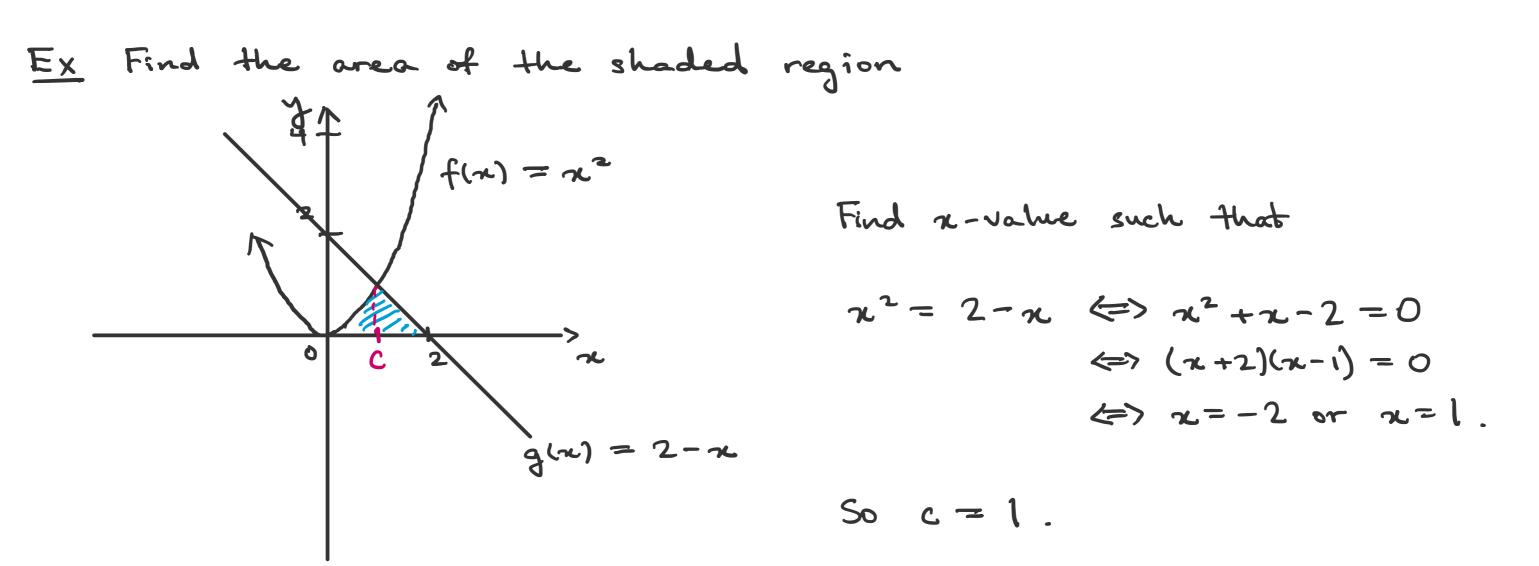


- () Top function is $y = e^{x}$ bottom function is $y = -x^2 + 4x$
- 2 Top function is $y = -x^2 + 4x$ bottom function is $y = e^{x}$
- Say that $y = e^x$ and $y = -x^2 + 4x$ intersect at x = c and n = d.
- Total = Area + Area Area of 0 + of 0 $= \int_{0}^{c} e^{\pi} - (-\pi^{2} + 4\pi) d\pi + \int_{c}^{d} (-\pi^{2} + 4\pi) - e^{\pi} d\pi$

