (Y, d̂Eucl,Y ) in terms of

the length metric d̂Eucl,Y , i.e.

Vt := {y ∈ Y : ∃z ∈ V such that d̂Eucl,Y (y, z) ≤ t}.

So (Y ′)t is the t-neighborhood of Y ′ inside (Y, d̂Eucl,Y ).

In the following lemma, by modifying some (Y ′)t, we construct a domain with smooth

boundary such that its boundary area is small and it is very close to Y ′ in the Gromov-

Hausdorff topology with respect to a length metric.

Lemma 3.3.4. There exists Y ′′ with smooth boundary such that Y ′ ⊂ Y ′′ ⊂ (Y ′)6δ0,

Hn−1(∂Y ′′) ≤ δ−1
0 Hn−1(∂Y ) ≤ ε1−10−2n−1

,

and Y ′′ is contained in the 6δ0-neighborhood of Y ′ inside Y ′′, with respect to its length metric

d̂Eucl,Y ′′.

Proof. Smoothing the Lipschitz function d̂Eucl,Y (Y
′, ·), we can get a smooth function ϕ : Y →

R such that |ϕ− d̂Eucl,Y (Y
′, ·)| ≤ δ0 and |∇ϕ| ≤ 2 (see for instance [GW79, Proposition 2.1]).

Applying coarea formula to ϕ, we have∫ 4δ0

3δ0

Hn−1(ϕ−1(t) ∩ Y )dt =

∫
{3δ0<ϕ<4δ0}∩Y

|∇ϕ|dvol ≤ 2Hn(Y \ Y ′).

By Lemma 3.3.3, for each k ∈ Z3,

0 ≤ Hn(Ck(δ1))−Hn(C′
k(δ1)) ≤ 8δ1Hn−1(Σ ∩Bk(4δ1)).

Since the number of overlaps of {Bk(4δ1)}k∈Zn is uniformly bounded,

0 ≤ Hn(Y )−Hn(Y ′) ≤ 8δ1
∑
k∈Zn

Hn−1(Σ ∩Bk(4δ1))

≤ C(n)δ1Hn−1(Σ)

≤ C(n)ε1+10−4n−1

.

(3.3.10)
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So we can find a generic regular value t ∈ (3δ0, 4δ0) of ϕ such that ϕ−1(t) is smooth and

Hn−1(ϕ−1(t) ∩ Y ) ≤ C(n)ε1+10−4n−1

δ0
≤ C(n)ε1−10−2n−1+10−4n−1

.

Smoothing (ϕ−1(t) ∩ Y ) ∪ (∂Y ∩ {ϕ < t}) inside Y , we can get a smooth surface S1 with

S1 ⊂ (Y ′)5δ0 \ Y ′ and

Hn−1(S1) ≤ 2(Hn−1(ϕ−1(t) ∩ Y ) +Hn−1(∂Y )) ≤ C(n)ε1−10−2n−1+10−4n−1

.

Denote by Y1 the connected component such that

Y ′ ⊂ Y1 ⊂ (Y ′)5δ0 ⊂ Y and ∂Y1 ⊂ S1. (3.3.11)

At this point, Y1 is close to Y ′ in the Hausdorff topology with respect to d̂Eucl,Y , but

possibly not with respect to its own length metric d̂Eucl,Y1 . To remedy this, choose a finite

subset {xj} consisting of δ0-dense discrete points of (Y1 \ Y ′, d̂Eucl,Y1) and denote by γj ⊂ Y

a smooth curve connecting xj to Y
′ with minimal length with respect to the length metric

d̂Eucl,Y . Then by (3.3.11), γj has length at most 5δ0, and so γj ⊂ (Y ′)5δ0 . By thickening

each γj, we can get thin solid tubes Tj inside δ0-neighborhood of γj with arbitrarily small

boundary area. Let Y2 := Y1 ∪ (∪jTj). By smoothing the corners of Y2, we have a connected

domain Y ′′ with smooth boundary such that

Y ′ ⊂ Y ′′ ⊂ Y2 ⊂ Y ′
6δ0

and

Hn−1(∂Y ′′) ≤ 2Hn−1(S1) ≤ C(n)ε1−10−2n−1+10−4n−1 ≤ δ−1
0 Hn−1(∂Y ).

For any y ∈ Y ′′\Y ′, by our construction, there exists some j such that either d̂Eucl,Y1(y, xj) ≤

δ0 or y ∈ Tj . In each case, there exists a smooth curve σy,j ⊂ Y ′′ connecting y to a point in γj

and Length(σy,j) ≤ δ0. Since Length(γj) ≤ 5δ0, σy,j ∪ γj is a piecewise smooth curve inside

Y ′′ connecting y to Y ′ with length smaller than 6δ0. So inside the length space (Y ′′, d̂Eucl,Y ′′),

Y ′′ is in the 6δ0-neighborhood of Y ′ as desired.
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Let Y ′′ be as in Lemma 3.3.4. Recall that d̂Eucl,Y ′′ is defined as the length metric on Y ′′

induced by gEucl. Since Y
′ ⊂ Y ′′ ⊂ Y , we have dEucl ≤ d̂Eucl,Y ≤ d̂Eucl,Y ′′ .

Lemma 3.3.5. diamd̂Eucl,Y ′′
(Ck(δ1)

′) ≤ (n+ 2)δ1 +
1
4
ε2

−n
.

Proof. For any two points x1, x2 ∈ Ck(δ1)
′, let Lx1 , Lx2 be the line segments inside Ck(δ1)

through x1, x2 and orthogonal to Ak,δ1(tk) respectively. Let x
′
1 = Lx1 ∩D′

k, x
′
2 = Lx2 ∩D′

k.

Then by (3.3.8) we can find a curve γ between x′1, x
′
2 inside D′

k such that

LengthEucl(γ) ≤ dEucl(x
′
1, x

′
2) +

1

4
ε2

−n

.

Consider the curve γ̃ consisting of three parts: the line segment [x1x
′
1] between x1, x

′
1, γ, and

the line segment [x′2x2] between x
′
2, x2. We have γ̃ ⊂ Ck(δ1)

′ ⊂ Y ′, so

d̂Eucl,Y ′′(x1, x2) ≤ LEucl(γ̃) ≤ (n+ 2)δ1 +
1

4
ε2

−n

.

Lemma 3.3.6. For any base point q ∈ Y ′ and any D > 0,

dpGH((Y
′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′ ∩BEucl(q,D), dEucl, q)) ≤

3

4
ε2

−n

.

Proof. Let x0, y0 ∈ Y ′ ∩ BEucl(q,D) be two points and x0 ∈ Ck(δ1)
′, y0 ∈ Cl(δ1)

′ for some

k, l ∈ Zn. Since dEucl ≤ d̂Eucl,Y ′′ , it’s enough to show

d̂Eucl,Y ′′(x0, y0) ≤ dEucl(x0, y0) +
3

4
ε2

−n

. (3.3.12)

Let Tk,l be the translation which maps Ck(δ1) to Cl(δ1). Then by Lemma 3.3.3,

Hn(Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′) ≥Hn(Ck(δ1))− (Hn(Ck(δ1) \Ck(δ1)
′))

− (Hn(Cl(δ1) \Cl(δ1)
′))

≥δ31 − 16ε1+10−4n−1

.

If k = l, then by Lemma 3.3.5, we know that by choosing ε(n) small enough,

d̂Eucl,Y ′′(x0, y0) ≤ (n+ 2)ε10
−4n−1

+
1

4
ε2

−n ≤ dEucl(x0, y0) +
3

4
ε2

−n

.
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Suppose that k ̸= l. For any x ∈ R3, the straight line between x and Tk,l(x) meets the set

Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′ in a subset of total length at most say 10δ1. We claim that there is

at least one point x′0 ∈ Ck(δ1)
′ such that Tk,l(x

′
0) ∈ Cl(δ1)

′ and the line segment [x′0Tk,l(x
′
0)]

between these two points has no intersection with ∂Y ′′. Otherwise, by the coarea formula

and Lemma 3.3.4, we would get

Hn(Tk,l(Ck(δ1)
′) ∩Cl(δ1)

′) ≤ 10δ1Hn−1(∂Y ′′) ≤ 10δ1ε
1−10−2n−1

,

which together with the above estimate on the left hand side would give

δ31 − 16ε1+10−4n−1 ≤ 10δ1ε
1−10−2n−1

,

a contradiction when ε(n) ≪ 1.

Since from the paragraph above, [x′0Tk,l(x
′
0)] ⊂ Y ′′, we estimate

d̂Eucl,Y ′′(x0, y0) ≤ d̂Eucl,Y ′′(x0, x
′
0) + LengthEucl([x

′
0Tk,l(x

′
0)]) + d̂Eucl,Y ′′(Tk,l(x

′
0), y0)

≤ dEucl(x0, y0) + 2(n+ 2)δ1 +
1

2
ε2

−n

≤ dEucl(x0, y0) +
3

4
ε2

−n

.

Proposition 3.3.7. For any base point q ∈ Y ′′ and any D > 0,

dpGH((Y
′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩BEucl(q,D), dEucl, q)) ≤ ε2

−n

.

Proof. By Lemma 3.3.4, Y ′′ lies in the 6δ0-neighborhood of Y ′ inside (Y ′′, d̂Eucl,Y ′′). This

clearly implies for any q ∈ Y ′:

dpGH((Y
′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q)) ≤ 10δ0.

Similarly, since dEucl ≤ d̂Eucl,Y ′′ , Y ′′ lies in the 6δ0-neighborhood of Y ′ in terms of dEucl

and for any q ∈ Y ′:

dpGH((Y
′ ∩BEucl(q,D), dEucl, q), (Y

′′ ∩BEucl(q,D), dEucl, q)) ≤ 10δ0.
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Together with Lemma 3.3.6 and the triangle inequality, we have the conclusion for in

fact any base point q ∈ Y ′′ (using again that Y ′′ lies in the 6δ0-neighborhood of Y ′ inside

(Y ′′, d̂Eucl,Y ′′)).

