Advanced Linear Algebra MAT 315

Oleg Viro

$02 / 18 / 2020$, Lecture 1

Linear maps 2
Linear maps 3
Examples of linear maps 4
Examples of linear maps 5
A linear map takes 0 to 0 6
Linear operations in $\mathcal{L}(V, W)$ 7
Composition 8
Language of categories 9
Categories 10
Examples of categories 11
Operators 12
Inverses and invertibles 13
Isomorphism 14
surjectivity, injectivity and bijectivity 15
liberté, égalité et fraternité 16
Invertible $=$ bijection. 17
Spaces associated to a linear map 18
Null space 19
Null space is a subspace 20
Injectivity and the null space 21

Linear maps

Let V and W be vector spaces over a field \mathbb{F}.
3.2 Definition A map $T: V \rightarrow W$ is said to be linear if:
$T(u+v)=T u+T v$ for all $u, v \in V$
$T(\lambda v)=\lambda(T v)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$
(T is additive);
(T is homogeneous).

Linear maps or linear transformations? $\quad T v$ or $T(v)$?
3.3 Notation $\mathcal{L}(V, W)=\{$ all the linear maps $V \rightarrow W\}$

Other notations: $\operatorname{Hom}_{\mathbb{F}}(V, W)$ or $\operatorname{Hom}(V, W)$.
Examples of linear maps
Zero $\quad 0 \in \mathcal{L}(V, W): x \mapsto 0$
Identity

$$
I \in \mathcal{L}(V, V): x \mapsto x \quad \text { Other notations: id, or id }{ }_{V} \text {, or } 1 .
$$

Inclusion \quad in $\in \mathcal{L}(V, W): x \mapsto x$ if $V \subset W$

Inclusion
in $\in \mathcal{L}(V, W): x \mapsto x$ if $V \subset W$

Examples of linear maps

Differentiation $\quad D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}): D p=p^{\prime}$

Integration $\quad T: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}: T p=\int_{0}^{1} p(x) d x$

Multiplication by $x^{3} \quad T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F}):(T p)(x)=x^{3} p(x)$

Backward shift
$T \in \mathcal{L}\left(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$

A linear map takes 0 to 0

3.11 Theorem Let $T: V \rightarrow W$ be a linear map. Then $T(0)=0$.

Proof $T(0)=T(0+0)=T(0)+T(0)$.
So, $\quad T(0)=T(0)+T(0)$.
Add $-T(0)$ to both sides.

$$
0=T(0)
$$

Linear operations in $\mathcal{L}(V, W)$
3.6 Definition Let $S, T: V \rightarrow W$ be maps and $\lambda \in \mathbb{F}$.

The sum $S+T$ and the product λT are maps $V \rightarrow W$ defined by $(S+T)(v)=S v+T v \quad$ and $\quad(\lambda T)(v)=\lambda(T v) \quad$ for all $v \in V$.

Theorem If S, T are linear maps, then $S+T$ and λT are linear maps.
Proof. Exercise! It's easy!
3.7 Theorem With the operations of addition and scalar multiplication, $\mathcal{L}(V, W)$ is a vector space.
Proof. Exercise! It's easy!

Composition

Definition Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be maps.
The composition $S \circ T$ is a map $U \rightarrow W$ defined by formula

$$
(S \circ T)(u)=S(T(u)) \text { for all } u \in U . \quad U \xrightarrow{T} V \xrightarrow{S} \xrightarrow{S} W
$$

Composition is also called a product. (Say, in Axler's textbook.)
Often $S \circ T$ is denoted by $S T$, like a product.
Theorem If S and T are linear maps, then $S \circ T$ is a linear map.
Proof. Exercise! It's easy!
3.9 Algebraic properties of composition
$\begin{array}{lc} & \left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right) \\ \text { associativity } & T \operatorname{id}_{V}=T=\operatorname{id}_{W} T \\ \text { identity } & \left(S_{1}+S_{2}\right) T=S_{1} T+S_{2} T \text { and }\left(T_{1}+T_{2}\right) S=T_{1} S+T_{2} S . \\ \text { distributivity } & \end{array}$

Categories

A category provides a framework with a convenient language to speak about objects of unspecified nature, but related to each other in a very specific way.
A category consists of:
objects and
morphisms: for any two objects X, Y morphisms $X \rightarrow Y$, and

The composition is associative: $h \circ(g \circ f)=(h \circ g) \circ f$

With any object X, the identity morphism $\operatorname{id}_{X}: X \rightarrow X$ is associated:
for $A \xrightarrow{f} X \xrightarrow{\text { id }_{X}} X$ we have $\operatorname{id}_{X} \circ f=f$
and for $X \xrightarrow{\mathrm{id}_{X}} X \xrightarrow{g} B$ we have $g \circ \mathrm{id}_{X}=g$.

Examples of categories

Example 1. The category of sets

Objects are sets, morphisms are maps, compositions are compositions of maps.

Example 2. The category of vector spaces over a field \mathbb{F}

Objects are vector spaces over \mathbb{F}, morphisms are linear maps, compositions are compositions of linear maps.

Example 3. The category of linear maps Let \mathbb{F} be a field.