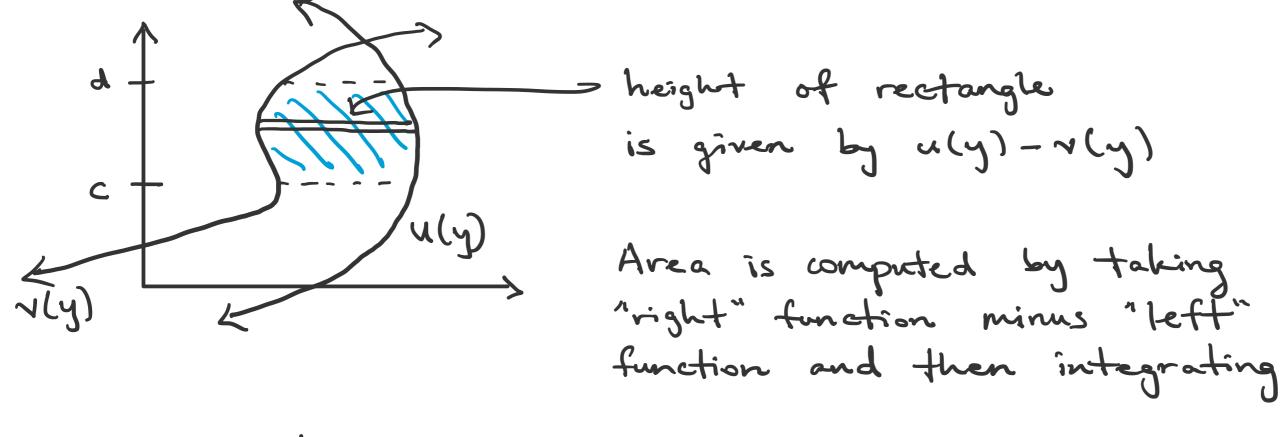


Area =
$$\int_{0}^{1} (x^{2} - 0) dx + \int_{1}^{2} ((2 - x) - 0) dx$$

= $\left[\frac{x^{3}}{3}\right]_{0}^{1} + \left[2x - \frac{x^{2}}{2}\right]_{1}^{2}$
= $\frac{1}{3} + \left[4 - 2\right] - \left[2 - \frac{1}{2}\right]$
= $\frac{1}{3} + 2 - \frac{3}{2} = 2 + \frac{2}{6} - \frac{9}{6} = \frac{5}{6}$

•

Area between curves (with horizontal rectangles)

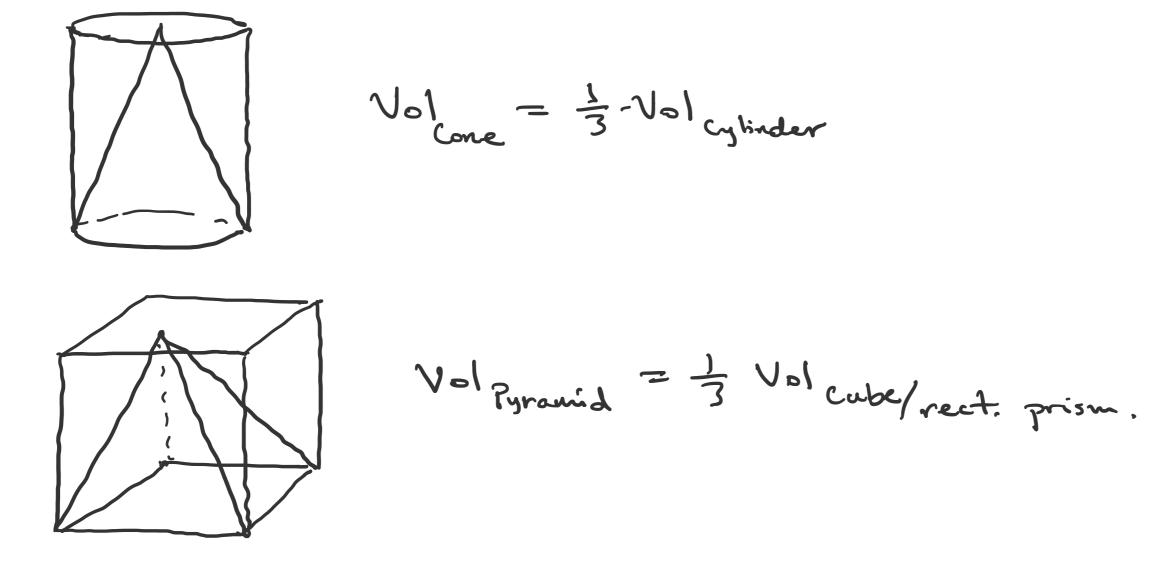


Ex find area between
$$y = x^3$$
 and $y = x^2 + x$
T should have two regions.