For any p ∈ Y ′′ and D > 0, denote by B̂Y ′′(p,D) the geodesic ball in (Y ′′, d̂Eucl,Y ′′), that

is,

B̂Y ′′(p,D) := {x ∈ Y ′′ : d̂Eucl,Y ′′(p, x) ≤ D}.

Lemma 3.3.8. For any base point q ∈ Y ′′ and any D > 0,

dpGH((Y
′′ ∩BEucl(q,D), d̂Eucl,Y ′′ , q), (B̂Eucl,Y ′′(q,D), d̂Eucl,Y ′′ , q)) ≤ ε2

−n

.

Proof. From Lemma 3.3.4 and (3.3.12) in the proof of Lemma 3.3.6, for any q, x ∈ Y ′′,

dEucl(q, x) ≤ d̂Eucl,Y ′′(q, x) ≤ dEucl(q, x) +
3

4
ε2

−n

, (3.3.13)

so

B̂Eucl,Y ′′(q,D) ⊂ Y ′′ ∩BEucl(q,D) ⊂ B̂Eucl,Y ′′(q,D +
3

4
ε2

−n

).

To compare those metric spaces to the Euclidean 3-space (R3, gEucl), we need the following

lemma, which is a corollary of the fact that Hn−1(∂Y ′′) ≤ δ−1
1 ε.

Lemma 3.3.9. For any q ∈ Y ′′ and D > 0,

dpGH((Y
′′ ∩BEucl(q,D), dEucl, q), (BEucl(0, D), dEucl, 0)) ≤ ε2

−n

.

Proof. Under a translation diffeomorphism, we can assume q = 0. By (3.3.13), it suffices to

show that BEucl(q,D) lies in a 1
4
ε2

−n
-neighborhood of Y ′′. If that were not the case, there

would be a µ > 1
4
ε2

−n
, and an x ∈ BEucl(q,D) with BEucl(x, µ) ∩ Y ′′ = ∅. But from the

isoperimetric inequality, we have

Hn(R3 \ Y ′′) ≤ C(n)Hn−1(∂Y ′′)
n

n−1 ≤ C(n)ε(1−10−4n−1)· n
n−1 ,
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which would imply that

ωn ·
ε

n
2n

4n
≤ ωnµ

n = Hn(BEucl(x, µ)) ≤ C(n)ε
n

2(n−1) ,

a contradiction when ε(n) ≪ 1.

This concludes the proof of the theorem.
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Chapter 4

Stability for the Penrose inequality

4.1 Capacity of horizon and Green’s function

In this section, we introduce some properties of capacity and Green’s function, which are

known in the literature and will be used later in this paper. Most of this section follows from

[Bra01].

Let’s firstly introduce the capacity of a surface in the special case when it is the horizon

of an asymptotically flat 3-manifold which is harmonically flat at infinity.

Definition 4.1.1. Given a complete, asymptotically flat 3-manifold (M3, g) with a connected

outermost horizon boundary Σ, nonnegative scalar curvature and one harmonically flat end

∞1, the capacity of Σ in (M3, g) is defined by

C(Σ, g) := inf{ 1

2π

∫
M3

|∇φ|2dvolg : φ ∈ C∞(M), φ =
1

2
on Σ, lim

x→∞1

φ(x) = 1}.

From standard theory (c.f. [Bar86]), the infimum in the definition of C(Σ, g) is achieved

by the Green’s function φ ∈ C∞(M3) which satisfies

∆gφ = 0,

φ =
1

2
on Σ,

lim
x→∞1

φ(x) = 1.

(4.1.1)
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By maximum principle, φ(x) ∈ [1
2
, 1) for any x ∈M3. Define the level sets of φ to be

Σφ
t := {x ∈M3 : φ(x) = t}.

Then by Sard’s theorem, Σφ
t is a smooth surface for almost all t ∈ (1

2
, 1). By the co-area

formula,

C(Σ, g) = 1

2π

∫ 1

1
2

∫
Σφ

t

|∇φ|.

For any regular value t ∈ (1
2
, 1), integrating ∆φ = 0 over {1

2
≤ φ ≤ t}, and using Stokes’

theorem, we have ∫
Σ

|∇φ| =
∫
Σφ

t

|∇φ|. (4.1.2)

So

C(Σ, g) = 1

4π

∫
Σ

|∇φ|. (4.1.3)

Since (M3, g) is harmonically flat at infinity, we have the following expansion at infinity of

the Green’s function (c.f. [Bar86]):

φ(x) = 1− C(Σ, g)
|x|

+O

(
1

|x|2

)
as x→ ∞1. (4.1.4)

Now we introduce another definition which is closely related to the capacity of a horizon

surface.

Definition 4.1.2. Given a complete, asymptotically flat 3-manifold (M̄3, ḡ) with multiple

harmonically flat ends and one chosen end ∞1, define

C(ḡ) := inf{ 1

2π

∫
M̄3

|∇ϕ|2dvolḡ : ϕ ∈ Lip(M̄), lim
x→∞1

ϕ(x) = 1, lim
x→{∞k}k≥2

ϕ(x) = 0}.

Similarly the infimum in the definition of C(ḡ) is achieved by the Green’s function ϕ which

satisfies

∆ḡϕ = 0,

lim
x→∞1

ϕ(x) = 1,

lim
x→∞k

ϕ(x) = 0 for all k ≥ 2.

(4.1.5)

56



For a complete asymptotically flat 3-manifold (M3, g) with a connected outermost horizon

boundary Σ, nonnegative scalar curvature and one end ∞1, we can take another copy of

(M3, g) and glue them together along the boundary Σ to get a new metric space (M̄, ḡ). In

general, (M̄, ḡ) is only a Lipschitz manifold with two asymptotically flat ends {∞1,∞2}.

From the proof of [Bra01, Theorem 9], for any δ > 0 small enough, we can smooth out (M̄, ḡ)

and construct a smooth complete 3-manifold (M̃δ, g̃δ) with nonnegative scalar curvature and

two asymptotically flat ends which, in the limit as δ → 0, approaches (M̄, ḡ) uniformly. For

reader’s convenience, we recall the details of [Bra01] in the following.

Let (M3
1 , g), (M

3
2 , g) be the two copies of (M3, g). A first step is to construct a smooth

manifold (c.f. [Bra01, Equation (92)])

(M̃δ, ḡδ) := (M3
1 , g) ⊔ (Σ× (0, 2δ), G) ⊔ (M3

2 , g),

where Σ× {0} and Σ× {2δ} are identified with Σ ⊂ (M3, g), G is a warped product metric

and symmetric about t = δ, and Σ× {δ} ⊂ (Σ× (0, 2δ), G) is totally geodesic. In general,

the scalar curvature of G only satisfies RG ≥ R0 for some constant R0 ≤ 0 independent of δ,

and may not be nonnegative.

Then a second step is to take a conformal deformation of ḡδ to get a new metric with

nonnegative scalar curvature. Define a smooth function Rδ, which equals R0 in Σ× [0, 2δ],

equals 0 for x more than a distance δ from Σ× [0, 2δ], takes values in [R0, 0] everywhere and

symmetric about Σ× {δ}. In particular, Rḡδ(x) ≥ Rδ(x) for any x ∈ M̃δ. Define uδ(x) such

that (c.f. [Bra01, Equation (101)])

(−8∆ḡδ +Rδ(x))uδ(x) = 0,

lim
x→{∞1,∞2}

uδ(x) = 1.
(4.1.6)

Then uδ is a smooth function and satisfies that (c.f. [Bra01, Equation (102)])

1 ≤ uδ(x) ≤ 1 + ϵ(δ)
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where ϵ goes to 0 as δ → 0. Define

g̃δ := u4δ · ḡδ.

The scalar curvature of g̃δ satisfies

Rg̃δ = u−5
δ (Rḡδuδ − 8∆ḡδuδ)

= u−4
δ (Rḡδ −Rδ)

≥ 0.

By definition, limδ→0m(g̃δ) = m(ḡ) and limδ→0 C(g̃δ) = C(ḡ).

To see the relation between C(ḡ) and C(Σ, g), we define the reflection map

Φ :M3
1 ∪Σ M

3
2 →M3

1 ∪Σ M
3
2

such that for any x ∈M3
1 , Φ(x) ∈M3

2 is the same point under the identification M3
1 =M3

2 =

M3, Φ2 = Id and Φ|Σ = Id. If ϕ satisfies (4.1.5), then 1 − ϕ ◦ Φ also satisfies (4.1.5) and

by the uniqueness we have ϕ(x) = 1− ϕ ◦ Φ(x), which implies that ϕ|Σ = 1
2
. So ϕ|M3

1
also

satisfies (4.1.1), which implies that

C(ḡ) = 2C(Σ, g). (4.1.7)

Similarly, we can define the reflection map Φδ : M̃δ → M̃δ and from the equation (4.1.6)

and the fact that ḡδ = ḡδ ◦Φδ,Rδ = Rδ ◦Φδ, we know uδ is also symmetric about Σ×{δ} and

particularly ⟨∇uδ, n⃗⟩ḡδ = 0 on Σ× {δ}, where n⃗ is the normal vector of Σ× {δ} ⊂ (M̃δ, ḡδ).

Thus, g̃δ is symmetric about Σ× {δ} and the mean curvature of Σ× {δ} ⊂ (M̃δ, g̃δ) is

H(Σ×{δ},g̃δ) = u−2
δ H(Σ×{δ},ḡδ) − 2

〈
∇u−2

δ , n⃗
〉
ḡδ
= 0.

Let (Mδ, g̃δ) be one half of (M̃δ, g̃δ) with minimal boundary Σδ := Σ× {δ} and one asymp-

totically flat end. Then (Mδ, g̃δ,Σδ) converges to (M3, g,Σ) uniformly as δ → 0.

