CURVES ON SURFACES BLOWN UP AT THREE POINTS

NATHAN CHEN

It is well known that for any integer $g \ge 0$, there exists a smooth curve $C \subset \mathbb{P}^3$ of genus g. One can ask an analogous question when \mathbb{P}^3 is replaced by an arbitrary smooth projective variety X of dimension ≥ 3 . However, it is possible that a given variety contains no curves of small genus (i.e., abelian varieties or generic hypersurfaces). A better-posed question to ask is whether all sufficiently large genera are realized by smooth curves, and this is answered in the affirmative by J. A. Chen [1].

For a general surface S, one cannot expect for all sufficiently large genera to be realized as the genus of a smooth curve on S. Nevertheless, it is shown in [1] that the statement holds if one allows integral curves with at worst nodal singularities (and considers their geometric genera).

Let S be any smooth projective surface. In this note, we show that if S is replaced by a birational model \tilde{S} , then all sufficiently large genera can be realized by smooth curves on \tilde{S} . Moreover, it suffices to choose \tilde{S} to be the blow-up of S at three points. This is equivalent to the statement that on S, all sufficiently large (geometric) genera can be realized by integral curves with at most three singular points.

Theorem 1. Let S be a smooth projective surface with an ample line bundle H and let $\tilde{S} \to S$ be the blow-up at three points. There exists an integer $g_0 = g_0(S, H)$ such that for any integer $g \ge g_0$, there exists a smooth curve $C \subset \tilde{S}$ of genus g.

The set-up of the proof follows [1, Theorem 2]. Gauss' Eureka theorem is used to choose solutions to a certain numerical constraint, and smoothness of the curves follows from Reider's theorem. We would like to thank R. Lazarsfeld for suggesting questions along these lines.

1. Proof of Theorem 1

Let us recall the statement of Reider's theorem [2]:

Let L be an ample line bundle on a smooth projective surface X.

- (1) Assume that $L^2 \ge 5$ and $L \cdot C \ge 2$ for all irreducible curves $C \subset X$. Then $K_X + L$ is globally generated.
- (2) If $L^2 \ge 10$ and $L \cdot C \ge 3$ for all $C \subset X$, then $K_X + L$ is very ample.

Now let $\pi : \tilde{S} \to S$ be the blow-up of S at three points $x_1, x_2, x_3 \in S$. For simplicity, let us assume that H is very ample on S. Let $E_i \subset \tilde{S}$ denote the exceptional divisor over x_i . Write

$$g_m = p_a(K_{\tilde{S}} + m \cdot \pi^* H);$$

Date: June 7, 2020.

$$d_m = g_m - g_{m-1}$$

We will show that for any $m \gg 0$ and for any integer r with $1 \le r \le d_m$, there exist integers $k_i \ge 0$ and a smooth curve

$$C \in \left| K_{\tilde{S}} + m \cdot \pi^* H - \sum_{i=1}^3 k_i E_i \right|$$

with genus $g(C) = g_m - r$. This would imply the theorem.

Choose integers $k_i \ge 2$ satisfying

(*)
$$\sum_{i=1}^{3} \frac{(k_i - 1)(k_i - 2)}{2} = r + 1.$$

Such a solution always exists by Gauss' Eureka theorem.¹ Let

$$D_{m,\vec{k}} = D(m,k_1,k_2,k_3) := m \cdot \pi^* H - \sum_{i=1}^3 k_i E_i.$$

A straightforward computation shows

$$p_{a}(K_{\tilde{S}} + D_{m,\tilde{k}}) = p_{a}(K_{\tilde{S}} + m \cdot \pi^{*}H - \sum_{i=1}^{3} k_{i}E_{i})$$

$$= 1 + \frac{1}{2}(K_{\tilde{S}} + m \cdot \pi^{*}H - \sum_{i=1}^{3} k_{i}E_{i})(2K_{\tilde{S}} + m \cdot \pi^{*}H - \sum_{i=1}^{3} k_{i}E_{i})$$

$$= 1 + \frac{1}{2}(K_{\tilde{S}} + m \cdot \pi^{*}H)(2K_{\tilde{S}} + m \cdot \pi^{*}H)$$

$$+ \frac{1}{2}\left[(K_{\tilde{S}} + m \cdot \pi^{*}H)(-\sum_{i=1}^{3} k_{i}E_{i}) + (2K_{\tilde{S}} + m \cdot \pi^{*}H)(-\sum_{i=1}^{3} k_{i}E_{i}) - \sum_{i=1}^{3} k_{i}^{2}\right]$$

$$= p_{a}(K_{\tilde{S}} + m \cdot \pi^{*}H) + \frac{1}{2}\left[3\sum_{i=1}^{3} k_{i} - \sum_{i=1}^{3} k_{i}^{2}\right]$$

$$= g_{m} - r.$$

It remains to show that given any $m \gg 0$, we can choose a smooth curve

$$C \in \left| K_{\tilde{S}} + D_{m,\vec{k}} \right|$$

where the k_i satisfy (*).

$$N = \sum_{i=1}^{3} \frac{a_i(a_i+1)}{2}$$

of three triangular numbers, where the a_i are non-negative integers.

¹The original formulation says that any positive integer N can be expressed as a sum

We first observe that $\pi^*H - E_i$ is nef for any *i* since *H* is very ample. By computation,

$$\sum_{i=1}^{3} \frac{(k_i - 1)(k_i - 2)}{2} - 1 = r \le d_m = \frac{1}{2}(3K_S \cdot H - H^2) + H^2 \cdot m$$

In particular, only the last term on the right hand side depends on m, so for any $m \gg 0$ and for all i, we have

$$k_i \lesssim C \cdot \sqrt{m}$$

where the constant C only depends on H^2 and $K_S \cdot H$. We may then rewrite

$$D_{m,\vec{k}} = (m-3 - \sum_{i=1}^{3} k_i) \cdot \pi^* H + \sum_{i=1}^{3} (k_i + 1)\pi^* H - k_i E_i.$$

By our assumption, $k_i \ge 2$ for all i so for $m \gg 0$ the expression on the right is the sum of a globally generated line bundle and 3 line bundles that are ample and globally generated. Therefore, when $m \gg 0$ it follows that $D_{m,\vec{k}}$ satisfies the conditions of Reider's theorem and $K_{\tilde{S}} + D_{m,\vec{k}}$ is globally generated. By Bertini's theorem, the general curve

$$C \in \left| K_{\tilde{S}} + D_{m,\vec{k}} \right|$$

is smooth, which completes the proof.

Remark 2. Note that the minimal value of g_0 as in the theorem can be arbitrarily large. Consider the product of two curves $S = C_1 \times C_2$, and let \tilde{S} be the blow-up at three points. For any smooth curve $C \subset \tilde{S}$ that is not one of the three exceptional divisors, we have

$$g(C) \ge \min\{g(C_1), g(C_2)\}.$$

References

- Jungkai A. Chen. On genera of smooth curves in higher dimensional varieties, Proc. Amer. Math. Soc. 125 (1997), 2221 – 2225.
- [2] Igor Reider. Vector bundles of rank 2 and linear systems on algebraic surfaces, Annals of Mathematics 127 (1988), 309 – 316.

DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY, STONY BROOK, NEW YORK 11794 *E-mail address:* nathan.chen@stonybrook.edu