4/14/2020 R02 Tuesday, April 14, 2020 Questions from / about Midtern 2?

Helps with integrals of the form
$$\int \frac{P(x)}{q(x)} dx \qquad p, q \text{ are polynomials in } x$$

Partial Fraction Decomposition

 $\frac{\text{Ex}}{\sqrt{2^2-2}} dx$

Notice
$$\frac{3x}{x^2-x-2} = \frac{3x}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$
.

Clear denominators: multiply both sides by $(x-2)(x+1)$

 $3x = A \cdot (x+1) + B \cdot (x-2)$ $T_{\gamma} = -1:$ $-3 = AO + B \cdot (-3)$ B = 1.Try x = 2: $6 = A \cdot 3 + B \cdot 6$ A = 2.

 $\frac{3x}{(x-2)(x+1)} = \frac{2}{x-2} + \frac{1}{x+1}$

 $\int \frac{3\pi}{\pi^2 - \pi - 2} d\pi = \int \frac{2}{\pi - 2} d\pi + \int \frac{1}{\pi + 1} d\pi$ $= 2 \cdot \ln |x-2| + \ln |x+1| + C$ $\frac{Ex}{\int \frac{\pi^2 + 3\pi + 5}{\pi + 1}} d\pi$ Long division:

n+1 n^2+3n+5 $-(\chi^2 + \chi)$

So $\frac{\chi^2 + 3\chi + 5}{\chi + 1} = \frac{1}{\chi + 1}$ = remainder

 $\frac{1}{(2x-1)^2 \cdot (x-1)} dx$ Two ways to set up,

Repeated $\neq \frac{\chi - 2}{(2\chi - 1)^2 \cdot (\chi - 1)} = \frac{A}{(2\chi - 1)} + \frac{B}{(2\chi - 1)^2} + \frac{C}{\chi - 1}$

Higher x - 2Higher x - 2Heg denom: $(4x^2 - 4x + 1)(x - 1)$ $(4x^2 - 4x + 1)$ (x - 1)Clear denoninators: multiply both sides by (2x-1)2.(x-1)

 $(x-2) = A(2x-1) \cdot (x-1) + B \cdot (x-1) + C \cdot (2x-1)^2$ Try x=1: -1 = A. (1).0 + B.0 + C. (1)2

Try $x = \frac{1}{2}: -\frac{3}{2} = A \cdot o + B \cdot (-\frac{1}{2}) + C \cdot o^2$

Try $x=0: -2 = A \cdot (-1) \cdot (-1) + B \cdot (-1) + C \cdot (-1)^2$

See list of strategies for setting up PFD (pg. 303-304, Colc Vol. 2) $\frac{Ex}{\int \frac{2\pi-3}{x^3+2} dx}$

 $= 7 - \frac{1}{2}B = -\frac{3}{2}$

> plug in B=3, C=-1 => -2=A-3-1

 $\frac{2x-3}{x^3+x} = \frac{2x-3}{x(x^2+1)} = \frac{Ax+16}{x^2+1} + \frac{C}{x}$

Try $x = 0 : disappears -3 = 0 + (i) \cdot C = 7 C = -3$.

= A + B - 6.

 $2x-3 = x(Ax+B) + (x^2+1) \cdot C$

 $T_{m_1} = 1: -1 = 1 \cdot (A+B) + 2 \cdot C$

Try x = -1: $-5 = (-1) \cdot (-A + B) + 2 \cdot C$ = A - B - 6Solve A - B = 1.

2A = 6 => A = 3 => B = 2.

 $\int \frac{2\pi - 3}{x^3 + \pi} d\pi = \int \frac{3\pi + 2}{\pi^2 + 1} d\pi + \int \frac{-3}{\pi} d\pi$

Notice that x^3-1 has a roof at x=1.

use u-sub. $\sqrt{\frac{2}{x^2+i}} dx = 2 \cdot \arctan(x)$

Use long division: x-1 $\int x^2 + x + 1$ placeholders

 $-(\kappa^3-\kappa^2)$

cannot be factored further.

I Think thús is what Prof. Kahn did in class.

A + B = 3 = A = 2.

So $\int \frac{3x^2}{x^3-1} dx = \int \frac{2x+1}{x^2+x+1} dx + \int \frac{1}{x-1} dx$

du = (2n+1). dx

We get [- 1 - du = ln |u| = ln |x2+x+1| + C.

0 + x2 + 0x

 $\frac{-\left(\chi^2-\chi\right)}{0+\chi-1}$

- (x - 1)

 $\frac{50}{x^3+x} = \frac{3x+2}{x^2+1} + \frac{(-3)}{x}$

 $\int \left(\frac{3\pi}{x^2 + 1} + \frac{2}{x^2 + 1} \right) dx$

So n-1 divides n3-1.

 $50 \quad x^3 - 1 = (x - 1) \cdot (x^2 + x + 1)$

 $\frac{3x^2}{x^3-1} = \frac{Ax+B}{x^2+x+1} + \frac{C}{x-1}$

 $3x^2 = (Ax+B)\cdot(x-1) + C\cdot(x^2+x+1)$

 $= Ax^2 + Bn - An - B + Cx^2 + Cx + C$

 $\begin{cases} 3 = A + C & B = C. \\ 0 = B - A + C = 7 \\ 0 = C - B & S = A + B \\ 0 = B - A + B = 2B - A \end{cases}$

Try u-sub with u=x2+x+1

 $3x^2 + 0x + 0 = (A+C) \cdot x^2 + (B-A+C) x + C-B$ match colors

Solve by matching coefficients

Apply PFD:

with

 $\frac{Ex}{\int \frac{3\pi^2}{3\pi^2} dx}$

4= x2+1

du = 2x.dr

 \Rightarrow $B = (-2) \cdot (-\frac{3}{2}) = 3$

 $\frac{2x-1)^2(x-1)}{(2x-1)^2(x-1)} = \frac{2}{2x-1} + \frac{3}{(2x-1)^2} + \frac{(-1)}{(x-1)}$

integrate using u-sub.

we know how to integrate this