Without loss of generality, by applying Proposition 2.0.1, we can assume that (M̃δ, g̃δ) is

also harmonically flat at infinity. In summary, we have the following proposition.
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Proposition 4.1.1. Given a complete asymptotically flat one-ended 3-manifold (M3, g) with

a connected outermost horizon boundary Σ and nonnegative scalar curvature, there is a

sequence of smooth complete 3-manifolds (M̃3
δ , g̃δ), which have nonnegative scalar curvature

and two harmonically flat ends, and are symmetric about a minimal surface Σδ ⊂ (M̃3
δ , g̃δ),

such that (M̃δ, g̃δ) → (M̄, ḡ) and (Mδ, g̃δ) → (M, g) uniformly as δ → 0, where (M̄, ḡ) is the

doubling of (M, g) along the boundary Σ, and (Mδ, g̃δ) is one half of (M̃δ, g̃δ) with minimal

boundary Σδ.

To conclude this section, we give a remark about the relations between the mass, capacity

and boundary area of the outermost horizon. Let’s briefly recall Bray’s proof of the Penrose

inequality in [Bra01]. Given a complete smooth 3-manifold (M3, g0) with a harmonically

flat end, nonnegative scalar curvature, an outermost minimizing horizon Σ0 of total area A0

and total mass m0. Then for all t ≥ 0, we can construct a continuous family of conformal

metrics gt on M
3 which are asymptotically flat with nonnegative scalar curvature and total

mass m(t). Let Σ(t) be the outermost minimal enclosure of Σ0 in (M3, gt). Then Σ(t) is

a smooth outermost horizon in (M3, gt) with area A(t) being a constant function about t.

It was shown that m(t) is decreasing. And as t→ ∞, (M3, gt) approaches a Schwarzschild

manifold (R3 \ {0}, gsc) with total mass limt→∞m(t) =
√

A0

16π
. In particular, m0 ≥

√
A0

16π
,

which proves the Penrose inequality.

If we assume that m0 −
√

A0

16π
≤ ε ≪ 1, then the total variation of m(t) is bounded by

ε. From [Bra01, Section 7], we know that for a.e. t, m′(t) = 2(2C(Σ(t), gt)−m(t)) (notice

that our definition of capacity differs by a scale). Then we can choose a small perturbation,

say tε ∈ (0,
√
ε) so that m(tε) − 2C(Σ(tε), gtε) ≤ 1

2

√
ε ≪ 1. And as ε → 0, gtε approaches

uniformly to g0. In particular, Areagtε (Σtε) = Areag0(Σ0) and |m(gtε)−m(g0)| ≤ Ψ(ε).
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4.2 Integral estimate and weighted volume comparison

In this and the following section, we assume that (M̃3, g) is a complete, asymptotically

flat 3-manifold with two harmonically flat ends {∞1,∞2} and nonnegative scalar curvature

obtained as in Proposition 4.1.1. In particular, the topology of M̃3 is R3 \ {0}, and there is a

minimal surface Σ ⊂ (M̃3, g) such that g is symmetric about Σ. Let (M3, g) be the half of

(M̃3, g) which contains the end ∞1 and has minimal boundary Σ. So Σ is diffeomorphic to a

2-sphere, M3 is diffeomorphic to R3 \B(1), and (M̃3, g) = (M3, g)∪Σ (M3,′, g), where we use

M ′ to denote a copy of M containing the other end ∞2.

Let f(x) be the solution to (4.1.5) on (M̃3, g), that is

∆gf = 0,

lim
x→∞1

f(x) = 1,

lim
x→∞2

f(x) = 0.

(4.2.1)

Then f is a smooth function satisfying 0 < f < 1 and the following expansion at infinity (c.f.

[Bar86; Bra01])

f(x) = 1− c1
|x|

+O

(
1

|x|2

)
as x→ ∞1,

f(x) =
c2
|x|

+O

(
1

|x|2

)
as x→ ∞2,

(4.2.2)

where ck are positive constants for k = 1, 2. Moreover, for some τ ∈ (0, 1),

∂jf(x) =
c1
|x|2

· x
j

|x|
+O

(
1

|x|2+τ

)
,

∂j∂kf(x) =
c1δjk
|x|3

− 3c1
|x|3

· x
jxk

|x|2
+O

(
1

|x|3+τ

)
.

(4.2.3)

By the symmetry of g̃ about Σ, we know that on (M3, g), f satisfies (4.1.1), that is

∆gf = 0,

f =
1

2
on Σ,

lim
x→∞1

f(x) = 1.

(4.2.4)
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So by (4.1.3) and (4.1.4),

c1 = C(Σ, g) = 1

4π

∫
Σ

|∇f |. (4.2.5)

Similarly, on (M ′, g), 1− f also satisfies (4.1.1), so

c2 = C(Σ, g) = c1. (4.2.6)

Since f is a proper smooth map, by Sard’s theorem, the regular values of f is an open

dense subset of [1
2
, 1). For any regular value t ∈ (1

2
, 1), we define

Mt := {1
2
≤ f ≤ t}, Σt := {f = t}.

Notice that by maximum principle, a regular level set Σt is connected and separates Σ from

∞1. In particular, Σt is a 2-sphere.

Our main goal in this section is to prove the following quantitative integral estimate. In

the proof, we will use the technique of integration over level sets of f , as well as a comparison

lemma for weighted volumes (c.f. Lemma 4.2.3).

Proposition 4.2.1. We have the following integration inequality for the Green’s function f

on (M3, g):

8π·m(g)2 − (2C(Σ, g))2

m(g)2
≥∫

M3

(
|∇2f − f−1(1− f)−1(2f − 1)|∇f |2(g − 3ν ⊗ ν)|2

|∇f |
+Rg|∇f |

)
dvolg,

where ν = ∇f
|∇f | , and the integral is taken over the regular set of f .

Proof. We first smooth |∇f | by defining for any ϵ > 0,

ϕϵ :=
√

|∇f |2 + ϵ.

If Σt is a regular level set of f , then the Gauss-Codazzi equation implies that

Rg − 2Ric (ν, ν) = RΣt + |II|2 −H2,
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where ν = ∇f
|∇f | and II =

∇2
Σt

f

|∇f | , H = trΣtII are the second fundamental form and mean

curvature of Σt in (M3, g) respectively. So

(Rg −RΣt)|∇f |2 = 2Ric(∇f,∇f) + |∇2f |2 − 2|∇|∇f ||2

− (∆f)2 + 2∆f · ∇2f(ν, ν)

= 2Ric(∇f,∇f) + |∇2f |2 − 2|∇|∇f ||2,

(4.2.7)

where we used the equation ∆f = 0. Together with the Bochner formula

∆|∇f |2 = 2|∇2f |2 + 2 ⟨∇∆f,∇f⟩+ 2Ric(∇f,∇f),

we have

∆|∇f |2 = |∇2f |2 + 2|∇|∇f ||2 + (Rg −RΣt)|∇f |2.

So at any point on a regular level set Σt, we can compute

∆ϕϵ =
1

2
ϕ−1
ϵ ∆|∇f |2 − 1

4
ϕ−3
ϵ ||∇|∇f |2|2

=
1

2
ϕ−1
ϵ

(
|∇2f |2 + (Rg −RΣt)|∇f |2

)
+

ϵ

ϕ3
ϵ

|∇|∇f ||2

≥ 1

2
ϕ−1
ϵ

(
|∇2f |2 + (Rg −RΣt)|∇f |2

)
.

Notice that the mean curvature of Σt is

HΣt =
∆f −∇2f(ν, ν)

|∇f |
= −∇2f(ν, ν)

|∇f |
.

Taking integration on Mt and using integration by parts and co-area formula, we have∫
Σt

⟨∇ϕϵ, ν⟩ ≥
1

2

∫
Mt

ϕ−1
ϵ

(
|∇2f |2 +Rg|∇f |2

)
− 1

2

∫ t

1
2

∫
Σs

RΣs

|∇f |
ϕϵ

ds, (4.2.8)

where we have used the fact that
∫
Σ
⟨∇ϕϵ, ν⟩ = −

∫
Σ

HΣ|∇f |2
ϕϵ

= 0 since HΣ = 0.

Define the tensor

T := ∇2f − f−1(1− f)−1(2f − 1)|∇f |2(g − 3ν ⊗ ν).
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Then

1

2
ϕ−1
ϵ |∇2f |2 = 1

2
ϕ−1
ϵ |T |2 − 3ϕ−1

ϵ f−2(1− f)−2(2f − 1)2|∇f |4

− 3ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f).

(4.2.9)

Notice that

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

=
1

2
ϕ−1
ϵ f−1(1− f)−1(2f − 1)

〈
∇|∇f |2,∇f

〉
=

1

2
div
(
|∇f |2 · ϕ−1

ϵ f−1(1− f)−1(2f − 1)∇f
)

− 1

2
|∇f |2div

(
ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇f

)
=

1

2
div
(
|∇f |2 · ϕ−1

ϵ f−1(1− f)−1(2f − 1)∇f
)

+
1

2

|∇f |2

ϕ2
ϵ

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

− 1

2
ϕ−1
ϵ f−2(1− f)−2(2f − 1)2|∇f |4 − ϕ−1

ϵ f−1(1− f)−1|∇f |4

=
1

2
div
(
|∇f |2 · ϕ−1

ϵ f−1(1− f)−1(2f − 1)∇f
)

+
1

2
ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

− 1

2

ϵ

ϕ2
ϵ

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

− 1

2
ϕ−1
ϵ f−2(1− f)−2(2f − 1)2|∇f |4 − ϕ−1

ϵ f−1(1− f)−1|∇f |4,

so

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

= div
(
|∇f |2 · ϕ−1

ϵ f−1(1− f)−1(2f − 1)∇f
)

− ϵ

ϕ2
ϵ

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

− ϕ−1
ϵ f−2(1− f)−2(2f − 1)2|∇f |4 − 2ϕ−1

ϵ f−1(1− f)−1|∇f |4.