Volume of solids:

$$\int_{a}^{2} \int_{a}^{a} \int_{a$$

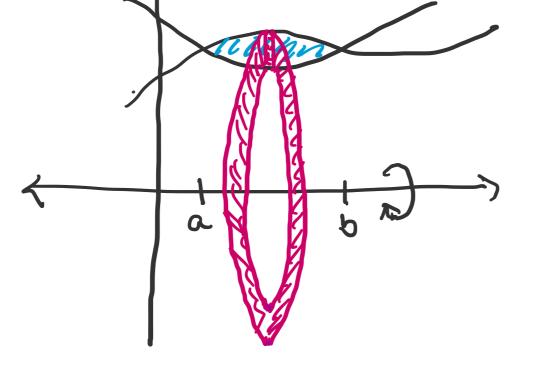
Criven a cone or pyramid, we can find the volume:



Solids of revolution:

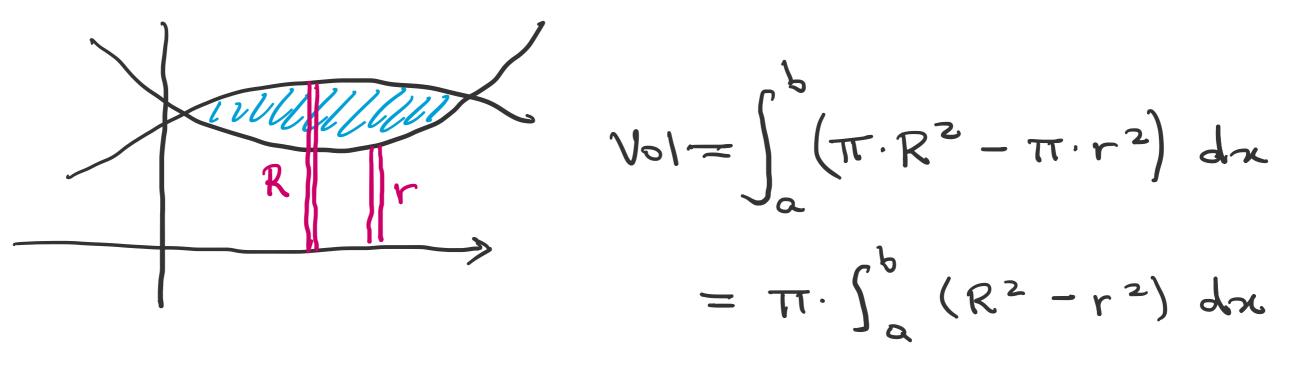
In general: Given radius r = r(n), the solid of revolution on [a, b]has volume $Vol = \int_{a}^{b} \pi \cdot r^{2} \cdot dx$

Variation:



Sol. Here is a sketch of the region:

rotate region around x-axis



Ex. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, y = -x, and x = 2 around the line y = -3

So
$$Vol = \pi \cdot \int_{a}^{b} R^{2} - r^{2} dx$$

$$= \pi \cdot \int_{0}^{2} (\sqrt{x} + 3)^{2} - (\sqrt{3} - x)^{2} dx$$

$$= \pi \cdot \int_{0}^{2} x + 6 \cdot \sqrt{x} + 9 - (9 - 6x + x^{2}) dx$$

$$= \pi \cdot \int_{0}^{2} (7x + 6 \cdot x^{2} - x^{2}) dx$$

$$= \pi \cdot \left[\frac{7x^{2}}{2} + \frac{6 \cdot x^{3/2}}{3/2} - \frac{x^{3}}{3} \right]_{0}^{2}$$

$$= \pi \cdot \left[\frac{7 \cdot 2^{3}}{2} + 4 \cdot 2^{3/2} - \frac{8}{3} \right]$$

$$= \pi \cdot \left[14 + 4 \cdot 2^{3/2} - \frac{8}{3} \right]$$

Washer-method: Solids of revolution.

$$Ex. Find the volume obtained by rotating the regionbounded by $x = (y-2)^2$, the x-axis, $y = 3$, and $y-axis$$$

$$R = (y-2)^2 - (-1)$$
 and $r = 0 - (-1) = 1$

$$Vol = \pi \cdot \int_{0}^{3} R^{2} - r^{2} \cdot dy$$

= $\pi \cdot \int_{0}^{3} [(y-2)^{2} + 1]^{2} - 1 dy$

<u>Ex.</u> Region given by $f(x) = \frac{1}{x}$, x - axis, x = 1, and x = 3. $V_{01} = \int_{1}^{3} 2\pi n \cdot f(n) dn = \int_{1}^{3} 2\pi \cdot n \cdot \frac{1}{2} dn$ = 2 - (3) $= 2\pi \cdot 2 = 4\pi$ {-f(~)

Final: Wed. May 13th 11:15 am - 1:45 pm I'll send out Zoonn link Next week - arclength