Nathan Chen

Spring 2020: MAT 126
5/5/2020

Final Exam Review

Here are some review problems for the final. Please send me an email if you find any errors.
(*) Denotes a challenging problem.

1. (Warm-up) Arrange the following 5 numbers in increasing order (from smallest to largest):

$$
\begin{gathered}
\sec (\pi / 4), \quad 3 \cdot \arctan (\sqrt{3}), \quad-\tan (-\pi / 3), \\
\int_{0}^{1 / 4} x^{-1 / 2} d x, \quad \lim _{x \rightarrow-\infty} 2^{k(x)}
\end{gathered}
$$

given $k(x)=\frac{x^{2}-2 x+1}{x^{2}-4}$.
2. Solve the following integrals:
(a)

$$
\int \frac{\sqrt{x}}{x^{3 / 2}-1} d x
$$

(b)

$$
\int_{1 / 3}^{1} \cos (3 \pi(x-1)) d x .
$$

(c)

$$
\int\left(\frac{3-x}{x}\right)^{2} d x
$$

(d) $(*)$

$$
\int_{-3}^{0}(x+5) \sqrt{9-x^{2}} d x .
$$

3. Use integration by parts:
(a)

$$
\int x^{2} \cos 3 x d x
$$

(b)

$$
\int \arctan x d x
$$

(c) $(*)$

$$
\int \sin (\ln (2 x)) d x
$$

4. Trig integrals:
(a)

$$
\int \tan ^{3} x \sec ^{3} x d x
$$

(b)

$$
\int \sin ^{2} x \cos ^{2} x d x
$$

(c) $(*)$

$$
\int \frac{\tan ^{3} x}{\sqrt{\sec x}} d x
$$

5. Trig substitution:
(a)

$$
\int \sqrt{16-x^{2}} d x
$$

(b)

$$
\int \frac{\sqrt{x^{2}-25}}{x} d x
$$

(c)

$$
\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}
$$

6. Partial fraction decomposition:
(a)

$$
\int \frac{2 x^{4}}{x^{2}-2 x} d x
$$

(b)

$$
\int \frac{1}{x^{4}-1} d x
$$

7. Improper integrals:
(a)

$$
\int_{2}^{4} \frac{d x}{(x-3)^{2}}
$$

(b)

$$
\int_{0}^{\infty} e^{-x} \cos x d x
$$

(c)

$$
\int_{-\infty}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x
$$

8. Area between curves (try to draw a picture first):
(a) Find the area bounded between $f(x)=x^{3}$ and $g(x)=x^{2}+2 x$.
(b) Find the area bounded between $f(x)=2 x^{2}, g(x)=4-2 x$, and the x-axis by integrating with respect to y.
9. Volume of solids (see pg. 163 of the calculus book, volume 2 to compare the different methods):
(a) Let R be the region bounded by the graph of $y=\sqrt{4-x^{2}}, y=0$, and $x=0$. Use the disk method to find the volume of the solid of revolution generated by rotating R around the y-axis.
(b) Let R be the region bounded by the graph of $y=\sin x, y=5 \sin x, x=0$, and $x=\pi$. Use the washer method to find the volume when the region is revolved around the x-axis.
(c) Consider the region bounded between $y=\sqrt[5]{x}$, the x-axis, $x=0$, and $x=1$. Use the shell method to find the volume of the solid obtained by rotating the region around the y-axis.
10. Find the length of the function $y=-\frac{1}{2} x+2$ from $x=1$ to $x=4$, and verify this using geometry.