(4.2.10)
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Substituting (4.2.10) into (4.2.9), we have

1

2
ϕ−1
ϵ |∇2f |2 = 1

2
ϕ−1
ϵ |T |2 − 3div

(
|∇f |2ϕ−1

ϵ f−1(1− f)−1(2f − 1)∇f
)

+ 6ϕ−1
ϵ f−1(1− f)−1|∇f |4

+
3ϵ

ϕ2
ϵ

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f).

(4.2.11)

So (4.2.8) is equivalent to

∫
Σt

⟨∇ϕϵ, ν⟩ ≥
1

2

∫
Mt

ϕ−1
ϵ

(
|T |2 +Rg|∇f |2

)
− 1

2

∫ t

1
2

∫
Σs

RΣsds

− 3

∫
Σt

ϕ−1
ϵ f−1(1− f)−1(2f − 1)|∇f |3 + 6

∫
Mt

ϕ−1
ϵ f−1(1− f)−1|∇f |4

+

∫
Mt

3ϵ

ϕ2
ϵ

ϕ−1
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

+
1

2

∫ t

1
2

∫
Σs

RΣs ·
ϵ

ϕ2
ϵ + ϕϵ|∇f |

ds.

(4.2.12)

For any regular value t of f , define

hϵ(t) :=

∫
Σt

ϕϵ|∇f |.

Notice that by co-area formula, integration by parts and ∆f = 0,

∫ t

1
2

∫
Σs

⟨∇ϕϵ, ν⟩ ds =
∫
Mt

⟨∇ϕϵ,∇f⟩

=

∫
Σt

ϕϵ|∇f | −
∫
Σ

ϕϵ|∇f |.

So hϵ(t) can be defined for any t ∈ [1
2
, 1) and it is a Lipschitz function with

h′ϵ(t) =

∫
Σt

⟨∇ϕϵ, ν⟩ for a.e. t ∈ (
1

2
, 1).
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Together with Gauss-Bonnet formula, we can rewrite (4.2.12) as

h′ϵ(t) ≥
1

2

∫
Mt

ϕ−1
ϵ

(
|T |2 +Rg|∇f |2

)
− 4π(t− 1

2
)− 3(2t− 1)

t(1− t)

∫
Σt

ϕϵ|∇f |+ 6

∫
Mt

f−1(1− f)−1ϕϵ|∇f |2

+ 3ϵ

∫
Σt

ϕ−1
ϵ f−1(1− f)−1(2f − 1)− 6ϵ

∫
Mt

ϕ−1
ϵ f−1(1− f)−1|∇f |2

+ 3ϵ

∫
Mt

ϕ−3
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

+
ϵ

2

∫ t

1
2

∫
Σs

RΣs

ϕ2
ϵ + ϕϵ|∇f |

ds

≥ 1

2

∫
Mt

ϕ−1
ϵ

(
|T |2 +Rg|∇f |2

)
− 4π(t− 1

2
)− 3(2t− 1)

t(1− t)
hϵ(t) + 6

∫ t

1
2

hϵ(s)

s(1− s)
ds

− 6ϵ

∫
Mt

ϕ−1
ϵ f−1(1− f)−1|∇f |2

+ 3ϵ

∫
Mt

ϕ−3
ϵ f−1(1− f)−1(2f − 1)∇2f(∇f,∇f)

+
ϵ

2

∫ t

1
2

∫
Σs

RΣs

ϕ2
ϵ + ϕϵ|∇f |

ds.

(4.2.13)

Using (4.2.3), |∇f | = c1
|x|2 +O( 1

|x|3 ), |∇
2f | = O( 1

|x|3 ), and (4.1.2), we notice that

ϵ

∫
Mt

ϕ−1
ϵ f−1(1− f)−1|∇f |2 ≤ 2

√
ϵ

∫
Mt

(1− f)−1|∇f |2

= 2
√
ϵ

∫ 1

1
2

1

s(1− s)

∫
Σs

|∇f |ds

= 16πC(Σ, g)
√
ϵ

∫ t

1
2

1

1− s
ds

≤ C(g)
√
ϵ · log 1

1− t
,

ϵ

∫
Mt

ϕ−3
ϵ f−1(1− f)−1(2f − 1)|∇2f(∇f,∇f)| ≤ C

√
ϵ

∫
Mt

(1− f)−1|∇2f |

≤ C(g)
√
ϵ · 1

1− t
,

and by (4.2.7), |RΣt| = O((1− t)2), so

ϵ

∫ t

1
2

∫
Σs

|RΣs|
ϕ2
ϵ + ϕϵ|∇f |

ds ≤ C(g)
√
ϵ · 1

1− t
.

65



Thus for a.e. t ∈ (1
2
, 1),

h′ϵ(t) ≥
1

2

∫
Mt

ϕ−1
ϵ

(
|T |2 +Rg|∇f |2

)
− 4π(t− 1

2
)− 3(2t− 1)

t(1− t)
hϵ(t) + 6

∫ t

1
2

hϵ(s)

s(1− s)
ds− C(g)

√
ϵ

1− t
.

(4.2.14)

For any regular value t ∈ (1
2
, 1) of f , as in the proof of [Bra+22, Theorem 1.2], we can divide

the integrals into two disjoint parts such that one is the integral over preimage of an open set

containing the critical values of f , then letting ϵ→ 0 and using Sard’s theorem, we can have∫
Σt

⟨∇|∇f |, ν⟩ ≥ 1

2

∫
Mt

1

|∇f |
(
|T |2 +Rg|∇f |2

)
− 4π(t− 1

2
)− 3(2t− 1)

t(1− t)

∫
Σt

|∇f |2 + 6

∫ t

1
2

1

s(1− s)

∫
Σs

|∇f |2ds.

Choose a sequence of regular values ti → 1. Notice that by (4.2.3),

lim
ti→1

∫
Σti

⟨∇|∇f |, ν⟩ = lim
ti→1

|∇2f(ν, ν)|
|∇f |

= lim
|x|→∞

2c1
|x|3
c1
|x|2

= 0,

and

lim
ti→1

3(2ti − 1)

ti(1− ti)

∫
Σti

|∇f |2 = 12πc1 lim
ti→1

|∇f |
1− ti

= 0.

So we have the following global integral inequality:

Lemma 4.2.2.

2π ≥ 1

2

∫
M

1

|∇f |
(
|T |2 +Rg|∇f |2

)
+ 6

∫
M

|∇f |3

f(1− f)
. (4.2.15)

It remains to estimate 2π − 6
∫
M

|∇f |3
f(1−f)

.

For any t ∈ [1
2
, 1], define

Hϵ(t) :=

∫ t

1
2

s(1− s)

(
1− hϵ(s)

4πs2(1− s)2

)
ds.

Then Hϵ ∈ W 2,∞, and

H′
ϵ(t) = t(1− t)− hϵ(t)

4πt(1− t)
,

H′′
ϵ (t) = 1− 2t− h′ϵ(t)

4πt(1− t)
− (2t− 1)hϵ(t)

4πt2(1− t)2
.
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Notice that

Hϵ(
1

2
) = 0, H′

ϵ(
1

2
) =

1

4
− 1

π

∫
Σ

|∇f |
√

|∇f |2 + ϵ =: aϵ.

So (4.2.14) implies that

C ′√ϵ
(1− t)2

≥ H′′
ϵ (t) +

2(2t− 1)

t(1− t)
H′

ϵ(t)−
6

t(1− t)
Hϵ

+
1

8πt(1− t)

∫
Mt

ϕ−1
ϵ

(
|T |2 +Rg|∇f |2

)
≥ H′′

ϵ (t) +
2(2t− 1)

t(1− t)
H′

ϵ(t)−
6

t(1− t)
Hϵ,

(4.2.16)

where we have used that Rg ≥ 0 in the last inequality.

Consider the solution U of the equation

U ′′(t) +
2(2t− 1)

t(1− t)
U ′(t)− 6

t(1− t)
U(t) = C ′√ϵ

(1− t)2
, (4.2.17)

satisfying initial conditions

U(1
2
) = Hϵ(

1

2
), U ′(

1

2
) = H′

ϵ(
1

2
).

A general solution to (4.2.17) is given by

U(t) = −C
′√ϵ
18

(
6t3 log

1− t

t
+ 6t2 + 3t− 1

)
+ α1

(
3t2 − 3t+ 1

)
+ α2(1− t)3.

Since

U ′(t) = −C
′√ϵ
18

(
18t2 log

1− t

t
− 6t3

1− t
− 6t2 + 12t+ 3

)
+ 3α1(2t− 1)− 3α2(1− t)2,

we know

U(1
2
) = −C

′√ϵ
9

+
1

4
α1 +

1

8
α2 = 0

U ′(
1

2
) = −C

′√ϵ
3

− 3

4
α2 = aϵ,

i.e.

α1 =
2C ′√ϵ

3
+

2aϵ
3
, α2 = −4C ′√ϵ

9
− 4aϵ

3
.
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Then from ODE comparison, for any t ∈ (1
2
, 1), we have

Hϵ(t) ≤ U(t),

i.e.

Hϵ(t) ≤
(
2C ′√ϵ

3
+

2aϵ
3

)(
3t2 − 3t+ 1

)
−
(
4C ′√ϵ

9
+

4aϵ
3

)
(1− t)3

− C ′√ϵ
18

(
6t3 log

1− t

t
+ 6t2 + 3t− 1

)
.