Objects are linear maps $V \rightarrow W$, where V and W are vector spaces over \mathbb{F}.
A morphism $(V \xrightarrow{T} W) \rightarrow(X \xrightarrow{S} Y)$ is a pair $(V \xrightarrow{L} X, W \xrightarrow{M} Y)$ of linear maps such that $M \circ T=S \circ L$.
It is presented by a diagram: $\begin{array}{lll}V & L^{2} \\ \downarrow_{T} & & S \\ & & \end{array} \quad$ which is commutative: $M \circ T=S \circ L$.

$$
\stackrel{\downarrow}{W} \xrightarrow{M} \stackrel{\downarrow}{Y}
$$

Operators

3.67 Definition

A linear map from a vector space to itself is called an operator.

$$
\text { Notation } \quad \mathcal{L}(V)=\{\text { all linear maps } V \rightarrow V\}=\mathcal{L}(V, V) .
$$

Category of operators in vectors spaces over a field \mathbb{F} objects are operators $T: V \rightarrow V$, a morphism $(V \xrightarrow{T} V) \rightarrow(W \xrightarrow{S} W)$ is a linear map $V \xrightarrow{L} W$ such that $S \circ L=L \circ T$.
or, rather, a commutative diagram

a composition of morphisms is the composition of the linear maps.
Axler: "The deepest and most important parts of linear algebra ... deal with operators."
Which categories will be used in this course?

Inverses and invertibles

In any category:

Definition

Morphisms $T: V \rightarrow W$ and $S: W \rightarrow V$ are said to be inverse to each other if $S \circ T=\mathrm{id}_{V}$ and $T \circ S=\mathrm{id}_{W}$.
A morphism $T: V \rightarrow W$ is called invertible if there exists a morphism inverse to T.
3.54 Uniqueness of Inverse If a morphism is invertible then its inverse is unique.

Proof Let S_{1} and S_{2} be inverse to $T: V \rightarrow W$. Then

$$
S_{1}=S_{1} \mathrm{id}_{W}=S_{1}\left(T S_{2}\right)=\left(S_{1} T\right) S_{2}=\mathrm{id}_{V} S_{2}=S_{2}
$$

3.55 Notation If T is invertible, then its inverse is denoted by T^{-1}.

For a morphism $T: V \rightarrow W$, the inverse morphism T^{-1} is defined by two properties:

$$
T T^{-1}=\operatorname{id}_{W} \quad \text { and } \quad T^{-1} T=\mathrm{id}_{V} .
$$

Isomorphism

In any category:
3.58 Definition An invertible morphism is called an isomorphism.

Objects V and W are called isomorphic if \exists an isomorphism $V \rightarrow W$.

Properties of isomorphisms

- An identity morphism is an isomorphism.
- The composition of isomorphisms is an isomorphism.
- The map inverse to an isomorphism is an isomorphism.

Relation of being isomorphic is equivalence.

It is reflexive, symmetric and transitive.

A category does not recognize any difference between its isomorphic objects, although the objects may be not identically the same.

surjectivity, injectivity and bijectivity

Back to the category of sets and maps
3.20 Definition A map $T: V \rightarrow W$ is called surjective if $T(V)=W$.
3.15 Definition A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

Definition

A map $T: V \rightarrow W$ is called bijective if T is both injective and surjective.

not a map

a map

injection, but not surjection 1-to-1

surjection,
but
not injection "onto"

bijection
invertible

Invertible = bijection

Which sets are isomorphic in the category of sets and maps?
3.56 Theorem. Invertibility is equivalent to bijectivity.

You should know this. If not, see the textbook, page 81.

Null space

3.12 Definition (reminder) For $T \in \mathcal{L}(V, W)$, the null space of T is

$$
\operatorname{null} T=T^{-1}\{0\}=\{v \in V \mid T v=0\} .
$$

Another name: kernel. Notation: $\operatorname{Ker} T$.

3.13 Examples

- For $T: V \rightarrow W: v \mapsto 0, \quad \operatorname{null} T=V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}), \quad$ null $D=\{$ constants $\}$
- For multiplication by $x^{3} T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F}): T p=x^{3} p(x), \quad$ null $T=0$
- For backward shift $T \in \mathcal{L}\left(\mathbb{F}^{\infty}, F^{\infty}\right): T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)$
$\operatorname{null} T=\{(a, 0,0, \ldots) \mid a \in \mathbb{F}\}$

Null space is a subspace

3.14 Theorem. For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof. As we know (by 3.11) $T(0)=0$. Hence $0 \in \operatorname{null} T$.
$u, v \in \operatorname{null} T \Longrightarrow T(u+v)=T(u)+T(v)=0+0=0 \Longrightarrow u+v \in \operatorname{null} T$.
$u \in \operatorname{null} T, \lambda \in \mathbb{F} \Longrightarrow T(\lambda u)=\lambda T u=\lambda 0=0 \quad \Longrightarrow \lambda u \in \operatorname{null} T$.

Injectivity and the null space

3.15 Definition (reminder)

A map $T: V \rightarrow W$ is called injective if $T u=T v \Longrightarrow u=v$.

A map $T: V \rightarrow W$ is injective $\Longleftrightarrow u \neq v \Longrightarrow T u \neq T v$.
3.16 T is injective \Longleftrightarrow null $T=\{0\}$.

Proof
\Longrightarrow Recall $0 \in \operatorname{null} T$. If null $T \neq\{0\}$, then $\exists v \in \operatorname{null} T, v \neq 0$.
So, $T v=T 0=0$ and T is not injective.
\Longleftarrow Let $u, v \in V, T u=T v$. Then $0=T u-T v=T(u-v)$. Hence $u-v \in \operatorname{null} T=\{0\} \quad \Longrightarrow u=v$. ■

