 that the tangent line is horizontal, so $f^{\prime}(3)=0$.
2. Criven $g(x)=(\underbrace{\left(x^{2}+2\right)} \cdot \sin x$,

$$
\frac{d}{d x}\left(x^{2}+2\right)=2 x \text { and } \frac{d}{d x}(\sin x)=\cos x .
$$

The product rule gives

$$
g^{\prime}(x)=2 x \cdot \sin x+\left(x^{2}+2\right) \cdot \cos x
$$

Row

1. $g(x)=\underbrace{x^{2}} \cdot e^{e^{x}}$

$$
\frac{d}{d x}\left(x^{2}\right)=2 x \text { and } \frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Product rule: $\quad g^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right) \cdot e^{x}+x^{2} \cdot \frac{d}{d x}\left(e^{x}\right)$

$$
=2 x \cdot e^{x}+x^{2} \cdot e^{x}
$$

2. There is a horizontal asymptote of $y=1$ at both $x \rightarrow \infty$ and $x \rightarrow-\infty$.

There is a vertical asymptote at $x=1$.
f always has positive derivative (slopes are positive) f is concave up for $x<1$ and concave down for $x>1$.