(4.2.18)

For any fixed t ∈ (1
2
, 1), since by definition,

Hϵ(t) =
1

2
t2 − 1

3
t3 − 1

12
− 1

4π

∫
Mt

1

f(1− f)
|∇f |2

√
|∇f |2 + ϵ,

which is a strictly increasing function as ϵ→ 0+. Since (4.2.15) shows that Hϵ(t) is always

bounded, by monotone convergence theorem, we have

lim
ϵ→0

Hϵ(t) =
1

2
t2 − 1

3
t3 − 1

12
− 1

4π

∫
Mt

|∇f |3

f(1− f)
.

Together with (4.2.18), we have proved the following weighted volume comparison.

Lemma 4.2.3. For any t ∈ (1
2
, 1),

1

2
t2 − 1

3
t3 − 1

12
− 1

4π

∫
Mt

|∇f |3

f(1− f)
≤ 2a0

3
(3t2 − 3t+ 1)− 4a0

3
(1− t)3, (4.2.19)

where a0 =
1
4
− 1

π

∫
Σ
|∇f |2.

Taking t→ 1, we have

1

12
− 1

4π

∫
M

|∇f |3

f(1− f)
≤ 2a0

3
,

which implies that

2π − 6

∫
M

|∇f |3

f(1− f)
≤ 16

(
π

4
−
∫
Σ

|∇f |2
)
.

Together with (4.2.15), we have the following lemma.
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Lemma 4.2.4. ∫
M

1

|∇f |
(
|T |2 +Rg|∇f |2

)
≤ 32

(
π

4
−
∫
Σ

|∇f |2
)
. (4.2.20)

By the Hölder inequality and the Penrose inequality,(∫
Σ

|∇f |
)2

≤
∫
Σ

|∇f |2 · Area(Σ)

≤ 16πm(g)2
∫
Σ

|∇f |2.

Since C(Σ, g) = 1
4π

∫
Σ
|∇f |, we have∫

Σ

|∇f |2 ≥ πC(Σ, g)2

m(g)2
,

i.e.

32

(
π

4
−
∫
Σ

|∇f |2
)

≤ 8π

(
1−

(
2C(Σ, g)
m(g)

)2
)
.

This completes the proof.

Notice that from (4.2.20), we also have∫
Σ

|∇f |2 ≤ π

4
. (4.2.21)

Together with Hölder inequality, we have the following lower bound on horizon area:

Area(Σ) ≥ 64πC(Σ, g)2. (4.2.22)

Using Penrose inequality, we have the following mass-area-capacity inequality:

Proposition 4.2.5.

16π(2C(Σ, g))2 ≤ Area(Σ) ≤ 16πm(g)2. (4.2.23)

Applying Proposition 4.2.1 to 1 − f on (M ′, g), we also have the following integration

inequality:

8π((m(g)2 − (2C(Σ, g))2)
m(g)2

≥∫
M ′

(
| − ∇2f − (1− f)−1f−1(1− 2f)|∇f |2(g − 3ν ⊗ ν)|2

|∇f |
+Rg|∇f |

)
dvolg.
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So the following integration inequality holds on (M̃, g) :

8π((m(g)2 − (2C(Σ, g))2)
m(g)2

≥∫
M̃

(
|∇2f − (1− f)−1f−1(2f − 1)|∇f |2(g − 3ν ⊗ ν)|2

|∇f |
+Rg|∇f |

)
dvolg.

(4.2.24)

We can introduce an additional function ρ(x) to simplify above estimate. Using (2.0.7),

for m := m(g), we define ρ : (M, g) → [0,∞) by

ρ(x) := ρm(f(x)). (4.2.25)

Then by (2.0.8),

um(ρ(x)) =
m

2
· 1

f(1− f)
,

and by (2.0.2),

u′m(ρ(x)) = 2f(x)− 1.

So

∇ρ = m

2
(1− f)−2f−2∇f,

and

T =
m

2u2m(ρ(x))

(
∇2ρ− u′m(ρ(x))

um(ρ(x))
|∇ρ|2(g − ν ⊗ ν)

)
.

Equivalently, we can rewrite the integration inequality in Proposition 4.2.1 by

8π((m(g)2 − (2C(Σ, g))2)
m(g)2

≥∫
M3

(
m

2
·
|∇2ρ− u′

m

um
|∇ρ|2(g − ν ⊗ ν)|2

u2m|∇ρ|
+

m

2u2m
Rg|∇ρ|

)
dvolg.

(4.2.26)

We also notice that by (4.2.2), as x→ ∞1,

|∇ρ| → m

2C(Σ, g)
. (4.2.27)
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At any regular point x ∈M ,

|∇|∇ρ|2| ≤ 2|∇ρ| · |∇2ρ(ν, ·)|

= 2|∇ρ| · |(∇2ρ− u′m
um

|∇ρ|2(g − ν ⊗ ν))(ν, ·)|.
(4.2.28)

If Rg ≥ 0 and m(g) ≥ m0 > 0, using (4.2.26), we have∫
M

|∇|∇ρ|2|2

u2m|∇ρ|3
≤ C · (m(g)2 − (2C(Σ, g))2),

or equivalently, ∫
M

|∇ ((1− f)−4f−4|∇f |2) |2

(1− f)−8f−8|∇f |3
≤ C · (m(g)2 − (2C(Σ, g))2). (4.2.29)

Applying same arguments to 1− f on (M ′, g), we have∫
M ′

|∇ ((1− f)−4f−4|∇f |2) |2

(1− f)−8f−8|∇f |3
≤ C · (m(g)2 − (2C(Σ, g))2). (4.2.30)

Taking sum of (4.2.29) and (4.2.30), we have proved the following proposition.

Proposition 4.2.6. Let f be a solution to (4.1.5) on (M̃, g), where (M̃, g) is a two-ended

asymptotically flat 3-manifolds obtained as in Proposition 4.1.1, and assume m(g) ≥ m0 > 0,

then there exists a uniform constant C depending only on m0 such that the following integration

inequality holds:∫
M̃

|∇
(
(1− f)−4f−4|∇f |2g

)
|2g

(1− f)−8f−8|∇f |3g
dvolg ≤ C · (m(g)2 − (2C(Σ, g))2), (4.2.31)

and

lim
x→∞1

(1− f)−2f−2|∇f |g = lim
x→∞2

(1− f)−2f−2|∇f |g =
1

C(Σ, g)
. (4.2.32)

4.3 Harmonic coordinate for conformal metric

Let f be the harmonic function defined by (4.2.1) on (M̃3, g). We consider the conformal metric

h := f 4g. Then on the end ∞2, since g is harmonically flat, we have hij(x) = f 4(x)V 4(x)δij,
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where V (x) is a positive bounded δ-harmonic function. So on the end ∞2, h is conformal to a

punctured ball with the conformal factor (fV )4(x), where (fV )(x) is a bounded δ-harmonic

function in the punctured ball. Hence, by the removable singularity theorem, fV can be

extended to the whole ball, which together with the expansion (4.2.2) and (2.0.9) implies

that h can be extended smoothly over the one point compactification M̃∗ := M̃ ∪ {∞2}.

Moreover, by standard computations, (M̃∗, h) also has nonnegative scalar curvature and has

a single harmonically flat end ∞1 with ADM mass m(h) = m(g)− 2C(Σ, g) ≥ 0 (c.f. [Bra01,

Equation (84)]).

In the following, we assume 0 ≤ m(h) ≪ 1, |m(g) −m0| ≪ 1 for a fixed m0 > 0 and

follow the arguments in [DS23] to construct a harmonic coordinate map, which is an almost

isometry into R3.

For g-harmonic function f , since |∇f |2g = f 4|∇f |2h and dvolg = f−6dvolh, (4.2.31) is

equivalent to ∫
M̃∗

|∇ ((1− f)−4|∇f |2h) |2h
(1− f)−8|∇f |3h

dvolh ≤ C ·m(h). (4.3.1)

Notice that we also have ∫
M̃∗

f−2|∇f |2hdvolh = 4πC(Σ, g). (4.3.2)

Let {xj}3j=1 denote the asymptotically flat coordinate system of the end ∞1. We firstly

solve the harmonic coordinate functions uj, for each j ∈ {1, 2, 3}, such that

∆hu
j = 0,

|uj(x)− xj| = o(|x|1−σ) as x→ ∞1,

(4.3.3)

where σ > 1
2
is the order of the asymptotic flatness. Denote by u the resulting harmonic map

u := (u1, u2, u3) : (M̃∗, h) → R3.

For any fixed small 0 < ϵ≪ 1, by [DS23], we know that there exists a connected region

E1 ⊂ (M̃∗, h) containing ∞1, with smooth boundary, such that

Area(∂E1) ≤ m(h)2−ϵ,
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and u : E1 → Y1 := u(E1) ⊂ R3 is a diffeomorphism with the Jacobian satisfying

|Jacu− Id| ≤ Ψ(m(h)),

and under the identification by u, the metric tensor satisfies
3∑

j,k=1

(hjk − δjk)
2 ≤ m(h)2ϵ.

Now we modify E1 to get a subset such that f is locally uniformly Lipschitz. For this

purpose, we denote by ag :=
m(g)

2C(Σ,g)
≥ 1, and define P : M̃∗ → [0,∞) by

P (x) :=

(
m(g)2

4
(1− f)−4|∇f |2h − a2g

)2

.

By (4.2.32), limx→∞1 P (x) = limx→∞2 P (x) = 0. Notice that |ag − 1| ≪ 1.

If x is a regular point of f such that P (x) ≤ m(h)2ϵ and f(x) ≤ 1−m(h)ϵ, then

|∇P |h(x) ≤ 2
√
6m(h)ϵ · m(g)2

4
|∇
(
(1− f)−4|∇f |2h

)
|h

= 2
√
6m(h)ϵ · m(g)2

4

|∇ ((1− f)−4|∇f |2h) |h
(1− f)−4|∇f |

3
2
h

· (1− f)−3|∇f |
3
2
h · (1− f)−1

≤ C · |∇ ((1− f)−4|∇f |2h) |h
(1− f)−4f |∇f |

3
2
h

,

(4.3.4)

which together with (4.3.1) implies that∫
{P≤m(h)2ϵ}∩{f≤1−m(h)ϵ}

|∇P |2h ≤ Cm(h). (4.3.5)

By the co-area formula, we have∫ m(h)2ϵ

0

Areah({P = s} ∩ {f ≤ 1−m(h)ϵ})ds

=

∫
{P≤m(h)2ϵ}∩{f≤1−m(h)ϵ}

|∇P |hdvolh

≤ Cm(h)
1
2 ·
(
Volh({P ≤ m(h)2ϵ} ∩ {f ≤ 1−m(h)ϵ})

) 1
2 .

Since

Volh({P ≤ m(h)2ϵ} ∩ {f ≤ 1−m(h)ϵ}) ≤ C

∫
{f≤1−m(h)ϵ}

(1− f)−4|∇f |2hdvolh

≤ Cm(h)−4ϵ

∫
M̃∗

f−2|∇f |2hdvolh

≤ Cm(h)−4ϵ,
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where we used (4.3.2) in the last inequality, for a generic sϵ ∈ (0,m(h)2ϵ), we have

Areah({P = sϵ} ∩ {f ≤ 1−m(h)ϵ}) ≤ Cm(h)
1
2
−4ϵ.

Define the region E2 to be the one of the connected components of E1 ∩ {P ≤ sϵ} ∩ {f ≤

1−m(h)ϵ} with biggest volume. Then

Area(∂E2 ∩ {f ≤ 1−m(h)ϵ}) ≤ Cm(h)
1
2
−4ϵ.

By co-area formula and a perturbation argument, we can assume that {f = 1−m(h)ϵ} is a

smooth surface and ∂E2 ∩ {f = 1−m(h)ϵ} consists of smooth curves whose total length is

smaller than m(h)
1
4 . Also by a perturbation we can assume that ∂E2 ∩ {f < 1−m(h)ϵ} is a

smooth surface.

Since Area(Σ) ≥ 16π(2C(Σ, g))2 ≥ A0 for a uniform A0 > 0, Σ ∩ E2 ̸= ∅. We can take a

base point p ∈ Σ ∩ E2. For all 0 < m(h) ≪ 1, we claim that

B̂h,E2(p, 10m(h)−
ϵ
2 ) ⊂ {f < 1−m(h)ϵ}.

Otherwise, if there exists x ∈ B̂h,E2(p, 10m(h)−
ϵ
2 ) such that f(x) = 1 −m(h)ϵ, then there

exists a curve γ ⊂ E2 such that γ(0) = p, γ(1) = x, and Lengthh(γ) ≤ 10m(h)−
ϵ
2 . But by

definition of E2, we have

(1− f(x))−1 ≤ (1− f(p))−1 +

∫
γ

(1− f)−2|∇f |h

≤ 2 + C ·m(h)−
ϵ
2 ,

which is a contradiction.

For all 0 < m(h) ≪ 1, we can apply the same arguments of [DS23, Section 4] to

B̂h,E2(p, 10m(h)−
ϵ
2 ), and as a result, we can find a smooth domain E such that Area(∂E) ≤

Cm(h)
1
2
−4ϵ, the induced length metric of h on E is almost the same as Euclidean metric, and

B̂h,E(p,m(h)−
ϵ
2 ) ⊂ E2. In summary, we have the following proposition.
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Proposition 4.3.1. There exists a connected region E ⊂ (M̃∗, h) containing ∞1, with smooth

boundary, such that

Area(∂E) ≤ Ψ(m(h)),

and u : E → Y := u(E) ⊂ R3 is a diffeomorphism with the Jacobian satisfying

|Jacu− Id| ≤ Ψ(m(h)),

and under the identification by u, the metric tensor satisfies

3∑
j,k=1

(hjk − δjk)
2 ≤ Ψ(m(h)).

For any base point p ∈ E ∩ Σ and any fixed D > 0,

dpGH

(
(B̂h,E(p,D), d̂h,E , p), (BEucl(0, D), dEucl, 0)

)
≤ Ψ(m(h)|D),

and Φu(p) ◦ u gives a Ψ(m(h)|D)-pGH approximation, where Φu(p) is the translation diffeo-

morphism of R3 mapping u(p) to 0.

Moreover, ∀x ∈ B̂h,E(p,D), for all 0 < m(h) ≪ 1, f(x) ≤ 1− 1
C·D and

a2g −Ψ(m(h)|D) ≤ m(g)2

4
(1− f)−4|∇f |2h ≤ a2g +Ψ(m(h)|D). (4.3.6)

4.4 W 1,2-convergence of elliptic equations

Assume that (M̃3
i , gi) is a sequence of complete asymptotically flat 3-manifolds obtained as

in Proposition 4.1.1 with m(gi) − 2C(Σi, gi) = εi → 0, where Σi ⊂ (M̃3
i , gi) is the minimal

surface such that (M̃3
i , gi) is symmetric about Σi, and m(gi) → m0 > 0. Notice that from

(4.2.23), |Area(Σi) − 16πm2
0| → 0, and particularly Area(Σi) ≥ A0 > 0 for some uniform

A0 > 0.

Let fi be the harmonic functions defined by (4.2.1) on (M̃3
i , gi), (Mi, gi) be the half of

(M̃3
i , gi) such that fi satisfies (4.2.4), and hi := f 4

i gi the conformal metrics. Using the same

notations as in previous section, let (M̃∗
i , hi) be the one point compactification M̃i ∪ {∞2},
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then (M̃∗
i , hi) is a sequence of one-ended asymptotically flat 3-manifolds with nonnegative

scalar curvature and ADM mass m(hi) = εi → 0.

Let Ei be regions given by Proposition 4.3.1. Since Area(∂Ei) → 0 and Σi is a minimal

surface with Area(Σi) ≥ A0 > 0, Ei∩Σi ̸= ∅. Taking any base point pi ∈ Ei∩Σi = Ei∩{fi = 1
2
},

by [DS23, Theorem 1.3],

(Ei, d̂hi,Ei , pi) → (R3, dEucl, xo)

in the pointed measured Gromov-Hausdorff topology, where x0 = (m0

2
, 0, 0) ∈ R3, the

harmonic maps ui with ui(pi) = xo are Ψ(εi)-pGH approximation, and for any D > 0,

(ui)♯(dvolhi
|B̂hi,Ei (pi,D)) weakly converges to dvolEucl|B(xo,D) as i→ ∞.

Now we consider functions ξi(x) :=
f2
i

(1−fi)2
defined on (M̃∗

i , hi). Since ∆gifi = 0, we have

∆hi
fi = 2f−1

i |∇fi|2hi
,

and

∆hi
(1− fi)

−1 = 2(1− fi)
−3f−1

i |∇fi|2hi
.

So

∆hi
ξi = 6(1− fi)

−4|∇fi|2hi
. (4.4.1)

For any fixed D > 0 and any x ∈ B̂hi,Ei(pi, D), by (4.3.6) we have

|∇(1− fi)
−1|hi

= (1− fi)
−2|∇fi|hi

≤ C,

so

(1− fi)
−1(x) ≤ 2 + C · d̂hi,Ei(pi, x).

Also

|∇ξi|hi
(x) =

2fi|∇fi|hi
(x)

(1− fi)3
≤ C

1− fi(x)
, (4.4.2)
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so

0 ≤ ξi(x) ≤ C(1 + d̂hi,Ei(pi, x))
2. (4.4.3)

By Arzelà-Ascoli theorem, up to a subsequence, fi → f∞ and ξi → ξ∞ locally uniformly

for some Lipschitz functions f∞ and ξ∞ on R3, and ξ∞ = f2
∞

(1−f∞)2
.

Lemma 4.4.1. fi and ξi converges to f∞ and ξ∞ in the weakly W 1,2-sense respectively. That

is, for any uniformly converging sequence of compactly supported Lipschitz functions ψi → ψ

and ∇ψi → ∇ψ in L2, we have

lim
i→∞

∫
Ei
ξiψidvolhi

=

∫
R3

ξ∞ψdvolEucl,

lim
i→∞

∫
Ei
⟨∇ξi,∇ψi⟩hi

dvolhi
=

∫
R3

⟨∇ξ∞,∇ψ⟩δ dvolEucl.

Proof. It’s enough to prove for ξi. Under the diffeomorphism ui, we can identify Ei as a

subset in R3. Suppose that ψi, ψ have support in U ⊂ B(0, D) for some D > 0. Then since

ξi → ξ∞ uniformly, by Proposition 4.3.1 we know

lim
i→∞

∣∣∣∣∫
U∩Ei

ξiψidvolhi
−
∫
U

ξ∞ψdvolEucl

∣∣∣∣
≤ lim

i→∞

∫
U∩Ei

|ξiψi − ξ∞ψ|dvolhi
+ lim

i→∞

∣∣∣∣∫
U∩Ei

ξ∞ψdvolhi
−
∫
U

ξ∞ψdvolEucl

∣∣∣∣
≤ C lim

i→∞

∫
U∩Ei

|ξiψi − ξ∞ψ|dvolEucl

= 0.

Similarly, since |∇ξi|hi
and |∇ψi|hi

are uniformly bounded and hi converges uniformly to δ,

lim
i→∞

∣∣∣∣∫
U∩Ei

⟨∇ξi,∇ψi⟩hi
dvolhi

−
∫
U

⟨∇ξ∞,∇ψ⟩δ dvolEucl
∣∣∣∣

≤ C lim
i→∞

∫
U∩Ei

| ⟨∇ξi,∇ψi⟩hi
− ⟨∇ξ∞,∇ψ⟩δ |dvolEucl

= C lim
i→∞

∫
U∩Ei

|hjki ∂jξi∂kψi − δjk∂jξ∞∂kψ|dvolEucl

≤ C lim
i→∞

3∑
j=1

∫
U∩Ei

(| ⟨∂jξi − ∂jξ∞⟩ | · |∂jψ|+ |∂jψi − ∂jψ|)

= 0,
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where in the first inequality we used that Vol(U \ Ei) → 0, and in the last step, we used the

assumption that ∂jψi → ∂jψ in L2 and the fact that uniformly Lipschitz sequence ξi has a

locally W 1,2-convergent subsequence, which can be seen by a smooth mollifier argument.

Proposition 4.4.2. ξ∞ satisfies the following equation weakly on R3 :

∆δξ∞ =
24

m2
0

. (4.4.4)

Proof. For any smooth function ψ on R3 with compact support in U ⊂ B(xo, D) ⊂ R3, it is

enough to show that

−
∫
U

⟨∇ξ∞,∇ψ⟩δ dvolEucl =
24

m2
0

∫
U

ψdvolEucl.

Define ψi := ψ ◦ ui on Ei. Then ψi are uniformly Lipschitz and ψi → ψ uniformly. By (4.4.1)

and integration by parts, for Ui := u−1
i U ⊂ Ei, we have

−
∫
Ui

⟨∇ξi,∇ψi⟩hi
dvolhi

=

∫
Ui

6ψi(1− fi)
−4|∇fi|2hi

dvolhi
−
∫
∂Ui

ψi ⟨∇ξi, n⃗⟩ dAhi
.

Notice that |ψi|, |∇ξi|hi
≤ C(D) on Ui, so∣∣∣∣∫
∂Ui

ψ ⟨∇ξi, n⃗⟩ dAhi

∣∣∣∣ ≤ C(D) · Area(∂Ei) → 0.

By (4.3.6) and Proposition 4.3.1,

lim
i→∞

∫
Ui

6ψi(1− fi)
−4|∇fi|2hi

dvolhi
= lim

i→∞

∫
ui(Ui)

24

m2
0

ψdvolhi
=

24

m2
0

∫
U

ψdvolEucl.

It remains to show limi→∞
∫
Ui
⟨∇ξi,∇ψi⟩hi

dvolhi
=
∫
U
⟨∇ξ∞,∇ψ⟩δ dvolEucl, which comes

from Lemma 4.4.1.

So we have the following rigidity:

Lemma 4.4.3.

ξ∞(x) =
4

m2
0

|x|2.

In particular,

f∞(x) =

(
1 +

m0

2|x|

)−1

. (4.4.5)
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Proof. By standard theory of elliptic equations, ξ∞ is a smooth function. So the smooth

function η(x) := ξ∞(x) − 4
m2

0
|x|2 is δ-harmonic on R3, i.e. ∆δη = 0. By taking limit of

(4.4.3), η has quadratic growth, so η is a polynomial of degree at most 2. Since ξ∞ ≥ 0 and

ξ∞(xo) = ξ∞((m0

2
, 0, 0)) = 1, we can assume ξ∞ has the following form:

ξ∞(x) = c11

(
x1 −

m0

2

)2
+ c22x

2
2 + c33x

2
3 +

4

m2
0

|x|2,

where c11, c22, c33 are constants to be determined such that c11+
4
m2

0
≥ 0, c22+

4
m2

0
≥ 0, c33+

4
m2

0
≥

0 and c11 + c22 + c33 = 0. Taking limit of (4.4.2), |∇ξ∞|2δ ≤ 16
m2

0
ξ∞, which implies that for any

x1 ∈ R,

(
c11(x1 −

m0

2
) +

4

m2
0

x1

)2

≤ 4

m2
0

(
c11(x1 −

m0

2
)2 +

4

m2
0

x21

)

from which we can get that c11 = 0. So we also have that for any x2, x3 ∈ R,

(
c22 +

4

m2
0

)2

x22 ≤
4

m2
0

(c22 +
4

m2
0

)x22(
c33 +

4

m2
0

)2

x23 ≤
4

m2
0

(c33 +
4

m2
0

)x23,

from which we can get that c22, c33 ≤ 0, and thus c22 = c33 = 0 by c22 + c33 = 0.

In fact, we can show that the convergence is also strongly W 1,2 by the following lemmas.

Lemma 4.4.4. For any D > 0 and U ⊂ B(0, D),

lim
i→∞

∫
U∩Ei

|∇ξi|2hi
=

∫
U

|∇ξ∞|2δ ,

lim
i→∞

∫
U∩Ei

|∇fi|2hi
=

∫
U

|∇f∞|2δ .

Proof. By Lemma 4.4.3, we know |∇ξ∞|2δ = 16
m2

0
ξ∞ and |∇f∞|2δ = 4

m2
0
(1− f∞)4. We only prove

it for fi and it is similar for ξi.
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It’s clear that |∇f∞|δ ≤ limi→∞ |∇fi|hi
, so it is enough to show limi→∞

∫
U∩Ei |∇fi|

2
hi

≤∫
U
|∇f∞|2δ . This comes from (4.3.6) as following:∫

U

|∇f∞|2δ =
∫
U

4

m2
0

(1− f∞)4

= lim
i→∞

∫
U∩Ei

4

m2
0

(1− fi)
4

≥ lim
i→∞

(1− εi)

∫
U∩Ei

|∇fi|2hi

= lim
i→∞

∫
U∩Ei

|∇fi|2hi
.

Lemma 4.4.5. For any D > 0 and U ⊂ B(0, D),

lim
i→∞

∫
U∩Ei

|∇ξi ◦ u−1
i −∇ξ∞|2δ = 0,

lim
i→∞

∫
U∩Ei

|∇fi ◦ u−1
i −∇f∞|2δ = 0.

Proof. It follows from Lemma 4.4.1 and Lemma 4.4.4.

4.5 Proof of Theorems 1.0.4 and 1.0.5

We first prove the stability for the mass-capacity inequality.

Proof of Theorem 1.0.5. Assume that (M3
i , gi) is a sequence of asymptotically flat 3-manifolds

with nonnegative scalar curvature and compact connected outermost horizon boundaries Σi.

Suppose that m(gi)− 2C(Σi, gi) = εi → 0 and m(gi) → m0 > 0.

By Proposition 4.1.1, without loss of generality, we can assume that there exists a

doubling (M̃i, gi) of each (Mi, gi) such that (M̃i, gi) is symmetric about minimal surface Σi,

has nonnegative scalar curvature and two harmonically flat ends. Let fi be harmonic functions

defined by (4.1.5) and hi = f 4
i gi. Using the same notations in previous arguments of this

section, we have proved that there exist smooth regions Ei ⊂ M̃∗
i such that Areahi

(∂Ei) → 0,
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and for base point pi ∈ Ei ∩ Σi,

(Ei, d̂hi,Ei , pi)
pm−GH−−−−→ (R3, dEucl, xo),

where xo = (m0

2
, 0, 0) and

fi → f∞(x) =

(
1 +

m0

2|x|

)−1

locally uniformly.

In the following, we will only consider the manifoldMi, which is equivalent to {1
2
≤ fi < 1}.

Since hi = f 4
i gi, we know gi and hi are two uniformly equivalent metrics on Mi. When talking

about uniform upper or lower bound on volume, area, or distance etc., there is no difference

by using either metric, so we will omit the subindex for simplicity. Also we always identify Ei

as a subset in R3 by using the diffeomorphism ui.

Fix 0 < ϵ≪ 1. By co-area formula,∫ 1
2
+4ϵ

1
2
+2ϵ

Length(∂Ei ∩ {f∞ = t})dt ≤
∫
∂Ei∩{ 1

2
≤f∞≤ 3

4
}
|∇f∞| ≤ C · Area(∂Ei).

So there exists a generic regular value t0 ∈ (1
2
+ 2ϵ, 1

2
+ 4ϵ) such that ∂Ei ∩ {f∞ = t0} consists

of smooth curves, and the total length satisfies

Length(∂Ei ∩ {f∞ = t0}) ≤
C · Area(∂Ei)

ϵ
= Ψ(εi|ϵ).

We can assume t0 =
1
2
+ 3ϵ for simplicity. By the uniform convergence fi → f∞, for all large

enough i, we have

Ei ∩ {1
2
+ 3ϵ ≤ f∞ ≤ 1− 1

ϵ
} ⊂Mi.

Define Ei(ϵ) as the noncompact component of

Ei ∩ {f∞ ≥ 1

2
+ 3ϵ} ∩Mi.

We make some modifications on Ei(ϵ) for later usage as in the proof of [DS23, Lemma

4.3]. Let {Dk}Nk=0 ⊂ Ei be the components of {f∞ = 1
2
+ 3ϵ} \ ∂Ei, and assume D0 has the

largest area. For any k ≥ 1, then diamDk ≤ Ψ(εi|ϵ). Choose xk ∈ Dk for each k ≥ 1. Since
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dEucl(D0, Dk) ≤ Ψ(εi|ϵ), we know there exists yk ∈ D0 such that d̂hi,Ei(xk, yk) ≤ Ψ(εi|ϵ). For

each k ≥ 1, let γk be a geodesic between xk, yk for the metric d̂hi,Ei . By thickening each γk, we

can get thin solid tubes Tk inside Ψ(εi|ϵ)-neighborhood of γk with arbitrarily small boundary

area. Let Ei(ϵ)′ := Ei(ϵ) ∪ (∪kTk). We then get a smooth connected subset by smoothing

corners of Ei(ϵ)′.

For simplicity, we still denote the modified Ei(ϵ)′ by Ei(ϵ). Denote by ∂∗Ei(ϵ) the closure of

the connected component of ∂Ei(ϵ) \ ∂Ei. Notice that ∂∗Ei(ϵ) lies inside Ψ(εi|ϵ)-neighborhood

of {f∞ = 1
2
+3ϵ} \∂Ei, and the total length of the boundary of ∂∗Ei(ϵ) is smaller than Ψ(εi|ϵ).

Denote by Msc(ϵ) := {f∞ ≥ 1
2
+ 3ϵ}, and xo(ϵ) ∈ {f∞ = 1

2
+ 3ϵ} a base point.

Proposition 4.5.1.

(Ei(ϵ), d̂gi,Ei(ϵ), qi) → (Msc(ϵ), dgsc , xo(ϵ)) (4.5.1)

in the pointed measured Gromov-Hausdorff topology, and

(∂∗Ei(ϵ), d̂gi,∂∗Ei(ϵ)) → (∂Msc(ϵ), d̂gsc,∂Msc(ϵ)) (4.5.2)

in the measured Gromov-Hausdorff topology for the induced length metrics.

Proof. We firstly show (4.5.2). By the construction of Ei(ϵ), we know ∂∗Ei(ϵ) is inside

Ψ(εi|ϵ)-neighborhood of ∂∗Ei(ϵ) ∩ ∂Msc(ϵ), so

(∂∗Ei(ϵ), d̂gsc,∂∗Ei(ϵ)) → (∂Msc(ϵ), d̂gsc,∂Msc)

in the Gromov-Hausdorff topology. It is sufficient to show that for any x, y ∈ ∂∗Ei(ϵ),

lim
i→∞

d̂gi,∂∗Ei(ϵ)(x, y) = d̂gsc,∂Msc(ϵ)(x, y).

Let γ ⊂ ∂Msc(ϵ) be a geodesic between x, y ∈ ∂∗Ei(ϵ) for d̂gsc . Since ∂Msc(ϵ) ∩ ∂Ei consists

of smooth curves with total length converging to 0, we can always perturb γ to get γ̃ ⊂

∂Msc(ϵ) ∩ Ei such that |Lengthgsc(γ)− Lengthgsc(γ̃)| → 0. Then

d̂gi,∂∗Ei(ϵ)(x, y) ≤
∫ 1

0

|γ̃′|gi

≤ (1 + Ψ(εi))

∫ 1

0

|γ̃′|gsc ,
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where we used fi → f∞ uniformly. Taking i→ ∞, we have

lim
i→∞

d̂gi,∂∗Ei(ϵ)(x, y) ≤ d̂gsc,∂Msc(ϵ)(x, y).

Similarly, it’s easy to check

d̂gsc,∂Msc(ϵ)(x, y) ≤ lim
i→∞

d̂gi,∂∗Ei(ϵ)(x, y).

This completes the Gromov-Hausdorff convergence in (4.5.2).

Notice that for any x, y ∈ ∂Msc(ϵ), there is a uniform constant C > 0 such that

dEucl(x, y) ≤ d̂gsc,∂Msc(ϵ)(x, y) ≤ CdEucl(x, y),

which implies that, for any x, y ∈ ∂∗Ei(ϵ), for all large enough i,

1

2
d̂hi,Ei(x, y) ≤ d̂gi,∂∗Ei(ϵ)(x, y) ≤ Cd̂hi,Ei(x, y) + Ψ(εi|ϵ). (4.5.3)

Now we prove (4.5.1). It is enough to show that for any fixed D > 0 and any x, y ∈

Ei(ϵ) ∩B(qi, D),

|d̂gi,Ei(ϵ)(x, y)− dgsc(x, y)| → 0 as i→ ∞.

It’s easy to check that dgsc(x, y) ≤ limi→∞ d̂gi,Ei(ϵ)(x, y). In the following, we will check the

other inequality.

For any fixed δ0 > 0. We firstly assume that dgsc(x, y) ≥ δ0 and dgsc(x, ∂Msc(ϵ)) ≥ δ0,

dgsc(y, ∂Msc(ϵ)) ≥ δ0. If γ is a gsc-geodesic between x, y, then dgsc(γ, ∂Msc(ϵ)) ≥ δ0. For

any 0 < δ ≪ δ0, we can use piecewise line segments {γj}N(δ,D)
j=1 to approximate γ such

that ΣN
j=1Lengthgsc(γj) ≤ Lengthgsc(γ) + Ψ(δ), and LengthEucl(γj) ≥ δ. For each γj with

γj(0) = xj, γj(1) = yj, from the proof of [DS23, Lemma 4.5], we can find peturbed points

x′j, y
′
j such that the straight line segment γ̃j between x′j, y

′
j lies in Ei(ϵ) and dEucl(xj, x′j) +
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dEucl(yj, y
′
j) ≤ Ψ(εi). Then

d̂gi,Ei(ϵ)(x, y) ≤
∑
j

d̂gi,Ei(ϵ)(x
′
j, y

′
j) + C

∑
j

(dEucl(xj, x
′
j) + dEucl(yj, y

′
j))

≤
∑
j

∫
|γ̃′j|gi +Ψ(εi|δ,D)

≤ (1 + Ψ(εi|D))
∑
j

Lengthgsc(γ̃j) + Ψ(εi|δ,D),

where we have used that fi → f∞ uniformly. Taking i→ ∞, we have

lim
i→∞

d̂gi,Ei(ϵ)(x, y) ≤ dgsc(x, y) + Ψ(δ).

Taking δ → 0 gives

lim
i→∞

d̂gi,Ei(ϵ)(x, y) ≤ dgsc(x, y). (4.5.4)

If dgsc(x, y) ≤ δ0 and dgsc(x, ∂Msc(ϵ)) ≤ δ0, then dEucl(x, ∂Msc(ϵ)) ≤ δ0 and dEucl(x, y) ≤ δ0

. We can take an almost d̂hi,Ei-geodesic γ ⊂ Ei between x, y, so Lengthhi
(γ) ≤ 2δ0. If γ ⊂ Ei(ϵ),

we have d̂gi,Ei(ϵ)(x, y) ≤ Cδ0; otherwise, let x
′ be the first intersection point of γ and ∂∗Ei(ϵ)

and y′ be the last intersection point. By (4.5.3), we have

d̂gi,Ei(ϵ)(x
′, y′) ≤ d̂gi,∂∗Ei(ϵ)(x

′, y′) ≤ Cd̂hi,Ei(x
′, y′) + Ψ(εi|ϵ) ≤ Cδ0 +Ψ(εi|ϵ).

So

d̂gi,Ei(ϵ)(x, y) ≤ d̂gi,Ei(ϵ)(x, x
′) + d̂gi,Ei(ϵ)(x

′, y′) + d̂gi,Ei(ϵ)(y
′, y) ≤ Cδ0 +Ψ(εi|ϵ).

This shows that the pointed Gromov-Hausdorff distance

dpGH((Ei(ϵ), d̂gi,Ei(ϵ), qi), (Ei(ϵ) ∩ {x : dgsc(x, ∂Msc(ϵ)) ≥ δ0}, d̂gi,Ei(ϵ), qi))

≤ Cδ0 +Ψ(εi|ϵ).

Together with (4.5.4), we have that

dpGH((Ei(ϵ), d̂gi,Ei(ϵ), qi), (Msc(ϵ), dgsc , xo(ϵ))) ≤ Cδ0 +Ψ(εi|ϵ).
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First taking i → ∞ and then taking δ0 → 0 gives the conclusion on the pointed Gromov-

Hausdorff convergence in (4.5.1).

Since the Hausdorff measure induced by d̂gi,Ei(ϵ) and d̂gi,∂∗Ei(ϵ) are the same as the volume

element dvolgi and the area element dAgi respectively, together with isoperimetric inequality,

it’s standard to check that these measures also converge weakly (c.f. [DS23, Page 22]). In

particular, Areagi(∂
∗Ei(ϵ)) → Areagsc(∂Msc(ϵ)).

Choosing a sequence ϵi → 0, and using a diagonal argument, we can take a subsequence

such that

(Ei(ϵi), d̂gi,Ei(ϵi), qi) → (Msc, dgsc , xo)

in the pointed measured Gromov-Hausdorff topology, and

(∂∗Ei(ϵi), d̂gi,∂∗Ei(ϵi)) → (∂Msc, d̂gsc,∂Msc)

in the measured Gromov-Hausdorff topology.

Finally, we can take Zi = Mi \ Ei and Ni ⊂ Mi to be a smooth submanifold such that

ui(Ni \ Zi) = Ei(ϵi). This completes the proof.

Then we prove the stability for the Penrose inequality as a corollary of the stability for

the mass-capacity inequality.

Proof of Theorem 1.0.4. Let A0 ≥ 0 be a fixed constant and (M3
i , gi) be a sequence of

asymptotically flat 3-manifolds with nonnegative scalar curvature, whose boundaries are

compact connected outermost minimal surfaces with area A0. Suppose that the ADM mass

m(gi) converges to
√

A0

16π
.

From the remark in the end of Section 4.1, we can find a smooth subset M ′
i ⊂Mi and a

metric g′i such that (M ′
i , g

′
i) is also an asymptotically flat 3-manifold with nonnegative scalar
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curvature and a connected outermost horizon Σ′
i with Areag′i(Σ

′
i) = A0, the uniform distance

between g′i and gi on M
′
i converges to 0, and m(g′i)− 2C(Σ′

i, g
′
i) → 0.

Then we can apply the stability for mass-capacity inequality to (M ′
i , g

′
i). So the conclusion

that up to boundary area perturbations, the Schwarzschild 3-manifold is stable for the Penrose

inequality follows.
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Henri Poincaré. Vol. 23. 7. Springer. 2022, pp. 2523–2543.

[HLS17] Lan-Hsuan Huang, Dan A. Lee, and Christina Sormani. “Intrinsic flat stability of
the positive mass theorem for graphical hypersurfaces of Euclidean space”. In:
Journal für die reine und angewandte Mathematik (Crelles Journal) 2017.727
(2017), pp. 269–299.

[Jau12] Jeffrey L Jauregui. “The capacity–volume inequality of Poincaré–Faber–Szegö”.
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